
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Array-specific dataflow caches for high-level synthesis of memory-intensive algorithms on FPGAs / Brignone, Giovanni;
Jamal, Muhammad Usman; Lazarescu, Mihai T.; Lavagno, Luciano. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 10:(2022), pp. 118858-118877. [10.1109/ACCESS.2022.3219868]

Original

Array-specific dataflow caches for high-level synthesis of memory-intensive algorithms on FPGAs

Publisher:

Published
DOI:10.1109/ACCESS.2022.3219868

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973073 since: 2022-11-18T08:23:09Z

IEEE

Received 11 October 2022, accepted 26 October 2022, date of publication 4 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219868

Array-Specific Dataflow Caches for High-Level
Synthesis of Memory-Intensive
Algorithms on FPGAs
GIOVANNI BRIGNONE , (Graduate Student Member, IEEE),
M. USMAN JAMAL , (Graduate Student Member, IEEE),
MIHAI T. LAZARESCU , (Senior Member, IEEE),
AND LUCIANO LAVAGNO , (Senior Member, IEEE)
Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Giovanni Brignone (giovanni.brignone@polito.it)

ABSTRACT Designs implemented on field-programmable gate arrays (FPGAs) via high-level synthesis
(HLS) suffer from off-chip memory latency and bandwidth bottlenecks. FPGAs can access both large but
slow off-chip memories (DRAM), and fast but small on-chip memories (block RAMs and registers). HLS
tools allow exploiting the memory hierarchy in a scratchpad-like fashion, requring a significant manual
effort. We propose an automation of the FPGA memory management in Xilinx Vitis HLS through a fully-
configurable C++ source-level cache. Each DRAM-mapped array can be associated with a private level
2 (L2) cache with one or more ports, and each port can optionally provide level 1 cache. The L2 cache
runs in a separate dataflow task with respect to the application accessing it. This solution isolates off-chip
memory accesses and data buffering into dedicated dataflow tasks, resembling the load, compute, store
design paradigm, but without the drawback of manual algorithm refactoring. Experimental results collected
from FPGA board show that our cache speeds up the execution of a variety of benchmarks by up to 60 times
compared to the out-of-the-box solution provided by HLS, requiring very limited optimization effort. Our
caches are not meant to compete with manually optimized implementations quality of results (QoR), but
rather to significantly save design effort, in exchange for some QoR, to make the HLS flow a bit more
software-like, allowing the designer to focus on algorithmic optimizations, rather than on explicit memory
management. Moreover, caching could be the only feasible memory optimization for algorithms with data-
dependent or irregular memory access patterns, but with good data locality.

INDEX TERMS Cache, FPGA, high-level synthesis, memory management.

I. INTRODUCTION
In the Post-Moore Era simultaneous performance and energy
improvements can be obtained only from specialized hard-
ware (HW) architectures [1], [2], [3]. While specialized
HW is efficient, it also increases the design effort and the
deployment cost. However, high-level synthesis (HLS) can
significantly reduce the design effort, enabling convenient
software (SW)-like tools and development flows. At the
same time, field-programmable gate arrays (FPGAs) can

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

reduce deployment cost allowing the designer to implement
special-purpose HW modules on general-purpose reconfig-
urable architectures. Our work focuses on applications where
the time to market, application lifetime, requirements to fre-
quently update the implementation and so on make FPGAs
the best solution at hand, and we strive to bring the devel-
opment of FPGA-accelerated applications a bit closer to SW
development experience.

A HLS open issue is the off-chip memory latency and
bandwidth bottleneck, which limits performance and is espe-
cially critical for memory-bound algorithms. The FPGA
memory system is composed of two main kinds of resources:

118858 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1656-8376
https://orcid.org/0000-0002-1962-3764
https://orcid.org/0000-0003-0884-5158
https://orcid.org/0000-0002-9762-6522
https://orcid.org/0000-0002-9872-1695

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 1. Our cache embedded in a HW setup.

fast small on-chip memories (registers and block RAMs
(BRAMs)), and slow large off-chip memories (dynamic
RAMs (DRAMs)) interfaced through DDR4 or HBM proto-
cols (the latter characterized by even larger latency [4]). Cur-
rent HLS tools, in particular those from the leading producer
Xilinx, allow the designer to exploit this memory hierarchy
only manually, in a scratchpad-like way, which often requires
significant design and verification effort. This makes harder
to achieve the deployment of accelerated applications using
FPGAs for a large number of applications. Our work aims
directly at filling this gap, thus making HLS design more
software-like for use cases in which the ultimate perfor-
mance need not be achieved, but design time and effort are
paramount.

According to the best design practice from Xilinx [5],
efficient HLS kernels should comply with the load, compute,
store (LCS) paradigm to mitigate the off-chip memory bot-
tleneck, i.e., access external DRAM only by load and store
dataflow tasks, which are then responsible for buffering on
the on-chip memory the data consumed and produced by the
compute task(s). The main drawback of the LCS approach is
the significant design effort needed for converting a generic
algorithm into LCS form, which often requires full rewriting
and redesigning of the source code.
The aim of our work is to automate efficient off-chip mem-

ory accesses through an easy to use and fully customizable
cache system1 for HLS, which works as an interface with
the off-chip DRAM, accessible through a advanced extensible
interface (AXI) bus, and stores its data to on-chip BRAMs and
registers. Figure 1 shows the resulting systemwhen our cache
is used to accelerate a HLS kernel. Our cache is placed within
the HLS kernel. The computation logic of the kernel accesses
the cache, rather than the AXI bus directly.

A cache is in general helpful to implement well-performing
designs in a short time. Moreover, techniques such as man-
ual buffering or polyhedral transformations [6], [7] cannot
be applied to programs with irregular or input-dependent
memory access patterns, and are only partially implemented
in commercial design tools such as Vitis HLS. Therefore,

1Available as open source at https://github.com/brigio345/DaCH

a cache could be the only solution for quickly optimizing the
performance of such designs using commercial tool flows.

From a high-level point of view, the cache has the objective
of isolating the off-chip memory accesses into a dataflow
task, in accordance with the LCS pattern.

From a low-level point of view, the cache has the dual
purpose of (a) reducing the number of DRAM accesses, i.e.,
the data stored in the cache is reused as long as it hits, and
only the misses need to access the DRAM, and (b) optimizing
DRAM accesses, i.e., the DRAM is accessed in lines (aligned
groups of consecutive words), which allows taking advantage
of AXI bursts and interface widening, even with hard to
analyze or totally irregular access patterns.

HLS allows assigning each array to a different AXI master
adapter. This enables implementing array-specific caches,
each using its dedicated AXI adapter. Array-specific caches
can be easily tuned to achieve high hit ratios, since the access
patterns of a single array are typically characterized by good
locality, and there is no interference with the accesses to other
arrays, unlike when all arrays share a single cache.

To adhere to the HLS high-productivity philosophy,
we paid a special attention to the HLS user-friendliness in
terms of (a) configurability (the cache characteristics can
be set through parameters), (b) ease of use (the cache can
be inserted into existing designs with just a few lines of
boilerplate code), (c) observability (cache information critical
for parameter tuning, e.g., hit ratio, can be profiled during SW
simulation).

This cache architecture can be implemented as a standard
dataflow design in case of write-only (WO) accesses because
the request (the address and the data to be written) flows from
the application accessing the memory and the cache module.
Read accesses include instead both the address request from
the application to the cache and the data response moving
in the opposite direction. This requires a feedback channel
between dataflow tasks, making the dataflow graph cyclic.
Cyclic dataflow is not natively supported by current HLS
tools, and might impose severe functional and performance
limitations. Therefore, we designed a throughput-oriented
Cyclic dataflow protocol for Vitis HLS.

Since we do not have access to the Vitis HLS back-end,
we implemented the cache module at the C++ source level
to make the HLS tool aware of the cache instead of, e.g.,
a register-transfer level (RTL) module to be inserted during
system integration, so that the HLS tool can apply its opti-
mizations accordingly. This required us to almost mimic a
low-level RTL design style in the C++ code to maximize
the throughput (e.g., set explicitly the delay between the
inter-tasks communication operations), and to minimize the
resources (e.g., set explicitly the bitwidth of the cache data
structures). The module is designed to be used with Xilinx
Vitis HLS and was tested with the version 2021.2.

The cache provides the best effectiveness either (1) when
applied to algorithms with unpredictable access patterns,
but good temporal and spatial locality properties, or (2)
when used with a tool, like Vitis HLS, which only partially

VOLUME 10, 2022 118859

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

exploits powerful memory access optimization capabilities
(e.g., state-of-the-art polyhedral analysis), and hence the tool
is not able to understand the access pattern and infer an
efficient memory burst.

Our main contributions are:

• Design of a high-throughput Cyclic dataflow protocol
that adds support in HLS for dataflow networks with
feedback between tasks, taking care of correct func-
tionality and performance of the generated HW (unlike
previous works [8], [9], which addressed only the func-
tionality of SW simulation) (Section III-A).

• Design of a fully configurable two-level multi-port
Cache module for HLS, which exploits the Cyclic
dataflow protocol to automatically generate an LCS-like
architecture, that is more scalable and can achieve
higher performance than the cache by Ma et al. [10]
(Sections III to V).

• Evaluation of the Cache module power, performance,
and area (PPA) effects on different algorithms against
(1) the HLS tool default implementations, (2) opti-
mizations using a RTL cache module, integrated
after the HLS and (3) manual optimizations compli-
ant with Xilinx LCS best practice recommendations
(Section VI).

II. PREVIOUS WORK
The need for automated memory management for FPGAs is
attested by the multiple works on this topic.

Matthews et al. [11] and Choi et al. [12] designed FPGA-
based caches. These works differ from ours as they are
aimed to accelerate specific soft-processors implementations
instead of generic HLS designs.

Jo et al. [13] developed an OpenCL framework whose
memory subsystem inserts direct-mapped, single-level, and
single-port caches in between the kernel accessing the mem-
ory, and the external memory. They implemented at RTL both
the kernels (which consist of a predefined set of intellectual
property (IP) blocks) and the cache. Our work therefore
differs both in terms of cache architecture complexity (our
caches provide set associativity, two levels, and multiple
ports), and in terms of technology (our cache is compatible
with any HLS design).

