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A Multi-Rate approach for Nonlinear Pre-distortion
using End-to-end Deep Learning in IM-DD systems

Leonardo Minelli, Fabrizio Forghieri Senior Member, IEEE, Antonino Nespola, Stefano Straullu and
Roberto Gaudino Senior Member, IEEE

Abstract—Modern intra-data center (IDC) interconnects lever-
age robust and low-cost intensity modulation (IM) and direct
detection (DD) optical links, based on multimode fibers (MMFs)
and vertical-cavity surface-emitting lasers (VCSELs). Current
solutions, based on on-off keying (OOK) modulations, reach
up to 25-50 Gbps per lane over nearly 100 meters. The actual
target for IDCs is to increase VCSEL-MMF links capacity up
to 100 Gbps, using PAM-4 on the same devices. To counteract
the consequent linear and nonlinear distortions affecting the
transmitted signals, an effective solution is to exploit digital
signal processing (DSP). In this manuscript, we propose a novel
method to optimize a nonlinear artificial neural network (ANN)
digital pre-distorter (DPD), based on End-to-end (E2E) learning,
that, trained jointly with a Feed-Forward Equalizer (FFE),
fulfills physical amplitude constraints and handles different ratio
between the sampling rates incurring along with an optical IM-
DD system. We indeed propose an E2E ANN system operating
simultaneously at different sampling frequencies. We moreover
propose in our training method a substitution to the time-domain
injection of the receiver noise in the system with an additive
regularization term in the FFE gradient loss. We experimentally
show the advantages of our proposed DPD comparing the bit
error rate (BER) performance against the same scenario without
DPD. We assess the gain in terms of Gross Bit Rate and Optical
Path Loss (OPL), at given BER targets, for different fiber lengths.

Index Terms—IM-DD systems, nonlinear equalization, Artifi-
cial Neural Networks, VCSEL, Multi Mode Fibers, Intra Data-
Center Interconnection.

I. INTRODUCTION

NEXT-generation telecommunication systems are re-
quested to fulfill an increasing number of data-driven

services, that will leverage technologies such as 5G, Internet
of Things, and Cloud Computing. In front of the consequent
traffic demand growth, data centers need to upgrade their
communication links accordingly, to exchange data at ever-
higher rates. Modern intra Data Center Inter Connects (DCI)
exploit Intensity Modulation-Direct Detection (IM-DD) On-
Off Keying (OOK) modulated optical links. Around 50 %
of these DCI are still using Multi-Mode Fibers (MMF) [1],
together with Vertical-Cavity Surface-Emitting Lasers (VC-
SEL) due to their low-cost chip manufacturing and high power
efficiency. While a long-term goal could be the introduction
of coherent technology in DCI, as well as the switch to
Single-Mode Fibers (SMF), the current focus is on increasing
the capacity of the deployed links beyond 100 Gbps per

L. Minelli and R. Gaudino are with the Department of Electronics and
Telecommunications, Politecnico di Torino, Torino, Italy.

A. Nespola and S. Straullu are with LINKS Foundation, Torino, Italy.
F. Forghieri is with CISCO Photonics Italy, Vimercate, Italy.

lane, using the same physical devices. Therefore, moving
to multi-level formats such as Pulse Amplitude Modulation
(PAM) and exploiting Digital Signaling Processing (DSP)
techniques could be an effective solution. Among possible
DSP solutions, nonlinear equalization allows counteracting
bandwidth limitations and nonlinear distortions, that severely
impair the signals when transmitted at the aforementioned data
rates. Consequently, in the past years, considerable effort has
been spent on designing equalization technologies, especially
for PAM-4 modulated signals [2]. In particular, several types
of nonlinear equalizers have been recently investigated either
at the receiver (RX) side as post-equalizers [3] [4] [5] [6], or
at the transmitter (TX) side as Digital Pre-Distorters (DPD)
[7] [9] [10]. The latter approach is favored in optical short-
reach links since nonlinear DSP algorithms tend to be easier
to implement at TX rather than RX. The optimization of a
nonlinear DPD to be applied on an optical IM-DD link requires
particular attention to several critical factors: indeed, the laser
(i.e., VCSEL) nonlinear effects and the severe bandwidth
limitations must be addressed jointly to physical constraints
such as the limited VCSEL input dynamics and the different
ratios between Baud Rate, Digital-to-Analog (DAC) sampling
frequency, and Analog-to-Digital (ADC) sampling frequency.
Moreover, the DPD must mitigate impairments caused by
stochastic disturbances affecting the system which cannot be
merely modeled as White Gaussian Noise.

In this article we propose a solution able to effectively
apply nonlinear DPD jointly with a RX linear post-equalizer
on an experimental VCSEL-MMF IM-DD optical link char-
acterized by these physical constraints. We illustrate a novel
optimization method, based on End-to-end (E2E) learning [12]
of an optical link, to train a Neural Network based DPD,
able to encode PAM-M symbols in a sequence with arbitrary
sampling frequency that satisfies the signal amplitude swing
constraints imposed by the system in which it is applied. The
novelty of our approach resides in designing an E2E ANN-
based architecture that supports an online optimization method
performing forward and backward propagation at different
sampling rates, handling generic non-integer (but rationale)
ratios between them. Moreover, we propose as a novelty
a procedure to model the noise affecting the experimental
transmission system, in order to simulate its effect in the E2E
optimization in an analytical fashion. Physically, the main
noise sources in our experimental system are the electrical
noise generated by the Trans-Impedance Amplifier (TIA)
that follows the photodiode, and the Relative Intensity Noise
(RIN) of the VCSEL (the relevance of this noise in the
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system can be seen in Fig. 6). We indeed characterize it
using experimental measurements, and we introduced it as
an additive regularization term during the FFE coefficients’s
gradient update. We apply and test our proposed DPD training
algorithm on an experimental setup, demonstrating the validity
of our optimized DPDs in a wide range of conditions.

The following Sections in this manuscript are organized as
follows: in Section II we review the approaches to the nonlin-
ear predistortion, illustrating our method and the constraints
imposed by the considered transmission system. In Section
III we present our designed multi-rate E2E system, explaining
its behavior when forwarding signals and backpropagating the
gradients. In Section IV we examine the application of our
method in an experimental setup, assessing the performances
of the trained DPDs in the considered scenario. Finally, in
Section V we discuss the implications of the designed method
and the obtained results, drawing some conclusions.

II. DIGITAL PRE-DISTORTION IN AN OPTICAL IM-DD
LINK

A nonlinear Digital Pre-Distorter (DPD) is a device meant to
fully or partially pre-compensate for the distortions affecting
a signal during the propagation over a communication link.
More specifically, in an optical VCSEL-MMF IM-DD system
a DPD is supposed to counteract bandwidth limitations arising
from several devices at TX and RX when transmitting at very
high data rates, impairments caused by chromatic and modal
dispersion along with the MMF, and nonlinear distortions,
caused mainly by the VCSEL. The pre-compensation at TX
can provide advantages to post-compensation at RX: for
instance, compensating bandwidth limitations using a post-
equalizer leads to an enhancement of the receiver noise, due
to the high-pass filter effect synthesized by the device after
the noise is added to the signal. Moreover, a DSP nonlinear
DPD at TX tends to be easier to implement with respect to a
nonlinear post-equalizer at RX (e.g., by leveraging structures
resembling Look-Up Tables (LUT)).

