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INVESTIGATING INCONSISTENCIES IN PRNU-BASED CAMERA IDENTIFICATION

Nabeel Nisar Bhat and Tiziano Bianchi

Politecnico di Torino

ABSTRACT

PRNU (Photo-response non-uniformity) is widely considered
a unique and reliable fingerprint for identifying the source of
an image. The PRNU patterns of two different sensors, even
if belonging to the same camera model, are strongly uncor-
related. Therefore, such a fingerprint is used as evidence by
various law enforcement agencies for source identification,
manipulation detection, etc. However, in recent smartphones,
images are subjected to significant in-camera processing as-
sociated with computational photography. This heavy pro-
cessing introduces non-unique artifacts (NUA) in such im-
ages and masks the uniqueness of the PRNU fingerprint. In
this work, we investigate the robustness of PRNU in modern
smartphones. We propose a model that explains the unex-
pected behavior of PRNU in such smartphones. Finally, we
present two methods to identify images suffering from NUA.
Our methods achieve high accuracy in identifying such im-
ages.

Index Terms— Image forensics, source identification,
photo-response non-uniformity, non-unique artifacts.

1. INTRODUCTION

Over the past decade, the photo-response non-uniformity
(PRNU) trace has been widely used to identify the origin of
an image [1]. The PRNU pattern is unique to a sensor [1].
Moreover, the pattern is relatively constant over time and sur-
vives most camera processing [1]. Apart from image-source
identification, the PRNU trace is also used to detect manip-
ulations in an image [2], video-source identification from
still-images [3] and clustering images based on the source
device [4]. Researchers have thoroughly investigated the ef-
fectiveness of the PRNU fingerprint by performing tests on
many datasets, e.g., the Dresden dataset, the VISION dataset
[5], etc. The results have been quite convincing; high detec-
tion accuracies and very low percentages of false alarms have
been associated with the PRNU fingerprint. A considerable
number of refinements have also been proposed to improve
the robustness of PRNU [6], [7].

Recently computational photography has made it possible
to introduce features like Portrait, HDR [8], Night Mode, etc.
in the modern smartphone cameras. Moreover, acquisition
processing like pixel-binning [9] is used to improve the low-

light performance. However, the processing involved in such
features introduces non-unique artifacts (NUA) in the images,
masking the uniqueness of the PRNU fingerprint. Recently,
Iuliani and his team [10] highlighted this issue of PRNU in
modern smartphones, which employ such processing. The
team documented high percentages of false alarms for many
modern smartphones. In such a scenario, PRNU will lead
to erroneous camera identification and serious consequences.
This represents a problem given the usage of PRNU in court
evidence and various forensic softwares e.g., PRNU Compare
Professional [11] and Amped Authenticate [12]. This prob-
lem is under-researched, and no solution to counter the prob-
lem has been proposed so far.

In this work, we discuss the problem of fingerprint colli-
sion in modern smartphones, i.e., the fact that different smart-
phones of the same model tend to have similar fingerprints.
Our focus is on a subset of smartphone models analyzed by
Iuliani, and his team [10]. We propose a model that explains
the cause of the problem in these smartphones. Based on this
model, we present two methods, SPAM Classifier, and Meta-
Data SceneType Classifier, to identify images suffering from
NUA. The experiments validate our model and show that im-
ages affected by NUA can be reliably identified by the pro-
posed methods.

2. PROBLEM STATEMENT

Before introducing the problem, we recall the standard PRNU
model [1]:

S = S0 + S0PN +N (1)

where S represents the acquired image, S0 represents the
noise-free image, PN represents the PRNU fingerprint, and
N represents the equivalent noise. According to this model,
we can estimate from the image S, the fingerprint PN or
consider the noise residual, W = S0PN + N . This PRNU
model can be used to solve different problems. In our case,
we are interested in the device linking problem, i.e., verifying
whether two images have been acquired by the same device.
This amounts to computing a similarity metric between the
fingerprint estimates or the noise residuals, as follows:

ρ = f(W1,W2) (2)



where f() can be either Normalized Correlation [1] or Peak to
Correlation Energy (PCE) [7] and ρ represents the similarity
score of the two residuals, W1 and W2. If ρ is greater than the
threshold, we decide that both pictures come from the same
device, otherwise they come from different devices.

Source identification for modern smartphones turns out to
be challenging. Pair-wise correlations between PRNU pat-
terns corresponding to the images of different devices of the
same smartphone model result in unexpected distributions.
Ideally, these correlation values should be less than the detec-
tion threshold. Instead, for modern smartphones, many corre-
lation values surpass the threshold. In other words, the PRNU
fingerprints of different devices collide with each other. This
inconsistent behavior is verified for both correlation metrics,
PCE and Normalized Correlation. As far as Normalized Cor-
relation is concerned, the correlation values do not approxi-
mate the expected zero-mean Gaussian distribution.