Several works focused on optimizing the memory accesses
through RTL cache modules inserted between the kernel
accessing the off-chip memory and the off-chip memory
interface. These modules can be either inserted manually or
through a dedicated framework, such as the one proposed by
Adler et al. [14] which virtualizes the FPGA memory hierar-
chy and includes some caching capabilities. Winterstein et al.
[15] improved this framework specifically for HLS by allo-
cating the unused BRAMs to maximize the cache sizes. How-
ever, a RTL cache module fails to provide significant speedup
when coupled with a HLS kernel. For example, the Vitis HLS
scheduler, unaware of the external cache module, inserts a
minimum latency between a memory request operation and

its corresponding response based on the architecture of the
memory adapter, thus preventing the exploitation of the cache
acceleration. Our cache is instead implemented at the source
level, and it is specifically designed to avoid scheduling based
on the worst case (cache miss). This allows the HLS tool to
optimize the circuit accordingly.

We ran some experiments adding a RTL cache module
(specifically the Xilinx System Cache [16]) to the interface
of a HLS kernel. The results show that the RTL cache did
not provide any advantage. It simply introduced an overhead,
as discussed in Section VI.

Cong et al. [6] and Pouchet et al. [7] designed a work-
flow for improving data locality of HLS programs through
compiler-level loop transformations, taking advantage of
the polyhedral representation. Moreover, they exploited this
locality by automatically inserting on-chip buffers. These
techniques are limited to programs with affine loop bounds
and memory accesses, while a cache can be used with any
program, including those with irregular or data-dependent
memory accesses. A cache could benefit from their improved
locality by achieving higher hit ratios with simpler cache
configurations.

The Intel HLS [17] tool provides load-store units (LSUs)
that can cache DRAM data in BRAM in case of read-only
(RO) memories. Our experiments described in Section VI
suggest that the tool fails to determine the optimal cache
configuration and the user has limited control to improve it.

The work by Ma et al. [10] is closest to ours. They pro-
posed an open-source array-specific HLS cache module as
a set of C++ classes, compatible with Vivado HLS 2016.2.
Different from our work, the cache logic is inlined in the
application. While this helps keeping the hit latency low in
simple cases, it violates the LCS pattern. Moreover, their
architecture increases the pipelining complexity. To mitigate
this problem, they mapped the whole cache data to regis-
ters. However, in the experiments discussed in Section VI,
we verified that the pipelines embedding their cache require
higher initiation intervals (IIs), or are not pipelineable at all.
Moreover, mapping all the data to registers limits strongly
the cache size scalability due to HW resources constraints.
Instead, our architecture completely hides the cache logic and
the memory interface from the main computations performed
by the kernel. This allows the HLS to synthesize pipelines
with low II while mapping cache data to cheaper BRAMs.
Finally, their cache automatically handles only one access
port thus providing only one read or write per clock cycle
(CC). The only way to perform multiple accesses per CC is
to guarantee that other accesses, beyond the first one in a
given CC, will always be hits, and make it explicit through
the retrieve and modify functions. This is both difficult
and error-prone to analyze manually in complex cases.

III. DATAFLOW CACHE
The Dataflow cache architecture (Fig. 7a) is isolated into a
dedicated dataflow process. A HLS kernel that is configured
to use the cache for one of its top-level DRAM-mapped

118860 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 2. Configurable address bit mapping.

Listing 1. Source code modifications for accelerating the compute
function with our cache.

arrays is split into two dataflow tasks: (i) the compute task,
which includes all the application logic except for the external
memory interface, which is replaced with the simpler cache
interface, and (ii) the cache task (or, in general, one cache
task per array that uses the cache), which buffers data and
interfaces with the external DRAM. Thus, the kernel automat-
ically complies with the LCS architecture without anymanual
code change.

This architecture is characterized by information flow from
the compute task to the cache (the address to be accessed and
the data to be written), and from the cache to the compute
task (the read data). Therefore, the resulting dataflow graph
is cyclic, which is not officially supported by Vitis HLS. For
this reason, the Dataflow cache is implemented according to
our Cyclic dataflow protocol.

Algorithm 1 describes the Dataflow cache functionality.
The cache task waits for a request and executes the standard
cache operations: it checks if the request is a hit or a miss,
it updates the cache data structures (valid bits, dirty bits, tag
bits, . . .), and it performs the DRAM read or write operation.
For reads, it also sends back the data. The compute task sends
the read or write request to the cache. For reads, it waits for
the response containing the read data.

The Dataflow cache uses the set associative mapping and
the write-back consistency policy. It is configurable in terms
of (a) word size, (b) number of words per line, sets, and
ways, (c) replacement policy, least recently used (LRU) or
first-in first-out (FIFO), (d) address bit mapping, standard
(Fig. 2a) or swapped (Fig. 2b, convenient in use cases like
the one discussed in Section VI-B, i.e., a matrix accessed by
columns). It can implement a fully associative policy if the
number of sets is one, or a direct mapped policy if the number
of ways is one.

Algorithm 1 Dataflow Cache Functionality
Require: Compute needs to access an array associated with
Cache at address addr in read mode (op = R) or write
mode (op = W , data = element to be written).

Ensure: The operation requested by Compute is fulfilled by
Cache.

procedure Compute
. . .
Send op to Cache
Send addr to Cache
if op = W then

Send data to Cache
else

Wait for Cache response
Receive data from Cache

end if
. . .

end procedure

procedure Cache
Wait for Compute request
Receive op from Compute
Receive addr from Compute
if op = W then

Receive data from Compute
end if
line : addr ∈ line
if line⇒ MISS then

if lineold ⇒ DIRTY then
DRAM (lineold)← BRAM (lineold)

end if
BRAM (line)← DRAM (line)

end if
if op = W then

BRAM (addr)← data
else

data← BRAM (addr)
Send data to Compute

end if
end procedure

Listing 1 highlights the modifications needed for acceler-
ating the compute function with our cache. Users simply
need to (1) set the cache parameters through the cache class
template arguments, and (2) instantiate the cache and call the
compute function through the cache_wrapper function
in a dataflow region. Complete examples can be found in our
open source git repository.

It is worth noting that thecompute function is unchanged,
since we overloaded the operator[], like Ma et al. [10],
to allow using a cache object as if it were a traditional array.

A. CYCLIC DATAFLOW PROTOCOL
The dataflow optimization is crucial in HLS, since it enables
(a) parallelism, i.e., multiple tasks are executed in parallel,

VOLUME 10, 2022 118861

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

(b) isolation, i.e., the different tasks are organized in separate
modules and share only the necessary data and synchroniza-
tion, and (c) dynamic behavior, i.e., the tasks execute as soon
as they are ready, and their input data is available, thus they
are not statically bound to the worst case.

The current Vitis HLS tool directly and easily supports
acyclic dataflow graphs only, while a kernel may contain
feedback between tasks, making the dataflow graph cyclic.
OurDataflow cache is actually an example of cyclic dataflow
graph. Fine Licht et al. [9] and Chi et al. [18] added sup-
port for SW simulation of cyclic dataflow designs by map-
ping each dataflow task to a separate thread or coroutine
during simulation. However, they neglected the functional
(deadlocks) and performance (stalls) penalties, due to the
dataflow feedback, in the generated HW. We instead defined
a Master/Slave communication protocol, compatible with
both cyclic and acyclic dataflow graphs, which (i) adds
support to Vitis HLS for SW simulation of cyclic dataflow
designs without the need for multi-threading or coroutines,
which complicate inter-process synchronization due to the
need for mutexes or other inter-thread synchronization mech-
anism, and may increase the execution time of the simulation,
due to the inter-process communication and context switch
overheads. (ii) Moreover, it allows generating HW circuits
that are deadlock-free and provides a high throughput. I.e., if
the tasks are pipelined, the Master can send one request and
receive one response from the Slave at each CC, with a II of
1 CC.

In our protocol, each dataflow task is either a Master or
a Slave. A Slave executes the operations requested by its
Master.

The tasks communicate and synchronize through FIFO
queues. The request FIFO, which flows fromMaster to Slave,
contains the inputs to the Slave operation (e.g., if the opera-
tion is a read access from an off-chip memory, it contains the
address to be read). The response (feedback) FIFO, which
flows from Slave to Master, contains the outputs from the
Slave operation (e.g., if the operation is a read access from
an off-chip memory, it contains the read data). This FIFO
introduces a cycle in the dataflow graph. If the Slave does
not send any response to the Master (e.g., the operation is
a write access to an off-chip memory), the response FIFO
is not allocated and the resulting dataflow graph is acyclic.
Thus, our protocol supports both cyclic and acyclic dataflow
graphs.

The Master structure, shown in Fig. 3, is not tightly con-
strained. It can start executing the sub-finite-state machine
controlling its Slave at any point. Conversely, the Slave struc-
ture, shown in Fig. 4, is well-defined. It is implemented as
an infinite loop that performs one iteration upon receiving
an execution request from its Master and stops upon a stop
request. If the Slave is pipelined, it must be flushable to avoid
deadlocks. Once a request enters the pipeline, it must pass
through all the pipeline stages till the completion even if no
new request feeds the previous stages. For this, the Slavemust
read the requests using non-blocking stream reads.

FIGURE 3. Finite-state machine summarizing the behavior of a Master in
our Cyclic dataflow protocol.

FIGURE 4. Finite-state machine summarizing the behavior of a Slave in
our Cyclic dataflow protocol.

The protocol can be generalized in terms of both width
(a single Master can have multiple Slaves or a single Slave
can have multipleMasters), and depth (a Slave can be in turn
a Master of another Slave).

1) HARDWARE FUNCTIONALITY AND PERFORMANCE
In the presence of feedback between the Slave and theMaster,
the HLS-generated HW circuit would deadlock. Moreover,
we have to carefully specify cycle by cycle the scheduling of
the Slave operations to avoid losing performance or causing
unexpected deadlocks, as discussed next.