A. Approaches to nonlinear predistortion in optical links

Nonlinear DPD for optical links have been developed using
several technologies, such as Volterra-equalizer [11] [10],
Artificial Neural Networks [13], or LUT [7] [8]. Different
solutions have been proposed in the literature for optimizing
DPD coefficients.

One of the best known is the Indirect Learning Approach
(ILA): this method is based on performing a single optimiza-
tion step, in which the DPD is trained to learn the inverse
model of the transmission system. The DPD thus estimates
a post-distortion function that is assumed to be equal to the
required pre-distortion function [16].

The other main technique, called Direct Learning Approach
(DLA), divides the DPD optimization into two steps. In
the first phase, a differentiable architecture (e.g., a Neural
Network) is trained to get a direct surrogate model (also called
”digital twin”) of the transmission system. In the second phase,
the obtained channel model’s input is attached to the output
of the DPD, forming a unique cascaded structure. The latter

can be then treated as a unique ANN, whose dependancies
along its computational graph can be exploited to optimize
through gradient-based methods the DPD coefficients. The
cascaded ANN is thus trained without updating the channel
model coefficients to optimize the DPD [16].

Recently, End-to-end (E2E) deep learning approaches have
been studied for both coherent and IM-DD optical links,
to optimize transceivers’s DSP blocks [14] [15] [17] [18]
[19] [20] [21] [22]. E2E deep learning of a communication
system consists of modeling the transmitter (i.e., the DPD
in our case), the channel and the receiver (i.e., the post-
equalizer) as a unique autoencoder ANN [12] (or ”E2E sys-
tem”). Equivalently to the DLA, the E2E approach exploits a
differentiable digital twin of the channel to optimize the DPD
while training the autoencoder. In this case, the DPD gets
optimized jointly with the post-equalizer, while the channel
coefficients are not updated (as in DLA). This approach is
supposed to be preferable to optimize a DPD with respect to
other block-wise optimization techniques, such as ILA and
DLA. Infact, with an E2E approach the DPD is aware while
trained that the impairments affecting the signals are also
compensated at the receiver side. A predistorter trained in
this way has thus the potential to lead to optimal end-to-
end performance [14]. One of the crucial points of the E2E
learning approach is obtaining a reliable differentiable digital
twin of the channel. As indeed optical links are affected by
deterministic and stochastic impairments (i.e., the ”noise”),
these must be properly modeled to get a faithful representation
of the system. Several solution were proposed, such as digital
twins based physical models of the noise perturbations [14]
[15] [22], or channel models based on Generative Adversarial
Networks (GAN) [23].

In situations where it is difficult or unfeasible to retrieve a
channel differentiable model, alternative model-free optimiza-
tion methods of the E2E autoencoders were proposed [24]
[25], training for instance DPD using Reinforcement Learning
[26].

B. The proposed DPD optimization method

In this paper, we investigate the joint use of the DLA
and the E2E approaches to optimize an Artificial Neural
Network (ANN) based nonlinear DPD. We assume a fully-
digital implementation based on DSP, using DAC at Tx and
ADC at Rx: therefore, we do not consider analog equalization
implementations. In the first step, we directly model the
transmission channel through an ANN, which we then exploit
as a channel derivable model in an E2E system, through which
we then train an ANN-based DPD at TX together with a post-
equalizer at Rx. We study the application of this method in a
VCSEL-MMF IM-DD optical link, where the DPD is applied
on the current directly modulating the laser. Since modern IM-
DD systems leverage using Feed-Forward Equalizers (FFE) at
RX as reference for applications such as TDECQ test [27], we
selected this linear post-equalizer for the E2E optimization.

In the considered transmission scenario, we must take into
account two constraints, related to the physical limitations of
the transmission system:
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• The modulation swing of the pre-distorted signal cannot
exceed the smallest among the two following dynamics:

– The Digital-to-Analog (DAC) converter output dy-
namic (e.g., the maximum peak-to-peak voltage it
can provide)

– VCSEL’s input current dynamics imposed for safety
reasons: it cannot be inverted with respect to the
laser’s bias current, neither it can exceed a certain
amplitude.

• The predistorted signal cannot have a sampling rate
higher than the Digital-to-Analog Converter (DAC) sam-
pling frequency: for an arbitrary Baud Rate the samples-
per-symbol (sps) ratio tends thus to be fractional.

Obtaining a pre-distorted signal that jointly fulfills these
limitations is not straightforward. For instance, a conventional
2 sps DPD could indeed satisfy the dynamic constraint by
imposing an output layer that saturates the signal to the given
modulation bounds. However, if the Baud Rate Rs is not an
integer multiple of the DAC sampling frequency fDAC , the
resulting 2 sps pre-distorted signal would break this constraint
after being resampled to fDAC : this operation indeed produces
new samples that are not necessarily bound to the desired
dynamics. The solution we propose in this paper is a DPD
whose output already matches fDAC for any Rs, having thus
an arbitrary sps ratio and natively satisfying the amplitude
constraint. In this work, we created such DPD by starting
from the design of an E2E autoencoder as an FIR-based
Neural Network (FIRNN) [28]. We choose this specific type
of ANN in order to properly deal with a transmission system
characterized by significant memory effects (i.e., bandwidth
limitations) present either in the channel, at the TX or at
the RX. The peculiarity of this neural model resides indeed
in its ”synapses”: while in a Feed-Forward Neural Network
(FFNN) they represent a static multiplication operator, in the
FIRNN this gets extended to an FIR filter. FIRNN can thus be
exploited to implement advanced nonlinear cascades of FIR
filters, representing the optical link signal processing chain.
A more detailed explanation is provided in the Appendix.
In this paper, we modeled the E2E system as a FIRNN,
where different sampling rates are involved along with its
structure. In order to support this, we extended the online
optimization algorithm proposed in [28] to back-propagate
in parallel gradients related to different sampling frequencies.
End-to-end systems involving different sampling frequencies
have been already approached in a simplified way, with integer
ratios (e.g. 2 or 8) among rates [15]. In this paper we propose a
multi-rate End-to-end system that extends and generalizes this
feature, by allowing to handle generic non-integer (but ratio-
nale) ratios among the involved sampling rates. Moreover, we
provide a detailed explanation and comment on the gradient
backpropagation when signal resampling occurs, as we will
illustrate in the next Section.

III. THE MULTI-RATE END-TO-END SYSTEM

A. Transmitted signal forward propagation

To train DPD through a multi-rate end-to-end learning
approach, we implemented a structure whose scheme is shown

in Fig. 1.In the notation used in the next pages, we refer to
each discrete time-index of a signal propagated in the system
as nfs , where in subscript we have the associated sampling
frequency fs (expressed in Hertz).

