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Abstract—In this paper, an innovative Direct Digital Sensing
Potentiostat integrated circuit for enzymeless blood glucose
sensing and direct digitization is proposed to address the require-
ments of Body Dust. The circuit occupies a silicon area of 460µm2

in 180nm CMOS and operates down to 0.4 V power supply
voltage with 4.7 nW power consumption. The functionality of
the proposed circuit and its performance under typical conditions
and under process and temperature variations is tested by post-
layout simulations.

Index Terms—Body Dust, potentiostat, glucose sensing, Digital-
Based Amplifier (DB-Amp)

I. INTRODUCTION

The concept of Body Dust (BD) [1] envisions the integra-
tion of micrometer-scale sensors embedded in bio-compatible,
wirelessly powered CMOS integrated circuits (ICs), with a
size comparable to human blood cells ( < 100µm diameter),
small enough to ubiquitously circulate in tissues and blood
as swarms of particles and able to exchange data from within
the human body to the outside world for diagnosis and health-
monitoring purposes.

Turning BD into reality demands analog CMOS ICs with
micrometer-scale dimensions and nanowatt power [1], which
are hard to be designed by traditional techniques. In this
context, digital-based analog design, which has recently been
proposed to address the requirements of Internet of Things
(IoT) applications [3], [4], is more and more emerging as
a viable option to meet the area and power requirements of
BD applications. Even though quasi-digital potentiostats have
been proposed in [2], fully digital potentiostats have never
been presented so far. In this paper, a Direct Digital Sensing
Potentiostat (DDSP) for the enzymeless detection of species
in a physiological solution is presented, aiming to glucose
detection within the framework of the Body Dust research.

The paper is structured as follows: in Section II, a model
of the micrometer-scale electrode interface for the enzyme-
less glucose detection is devised, extrapolating electrode pa-
rameters from literature-derived measured characterizations.
In Section III, the DDSP electronic architecture is presented,
and its working principle is explained, focusing on its direct
digital acquisition capability. Section IV follows, in which the
performance of the DDSP is tested by post-layout simulations,
both under nominal conditions and in the presence of process
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Fig. 1. Direct Digital sensing Potentiostat.

and temperature variations, and compared with the state-of-
the-art. Some conclusions are finally drawn in Section V.

II. ELECTROCHEMICAL SENSOR

The Direct Digital Sensing Potentiostat (DDSP) performs
non-enzymatic glucose detection employing a potentiostat-
based current sensing topology, as in Fig.1, fixing the potential
of the solution at the reference (RE) electrode while measuring
the reduction or oxidation current flowing between the counter
(CE) and working (WE) electrodes. The chronoamperometric
(CA) method is considered from now on.

A. Sensor design and modeling

To electrically simulate the sensing architecture, a model of
the electrochemical interface is developed. A square WE with
platinum-nanospheres nanostructures as in [5] is considered,
having a sensitivity

S0 = 4µA/(mM · cm2) (1)

in enzymeless detection of glucose [6].
The WE geometry is chosen to be 45µm-side platinum

square as in Fig.2a, suitable to BD particles in the order
of 100µm lateral size. The sensitivity of the WE faradaic
current with respect to glucose concentration, denormalised
with respect to the electrode area is, from (1)

S =
4µA

cm2 ·mM
· (0.0045cm)2 = 0.081

nA

mM
. (2)
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Fig. 2. Considered electrodes geometry (a), WE and CE electrical CPE model
(b), high-level electrical model of the sensor (c), magnitude and phase of the
CPE impedance at the WE (d).

Taking into account the usual glucose physiological range
being in between 3mM and 8mM, a full-range current of
0.8nA (up to 10mM) is expected.

Along with the faradaic current, which is conveniently
modelled by a concentration-driven current generator (iF at the
WE) the Randles circuit model of each electrode is extracted
as in Fig.2c, including the solution resistance RS, a constant
phase element (CPE) and the charge transfer resistance RP.
Focusing of preliminary in vitro testing, the value of RS is
set considering the conductivity of a commercially available
0.01 M phosphate buffer saline (PBS) solution, being σPBS =
12 mS/cm.

A cubic volume of solution of 45µm side has been consid-
ered to estimate the solution resistance. The value of RS is
thus derived:

RS =

(
σPBS ·

A

d

)−1

' 18.5 kΩ (3)

where A = (45µm)2 and d = 45µm. The charge transfer
resistance RP and the CPE CP electrical models (highlighted
in dashed boxes in Fig.2c) for the WE and CE are extrapolated
from the magnitude and phase impedance characterization of
platinum electrodes reported in [7].

The reference magnitude and phase curves chosen to model
the WE (blue diamonds curve in Fig.2d) are fit with the
parallel RC model in Fig.2d, according to the algorithm
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Fig. 3. Proposed digital-based potentiostat schematic and digital acquisition
pulses.

presented in [8], resulting in the WE model in Fig.2b (dashed
red box).

An analogous procedure is employed to model the CE,
resulting in the RC model in Fig.2b (dashed blue box) while
just the solution resistance is considered for the RE, being
its current negligible thanks to the potentiostat high input
impedance.

III. DIRECT DIGITAL SENSING POTENTIOSTAT

The proposed DDSP takes advantage of the digital-based
amplifier (DB-Amp) principe [3], [9], [10] for potentiostat
readout, as schematically depicted in Fig.1. The schematic
of the DB-Amp adopted in this work is reported in Fig.3.
Compared to [10] and [3], [9], where a resistive summing
network, and a Muller C element are used for the input
common-mode (CM) compensation, floating inverters [11] are
employed in the input stage of the DB-Amp proposed in this
work to further enhance energy efficiency.