Whenever the Master writes a request, WRQ, it must wait
for the Slave latency before being able to read the response,
RRS. However, the HLS scheduler is not aware of that depen-
dency and schedules both the WRQ and RRS into the same
pipeline stage. This leads to a deadlock, because the RRS is
blocked while reading from the empty response FIFO (the
latency of the Slave has not elapsed, thus it cannot contain
the response yet). This blocks the whole stage, including the
WRQ: RRS is therefore waiting for the response to a request
which has never been written.

To avoid the deadlock, the WRQ and RRS must be sched-
uled into separate pipeline stages by:

1) Explicitly declaring a dependency between WRQ and
RRS using the write_dep and read_dep FIFO

118862 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 5. Stalling cyclic dataflow schedule of Master.

FIGURE 6. Non-stalling cyclic dataflow schedule of Master.

access functions provided by Vitis HLS to define a
partial ordering between accesses to different streams.

2) Setting the dependency distance to 1CC by delaying it
with the reg function, also provided by Vitis HLS.

While this solution guarantees the functionality of the
generated HW, it fails to achieve high throughput. In fact,
assuming that both the Master and the Slave are pipelined
with a II of 1 CC (i.e., the most performance-critical case)
and the Slave pipeline depth is D > 1, the HLS scheduler
schedules the RRS in the CC following the WRQ because it
is unaware of the latency between WRQ and RRS, as shown
in Fig. 5a. At runtime, the RRS0 scheduled in the cycle
following the WRQ0 stalls because the Slave takes DCCs
before writing its response. Consequently, the writing of all
the following requests stalls, i.e.,WRQ1 can be executed only
when RRS0 completes, after receiving the response from the
Slave (Fig. 5b). Thus, the Slave never receives requests in
consecutive cycles and its throughput is 1/D, as if it were not
pipelined.

However, if we set the dependency distance betweenWRQ
and RRS to D CCs, the scheduler insertsD−1 pipeline stages
between them, as shown in Fig. 6a. In each CC, the Master
writes one request and receives one response, as shown in
Fig. 6b. Therefore, our solution allows optimally exploiting
the pipeline with a II of 1 CC, without incurring stalls.

2) SOFTWARE SIMULATION
The SW simulation natively provided byVitis HLS consists of
compiling the top function of the kernel with a standard C++
compiler, which ignores the HLS pragmas, and executing it
as SW. Thus, dataflow functions are executed sequentially
and introduce a deadlock if there is feedback between the
Slave and theMaster. As discussed above, theMaster blocks
waiting for the Slave response, but the Slave cannot start until
the Master has completed, resulting in a deadlock.

Even the SW simulation of an acyclic dataflow graph,
which is officially supported by Vitis HLS, is affected by a
severe limitation. All the requests are pending in the FIFO
until the Master returns and its Slave can finally consume

Listing 2. Vitis HLS source code implementation of the Cyclic dataflow
protocol.

them. The functionality is preserved, but the memory usage
for storing the pending requests may explode.

We solved the issues by automatically changing the SW
simulation codewith respect towhat is used byHWsynthesis.
Each Slave is mapped to a function whose argument list is
the Master request and whose return value is the response
value. The top function only calls theMaster function (which
in turn calls the function of its Slave) whenever it would issue
a request FIFO write in the HW model. This solution both
ensures the absence of deadlocks in case of cyclic dataflow
graphs and avoids the accumulation of pending requests in
case of acyclic dataflow graphs.

3) PROTOCOL IMPLEMENTATION
Listing 2 contains our implementation of the protocol, com-
patible with Vitis HLS. The discrimination of the HLS syn-
thesis code from the SW simulation code is automatically
done by checking the definition of the __SYNTHESIS__
preprocessor identifier, which is defined by Vitis HLS during
synthesis.

The request and response FIFOs are implemented as
hls::streams. The Master finite-state machine is con-
tained in the master function. The Slave finite-state
machine is implemented by the slave function, and its

VOLUME 10, 2022 118863

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

EX state is isolated in the slave_ex function. The whole
system is integrated within the top function. During the HLS
synthesis, it instantiates theMaster and Slave dataflow tasks,
while for SW simulation it calls the master function, which
calls the slave function.

Note that with our caches all this code is hidden from the
designer, who only needs to instantiate the cache class as
shown in Listing 1.

B. DATAFLOW CACHE IMPLEMENTATION
TheDataflow cache is implemented as a C++ class, compat-
ible with Vitis HLS. All the configurable parameters are set
using class template arguments.

It complies with our Cyclic dataflow protocol: the cache
task is a Slave, whose Master is the compute task. The
Master operations are hidden behind the cache application
programming interfaces, therefore end users of our cache are
not required to be aware of the underlying protocol.

The cache task provides high throughput in steady state
(it serves a hitting request in one CC), since it is optimally
pipelined with II = 1CC.

1) CACHE PIPELINE
The most critical factor that may increase the cache II, and
hence reduce performance, is the external DRAM access at a
generic address (generally, the compute task can access any
array element, in any order), which introduce long-distance
data and structural dependencies.

Considering that the external DRAM is accessed only
in case of a miss, and that we want to optimize the hit-
ting accesses, we extracted the AXI interface, in charge
of accessing the DRAM, into the Memory interface Slave
task. The associated Master is the Core task, which includes
all the remaining cache logic (Fig. 7a). This solution removes
the AXI interface dependencies from the cache hit logic,
which is fully contained in theCore task. For misses, theCore
task sends the DRAM access request to theMemory interface
task, and it dynamically stalls until it receives the response.

To avoid both data and structural dependencies, cache
helper data (e.g., tag, valid, dirty, . . .) are stored in
completely partitioned arrays, bound to registers since they
are typically much smaller than the cache data.

To limit the register usage and to enable cache size scaling,
the cache data memory is bound to BRAM. However, the
BRAM read after write (RAW) latency of 1CC makes the
Core task RAW dependency on data memory (which exists
because a newly loaded line may hit in the following access)
to have a distance of 2CCs. This would require the Core task
to be pipelined with a II of 2 CCs.

To lower the II to 1CC, we removed the dependency using
a small auxiliary cache (RAW cache). It is a two-line fully
associative cache, implemented with registers, providing the
functions get_line (for hits, it reads the RAW cache line;
for misses, it reads theDataflow cache line), and set_line
(it writes both the Dataflow cache line and the RAW cache
line, according to the FIFO replacement policy).

The data memory of the cache is always accessed through
the RAW cache, thus ensuring that the dependency with a dis-
tance 2CCs is false. This is because the set_line function
is at most called once per pipeline iteration: if a cache line is
written, it will not be read in the next two iterations (which
would be the origin of the distance 2CCs dependency), since
the RAW cache would hit and return its data directly.

2) AXI INTERFACE
The Memory interface task accesses the AXI bus at every
request from the Core task. To save resources, it is not
pipelined. Pipelining would rarely help, because a well-
configured cache should never get multiple sequential misses,
especially considering that there is one dedicated cache per
source code array.

All DRAM accesses handle whole cache lines, which are
sequential and aligned to the line size. To enable the HLS
tool to infer that accesses are aligned, we explicitly zeroed
the least significant bits of the address. This enables auto-
mated port widening and burst inference. If the line size is at
most the maximum AXI interface width, it is accessed in a
single request, else (more commonly) it is accessed in a burst
request.

By default, Vitis HLS assumes AXI latency 64CCs. This
is useful to send pipelined requests on the AXI interface.
However, ourMemory interface is not pipelined. Thus, we set
the AXI latency to zero, which makes the Memory interface
stall after issuing a AXI request and resume right after the
response, saving resources without losing performance.

3) CACHE INTERFACE
To interface with the cache, we exposed the user-callable
application programming interfaces (APIs) for managing
requests and responses between the compute task and the
cache.
• The get function accepts as input the address to read
from cache and returns the read data. Internally it sends
a read request (writing the address to the request FIFO),
waits for the request-response latency (discussed later)
in case of a hit or for longer in case of a miss, reads the
data from the response FIFO, and returns the received
data.

• The set function accepts as input the address and the
data to write to the cache. Internally, it sends a write
request (writing the address and the data to the request
FIFO).

We overloaded the operator[] to automatically
call the get and set functions, e.g., in Listing 1,
a[i] = a[i + 1] is automatically compiled to
a.set(a.get(i + 1), i).

As discussed in Section III-A1, the request-response dis-
tance should match the cache latency. However, cache latency
varies at runtime, as hits and misses (which have different
latencies) are interleaved, depending on the access pattern
and the cache configuration. Moreover, we need to distin-
guish between the different memory access types.

118864 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 7. Baseline Dataflow cache architecture, and its extensions.

• For RO caches, the optimal distance value is typically
around the average memory access latency lat

lat = latcache · hit ratio+ latDRAM · miss ratio. (1)

latcache varies from 3 CCs to 5 CCs based on cache con-
figuration and timing constraints, latDRAM depends
on the target FPGA board, and hit ratio and miss ratio
depend on the application and cache configuration.

• Read-write (RW) caches are affected by data depen-
dencies with distances corresponding to the request-
response distance. The latter should therefore balance
cache performance and computation task performance
(task II depends on the dependency distance). Experi-
mental results (Section VI-D1) show that a 2CCs dis-
tance typically gives the best overall performance.

• For WO caches, the request-response distance has no
meaning because there is no response.

A template parameter is available to the users willing to
fine-tune the distance of the caches in their designs.

IV. MULTI-LEVEL CACHE
The Multi-level cache extends the memory hierarchy of the
cache by adding a level 1 (L1) cache on top of the Dataflow
cache, i.e., the level 2 (L2) cache, as shown in Fig. 7b. This
architecture is aimed at reducing the latency between a read
access request and the corresponding response.

We are not interested in further accelerating the writes.
Write latency has a negligible impact on performance, con-
sidering that they never stall the compute task (there is no
response from the cache to the main computation), provided
that the request FIFO is deep enough to accommodate all
the pending writes. Moreover, write accesses are usually less
frequent than reads.

Finally, the Multi-level cache is the starting point for
enablingmultiple concurrent accesses in theMulti-port cache
described in Section V.