During the E2E optimization, a PAM-M sequence of sym-
bols a[nRs

] (where Rs is the Baud rate), gets forwarded
through the three main building blocks of the E2E architecture:

1) Multi-rate Transmitter (tx): This device is the nonlinear
DPD. It is composed of a polyphase resampler cascaded to
a FIRNN with 1 hidden ReLU layer (more info in Section
III-B). It processes the transmitted symbols to obtain a pre-
distorted sequence x[nfDAC

], whose rate fDAC is the sampling
frequency of the DAC. The output activation function of the
DPD is modeled as a hard-limiter, according to the usual
equation:

DAC(x) =


−A x < −A
A x > A

x otherwise

(1)

where A is the given amplitude constraint. This function
plays actually a key role in our algorithm: it allows indeed
to natively take into account the DAC+VCSEL amplitude
constraint during the backpropagation algorithm.

2) Multi-rate Channel (ch): This device is topologically
almost identical to tx (i.e., a resampler plus a ReLU FIRNN
without output activation function). It is the differentiable
surrogate model of the analog transmission channel (i.e., from
the DAC output to the ADC input). It is optimized through
direct modeling using noiseless experimental measurements,
using successive transmitted samples as training examples
and received samples as labels. Trained with this approach,
it becomes a digital twin of the channel, that can be ex-
ploited to simulate the deterministic impairments affecting the
transmitted signal, such as bandwidth limitations and VCSEL
nonlinear effects. In our E2E system modelization, the noise
affecting the system is assumed to be introduced later at
the RX side (details in Sec. III-A3). The Multi-rate channel
accepts in input the signal x[nfDAC

], producing as output the
distorted signal z[nfADC

] whose rate fADC is the sampling
frequency of the Analog-to-Digital Converter (ADC).

3) Multi-rate Receiver (rx): This device is composed of
a poly-phase resampler cascaded to a linear Feed Forward
Equalizer (FFE), internally running at 2 sps: conceptually, an
FFE can be interpreted as a FIRNN with only 1 neuron with-
out any nonlinear activation functions. The device resamples
z[nfADC

] obtaining the signal c[n2·Rs ], which has the sampling
rate of the FFE.

To simulate the stochastic impairments affecting the trans-
mission system, c[n2·Rs

] is summed to the receiver noise. This
disturbance is modeled as a White Gaussian Noise (WGN) nin

filtered by a properly designed FIR filter. The latter is modeled
such that its frequency response follows the Power Spectral
Density (PSD) of the true experimental noise retrieved from
the experimental measurements. The resulting noisy signal
is finally equalized through the FFE. As we will explain in
Section III-C, the noise is not added in the time domain, but
semi-analytically during the E2E optimization.
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Fig. 1. Scheme representing the Multi-rate end-to-end system. Each main building block contains a polyphase resampler, composed by a bank of pd FIR
filters, a pd-multiplexer (pd −MUX) and a modulo-pd accumulator (pd − ACC), where d is the device among tx, ch and rx. The output of each MUX
thus is given in input to a FIRNN. Building blocks operate at the sample rate indicated in the upper right corners of the colored regions. Blue: fs = Rs;
Orange: fs = fDAC ; Green: fs = fADC ; Purple: fs = 2 ·Rs.

At the end of the system the FFE outputs the sequence
y[n2·Rs

]. The latter is decimated by a factor 2 at the decision
instant, to get an estimation of the transmitted sequence
â[nRs ] = y[nRs ].

Each multi-rate device d works in parallel at two operatives
sampling frequencies, f in

s d [Hz] and fout
s d [Hz]. The change

of rate is performed by the poly-phase resampler, which
conceptually performs the following operations:

1) It upsamples the signal by an integer factor pd, by
inserting pd − 1 zeros between two consecutive input
samples.

2) It applies a low-pass anti-aliasing FIR filter to the
upsampled signal.

3) It decimates the filtered signal samples by an integer
factor qd, thus producing a discrete output signal whose
sampling rate is pd/qd times the input one.

As illustrated in Fig.1, Steps 1 and 2 are implemented through
a bank of pd FIR filters (i.e., the polyphase components),
whose taps are defined by the vector:

Wd
res.
k = [wd

res.
(k) , wd

res.
(pd+k), · · · , wd

res.
(T res.

dk
pd+k)]

⊤ (2)

where wd
res.
i is the i-th tap of the resampler’s anti-aliasing

FIR-filter (i = k, pd + k, · · · , T res.
dk

pd + k) and T res.
dk

is
the number of taps of the k-th polyphase component (k =
1, 2, · · · , pd). Step 3 is then implemented through the use of a
multiplexer with pd input ports, whose selection is shifted of
a factor qd by a modulo-pd accumulator. In the E2E system,
all the pd and qd values satisfy the 2 following conditions:

pd
qd

=
fout
s d

f in
s d

(3)

HCF (pd, qd) = 1 (4)

where HCF () computes the Highest Common Factor. The
above equation implies thus that all the ratio between the
E2E architecture sampling rates must be a rationale number.
For instance, in our experimental setup, transmitting a Rs=50
GBaud signal with fDAC= 92 Gsample/s and fADC= 200
Gsample/s implies ptx = 46, qtx = 25, pch = 50, qtx = 23,
prx = 1 and qtx = 2.

B. Loss gradient backward propagation
The Multi-rate end-to-end system previously illustrated, if

all the rates were identical and no noise was injected, would be
conceptually a cascade of three FIRNN (being thus a FIRNN
itself), having the following characteristics:

• They all have input size and output size equal to 1.
Moreover, the first layer is composed of only 1 synapse,
that is the polyphase resampler anti-aliasing filter.

• The ANN cascaded to the polyphase resampler is a
FIRNN characterized by ”static” branches (the synapses
are single-taps FIR-filters with no delays) after its first
layer. This ANN can be seen equivalently as a FFNN
whose inputs are entries of a tap delay line.

• Neurons activation functions can be the following types:
DAC(), ReLU() or none.

Therefore, with the previous assumptions, the overall E2E
system could be optimized as a generic FIRNN, updating only
the DPD and FFE coefficients.