3. NUA MODELING

We believe that the problem of fingerprint collision occurs
due to the introduction of NUA in images of modern smart-
phones. The imaging pipeline and the processing associated
with computational photography are customized by the man-
ufacturer. Therefore, it is likely that a manufacturer uses sim-
ilar processing in different devices of the same smartphone
model. This common processing introduces NUA shared
among different devices of the same model. We assume that
NUA may affect only a fraction of images acquired by a
certain device. The images that are not affected by NUA are
called good images and can be modeled by standard PRNU
model (1). On the other hand, the images that are affected by
NUA are called bad images and can be modeled by:

S = S0 + S0PN +N + ϵ (3)

where ϵ refers to the perturbation (a sort of additional finger-
print) due to NUA. This is similar to the concept of noiseprint
introduced in [13]. However, noiseprint jointly considers the
PRNU and NUA and is therefore aimed at camera model iden-
tification, not at the device level. Instead, here we are trying
to separate the two components, so that device identification
can be performed reliably.

PRNU patterns and noise residuals of all bad images cor-
responding to different devices of the same smartphone model
suffer from the same non-unique perturbation. On the other
hand, the fingerprints and residuals of good images do not
have a contribution due to NUA. Therefore, according to our
model, we expect that correlations between two good images
or one good and one bad image coming from different de-
vices result in values less than the threshold. Only correla-
tions between two bad images from different devices of the
same smartphone model result in unexpected values greater
than the threshold due to the presence of a common NUA
term ϵ. Thus, if we compute correlations between pairs of

images coming from different devices, we expect that those
correlations will follow a bimodal distribution. One mode
will have the usual zero-mean distribution of non-matching
fingerprints, while the other mode will have an unexpected
positive mean. This second mode can be related to the subset
of bad images only.

4. PROPOSED METHODS

We propose two methods to counter the anomalous behavior
of PRNU. Both methods aim at identifying good and bad im-
ages. To validate the performance of our methods, we identify
good and bad images according to our model, which serves as
ground truth.

4.1. Ground Truth Generation

We consider a dataset of images from known smartphones
models and devices. We use two strategies to expose the
problem of fingerprint collision. Under strategy 1, we per-
form pair-wise correlations between the noise residuals cor-
responding to the images of different devices of the same
model. Under strategy 2, we instead perform pair-wise corre-
lations between the fingerprints. Then we divide the correla-
tions into good and bad scores according to a threshold. For
Normalized Correlation, the threshold is calculated based on
the sensor size for a fixed probability of false alarm equal to
10−6. While for PCE, the threshold is set to the commonly
agreed value of 60. The subset of images that contribute to
bad correlation scores (greater than the threshold) is labeled
as bad, while the remaining images are labeled as good.

4.2. SPAM Classifier

The first method, SPAM Classifier, is based on SPAM features
[14]. SPAM features capture dependencies between pixels
of an image. In bad images, the dependencies are modified
due to NUA. Therefore, SPAM features should be distinct for
good and bad images. First, we extract 2nd order SPAM fea-
tures from labeled ground truth images. Since the SPAM fea-
tures for an image consist of 686 dimensions, we reduce their
dimensionality using principal component analysis (PCA) to
30 features or dimensions. The dataset is then divided into
training and test data using a 70:30 split. The final step in-
volves training a classifier with the training data to learn the
features of good and bad images. Finally, we estimate the
accuracy of the classifier on the test data.

4.3. Meta-data SceneType Classifier

The second method, Meta-Data SceneType Classifier, is
based on the screening of meta-data. Analyzing the stan-
dard meta-data settings (Exposure Time, ISO, and Aperture),
we could not find any link between the settings and the
unexpected behavior of correlations. However, one of the



Fig. 1. Distribution of Normalized Correlation values.

meta-data tags, SceneType: A directly photographed image,
correlates highly with the expected behavior. Those images
which contain this tag resemble good images introduced ear-
lier i.e., the corresponding pair-wise correlations result in
values less than the threshold. Moreover, those images which
do not contain this tag resemble bad images. The absence
of this tag implies additional post-processing. The classifier
simply labels all images showing this tag as good images.

5. EXPERIMENTS

We collect images from the Flickr database introduced in [10]
corresponding to Huawei (Mate 20 Pro and P30 Pro), Sam-
sung (S10, S10+, S10e and A50) and Xiaomi (Redmi Note
7) smartphones. We collect a total of 4643 images from 67
different Flickr users (devices). The details of the dataset are
presented in Table 1. In [10], the genuinness of the data has

Table 1. Details of the Dataset.
Model Resolution #Users #Images

Mate 20 Pro 10 MP 10 700
Mate 20 Pro 20 MP 7 490
Mate 20 Pro 40 MP 2 140

P30 Pro 10 MP 10 700
P30 Pro 40 MP 2 139

S10 12 MP 6 378
S10 16 MP 4 279

S10+ 12 MP 8 558
S10+ 16 MP 2 140
A50 12 MP 3 209
S10e 12 MP 5 350

Redmi Note 7 12 MP 8 560

been validated by looking at the Model, Width, Height and
GPSInfo tags in meta-data. Therefore, it is safe to assume that
different Flickr users correspond to different devices of the
same smartphone model. For the sake of space constraints,
we report results corresponding to strategy 1 and Normalized