Similarly to the cache by Ma et al. [10], the L1 cache is
inlined in the compute logic. This reduces the latency of the
memory accesses by avoiding the inter-task communication.
Even if the L1 cache is inlined, the compute task pipeline
II is preserved, unlike the cache by Ma et al. [10]. This is
because (i) in case of miss the L1 cache interacts with the L2
cache instead of with the external DRAM. Furthermore, (ii)
the L1 cache complies with the write-through policy (the L1
cache aims at accelerating only the reads), introducing fewer
dependencies compared with the write-back policy.

To implement the Multi-level cache architecture, we
extended the Dataflow cache source code. In the Dataflow
cache, the response flows from the L2 to the compute task and
contains a single word. In the Multi-level cache architecture,
the response flows from the L2 to the L1 cache, and holds a
whole cache line.

The Dataflow cache APIs were updated to support the
L1 cache by adding the get_line function. Moreover,
we upgraded the implementation of the get and set func-
tions, while keeping their signature unchanged.
• Theget_line function receives as input the address to
read from cache and returns the line to which the address
belongs. In particular, if the address hits the L1 cache,
the line is read from the L1 cache. Otherwise, the request
is issued to the L2 cache, as with the get function of the
Dataflow cache.

• The get function calls the get_line function and
returns the requested word only.

• The set function marks the L1 cache line as dirty, if it
hits, according to the write-through policy. Additionally
it forwards the write request to the L2 cache as with the
Dataflow cache.

The L1 cache supports the set-associative mapping policy.
The number of sets and ways of the L1 cache are configurable
through template parameters. Note that when the L1 cache
parameters are set to zero, the resulting architecture is equiv-
alent to the Dataflow cache.

VOLUME 10, 2022 118865

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

Similarly to the L2 cache, the L1 cache memory is bound
to BRAMs and the helper data is bound to registers. Both
the L1 and the L2 caches use the same memory technologies,
therefore the L1 cache could have comparable or even bigger
size than the L2 cache.

According to our experimental results (Section VI-B3),
when a L1 cache is included on top of the L2 cache a con-
venient default value for the L2 request-response distance is
3 CCs for RO accesses, and 2 CCs for RW accesses. Note that
the default RW distance is lower than the RO one because
higher distance values would make the RAW dependencies
distance longer and reduce the overall performance, as dis-
cussed in Section III-B3.

V. MULTI-PORT CACHE
The Dataflow and Multi-level cache architectures provide a
maximum throughput of one access per CC. This is efficient
for pipelined algorithms, which access each cached array at
most a single time per iteration. To efficiently implement
algorithms which access the same array multiple times per
iteration (either due to the user code or after a loop unrolling),
we designed the Multi-port cache that enables multiple con-
current read accesses to the same array.

With the Multi-port cache architecture, a shared L2 cache
exposes an arbitrary number of ports, each with a private L1
cache, as shown in Fig. 7c. The private L1 caches enable
scheduling multiple memory accesses at the same time, with-
out increasing the II of the compute task.

Hence, unlike Ma et al. [10], the L1 cache does not use
directly the single DRAM interface, but goes through the
shared L2 cache. Thus, we do not require users to manually
mark explicitly some accesses as ‘‘always hit’’ (through the
retrieve and modify functions), which would require
extensive manual analysis and code changes and may lead
to incorrect behavior.

To keep the cache logic simple and to avoid negatively
affecting the compute task II, we did not implement any
coherencymechanism. To guarantee the correct functionality,
theMulti-port cache only supports read accesses. The exten-
sion to concurrent write or RW accesses is left to future work.

TheMulti-port cache is implemented as an extension of the
Multi-level cache. The number of ports P can be configured
through a template parameter. When it is set to one, the
architecture is equivalent to theMulti-level cache.

The Core task of the L2 cache was updated to cycle over
each port, i.e., it sequentially serves the requests from the first
to the last port, before restarting from the first one. Any port
that did not send any request is skipped. This code pattern
(hidden from the user behind the cache operator[]) can
be optimized by the HLS tool to statically schedule P array
accesses with II = 1CC in most cases.

For each port, we allocate a private L1 cache, and the
related pair of request and response FIFOs (to communicate
with the shared L2 cache).

The access port can be selected either automati-
cally or manually, when the user-friendly automatic port

FIGURE 8. Multiple-reader DRAM-mapped array, associated with our
cache.

selection does not lead to the desired II for the algorithm
pipeline.

• With the automatic selection, each call to get_line
(which is in turn called by get) is automatically associ-
ated to a specific port by means of a member variable
holding the port index, which is updated after each
access. This is implemented directly in the get func-
tion, that keeps track of the last accessed port and uses
this information to bind a specific request to a specific
port.

• The manual port selection allows one to explicitly
inform the tool that each access uses different address
and data streams, and that the dependencies are false.
It is implemented by adding the port parameter (which
identifies the number of the port to be accessed) to the
get function (in this case the operator[] cannot be
used).

In addition to the performance advantage, our Multi-port
cache allows overcoming the Vitis HLS limitation of a sin-
gle reader per AXI interface. Indeed, each L2 cache (asso-
ciated with a single AXI interface) can expose multiple
ports in the form of pairs of request/response FIFOs. These
ports can connect the L2 cache to one or more compute
dataflow tasks. Since the L2 cache ignores the ports with no
pending requests, the compute tasks can seamlessly issue
requests to the L2 cache at different rates. Figure 8 shows
the dataflow graph of a kernel with a DRAM-mapped array
that is read from two compute dataflow tasks, through a
single L2 cache. Additionally, each compute task has its
own private L1 cache. In Vitis HLS, if designers need to
access the same DRAM array from different dataflow tasks,
they must instantiate multiple AXI bundles, associated to
the same underlying buffer in DRAM. Note that, due to
the loose synchronization between dataflow tasks in Vitis
HLS, both a dual-ported cache and a pair of bundles can
be used meaningfully only for read-only arrays. Otherwise
enforcing cache coherency or preserving data dependencies
in a shared array between two processes would be very
difficult.

118866 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

VI. EVALUATION
To evaluate the impact of the proposed cache architecture in
terms of PPA, we used the cache in some memory-intensive
benchmarks with very different access patterns. We selected
two ‘‘classical’’, frequently used algorithms (matrix multipli-
cation and convolution), since they are widely known and pro-
vide good and easy to understand examples. In practice, our
caches should be used either (i) for seldom used algorithms,
for which a manual optimization effort would not be justified,
or (ii) for those that do not exhibit regular access patterns,
such as bitonic sorting, which is our third benchmark.

We synthesized the benchmarks as Vitis HLS kernels
and deployed them on a physical FPGA board to measure
the resulting PPA. The experimental workflow consists of:
(1) SW simulation, (2) HLS synthesis, (3) logic synthesis,
place and route, and bitstream generation, and (4) execution
and measurements.

Steps (1) and (2) were performed in Vitis HLS 2021.2
(using Vitis flow defaults), and step (3) in Vivado 2021.2 [19]
(using Vivado defaults for synthesis and implementation).
All steps targeted the Avnet Ultra96v1 [20] board, host-
ing a Xilinx Zynq UltraScale+ FPGA. Figure 9 shows the
block design for implementing a HLS kernel with three
DRAM-mapped arrays (such as the matrix multiplication and
convolution test cases). Given an algorithm (which deter-
mines the number of inputs and outputs, and by consequence
of the AXI interfaces), the HLS kernel exposes the same
interface, even when it is optimized with our cache, since the
cache is fully implemented with HLS inside the kernel itself.

The board runs the PYNQ Linux 2.7.0 [21] operating sys-
tem, whose PYNQ library is exploited in step (4).

We collected the data from different sources:
• SW simulation reports

– Hit ratio: ratio between the number of requests that
hit data in cache and the number of all requests for
a specific cache memory.

• Post place and route reports
– Area: number of lookup tables (LUTs), flip-flops

(FFs), BRAMs and digital signal processing units
(DSPs) required to implement the whole design.2

– Maximum clock frequency: themaximum frequency
at which timing was met by the implementation
flow, achieved by gradually increasing the clock
frequency constraint. The frequency higher bound
is 333 MHz, that is the maximum supported fre-
quency for the AXI adapter (330 MHz in practice,
due to the clock generation logic limited precision).

2It is virtually impossible to accurately report only the resource usage
of our caches, because our caches are not separate RTL modules which
interface with the kernel to be accelerated, but they are synthesized together
with the kernel, and are not separable from the kernel logic. To get a rough
approximation of the cache resource overhead, we can only subtract the
resource usage of the kernel without any cache (later referred as Baseline)
from that of the kernel with our caches. In case of multiple ports, even
this approximation cannot be applied, since the loop unrolling enabled by
the cache increases both the resource usage and the performance of the
application itself.

FIGURE 9. Block design with three DRAM arrays.

• Runtime measurements
– Performance (tex): execution time, measured

between the assertions of the start and the end
signals of the kernel.

– Power (P): average power, measured by the sensor
on the system power rail during kernel execution.
Note that the selected board does not allow measur-
ing the power of the FPGA only, therefore P is the
power consumed by the whole board, including the
CPU.

The measured quantities are not fully deterministic. The
timer measuring tex may not be stopped at the exact time
when the kernel asserts its end signal, since it checks
this condition through polling and the CPU might be
busy running other tasks of the operating system. Also,
power consumption is affected by different factors, such
as the CPU load or the temperature. Thus, each runtime
measurement was taken five times and is collected as
the average and the standard deviation of these measure-
ments. The energy consumption (E) is computed as the
average energy, E := P tex.

To limit the design space, in all the cache configurations we
used a default L2 cache request-response latency. For single-
level RO configurations, we computed the default distance
value as 7CCs, according to (1), where the latcache was set
to the worst-case, i.e., 5 CCs, latDRAM was set to 40CCs
according to the measurements by Marjanovic [22] of the
read latency of the high-performance coherent (HPC) ports of
the target board, and hit ratio was assumed to be 95% (these
values were only used to set the cache parameters, while the
runtime results reflect the real latencies and hit ratios). The
experiments show that these approximations achieve good
pipeline performance. A significant performance degradation
is observed only if one assumes very low (1CC), or very high
(more than latDRAM) distance values. We used a default
distance of 3CCs for multi-level, and 2CCs for RW cache
configurations. Write-only cache configurations are unaf-
fected by the distance parameter.