Neglecting in this Section the receiver noise presence for
simplicity, we show that the FIRNN back-propagation algo-
rithm (illustrated in Appendix) can be extended to work in
a multi-rate scenario. According to the different rates in the
E2E system, the loss gradient musts change during its temporal
back-propagation its sampling frequency, as an actual signal
itself. There are two types of rate changes along with the
network:

The first kind is the change from the rate of the decision
instants (Rs) to the rate of the FFE (2 ·Rs). Looking at Fig. 1
as reference (i.e., left-end and right-end sides), we define the
per-symbol squared error loss e[nRs

]2 as:

e[nRs
]2 = |a[nRs

− S]− â[nRs
]|2 (5)

where S is the delay (in symbols) introduced by the E2E
system. It must be noticed that this constitues a stochastic
implementation of the Mean Squared Error (MSE), which is
the most commonly used loss function for optimizing adaptive
FFEs. Its derivative with respect to â[nRs ] can be computed
as follows:

δâ[nRs ] =
∂e[nRs

]2

∂â[nRs
]
= −2e[nRs

] (6)
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The consequent loss gradient with respect to the fractionally
spaced FFE output, defined as δy[n2·Rs ], can be computed as
follows:

δy[n2·Rs
] =

∂e[n2·Rs
]2

∂y[n2·Rs ]
=

{
δâ[nRs

] n2·Rs
= 2 · nRs

0 otherwise
(7)

The latter gradient indeed assumes non-null values only for the
instants in which a variation in y[n2·Rs

] would actually affect
e[nRs

]2: when this isn’t the case, δy[n2·Rs
] is consequently

null. According then to [28], the gradient with respect to the
output of the rx resampler δc[n2·Rs ] is computed as follows:

δc[n2·Rs
] = ∆y[n2·Rs

]⊤ ·Wrx (8)

where :

∆y[n2·Rs
] =

[δy[n2·Rs ], δy[(n+ 1)2·Rs ], · · · , δy[(n+ Trx − 1)2·Rs ]]
⊤

(9)

From a DSP point of view, the signal δc[n2·Rs ] can be
interpreted as a interpolated version of the signal δâ[nRs ].
The latter is indeed upsampled by a factor 2, with the addition
of zeros between the samples. Then it passes through of a
backward FIR ”interpolating” filter, whose taps are the entries
of the vector Wrx.

The second kind is related to the backpropagation through
each resampler. Taking for instance δc[n2·Rs

]:
1) It gets upsampled by the addition of qrx − 1 zeros

between two consecutive samples: a variation on the
anti-aliasing FIR filter output would affect the resampler
output only on the decimated instants.

2) It gets backward filtered through the FIR anti-aliasing
FIR filter: the result of this operation is the gradient
δz[nprx·fADC

]
3) It gets decimated by a factor prx. Only 1 sample

every prx of δz[nprx·fADC
] is indeed actually related to

z[nfADC
]:

δz[nprx·fADC
] =

{
∂e[n2·Rs ]

2

∂z[nfADC
] nprx·fADC

= prx · nfADC

∂e[n2·Rs ]
2

∂0 otherwise

(10)

where 0 is any padding zero added for upsampling
z[nfADC

] during forward propagation.
It must be noticed that steps 1 and 2 are equivalent to the

operations performed to compute δc[n2·Rs
]. Moreover, we can

observe that any gradient backpropagated through a resampler
is subject to a sequence of operations that is equivalent
to the 3 operations performed during forward propagation.
Therefore, a polyphase structure (symmetric to the forward
resampler) can be adopted for implementing the resampler
backward propagation as well. The adopted resampler can
be then viewed as a more complex FIR-based synapse, with
a backward structure dual to the forward one, equivalently
to what derived in [28]. Conceptually, the E2E multi-rate
could be therefore viewed as a particular FIRNN, where some
synapses are made by polyphase resamplers rather than FIR

filters, still preserving the symmetry between signal forward
propagation and gradient backward propagation [28].

In practice, the E2E optimization we developed consists
thus of simulating a real-time digital system in which it is
applied an online training algorithm: an optimization where a
predictor (i.e., DPD and FFE) exploits data (i.e., gradients) that
become available in a sequential order (due to the causality
in the temporal backpropagation) to update its coefficients at
each step. In the E2E multi-rate FIRNN system indeed, at
each discrete time step nfs (related to any sampling rate fs
in the system), the forward and backward filters operating at
fs are incremented, and the involved coefficients that must be
optimized are subject to a Stochastic Gradient Descent (SGD)
update.

C. Analytical introduction of the receiver noise

In the multi-rate end-to-end training process, the DPD and
the FFE are jointly optimized through successive SGD updates
using an MSE criterion. However, it can be observed that the
MSE gradient computed with respect to the DPD coefficients
is independent of the receiver noise since this is injected into
the E2E system after all the nonlinear stages, as shown in
Fig.1. Therefore, the DPD online SGD training can benefit
from not injecting directly the noise into the E2E system, to
thus backpropagate ”clean” realizations of the MSE gradient:
in this way the DPD gradients estimations have a reduced
variance, leading to a more stable optimization. We can then
introduce the noise effect as an additive regularization term
[29] in the FFE Loss gradient, for a correct E2E optimization.
The Mean Squared Error (MSE) at the output of the receiver
is indeed described as follows:

MSE(a,y) = E
[
|a[nRs

− S]− y[nRs
]|2

]
(11)

By defining ŷ[nRs
] as the noiseless output of the receiver,

obtained when only c[nRs ] is given in input to the FFE, the
MSE can be splitted into two components:

MSE(a,y) = MSE(a,ŷ) + σ2
nin

T(gn∗rx)∑
k=1

∣∣w(gn∗rx)k

∣∣2 (12)

where w(gn∗rx) are the taps of the discrete linear convolu-
tion between the noise filter and the FFE. These terms can
be expressed as entries of a vector W(gn∗rx) with length
Tgn∗rx = Tgn + Trx − 1. According to Eq. 12, the MSE
gradient with respect to the FFE taps can be thus defined as:

∇Wrx
MSE(a,y) = ∇Wrx

MSE(a,ŷ) + 2 · σ2
nin

W⊤
(gn∗rx) · W̄gn

(13)

where the matrix W̄gn ∈ RT(gn∗rx)×Trx is defined as follows:
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Fig. 2. Scheme illustrating an overview of the overall experimental optimization scheme, starting with signal acquisitions in the experimental setup (left) and
proceeding in the several DSP operations such as Noise Averaging, Channel modeling, Noise FIR filter Design (center) and finally the End-to-end optimization
(right). DC gen.: bias current generator; PD: PhotoDiode; TIA: Trans-Impedance Amplifier

W̄gn =



Wgn 0 0 · · · 0

0 Wgn 0 · · · 0

0 0 Wgn · · · 0

...
...

...
. . .

...

0 0 0 · · · Wgn


(14)

The E2E optimization of the DPD can be thus performed by
backpropagating stochastic realizations of MSE(a,ŷ). During
the SGD update, the receiver will then take into account the
noise presence by adding the 2nd component of Eq. 13 to its
”clean” gradient. This however requires the knowledge of the
noise filter taps Wgn: in Section IV we will explain how to
retrieve them from experimental measurements.

IV. EXPERIMENTAL APPLICATION OF THE MULTI-RATE
SYSTEM

In this Section, we illustrate in detail the experimental
implementation of our multi-rate end-to-end optimization. We
first illustrate the optimization steps, then we evaluate the
performance gain obtained when applying the trained DPD.
Specifically, we investigate in this article the application of
the multi-rate nonlinear DPD for a PAM-4 signal, transmitted
over an experimental setup illustrated in Fig. 2 (left side). The
optoelectronic part is a typical VCSEL+MMF IM-DD system.
Specifically, we employed an λ=850 nm VCSEL on-chip with
a 3-dB Bandwidth B3dB= 20 GHz (hence severely bandlimited
when transmitting > 100 Gbps PAM-4 signals), and 2 different
OM4 fiber cables: a 2 m cable to perform Back-to-back (B2B)
analysis and a 125 m cable.