Correlation for a subset of models. However, the same holds
for strategy 2 and PCE. Figure 1 shows the distribution of cor-
relation values for Samsung S10+ (16 MP), S10 (12 MP) and
S10 (16 MP), from left to right respectively. The X-axis de-
picts the ρ values and Y-axis depicts frequency (ν). A green
line indicates a detection threshold, which is calculated based
on a fixed probability of false alarm (10−6). From the his-
tograms, we can see that correlation values follow a bimodal
distribution. Though most of the correlation values show the
expected behavior i.e., less than the threshold, a considerable
number of correlation values unexpectedly surpass the thresh-
old. The same behavior is seen for S10+ (12 MP), A50, and
S10e. On the other hand, the problem is not that significant
for Huawei Models and Redmi Note 7. Notably, for the high-
est resolutions of Huawei Models, Mate 20 Pro (40 MP) and
P30 Pro (40 MP), none of the pair-wise correlations exceed
the threshold, and hence the problem does not exist.

Table 2. Validation of the Model.
Model (Resolution) µ #Bad Images Validation

Mate 20 Pro (10 MP) 0 200 10%
Mate 20 Pro (20 MP) 0 413 10.5%

P30 Pro (10 MP) 0 66 30%
S10 (12 MP) 0 185 93.98%
S10 (12 MP) 7 180 99.5%
S10 (16 MP) 0 197 39.5%
S10 (16 MP) 7 136 88.84%

S10+ (12 MP) 0 312 71.74%
S10+ (12 MP) 7 282 87.43%
S10+ (16 MP) 0 113 82.2%
S10+ (16 MP) 7 103 97.96%
A50 (12 MP) 0 84 96.61%
A50 (12 MP) 7 83 100%
S10e (12 MP) 0 118 99.81%
S10e (12 MP) 7 118 99.81%

Table 2 shows the validation of our model based on PCE
stats. By validation, we mean the number of times correlation



Fig. 2. SPAM Classifier on test data.

between bad images results in values greater than the thresh-
old. For some models, we introduce a margin (µ = 7), i.e.,
we consider an image as bad only if it is included in at least µ
bad correlation values. The rationale is that those images do
not have significant NUA; therefore, they can be considered
as good images for the validation of the model. We leave the
Redmi Note 7 and highest resolutions of Huawei out, owing
to 2,0 and 0 number of bad images, respectively. As we can
see from Table 2, our model makes sense for Samsung smart-
phones where the subset of identified bad images is responsi-
ble for the unexpected correlation values. Moreover, our pro-
posed model is relatively simple. We might have more than
one class of bad images suffering from different NUA due to
different processing (Portrait, HDR etc.), and this explains
why in some cases, e.g., the lowest resolutions of Huawei
models, the validation percentages are low.

5.1. Performance of Methods

For the SPAM Classifier, the training set consists of 1171
bad images and 2080 good images, a total of 3251 training
examples. We use 20-fold cross-validation to train a KNN-
based classifier. The test data consists of 1392 examples, 514
bad images, and 878 good images. The classifier achieves
very high accuracy, 100%, and 98.8%, in correctly identify-
ing good and bad images, respectively, from the test data, as
shown in the confusion matrix in Figure 2. On the other hand,
Meta-data SceneType Classifier, shown in Figure 3, achieves
decent accuracy of 84.1% and 88.8% in identifying bad and
good images corresponding to Samsung models. For the other
models like Huawei and Redmi note 7, the SceneType tag can
not be used to identify images suffering from NUA.

For the SPAM Classifier, we do an additional validation
on the test images. We perform pair-wise correlations be-
tween images predicted as good and bad, respectively, corre-
sponding to different devices of the same smartphone model.
Figure 4 reveals the distribution of correlation scores for the
images predicted as bad on the left and images predicted as
good on the right, for Samsung S10e. For the bad images, we
can see that almost all of the pair-wise correlations between

Fig. 3. SceneType Classifier on Samsung models.

classifier-predicted bad images are greater than the threshold.
On the other hand, the pair-wise correlations between good
images and good and bad images are less than the threshold.
Thus, the SPAM Classifier achieves high accuracy in correctly
identifying images suffering from NUA.

Fig. 4. Normalized Correlation for predicted images.

6. CONCLUSION

In this paper, we verified the problem of PRNU fingerprint
collision in modern smartphones. We saw that the problem is
significant for Samsung smartphone models, while it is less
evident for Huawei models and Redmi Note 7. The high-
est resolutions of Huawei models did not suffer from NUA.
However, in the case of Samsung models, the highest resolu-
tions suffered heavily from the issue of NUA. Therefore, the
problem can not be linked to a specific resolution. Moreover,
we did not find any link between the standard meta-data set-
tings and the unexpected behavior. We proposed a model to
explain the cause of fingerprint collision and validated it on
our dataset. Finally, we presented two methods to tackle the
problem. The SPAM Classifier achieves high accuracy in cor-
rectly identifying images affected by NUA but needs an exact
camera model for training. On the other hand, a Meta-data-
based Classifier applies to Samsung models only. In practice,
the proposed approach could be used to single out images af-
fected by NUA, for example, excluding them from the subset
used to compute a reference fingerprint or giving low confi-
dence to tests involving them.
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