In order to compare directly the cycle count performance
of the various designs, we constrained the clock frequency to
100MHz in all experiments, except for those that are related
to the timing impact of the cache (Sections VI-B2, VI-C1
and VI-D2).

We manually chose the cache parameters, such as the line
size, number of lines, and so on, based on the array access
patterns. However, there aremultiplemethods to automate the
selection of these parameters, as attested by a large amount

VOLUME 10, 2022 118867

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

of past work, for example those analyzed by Upadhyay
et al. [23]. Integration of those approaches with our cache is
left to future work.

A. REFERENCE DESIGNS
We compared the collected results with:

1) Baseline: the kernel generated by default by the HLS
tool, whose computational core directly accesses the
external DRAM through the AXI interface.

2) RTLCache: the Baseline HLS kernel, with the Xilinx
System Cache RTL module inserted in between the
HLS kernel and the AXI DRAM interface (when the
cache module configurability allows a setup with non-
zero hit ratios).

3) Manual: the kernel manually optimized for buffering
the data using the on-chipmemories (when thememory
access patterns allow it).

1) Ma et al. [10] CACHE REFERENCE
Ma et al. [10] reported results collected from unreliable
sources. They collected the area figures from post-HLS-
synthesis reports, which are estimations known to be affected
by significant errors. Moreover, they estimated performance
and power data using RTL simulation, which is based on
simplified models (especially for the AXI model, the DRAM
controller, and the DRAM itself), which are crucial in this
context. Additionally, due to the long execution time of the
RTL simulations, their input sizes were limited to small
values.

Nevertheless, since their code is open source, we tried
to generate results comparable to ours by applying our
implementation flow to their cache. We first adapted their
cache, (designed for Vivado HLS) to Vitis HLS. The changes
involved only their APIs, not the HW. However, using Vitis
HLS for the kernels embedding their cache generates very
poorly performing HW, e.g., the matrix multiplication inner-
most loop achieved II = 141CC instead of 1CC in their
tests using Vivado HLS, and the bitonic sorting loop was not
pipelined at all inVitis HLS. Therefore, we stopped the imple-
mentation flow at the HLS synthesis step, since their cache
would perform even worse than the Baseline that achieves
better pipelining, and we avoided any further comparison.

2) INTEL CACHE REFERENCE
To evaluate the caching capabilities of the Intel LSUs [24],
we used the Intel DevCloud environment, which provides
the Intel HLS tool and enables remote access to an Intel
programmable acceleration card hosting an Arria 10 GX
FPGA. The tool automatically allocates an LSU for each off-
chip array, and each RO LSU can include a cache. The cache
characteristics (number of words per line, number of sets,
number of ways, . . .) are determined automatically and are
not reported to the user, who can optionally control only the
total cache size.

Algorithm 2 Standard Matrix Multiplication

Require: A ∈ RN×M ,B ∈ RM×P,C ∈ RN×P

Ensure: C = A× B
procedure StdMatMult(A,B,C)

LOOP_I: for (i← 0; i < N ; i← i+ 1) do
for (j← 0; j < P; j← j+ 1) do

acc← 0
LOOP_K: for (k ← 0; k < M; k ← k + 1) do

acc← acc+ A[i][k] · B[k][j]
end for
C[i][j]← acc

end for
end for

end procedure

We analyzed the PPA impact of the LSUs by running
some experiments using a standard matrix multiplication
(Algorithm 2). The tested configurations include (a) the auto-
matic test case, in which we did not set the cache sizes, (b) the
lower-bound test case, in which we set all the cache sizes
to 0, and (c) the upper-bound test case, in which we set the
caches to fit the whole matrices. Compared with the lower-
bound test case, the automatic case is 8% faster and the
upper-bound is 80% faster. The automatic cache parameters
selection is therefore suboptimal. Most probably because one
matrix is accessed by columns, hence with limited locality.
Moreover, the performance advantages are quite limited even
in the upper-bound case, when the matrices are entirely stored
to cache. This is because the Intel Arria 10 has a low off-
chip memory latency, from 3 CCs to 23 CCs [25]. We did not
have access to an Intel FPGA with a higher off-chip memory
latency, which would make the cache impact more signifi-
cant. Thus, the low-latency of off-chip memory coupled with
the limited control over the LSU cache parameters prevented
us from performing a more thorough comparison with our
cache.

B. MATRIX MULTIPLICATION
The Matrix Multiplication (MatMult) standard implementa-
tion (StdMatMult) is shown in Algorithm 2. It accesses each
matrix according to a specific pattern:
• A is accessed by rows, and each row is accessed P times,
for a total of N × M × P memory accesses. Its cache
should fit a matrix row at a time.

• B is accessed by columns, and each column is accessed
P times, for a total of N × M × P memory accesses.
Since the matrix is stored in row-major order, the spatial
locality is very poor. To get a non-zero hit ratio, we need
either an expensive M -way fully associative cache, or a
more efficientM -set direct-mapped cache exploiting the
swapped address bit mapping (Fig. 2b).
With an M -set direct-mapped cache, the standard
address bit mapping (Fig. 10a) results in subsequent
accesses to the same set with new tags leading to

118868 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 10. MatMult : sequence of addresses of B accessed during the
first 8 iterations, where B ∈ R4×8 has a 4-set direct-mapped cache.

Algorithm 3 Block Matrix Multiplication
Require: A ∈ RN×M ,B ∈ RM×P,C ∈ RN×P,BLK ∈ N
Ensure: C = A× B
procedure BlkMatMult(A,B,C)

for (jj← 0; jj < P; jj← jj+ BLK) do
for (kk ← 0; kk < M; kk ← kk + BLK) do

LOOP_I: for (i← 0; i < N ; i← i+ 1) do
for (j← jj; j < jj+ BLK ; j← j+ 1) do

acc← 0
LOOP_K: for (k ← kk; k < kk + BLK ; k ← k + 1) do

acc← acc+ A[i][k] · B[k][j]
end for
C[i][j]← C[i][j]+ acc

end for
end for

end for
end for

end procedure

continuous cache line overwriting and misses. Our cus-
tom address bit mapping (Fig. 10b) enables instead sub-
sequent reads to access distinct sets with the same tag
and yields a high hit ratio.

• C is accessed sequentially, once. A single-line n-word
cache provides n−1 hits every n accesses, making write
burst inference easier.

The StdMatMult algorithm requires the B cache to have
M lines. While this is feasible with relatively small matrices,
it cannot scale up with matrix sizes.

To make the cache configuration independent of M , and
ensure scalability, we also implemented a blocked matrix
multiplication (BlkMatMult) algorithm (Algorithm 3). It is
a commonly used efficient implementation of MatMult,
which accesses all matrices by blocks, instead of columns,
to improve the spatial locality of accesses to the B matrix:

• A is accessed by sub-rows, within a block. Each sub-row,
of BLK elements, is accessed BLK times. Therefore, the
A cache should fit a block row at a time.

• B is accessed by sub-columns, within blocks. Each block
is accessed N times, therefore its cache should fit one
block at a time.

• C has the same access pattern as A, but its cache requires
up to BLK ways to provide non-zero hit ratio when
the partial unrolling (discussed later) is applied to the
innermost loop.

FIGURE 11. MatMult : content of L1 caches of A during the first iterations,
where A ∈ R4×8 is associated with a four-port single-line cache with eight
words. PTn identifies the n-th port. The green boxes represent elements
that read during execution, red boxes are elements loaded in cache but
never accessed. The numbers inside the boxes are the addresses of the
elements of the A matrix. ITi highlight the elements accessed in parallel
at the i -th iteration.

In all implementations, the algorithm innermost loop
(LOOP_K) was pipelined with II = 1. The implementation
was further optimized through loop unrolling by a factorUF .

For StdMatMult, we considered two kinds of unrolling:

• Horizontal: unrolls the innermost loop (LOOP_K).
To keep II = 1 for LOOP_K, each iteration of the
unrolled loop is assigned to one of theUF A and B cache
ports.
Figure 11a highlights a fundamental limitation of this
unrolling approach when combined with multi-port
caches. The data is replicated in each cache, but only
one every UF elements is actually used, thus leading to
significant resource and performance waste.

• Tiled : divides the LOOP_I iteration count by UF and
adds a fully unrolled inner loop [26]. All iterations of
that new loop use the same element of B and a different
one of A. Therefore, the B cache is single-port, while
the A cache has UF ports. With this approach, each
A port contains different data (Fig. 11b). The hit ratio
is preserved as the unrolling factor scales up and no
resources are wasted. All the elements loaded into the
cache are actually used, allowing the algorithm to run at
full speed for as many iterations as the words per cache
line, significantly improving the performance with the
same resource usage as Horizontal.

In BlkMatMult we exploited the Tiled unrolling only, for
similar reasons to Tiled StdMatMult. To maximize the perfor-
mance, we doubled UF until we used all the resources of our
(small) FPGA.

All theMatMult tests use the same matrix sizes, N = P =
1024, M = 128, and data type of 32-bit integers.

Table 1 shows the cache configurations tested with Std-
MatMult, while Table 2 summarizes the BlkMatMult ones.
We tested block sizes of 16, 32, and 64.

As a reference, we implemented the Baseline test case. The
unrolling, applied to the Baseline test case, would be detri-
mental, since the II of LOOP_K would dramatically increase
due to structural dependencies on the AXI interface (which
exposes one port only), resulting in performance degradation.
Therefore, our cache enabled us to conveniently unroll the
algorithm loop, without any change to the algorithm itself.

VOLUME 10, 2022 118869

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

TABLE 1. StdMatMult : tested cache configurations.

TABLE 2. BlkMatMult : tested cache configurations.

FIGURE 12. MatMult : tested dataflow architectures.