A. DSP modeling of the experimental optoelectronic channel

As a first step, to fully characterize the optoelectronic chan-
nel, we perform a non-pre-distorted acquisition over the ex-
perimental setup. A PAM-M sequence with Rs = 58 GBaud,
M = 4 and a periodicity of 215 symbols is shaped through a
Gaussian filter (order 2, B3dB = 0.75 · Rs), to get a digital
signal xdac[nfDAC

]. The latter is then converted into the analog

domain through an Arbitrary Waveform Generator (AWG),
operating at 92 Gsample/s with an output modulation peak-to-
peak voltage set to 700 mV: we selected this value since this
is the maximum allowed to operate the used VCSEL (leading
to approximately 14 mA of modulation current swing), and
moreover, it leads to obtaining a VCSEL model in a condition
that includes a non-linear regime. The modulated signal is
injected into the laser together with a bias current equal to
9 mA (i.e., the value found to maximize performances in
non-pre-distorted conditions). The optical light emitted from
the laser (avg. TX power P̄TX=5 mW) is sent into an OM4
fiber, after which it is attenuated with a Variable Optical
Attenuator (VOA) and sent to a PIN+TIA photodiode (B3dB=
22 GHz). Finally, a 200 GSample/s Real-Time Oscilloscope
(RTO), whose clock is shared with the AWG, is used for the
ADC conversion and sequence acquisition. In this phase, 50
separated measurements are acquired from the experimental
setup, to retrieve a reasonably high amount (in the order of
103) replicas of the transmitted sequence.

In DSP post-processing, a Noise averaging procedure is then
applied to the received signal yadc. The operation consists of
averaging the sequence over its periodic replicas: as the noise
samples are decorrelated, the disturbance gets filtered out, and
a noiseless sequence ȳadc is thus retrieved. The Power Spectral
Density (PSD) of the sequence before and after denoising
is illustrated in Fig.3. It can be noticed how the spectrum
between 30 and 60 GHz gets lowered by nearly 30 dB, with
a strict relation to the average performed over nearly 103

repetitions of the transmitted sequence.

Fig. 3. Welch PSD estimates of an experimental received signal before
(orange) and after (blue) denoising. Reference PSD power: σ2

yadc
.
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Once the denoised signal ȳadc has been retrieved, it is
used to perform the Channel modeling: we train an ANN
version of the Multi-rate Channel (with f in

s ch = 92 GHz
and fout

s ch = 200 GHz), to synthesize a digital twin of the
considered transmission channel: this has a strict analogy to
what was proposed as a first step of the DLA introduced in
[16], from which we took inspiration: the training of the ANN
is indeed performed under MSE criterion using one period of
xdac as input examples and ȳadc as output labels. In Fig. 4
we illustrate qualitatively the effectiveness of the optimized
multi-rate channel, tested with a sequence different from the
one used during training to avoid overfitting issues (i.e., train
sequence: Rs=58 GBaud, test sequence: Rs=50 GBaud). It
can be noticed how the digital twin ANN is able to faithfully
reproduce the signal retrieved by noise averaging experimental
acquisitions, exhibiting the same bandwidth limitations that
severely close the eyediagram as well as a time-domain skew
(see violet dashed arrows in Fig.4), which is a typical nonlinear
effect caused by VCSELs when driven in nonlinear conditions.

Fig. 4. Eyediagram of the noiseless channel output ȳadc transmitted at 50
GBaud over the transmission system a) obtained by Noise averaging acquisi-
tions taken from the experimental setup b) obtained through simulation using
the Multi-rate Channel model, previously trained using noiseless sequence
ȳadc when transmitted at 58 GBaud in B2B.

In order to quantitatively assess the accuracy of the channel
ANN digital twin, we report in Fig. 5 the training loss evo-
lution over the model optimization together with the test loss
after convergence. The train and test losses, expressed in terms
of MSE normalized with respect to the power (i.e., the signal
variance) of the noiseless sequence ȳadc, are respectively equal
to 2.9 · 10−3 and 3.4 · 10−3 (corresponding to -25.4 dB and
-24.7 dB). This result can be interpreted as follows: at the
digital twin output, the variance of the error signal (i.e. the
difference between the experimentally measured signal and
the numerical output of the ANN channel model) is about
25 dB below the useful signal’s variance. This is quantitative
proof that the digital twin achieved very good replication of
the physical channel under test.

After optimization, the ANN parameters (i.e., the weights
and biases in the ANN layers) optimized during the training,
named θch (see Fig. 2), are inserted in the Multi-rate Channel
of the E2E architecture.

Subsequently, by performing an element-wise subtraction
of ȳadc to each replica of yadc, an estimation of the receiver
noise signal nexp is extracted to perform the Noise FIR filter
design: the filter taps Wgn illustrated in Sec.III-C are obtained
by synthesizing a FIR filter whose magnitude response fits the
PSD behavior of nexp (this operation can for instance be easily
performed in MATLABTM exploiting the designfilt() function

Fig. 5. Evolution of the loss function (i.e., MSE normalized with respect to
ȳadc power) over training iterations. Blue curve: training loss over iterations;
Red dashed line: test loss after model convergence. Training and test sequences
are relative to the qualitative analysis illustrated in Fig. 4

using the ”arbmagfir” option). In Fig. 6 we present the PSD
of the resampled experimental noise, compared to the noise
simulated through our modelization,showing an almost perfect
agreement.

Fig. 6. Welch PSD estimates of the receiver noise extracted from denoising
(red), compared to the one simulated exploiting the noise FIR filter (violet).
Reference PSD power: σ2

ȳadc

In fact, it can be clearly observed how the simulated noise
spectrum behaves exactly like the experimental one, except
for the spurious harmonic disturbances, which are actually
introduced by the internal RTO clock spurious signals: as these
impairments have however very low power, we verified their
effect is thus negligible.

B. End-to-end optimization of the DPD

After obtaining the digital twin ANN parameters θch and
Wgn (Fig. 2) (i.e., that determine the behavior of the Multi-
rate Channel and of the RX noise, respectively), the multi-rate
End-to-end optimization of the DPD together with an FFE is
performed. As training sequence, 105 PAM-4 random symbols
are generated (i.e., using randi() MATLABTM function). Dur-
ing the end-to-end optimization, the Multi-rate Ch coefficients
are kept fixed, while the DPD and FFE coefficients are jointly
optimized. It must be pointed out that:

• The Baud Rate Rs adopted in the E2E optimization is
independent of that used to carry out the experimental
acquisition in Sec. IV-A. Since the Multi-rate Channel
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is modeled to distort a generic signal with given f in
s

and fout
s (in our case equal to 92 Gsample/s and 200

Gsample/s, respectively), once trained as illustrated in
Sec. IV-A it can be exploited to obtain DPDs operating
at arbitrary values of Rs.