The Manual test case optimizes the design according to
the LCS pattern. All the off-chip memory accesses use the
maximum AXI interface bitwidth of the board (128 bits,
or four 32-bit elements per transaction). The B load task reads
the B matrix once, four columns at a time. The A load task
reads the A matrix multiple times, in bursts. The compute
task computes 16 multiply-acccumulate (MAC) operations
per CC. The store task stores four elements of C at a time.

Figure 12 compares the dataflow architecture generated
with our caches with the LCS one. The similarity between
the two architectures is very strong: the only major difference
is the absence of the request FIFO from the compute to the
load tasks, in case of the LCS architecture. This is because
the input data address computation must be factored out of
the compute task and moved into the load and store tasks to

FIGURE 13. MatMult : performance gain (tex relative to Baseline) with
respect to area cost (average of LUTs, FFs, BRAMs, and DSPs usage
relative to Baseline). StdMatMult Single-level is labelled L2:WORDS,
Horizontal is L1:WORDS, and Tiled is L1tld:WORDS (WORDS are the
number of words per line of B and C caches). BlkMatMult Single-level is
labelled L2blk:BLK, and Multi-level is L1blk:BLK (BLK are the block
sizes). The numbers over the markers are the unrolling factors.

implement the LCS paradigm. This refactoring is the major
design cost that our cache alleviates.

For the RTLcache, due to the limited configuration options
of the Xilinx System Cache (it provides only two or four
ways, and it does not support our custom address bit map-
ping), the best performing configuration in that case is the
BlkMatMult algorithm, with block size equal to four.

The cache configurations selected for the test cases
reach high hit ratios, above 96% for StdMatMult and
99% for BlkMatMult. Figure 13 shows the performance
gain, i.e., tex,Baseline/tex, with respect to the area cost, i.e.,
(LUT/LUTBaseline+FF/FFBaseline+BRAM/BRAMBaseline+

DSP/DSPBaseline)/4, of the test cases embedding our caches.
Most of the points are in the ‘‘green’’ area, where tex speedup
is larger than the resource overhead.

Figure 14 shows the detailed data for some significant test
cases, including (a) the reference test cases, i.e., Baseline and
Manual, (b) the least resource-demanding cache configura-
tion with the StdMatMult algorithm, i.e., L2:32, (c) the most
convenient cache configuration in terms of performance gain
and area cost ratio, i.e., L1blk:32 (8 ports), and (d) the fastest
cache configuration, i.e., L1blk:32 (16 ports). Compared with
the test cases with caches, theManual design provides better
overall quality of results. However, the aim of our work is not
to achieve better PPA than manual optimizations, but rather
to get significantly better quality of results (with respect to
the Baseline), while greatly reducing the design effort.

Note that increasing the number of ports of the caches,
and hence their resources, uniformly increases performance.
Figure 15 shows the results of using regression to predict
the resource usage to achieve a given execution time with
our cache. According to this model, to achieve performance
on par with the Manual reference design, our caches would

118870 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 14. MatMult : PPA of some significant test cases. tex and E are relative to the Baseline. The resource usages are relative to the
total resources provided by the target FPGA.

FIGURE 15. BlkMatMult : regression estimating the resource usage with
respect to the execution time of the test cases with our caches. The
dashed vertical line highlights the execution time of the Manual test
case. The dots are the real data, the lines are the regression predictions.

require 4 times the available BRAMs, while the other kinds
of resources would be sufficient.

1) MATRIX MULTIPLICATION RTL CACHE TEST CASE
The Xilinx System Cache supports only two or four ways.
Therefore, the theoretically most performant setup is with
BlkMatMult with block size four (which is still too small to
provide large performance gains). The caches associated with
A andC should be single-line, while the cache associatedwith
B should provide four ways, each of four words. However,
the Xilinx System Cache minimum size is 32 kB, with at
least two ways and 64B per line, therefore the caches of
the RTLcache test case are dramatically oversized. On the
contrary, the test case with our cache (L2blk:4), thanks to its
fine-grained configurability, was set up to allocate only the
resources that are actually needed. Figure 16 summarizes the
results of these tests. For reference, besides the usualBaseline
(Std) test case, that implements an unoptimized version of
StdMatMult algorithm, we also included the Baseline (Blk)
test case, which implements the unoptimized BlkMatMult
algorithm with block size four. We included it to quantify the
impact of the Xilinx System Cache on the very same kernel,
directly connected to the AXI interface.

Both the Baseline (Blk) and the RTLcache designs are
significantly slower than the Baseline (Std). For the Baseline

FIGURE 16. MatMult : PPA of some test cases related to the RTLcache
case. tex and E are relative to the Baseline (Blk).

(Blk), this is because the BlkMatMult is not meant for running
without a cache. For the RTLcache, this is because the RTL
cache module is inserted a posteriori (after HLS), thus the
kernel is synthesized assuming that all the memory references
access the off-chip memory. Therefore, it is scheduled to
wait for the expected latency of the AXI master controller
that is used to access DRAM, which has a minimum latency,
hardcoded into the HLS scheduler, of at least 7CCs. Thus
for cache hits it waits for much longer than needed, while for
misses it waits for shorter than needed (the cache introduces
an additional latencywhenmissing), and then it stalls until the
memory request is fulfilled. On the other hand, our dataflow
protocol hides from the computation process schedule the fact
that it is accessing DRAM, thus allowing it to achieve the best
throughput in case of cache hits.

The result is that the RTL cache is not only unable to
provide any advantage, but it also slightly worsens the per-
formance and the energy consumption. Moreover, it also
introduces a large area overhead, due to the oversized caches.

The L2blk:4 test case is significantly faster than the Base-
line (Blk), proving the effectiveness of our HLS cache imple-
mentation with respect to the System Cache. However, it is
not much faster than the Baseline (Std), since the small block
size limits the performance advantage.

VOLUME 10, 2022 118871

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

TABLE 3. MatMult : maximum achievable clock frequency of some test
cases. The relative maximum clock frequency is normalized over the
maximum clock frequency of the AXI adapter (330 MHz).

2) MATRIX MULTIPLICATION TIMING ANALYSIS
To evaluate the impact of our cache on the critical path,
we measured the maximum clock frequency of some test
cases. Table 3 reports the results of the experiments. The
Baseline design is very simple: it consists of a loop that com-
putes a multiply-acccumulate operation per iteration using a
DSP (which is one of the fastest resources on the FPGA).
Therefore, it is able to achieve the maximum clock frequency
of 330MHz. With the StdMatMult, all the instantiated caches
are direct-mapped (including the B one, thanks to our custom
address bit mapping). The resulting design can still run at
330 MHz, even in the Multi-level configuration. The Blk-
MatMult test cases require 32-way fully-associative caches.
The high number of ways makes these caches inherently
more complex than the direct-mapped ones, therefore they
introduce a critical path which limits the maximum clock
frequency. The Single-level configuration can run at a clock
frequency up to 260MHz. For theMulti-level configurations,
the single-port test case can reach a clock frequency of
250MHz. The extreme case with 16 ports can only reach a
maximum clock frequency of 150MHz. This is not only due
to the more complex cache architecture, but also because of
the algorithm unrolling, and the high resource utilization.

3) MATRIX MULTIPLICATION REQUEST-RESPONSE
DISTANCE
To check the efficiency of the approximations for the default
L2 cache request-response distance of RO cache configura-
tions, we characterized the tex with respect to the distance in
some test cases. For the Single-level configurations, Fig. 17a
shows that in all test cases a distance of 1CC results in a
very high tex since it prevents exploiting the cache pipelining,
as discussed in Section III-A1. The tex significantly decreases
with the distance up to 5 CCs to 7 CCs. For higher distances,
the tex of the StdMatMult test cases is approximately constant,
while the one for BlkMatMult increases again. These results
suggest that our choice of a default distance of 7CCs is
effective.

For the Multi-level configurations, Fig. 17b shows that
the tex of StdMatMult is roughly constant with the distance,
apart from the distance of 1CC which is slightly slower. The
BlkMatMult tex is instead directly proportional (by a small
factor) to the distance. Any distance value between 1 3CCs

FIGURE 17. MatMult : execution time with respect to L2 cache
request-response distance.

should be a balanced choice. Our default value of 3CCs is
therefore well suited.

Algorithm 4 2D Convolution
Require: A ∈ RN×M , ker ∈ RP×Q
Ensure: B ∈ RN×M : B = A ∗ ker

procedure Conv(ker,A,B)
for (i← 0; i < N ; i← i+ 1) do

for (j← 0; j < M; j← j+ 1) do
tmp← 0
LOOP_M: for (m← 0;m < P;m← m+ 1) do

LOOP_N: for (n← 0; n < Q; n← n+ 1) do
ii← i+ m−Q/2
jj← j+ n−P/2
if (ii ≥ 0 & ii < N & jj ≥ 0 & jj < M) then

tmp← tmp+ A[ii][jj] · ker[m][n]
end if

end for
end for
B[i][j]← tmp

end for
end for

end procedure

C. 2D CONVOLUTION
Algorithm 4 implements the 2DConvolution (Conv2D). Each
matrix is characterized by a specific memory access pattern.

• A is accessed according to a window pattern with size
P× Q and stride one.
A cache associated with A requires P ways to achieve a
high hit ratio, since all the lines belonging to a window
can be stored in the cache, effectively implementing a
line buffer without source code changes.
Cache lines sizes of n×Q enable prefetching nwindows.
To keep in cache windows which are not aligned to the
cache line size, the cache should have two sets.

• ker is accessed N × M times, by rows. Since its size
is typically small, its cache can be configured to fit the
whole ker in the L1 cache.

• B is sequentially accessed once per element. B has a low
impact on performance, since it is accessed only once

118872 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

TABLE 4. Conv2D: tested cache configurations.

every P × Q accesses to A and ker . A single-line cache
helps HLS to efficiently infer bursts.

All test cases use the same 8-bit integer data type and matrix
sizes: N = 1080, M = 1920, P = Q = 15. In all imple-
mentations, the innermost loop (LOOP_N) was pipelined with
II = 1CC.
In the tests including our cache, eachmatrix was associated

with a cache configured according to the previous consider-
ations. Table 4 summarizes the tested cache configurations,
where n is 1, 2, 4, 8, and 16. Since our cache only supports
power-of-2 words, ways, and sets, all the parameters were
rounded to the next power of 2.

With the multi-level test cases, we further improved the
performance exploiting the multi-port feature to enable par-
tial loop unrolling while keeping the II of LOOP_K at
one (by setting the number of ports of A and ker as the
unrolling factor). We unrolled LOOP_M, instead of the inner-
most LOOP_N, for reasons similar to those explained in
Section VI-B, and shown in Fig. 11. We tested unrolling
factors of 3, 5, 8, and 15 (complete unroll).

The Manual reference design was implemented by Xilinx
Inc. [27], according to the LCS pattern. It is not possible to
implement a meaningful RTLcache test case, since the Xilinx
System Cache can only provide up to 4 ways, but the A cache
requires at least 15 ways to achieve a sufficiently high hit
ratio.

All tested cache configurations had hit ratios higher than
99%. Figure 18 shows the trade-offs between performance
and area, in different test cases. Figure 19 shows the details of
some relevant test cases, including (a) the reference designs,
i.e., Baseline and Manual, (b) the least resource-demanding
cache configuration, i.e., L2:16, (c) a cache configuration
balanced between performance and resources, i.e., L1:64 (5
ports), and (d) the fastest cache configuration, i.e., L1:64, (15
ports).

Our caches introduce multiple trade-offs in the PPA space,
which perform better than the Baseline case, in exchange
for higher resource usage. The Manual design is signifi-
cantly faster than all the tested cache configurations, since
it is able to process a whole window per CC (255 multiply-
acccumulate operations per CC), while our cache config-
urations process at most one window column per CC (15
multiply-acccumulate operations). Figure 20 again shows the
results of using regression to predict the resource usage to

FIGURE 18. Conv2D: performance gain with respect to area cost.
Single-level Cache is labelled as L2:WORDS, and Multi-level as
L1:WORDS. The WORDS suffix stands for the number of words per line of
the A cache.

TABLE 5. Conv2D: maximum achievable clock frequency of some test
cases.

achieve a given execution time with our cache. According
to the regression prediction, to achieve performance on par
with the Manual reference design, our caches would require
roughly 50% more LUTs than those available on the target
FPGA, while the other kinds of resources should suffice.

Note that the objective of our cache is not to compete
with manually optimized designs, but rather to introduce
new trade-offs between PPA and design effort. Our caches
provided suboptimal results in terms of PPA, but required
very low design effort, while being much more efficient than
the designs automatically generated by the HLS tool, both
in terms of execution time, reduced by up to 46 times, and
in terms of energy consumption, reduced by up to 44 times,
at the cost of an area overhead up to 12 times.

1) 2D CONVOLUTION TIMING ANALYSIS
Table 5 reports the maximum clock frequency achieved by
some test cases. Similarly to the MatMult case, the Baseline
design is very simple: it consists of a loop that computes
multiply-acccumulate operation per iteration using a DSP.
Therefore, it can run at the higher-bound clock frequency of
330 MHz. Even the single-port test cases (L2:16 and L1:16
(1 p)), despite being characterized by a large amount of cache
ways (16), do not introduce any critical path limiting the
frequency below the 100%. Only with the multi-port test
case (L1:64 (15 p)), which also involves an application loop

VOLUME 10, 2022 118873

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 19. Conv2D: PPA of some significant test cases.

FIGURE 20. Conv2D: regression of resource usage with respect to the
execution time of the test cases with our caches.

FIGURE 21. BitSort : performance gain with respect to area cost.
Single-level Cache is labelled as L2:WORDS, and Multi-level as
L1:WORDS. The WORDS suffix stands for the number of words per line of
the a cache.

unrolling by a factor of 15, we face a frequency degradation
of 39%.

D. BITONIC SORTING
Bitonic sorting (BitSort) is a sorting algorithm, whose imple-
mentation is shown in Algorithm 5. From the memory
access point of view, at each inner loop (LOOP_I) iteration:

Algorithm 5 Bitonic Sorting

Require: a ∈ RN
: N = 2n

Ensure: a[i] ≤ a[j],∀i ≥ j
procedure Sort(a)

for (b← 1; b < n; b← b+ 1) do
for (s← b− 1; s ≥ 0; s← s− 1) do

LOOP_I: for (i← 0; i < N/2; i← i+ 1) do
dir ← (i/2b−1)&1
dir ← dir ∧ 1
step← 2s

pos← 2 i− (i&(s− 1))
a0← a[pos]
a1← a[pos+ step]
if (a0 > a1 6= dir) then

tmp← a0
a0← a1
a1← tmp

end if
a[pos]← a0
a[pos+ step]← a1

end for
end for

end for
end procedure

(1) a[pos] is read, (2) a[pos + step] is read, (3) a[pos] is
written, and (4) a[pos+ step] is written. Therefore, the cache
associated with the a array should be set-associative with at
least two sets, so that the interleaved accesses to pos and
pos+ step do not overwrite the related cache lines.

In the designs under test, the inner loop was pipelined,
but due to the data dependencies on the a array the pipeline
performance is limited. The pipeline of the Baseline test case
(accessing a directly from DRAM) requires a very high II =
142CCs because it must guarantee the dependency on the
slow AXI interface. Our cache allows shortening the depen-
dency distance and building a more performant pipeline, with
an II = 6CCs. All the tests use the same data type (32-bit

118874 VOLUME 10, 2022

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

FIGURE 22. BitSort : PPA of some significant test cases.

TABLE 6. BitSort : tested cache configurations.

integers) and sizes (N = 220). Table 6 shows the tested cache
configurations.

We were unable to implement a Manual design for an
optimized reference, since the irregular access pattern, makes
the on-chip data buffering challenging, especially considering
that the array is accessed both in read and in write mode,
introducing data dependencies. We believe that caching is the
most convenient solution for optimizing this algorithm.

The RTLcache test case inserts the Xilinx System cache
between the HLS kernel and the AXI interface. We set
the total cache size to 32 kB (the minimum possible), with
2 ways, 64 words per line, and, by consequence, 128 sets.

The selected cache configurations achieve high L2 hit
ratios, above 96%. The L1 hit ratios are instead very low,
from 8% to 24%, since our L1 caches use the write-through
consistency policy.

Figure 21 plots the performance gain with respect to the
area overhead of each test case with our cache. All the test
cases provide significantly more performance gains than area
cost. The L1 caches introduce a very limited performance
advantage, because of their low hit ratio.

Figure 22 reports the full information on (a) the reference
designs (Baseline and RTLcache), (b) the least resource-
demanding cache configuration, i.e., L2:16, (c) the best cache
configuration in terms of performance gain and area cost
ratio, i.e., L2:32, and (d) the fastest cache configuration, i.e.,
L1:64.

The RTLcache is worse than the Baseline in all dimen-
sions in the PPA space. This is because the cache module
is inserted after HLS, therefore HLS optimizes the circuit as
if all memory accesses were off-chip. In particular, the loop

FIGURE 23. BitSort : execution time with respect to L2 cache
request-response distance.

pipeline is still characterized by a very high II. This is another
example showing that it is counterproductive to insert a RTL
cache module a posteriori, after HLS. It is only introducing
overhead, not only in terms of area, but also in terms of tex
and power.

On the other hand, our cache improves the performance
and the energy consumption by one order of magnitude com-
pared to the Baseline. The RTLcache, despite having 128 sets
instead of 1, consumes significantly less LUTs and FFs than
our cache. It could be useful to combine the advantages of
the source-level implementation with the resource efficiency
of the RTL description to achieve the best performance at the
lowest area cost. This could be achieved by exploiting the
Vitis HLS capabilities to embed RTL code within HLS source
code.

1) BITONIC SORTING REQUEST-RESPONSE DISTANCE
To evaluate the performance of the default L2 request-
response distance for read-write (RW) cache configurations
(2 CCs), we characterized the tex with respect to distance in a
couple of test cases. As Fig. 23 shows, we chose the optimal
value that balances the L2 cache pipeline exploitation (higher
distance values better exploit it) and the algorithm loop II (the
distance corresponds to the RAW dependency distance, and,

VOLUME 10, 2022 118875

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

TABLE 7. BitSort : maximum achievable clock frequency of some test
cases. The relative maximum clock frequency is normalized over the
maximum clock frequency of the AXI adapter.

FIGURE 24. Speedup of the tested benchmarks.

by consequence, to the II). The data points of the multi-level
configuration approximately overlap the single-level ones,
because the L1 hit ratio is low. In a test case with high L1 hit
ratio, the optimal distance value would probably be in 1CC,
since it would not need to exploit the L2 cache, and it could
minimize the loop II.

2) BITONIC SORTING TIMING ANALYSIS
The maximum achieved clock frequencies for some test
cases are shown in Table 7. Unlike the previous experiments,
we encounter a slight maximum frequency degradation even
with single-port cache configurations. This is due to the
additional logic required for supporting both read and write
operation within a single cache, differently from the read-
only and write-only caches ofMatMult and Conv2D.

VII. CONCLUSION
The experimental results, summarized in Fig. 24 show that
our approach of semi-automatically generating a LCS-like
architecture through dataflow caches is an effective solution
for significantly improving performance and energy con-
sumption, without requiring high design effort. Designers
simply need to perform a design space exploration (DSE)
of the cache configurations instead of extensively changing
the algorithm for buffering data on-chip. Additionally, for
algorithms with irregular or data-dependent memory access
patterns, caching would be the only way to actually improve
memory access performance.

To achieve performance comparable with the manually
optimized designs ofMatMult and Conv2D, our cache would
require more resources than the ones provided by the small
FPGA used in the tests. For BitSort, caching was the only fea-
sible performance optimizationwe found, due to the irregular,

but with good data locality, memory access pattern. Adding a
RTL cache module post-HLS fails to provide any advantage,
since the HLS-generated circuit is optimized for high-latency
memory accesses, and cannot achieve any acceleration from
an external cache.