• During the training, only the FIRNN coefficients of the
DPD and the FFE are actually optimized, while the
resamplers parameters (i.e., the taps in the polyphase
components) are kept fixed. Training indeed even these
coefficients would only increase the complexity without
improving the generalization capacity, since the resampler
linear transformation is followed by another linear opera-
tion (i.e., the one performed by the first FIRNN synapses)
[32].

During the E2E optimization, since the transmission system
is severely bandlimited, both the DPD (for its ”linear” part)
and the FFE tend to synthesize a high pass filtering effect.
While at the receiver side this tends to enhance the noise im-
pairments, at the transmitter side instead this causes the pres-
ence of time-domain amplitude overshoots in the pre-distorted
signal: as these oscillations would exceed the VCSEL+DAC
constraint, the DAC() function at the output DPD layer
bounds the transmitted signal to the given maximum dynamics.
The consequent intrinsic clipping operation is mostly applied
on the pre-distorted outer PAM-M levels, causing at the end
of the E2E optimization an unbalanced pre-compensation on
the TX signal, that leads to an additive nonlinear impairment
that cannot be compensated by the linear FFE at the receiver
side: this can be observed in Fig. 7.a where we illustrate the
noiseless eye-diagram of the PAM-4 signal at the output of
the E2E Multi-rate receiver (i.e., once training is complete).
The E2E optimization therefore automatically converges to a
solution that is MSE optimal according to Eq.11, but with a
consequent unequal per-level distortion strongly penalizing the
BER performances. To overcome this issue we thus designed
a heuristic method that, taking inspiration from Weighted
Mean Squared Error approaches [30], gives more weight in
the MSE loss to the errors related to the outer PAM-M
symbols. Considering for instance a PAM-4 modulation with
nominal levels set to −3,−1,+1,+3 the error e[nRs ]

2 to be
backpropagated can be computed as follows:

e[nRs
]2 ={

(a[nRs
− S]− â[nRs

− S])
2

if |a[nRs
− S]| = 1

h · (a[nRs
− S]− â[nRs

− S])
2

if |a[nRs
− S]| = 3

(15)

where h is the value of the heuristic weight applied. The
results of the application of this heuristic method in the E2E
optimization is illustrated in Fig. 7.b When the heuristic is
applied, the eyes are all balanced and open: the openness is
anyway not full as expected, since the FFE is still considering
the presence of the noise.

C. Preliminary simulation results
After the E2E optimization, we can exploit the numerically

obtained E2E system as a simulation setup to evaluate pre-

Fig. 7. E2E Rx normalized output eye-diagram after optimization a) without
heuristic application; b) with heuristic applied (h = 50). E2E system features:
B2B experimental setup, LOPL=8.5 dB, Rs=50 GBaud.

Fig. 8. BER vs Gross Bit Rate (Rb) curves obtained through simulation on
the End-to-end system (B2B, LOPL=8.5 dB). a) without DPD applied b)
with linear FIR DPD applied c) with ReLU FIRNN DPD applied.

liminarly the performances of the trained DPD. By fixing the
TX and RX parameters trained during E2E optimization, and
now injecting in time-domain the RX noise, we simulated the
BER measurement for DPDs working at different Bit Rates
in a fixed OPL condition. We compare the performances of a
trained nonlinear DPD (the same used then in Sec. IV-D) with
respect to the case in which DPD is not applied. Details on
non-DPD signal are provided in Sec. IV-D). Moreover, in order
to assess the gain provided by the use of a nonlinear DPD (i.e.,
the ReLU FIRNN), we evaluated the performance using also a
linear DPD (that is, a Multi-rate TX with a FIR filter in place
of a FIRNN, but preserving the DAC() function), having the
same FIR length as the nonlinear DPD (i.e., 21 taps). In Fig. 8
we illustrate the results observed through simulation by using
the E2E system obtained from B2B scenario (LOPL=8.5 dB).

As it can be observed, the linear DPD can only slightly
improve the performance at higher Bit Rates, presumably
where the DSP shaping of the non-DPD signal starts to lose
effectiveness due to the decreasing sps ratio: as the DAC()
function would clip any time-domain overshoot, the linear
DPD has little room to improve the performances. The non-
linear DPD exhibits instead a noticeable improvement in the
performances, with a gain of nearly 6 Gbps for a BER=10−3.
Although the linear pre-compensation is severely limited by
the DAC() function, in this case the nonlinear DPD is able
to pre-distort for the nonlinear effects caused by the VCSEL,
thus producing a performance gain.
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D. Experimental performance evaluation
By following the optimization steps illustrated in Sections

IV-A and IV-B, we trained several DPDs using different values
of Optical Path Loss (LOPL) and several Bit Rates in the 2
tested conditions (i.e., B2B and using 125 m of OM4 fiber).
At any fixed LOPL, we performed one single acquisition for
modeling the channel: the retrieved digital twin was then used
for several parallel E2E optimizations, differing only in the
DPD and FFE operative rates and in the noise FIR filter taps
values. In Table I we report the parameters that, independently
from the Baud rate (fDAC and fADC were fixed by the AWG
and the RTO, respectively), we kept fixed for all the channel
and E2E optimizations.

TABLE I
FIXED PARAMETERS IN THE OPTIMIZATION PROCESSES.

Device Transmitter Channel Receiver
FIR length Ttx = 21 Tch = 61 Trx = 31

Hidden layers 1 1 0 (single FIR)
Activation Functions ReLU, DAC ReLU none (single FIR)

Hidden neurons htx = 21 hch = 61 0 (single FIR)
Learn rate 0.0001 0.001 0.0001

Fig. 9. Experimental received symbols distribution (Rs=50 GBaud,
LOPL=8.5 dB) during performance evaluation without DPD (red line,
BER = 2 · 10−3), with DPD trained without heuristic (blue line,
BER = 5 · 10−3) and with DPD trained using the heuristic (green line,
BER = 4 · 10−4).

In addition, the heuristic weight has been fixed to h = 50
(observed value providing the best DPD performance), and
the number of taps of the noise FIR filter (i.e., the length
of the Wgn vector) has been set to Tgn = 61. Regarding
the coefficients of the resamplers in the E2E architecture, for
simplicity, they have been taken from the default MATLABTM

resampler() implementation: the number of parameters is not
reported here since it varies depending on the involved fre-
quency ratios. The choice of all the aforementioned parameters
has been done consistently to the application of the DPD in
IM-DD systems: therefore, we look for the lowest number of
coefficients giving effective performances (for instance, using
1 single hidden layer in the FIRNNs). However, the search for
optimal values for FIR filter lengths was beyond the scope of
our investigation, and is therefore postponed for future work.