It is worth noting that we collected the results from an
embedded device, which provides a DDR4 memory. Modern
datacenter-level devices are equipped with HBMs. HBMs,
compared with DDR4 memories, are characterized by the
availability of many more ports, thus dramatically increasing
bandwidth, while paying a price in terms of access latency
(roughly 2 times larger, as benchmarked by Wang et al. [4]).
Thanks to these characteristics, a cache potentially provides
even greater advantages than experienced with our setup,
since caches are precisely designed for mitigating the perfor-
mance penalties of high-latency memories. Moreover, irreg-
ular memory access patterns require word-sized accesses,
since the HLS tool is unable to optimize the accesses through
bursting and interface widening, underutilizing the high-
bandwidthmemory (HBM) ports bitwidth. On the other hand,
caches always access the DRAM in lines, thus enabling the
interface optimizations, resulting in better exploitation of the
large interface bitwidth of HBM. We leave the evaluation of
our caches on HBM-equipped HW, to quantitatively support
these considerations, as future work.

We plan to automate the design space exploration for
optimal cache parameter selection, by extending one of the
state-of-the-art cache parameter optimization methods [23] to
support the configuration space of our cache architecture for
some additional dimensions with respect to standard caches,
such as the request-response distance, the number of ports,
and the address bit mapping.

To further improve performance, we are considering to
implement a prefetching mechanism to anticipate the mem-
ory requests by loading data in advance, before they are
needed by the computation, thus fully emulating the LCS
pattern.

REFERENCES
[1] S. Borkar and A. A. Chien, ‘‘The future of microprocessors,’’

Commun. ACM, vol. 54, no. 5, pp. 67–77, May 2011, doi:
10.1145/1941487.1941507.

[2] N. S. Kim, D. Chen, J. Xiong, and W.-M. W. Hwu, ‘‘Heterogeneous
computing meets near-memory acceleration and high-level synthesis in the
post-moore era,’’ IEEE Micro, vol. 37, no. 4, pp. 10–18, Aug. 2017.

[3] J. S. Vetter, E. P. DeBenedictis, and T. M. Conte, ‘‘Architectures for the
post-Moore era,’’ IEEE Micro, vol. 37, no. 4, pp. 6–8, Aug. 2017.

[4] Z. Wang, H. Huang, J. Zhang, and G. Alonso, ‘‘Shuhai: Benchmarking
high bandwidth memory on FPGAS,’’ in Proc. IEEE 28th Annu. Int. Symp.
Field-Program. CustomComput. Mach. (FCCM), May 2020, pp. 111–119.

[5] Xilinx. Vitis High-Level Synthesis User Guide. Accessed: Dec. 2021.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2021_2/ug1399-vitis-hls.pdf

[6] J. Cong, P. Zhang, and Y. Zou, ‘‘Optimizing memory hierarchy alloca-
tion with loop transformations for high-level synthesis,’’ in Proc. 49th
Annu. Design Autom. Conf. (DAC), San Francisco, CA, USA, 2012,
pp. 1233–1238, doi: 10.1145/2228360.2228586.

[7] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, ‘‘Polyhedral-
based data reuse optimization for configurable computing,’’ in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA), New York,
NY, USA, 2013, pp. 29–38, doi: 10.1145/2435264.2435273.

118876 VOLUME 10, 2022

http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1145/2228360.2228586
http://dx.doi.org/10.1145/2435264.2435273

G. Brignone et al.: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs

[8] J. Choi, S. D. Brown, and J. H. Anderson, ‘‘From pthreads to multicore
hardware systems in LegUp high-level synthesis for FPGAs,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2867–2880,
Oct. 2017.

[9] J. de Fine Licht and T. Hoefler, ‘‘hlslib: Software engineering for hardware
design,’’ 2019, arXiv:1910.04436.

[10] L. Ma, L. Lavagno, M. T. Lazarescu, and A. Arif, ‘‘Accelera-
tion by inline cache for memory-intensive algorithms on FPGA
via high-level synthesis,’’ IEEE Access, vol. 5, pp. 18953–18974,
2017.

[11] E. Matthews, N. C. Doyle, and L. Shannon, ‘‘Design space explo-
ration of l1 data caches for FPGA-based multiprocessor systems,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, New
York, NY, USA, Feb. 2015, pp. 156–159, doi: 10.1145/2684746.
2689083.

[12] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski,
‘‘Impact of cache architecture and interface on performance and area
of FPGA-based processor/parallel-accelerator systems,’’ in Proc. IEEE
20th Int. Symp. Field-Program. Custom Comput. Mach., Apr. 2012,
pp. 17–24.

[13] G. Jo, H. Kim, J. Lee, and J. Lee, ‘‘SOFF: An OpenCL high-level syn-
thesis framework for FPGAs,’’ in Proc. ACM/IEEE 47th Annu. Int. Symp.
Comput. Archit. (ISCA), May 2020, pp. 295–308.

[14] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer, ‘‘Leap
scratchpads: Automaticmemory and cachemanagement for reconfigurable
logic,’’ in Proc. 19th ACM/SIGDA Int. Symp. Field Program. Gate Arrays,
New York, NY, USA, 2011, pp. 25–28.

[15] F. Winterstein, K. Fleming, H.-J. Yang, J. Wickerson, and G. Constan-
tinides, ‘‘Custom-sized caches in application-specific memory hierar-
chies,’’ in Proc. Int. Conf. Field Program. Technol. (FPT), Dec. 2015,
pp. 144–151.

[16] Xilinx. System Cache LogiCORE IP Product Guide (PG118)). Accessed:
Dec. 2021. [Online]. Available: https://docs.xilinx.com/r/en-U.S./pg118-
system-cache

[17] Intel. Intel High Level Synthesis Compiler Pro Edition Reference Manual.
Accessed: Dec. 2021. [Online]. Available: https://www.intel.com/content/
www/us/en/docs/programmable/683349/21-4/pro-edition-reference-
manual.html

[18] Y. Chi, L. Guo, Y.-K. Choi, J. Wang, and J. Cong, ‘‘Extending high-level
synthesis for task-parallel programs,’’ in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2021, pp. 204–213.

[19] Xilinx. Vivado Design Suite User Guide. Accessed: Dec. 2021.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documentation/sw_manuals/xilinx2021_2/ug973-vivado-release-notes-
install-license.pdf

[20] Avnet. Ultra96 Hardware User’s Guide. Accessed: Mar. 2018.
[Online]. Available: https://www.avnet.com/opasdata/d120001/medias/
docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf

[21] Xilinx. (2021). PYNQ: Python Productivity for Xilinx Platforms. [Online].
Available: https://pynq.readthedocs.io/en/v2.7.0/

[22] J. Marjanovic. (Dec. 2021). Exploring the PS-PL Axi Interfaces
on ZYNQ Ultrascale+ Mpsoc. [Online]. Available: https://j-
marjanovic.io/exploring-the-ps-pl-axi-interfaces-on-zynq-ultrascale-
mpsoc.html

[23] B. R. Upadhyay and T. S. B. Sudarshan, ‘‘Design space exploration of
cache memory—A survey,’’ in Proc. Int. Conf. Elect., Electron., Optim.
Techn. (ICEEOT), Mar. 2016, pp. 2294–2297.

[24] Intel. Avalon Memory-Mapped Host Interfaces and Load-Store
Units. Accessed: Dec. 2021. [Online]. Available: https://www.intel.
com/content/www/us/en/docs/programmable/683349/22-2/memory-
mapped-host-interfaces-and-load.html

[25] Arria 10 EMIF Latency. [Online]. Available: https://www.intel.
com/content/www/us/en/docs/programmable/683841/17-0/emif-latency-
07619.html

[26] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, ‘‘Transformations
of high-level synthesis codes for high-performance computing,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, May 2021.

[27] Xilinx. (Dec. 2021). Design and Analysis of Hardware Kernel Module for
2-D Video Convolution Filter. [Online]. Available: https://xilinx.github.
io/Vitis-Tutorials/2021-1/build/html/docs/Hardware_
Acceleration/Design_Tutorials/01-convolution-
tutorial/lab2_conv_filter_kernel_design.html

GIOVANNI BRIGNONE (Graduate Student
Member, IEEE) received the M.S. degree in com-
puter engineering from the Politecnico di Torino,
Italy, in 2021, where he is currently pursuing the
Ph.D. degree with the Department of Electronics
and Telecommunications under the supervision of
Prof. L. Lavagno. His research interests include
high-level synthesis, digital hardware design, and
HW/SW co-design.

M. USMAN JAMAL (Graduate Student Member,
IEEE) received the M.S. degree from the Politec-
nico di Torino, Italy, in 2018, where he is currently
pursuing the Ph.D. degree with the Department
of Electronics and Telecommunications under the
supervision of Prof. L. Lavagno. His research
interests include high-level synthesis, low-power
high-performance computing, and machine learn-
ing for electronic design automation.

MIHAI T. LAZARESCU (Senior Member, IEEE)
received the Ph.D. degree in electronics and com-
munications engineering from the Politecnico di
Torino, Italy, in 1998. He is currently an Assistant
Professor with the Politecnico di Torino. He was a
Senior Engineer at Cadence Design Systems and
founded several startups. He has coauthored over
60 scientific publications, four books, and inter-
national patents. His research interests include
design tools for WSN/IoT platforms, ubiquitous

environmental sensing, efficient neural networks, indoor human localization,
edge and leaf IoT data processing, and high-level HW/SW co-design and
synthesis.

LUCIANO LAVAGNO (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing and computer science from the University of
California, Berkeley, in 1992. He was an Archi-
tect with the POLIS HW/SW co-design tool.
From 2003 to 2014, he was an Architect with
the Cadence Cto-Silicon high-level synthesis tool.
Since 1993, he has been a Professor with the
Politecnico di Torino, Italy. He has coauthored four
books and over 200 scientific papers. His research

interests include synthesis of asynchronous circuits, HW/SW co-design,
high-level synthesis, and design tools for wireless sensor networks.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

VOLUME 10, 2022 118877

http://dx.doi.org/10.1145/2684746.2689083
http://dx.doi.org/10.1145/2684746.2689083