After training the DPDs, we then evaluated the perfor-
mances in the experimental setup by pre-distorting and trans-
mitting a PAM-4 pseudo-random sequence (PRBS) with a

periodicity of 216 symbols. This PRBS is completely different
from the one used for the training acquisitions to avoid any
overfitting effects. To assess the gain provided by the DPD
performance, we transmitted the not pre-distorted sequence
shaped with a Gaussian filter (i.e., the one already used in
Sec.IV-A) and the same peak-to-peak modulation swing (700
mV): we selected this value since in the considered attenuated
conditions we verified the noise is always the dominant
impairment. Maximizing thus OMA allows for increasing
the SNR at RX, which still gives advantages despite the
nonlinear distortions. Therefore, the scenario that we use for
comparison is the one giving the best performance without
applying the DPD. The selected non-predistorted scenario
exhibited an average TX output power P̄TX=5 mW, as during
the training acquisition. Noticeably, the same P̄TX=5 mW
was also measured in the case in which the trained DPD was
applied: this is mainly due to the use of the same bias current
(9 mA), and because of similar modulated signal statistics
(the DPD signal has a variance less than 1 dB smaller than
the non-DPD case). The channel conditions are thus mainly
preserved when applying DPD, as the TX power is one of the
main factors determining the VCSEL operating point (mainly
related to its temperature).

On the received signals we applied the same FFE used in
the E2E optimizations, training it for 2 · 105 symbols. We
then evaluated the BER over 5 · 105 symbols using a hard-
decisor with thresholds optimized as in [31] with respect to
symbols’centroids and variances after FFE. Computed BER
was thus further averaged over 3 consecutive acquisitions to
obtain a very stable BER estimation, by counting errors over
3·106 bits. The distributions of the post-equalized signals with
and without DPD (normalized to give a probability density
estimate) are illustrated in Fig. 9.

Consistently to what has been observed in Sec.IV-B, after a
simple MSE-based E2E optimization (blue line in Fig. 9) the
DPD is able to reduce mostly the distortions affecting the inner
PAM-4 symbols. However, this compensation penalizes the
outer levels, increasing the overall BER = 2 · 10−3 achieved
without DPD (red line in Fig. 9) to a BER = 5 · 10−3.
Applying the heuristic instead (green line in Fig. 9) provides
a significant decision improvement for all the transmitted
symbols with respect to the non-pre-distorted signal, achieving
in the considered scenario an overall BER = 4 · 10−4 .

We then compare the DPD versus non-DPD BER perfor-
mances in Fig. 10: we present the results as BER contour plots,
for target BERs equal to 10−2 and 10−3. These plots, which
are the main experimental results of our paper, demonstrate
that our DPD implementation gives significant improvements
in any condition with respect to the best-performing non-pre-
distorted scenario.

At BER=10−3 the gain in terms of Bit rates is relevant,
increasing as the LOPL gets lower: specifically, nearly 8 Gbps
for LOPL=8 dB in B2B and around 14 Gbps for LOPL=6
dB using the 125 m OM4. The reason is that the non-
DPD scenario exhibits a noticeable performance degradation
as the nonlinear distortions overcome the noise disturbance.
Evaluating instead the gain in terms of LOPL, for BER=10−2

this is considerably high: with Rb = 110 Gbps the nonlinear
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Fig. 10. Optical Path Loss (LOPL) vs Bit Rate (Rb) curves for BER target equal to 10−2 and 10−3, without DPD (solid lines) and with DPD applied
(dashed lines) a) B2B scenario b) using 125 meters of OM4 fiber.

DPD improves the sensitivity by nearly 1.5 dB in B2B and
by at least 3 dB with the OM4-125 m fiber (according to the
available results).

V. DISCUSSION AND CONCLUSION

In this article, we proposed a new method to optimize a
nonlinear DPD for > 100 Gbps PAM-4 signals transmitted
in VCSEL-MMF IM-DD systems. The trained predistorter
is able, in a transmission system severely bandlimited (e.g.,
VCSEL B3dB= 20 GHz), to jointly fulfill the constraints
imposed by a TX maximum amplitude and the mismatch
between sampling frequency and Baud Rate of the trans-
mitted signal. By exploiting a DLA-based modeling of the
channel, a characterization of the experimental noise, and
the use of FIRNN to properly address the memory of the
transmission system, we implemented a novel FIRNN-based
E2E system, whose backpropagation has been extended to
cope with multiple sampling rates within its structure. As
result, we obtained an optimization algorithm that provides a
multi-rate DPD able to produce optimized pre-distorted signals
while natively supporting amplitude constraints at a fractional
sps ratio. Moreover, the method introduces the noise as an
additive regularization term in the FFE loss gradient, leading
to an effective SGD optimization.

On the considered transmission system, we observed that
this DPD optimization approach was actually the only method
providing an effective predistorter (i.e., giving better perfor-
mance than our reference non-DPD scenario). The two other
approaches that we attempted, ILA and DLA respectively, have
shown to be problematic in such severely bandlimited system:

• Using ILA, the dynamics constraints cannot be fulfilled
using techniques such as the one we proposed (i.e., intro-
ducing an hard-limiter function at the DPD output during
the optimization) . Unless using alternative techniques,
the trained DPD is led to produce severe time-domain
overshoots to counteract bandwidth limitations, that must
necessarily be clipped before DAC conversion. Such
nonlinear mitigation leads to an excessive degradation in
the signal, that cannot be recovered by a linear FFE at
the RX side.

• Using DLA, whose implementation in this scenario is
equivalent to performing the E2E optimization with the
E2E system deprived of the RX equalizer FFE block, we
verified that, although the dynamics constraints can be
fulfilled, the DPD still attempts to synthesize overshoots,
that are consequently clipped by the DAC() function:
even applying a strong heuristic weight cannot help in
overcoming this issue. According to our study, we thus
believe that an E2E optimization in which the DPD
is aware that a RX FFE will partially compensate for
bandwidth limitations is necessary to correctly perform
nonlinear DPD on a VCSEL-MMF optical link as the
one considered.

Concerning complexity, we want to point out that the im-
plementation of an online training algorithm requires reduced
computational effort and memory requirements with respect
to conventional deep-learning offline SGD optimizations [32]:
only 1 single non-periodic random sequence is used to train
the E2E system, and the temporal backpropagation structure
requires a number of computations that is roughly the same
as the forward propagation. For instance, DPDs required in
our experiments less than 10 minutes to be optimized on a
low-cost commercial laptop without using GPU: this could be
an acceptable solution for a factory-level DPD optimization.
Parallel training of different DPDs can also be implemented,
considering that for a given channel condition (i.e., a fixed
LOPL), the retrieved Multi-rate Channel can be exploited for
E2E optimizations at any Baud rates.

Considering the DPD FIRNN structure, our proposal
demonstrated to be effective by performing ∼733 multipli-
cations per symbol (mps) with Rs=58 GBaud. Further study
is still required to assess if using more complex architectures
would increase the performance.

The presented work on nonlinear DPD over IM-DD optical
link highlights anyway the actual limitations affecting this
kind of transmission system at high rates. Strong bandwidth
limitations showed being not fully compensable by a DPD,
as outer PAM-M levels have no room for overshoots: the
performance gain from pre-compensation in such a constrained
scenario seems thus difficult to be further increased. Moreover,



11

in such constrained optimizations, a simple MSE criterion
appears to not be the optimal choice: unbalanced distortions
affecting the symbols after the FFE lead to solutions that are
not merely optimal for a minimum BER criterion.

Our multi-rate approach, here applied using FIRNN but
extendible to other linear and nonlinear structures, could be
therefore exploited to train different DPD architectures, with
even a post-equalizer different from the FFE. We are therefore
confident that the presented approach for nonlinear DPD could
inspire further works in this research field.

APPENDIX

FIR-BASED NEURAL NETWORKS

Proposed by Eric A. Wan in [28], FIR-based Neural Net-
works (FIRNN) are generalized Feed Forward Neural Net-
works (FFNN) where each network synapse is extended to be
a Finite Impulse Response Filter (FIR), as illustrated in Fig.
11.

Fig. 11. (a) FIRNN structure from the l-th to the (l+1)-th layer. (b) Structure
of a FIR filter.

In a FIRNN with L layers, its hL-dimensional out-
put vector yL[n] = [yL1[n], y

L
2[n], · · · , yLhL [n]]⊤ is

produced from a h0-dimensional input vector y0[n] =
[y01[n], y

0
2[n], · · · , y0h0 [n]]⊤, through the following iterative

computation (we omit biases for semplicity):

for l = 0, .., L− 1 :

yl+1
j [n] = f

 hl∑
i=1

W l+1
ij

⊤
Y l
i [n]

 j = 1, .., hl+1 (16)

In Eq.16, f() is the nonlinear activation function, and W l+1
ij

is the vector containing the taps of the FIR synapse from the
i-th node in the l-th layer to the j-th node in the (l + 1)-th
layer, defined as:

W l
ij =

[
wl

ij1 , w
l
ij2 , · · · , w

l
ij

Tl

]⊤
l = 1, .., L (17)

Finally, in 16 Y l
i [n] is the sequence vector whose entries

are successive samples of yli[n], as follows:

Y l
i [n] = [yli[n], y

l
i[n− 1], · · · , yli[n− (T l − 1)]]⊤ (18)

where T l is the number of taps in all the FIR filters of the
l − th layer.

FIRNNs, as well as all neural networks, can be trained to
perform a given task by optimizing their coefficients so that a
given cost function is minimized. Specifically, by defining the

target output vector at the n-th discrete-time index as Ξ[n] =
[ξ1[n], ξ2[n], .., ξhL [n]]⊤, the FIRNN can be trained by using a
Stochastic Gradient Descent (SGD) online training algorithm,
which minimizes the total squared error over all time defined
as follows:

e2 =

∞∑
n=0

hL∑
i=1

(
ξi[n]− yLi[n]

)2
(19)

At each discrete time index n then, the loss derivatives with
respect to the FIRNN coefficients can be retrieved by exploit-
ing an online temporal backpropagation algorithm, like the
one proposed in [28]. This method extends the conventional
recursive gradient computation algorithm used for FFNN,
interpreting each FIR filter’s tap delay as a ”virtual neuron”,
whose output is a delayed version of its input. According to the
equation (35) in [28], the algorithm can be thus summarized
as follows:

δlj [n] =
∂e2

∂ylj [n]
={

−2
(
ξj [n]− yLj [n]

)
· f ′(yLj ) l = L

f ′(ylj) ·
∑hl+1

m=1 ∆
l+1
m [n]⊤W l+1

jm 1 ≤ l ≤ L− 1
(20)

∆l
m[n] = [δlm[n], δlm[n+ 1], .., δlm[n+ (T l − 1)]] (21)

∇wl
ijk

e2 = δlj [n] · yl−1
i [n− k + 1] (22)

where f ′() is the derivative of the nonlinear activation
function. The coefficients can be then updated as follows:

W l
ij ←W l

ij − ϵ · δlj [n] · Y l−1
i [n] (23)

where ϵ is the learning rate.
The peculiarity of this online training algorithm is that the

gradient recursive computation can be implemented as an FIR-
based structure, where the backward propagated δ terms are
symmetric to the forward propagated y states. Computation
of the δ terms is non-causal: this can be anyway solved in
practice by adding a finite number of delay operators into the
network, as the structure is FIR-based [28].

In this article, the proposed End-to-end multi-rate system
can be viewed as an enhanced FIRNN, able to deal with
different sampling rates within its structure.

ACKNOWLEDGMENT

This work was carried out under a research contract with
Cisco Photonics. We also acknowledge the PhotoNext initia-
tive at Politecnico di Torino (http://www.photonext.polito.it/)
and its laboratory, where all experiments have been performed.

REFERENCES

[1] Jonathan King, “In Support of 200G MMF Ethernet PMDs,”
IEEE 802.3 Next-generation 200 Gb/s and 400 Gb/s MMF
PHYs Study Group, https://www.ieee802.org/3/NGMMF/public/Jan18/
young NGMMF 01a jan18.pdf, last accessed on 5 May 2022.

https://www.ieee802.org/3/NGMMF/public/Jan18/young_NGMMF_01a_jan18.pdf
https://www.ieee802.org/3/NGMMF/public/Jan18/young_NGMMF_01a_jan18.pdf


12

[2] Honghang Zhou, Yan Li, Yuyang Liu, Lei Yue, Chao Gao, Wei Li,
Jifang Qiu, Hongxiang Guo, Xiaobin Hong, Yong Zuo and Jian Wu,
”Recent Advances in Equalization Technologies for Short-Reach Op-
tical Links Based on PAM4 Modulation: A Review,” Applied Sciences,
2019

[3] Y. Yu, T. Bo, Y. Che, D. Kim and H. Kim, ”Low-Complexity Equalizer
Based on Volterra Series and Piecewise Linear Function for DML-
Based IM/DD System,” 2020 Optical Fiber Communications Confer-
ence and Exhibition (OFC), 2020, pp. 1-3.

[4] Anzhong Liang, Chuanchuan Yang, Cheng Zhang, Yue Liu, Fan
Zhang, Zhenrong Zhang, Hongbin Li, ”Experimental study of support
vector machine based nonlinear equalizer for VCSEL based optical
interconnect,” Optics Communications, Volume 427, 2018, Pages 641-
647.

[5] Qingyi Zhou, Chuanchuan Yang, Anzhong Liang, Xiaolong Zheng,
Zhangyuan Chen,”Low computationally complex recurrent neural net-
work for high speed optical fiber transmission,” Optics Communica-
tions, Volume 441, 2019, Pages 121-126.

[6] Y. Gao et al., ”288 Gb/s 850 nm VCSEL-based Interconnect over 100
m MMF based on Feature-enhanced Recurrent Neural Network,” 2022
Optical Fiber Communications Conference and Exhibition (OFC),
2022, pp. 01-03.

[7] J. Zhang et al., ”PAM-8 IM/DD Transmission Based on Modi-
fied Lookup Table Nonlinear Predistortion,” IEEE Photonics Jour-
nal, vol. 10, no. 3, pp. 1-9, June 2018, Art no. 7903709, doi:
10.1109/JPHOT.2018.2828869.

[8] Z. He, K. Vijayan, M. Mazur, M. Karlsson, and J. Schröder,
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