The non-inverting (vp) and inverting (vn) analog input
signals of the DB-Amp in the DDSP, to be connected to VREF

and to the RE, respectively, are applied to the inputs of the
CMOS floating inverters M1-M2 and M3-M4, which do not
draw any DC current. The digital outputs of such inverters are
sampled by the D Flip-Flops D1 and D2, respectively, on the
active clock edge.

As in [10], when D1=0 and D2=1 (D1=1 and D2=0), which
implies that vd = vp − vn > 0 (vd ≤ 0), the output stage
M5-M6 is operated to increase (decrease) the output voltage,
i.e. the pMOS device M5 (the nMOS device M6) is turned
on for one clock cycle Tclk, thus sourcing (sinking) a nearly
constant current IP (IN) in the CE capacitance, corresponding
to a positive (negative) charge packet IPTclk (INTclk).

When D1 and D2 have the same logical value, the sign of
vd cannot be detected and the output stage M5-M6 is kept in
high impedance. Moreover, when D1=0 and D2=0 (D1=1 and
D2=1) the negative (positive) supply of the input inverters is
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time [s] glucose [mM]
0 2 4 6 8 100 0.1 0.2 0.3 0.4 0.5 0.6

di
gi

ta
l c

od
e 

[L
SB

]

0

13

26

39

52

di
gi

ta
l c

od
e 

[L
SB

]

0

13

26

39

52

65
Typical, 27°C

2mM injection R2 = 0.99997

a) b)

Fig. 5. Digital acquisition under staircase concentration increase of 2mM (a)
and the corresponding calibration curve (b).

tied by M9 to node A (by M8 to node B), which was pre-
discharged to 0 V via M10 (pre-charged to VDD via M7) in
the previous cycle. Such reconfiguration provides the input
inverters with a dynamic bias, as required to asymmetrically
discharge (charge) their output and to detect the sign of vd,
resulting in D1=0 and D2=1 or D1=0 and D2=1 in the next
cycle(s).

Thanks to negative feedback and to the filtering effect of
the CE capacitance, the RE potential is forced by the DB-
Amp to the non-inverting input voltage VREF (ripple below
2.3mV rms) by injecting discrete charge packets in the CE.
Since the charge in each packet is nearly constant, the time
average of the CE current Ipot, which turns out to be equal
to the faradaic current IF, is directly estimated counting the
number of the positive (negative) digital pulses p (n) over the
last M clock cycles as follows:

IF =
pIP − nIN

M
(4)

Based on (4), a digitized version of IF is directly obtained
post-processing the digital streams Dp and Dn driving the
gates of M5 and M6 in Fig.3, thus suppressing the analog
to digital converter (ADC) which is needed in conventional
implementations.

IV. POST-LAYOUT SIMULATIONS AND COMPARISON

The proposed DDSP has been designed in 180nm CMOS
and tested by post-layout simulations, performed connecting
the DDSP to the electrochemical cell equivalent circuit de-
scribed in Sec.II, fixing the WE potential at −VREF = −0.2 V,
which corresponds to the first oxidation peak of the glucose
in [5].
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Fig. 6. Calibration curve spread against process (±σ) and temperature (35oC
to 40oC) variations(a), sensitivity variation with temperature (b) and reference
electrode offset variation with mismatch (c).

The layout of the DDSP cell, reported in Fig.4, occupies
merely 460µm2. Based on post-layout simulations at 27◦C
under 0.4 V supply, 50 kHz clock, and typical process condi-
tions, the power consumption of the DDSP is 4.7 nW, the
input current ranges from -22 nA to +33 nA, and the total
input-referred noise, averaging DDSP binary streams over
M = 3, 600 clock cycles, is 65 pArms including quantization
noise, resulting in a 58 dB dynamic range.

The simulated chronoamperogram and digital
code/concentration curve under a staircase glucose
concentration increase of 2 mM steps are reported in
Fig.5a and Fig.5b respectively, and reveal a sensitivity of
5.2 LSB/mM and a high linearity R2 = 0.99997.

Based on Monte Carlo simulations under process vari-
ations, the standard deviation of the DDSP sensitivity is
σ = 1.8 LSB/mM, as shown in Fig.6a. The digital
code/concentration curves of simulated samples at ±σ sen-
sitivity reported in Fig.6a reveal a linearity degradation from
R2 = 0.99997 to R2 = 0.9987. The simulated sensitivity
versus temperature is reported in Fig.6b in the range 27◦C-
40◦C and the simulated calibration curves at the extreme
temperatures are shown in Fig.6a. A worst-case linearity
degradation from R2 = 0.99997 to R2 = 0.9972 is observed
at 40◦C with respect to 27◦C. These results reveal how process
and temperature variations can be effectively compensated by
linear calibration.

The distribution of the RE potential offset due to device
mismatch has been obtained by Monte Carlo simulations and
is reported in Fig.6c. The offset mean value and standard de-
viations are Voff = 3.9 mV and σVoff

= 1.1 mV, respectively.
Compared to potentiostat front-ends proposed over the last



TABLE I
POTENTIOSTAT PERFORMANCE COMPARISON

Units [12] [13] [14] [15] [16] This Work
Method - CV,CA,EIS† CA,CV CA,CV CA,CV CA,CV CA

Measured - yes yes yes yes yes no
Current Range µA ±0.2 ±5 ±15 {−7,+10} ±1.5 {−0.022,+0.033}

Dyn. Range dB 104 108 73 58 105 58
Linearity R2 - 0.998 - 0.999 0.9990 0.99997

Current Noise pA (rms) 7.76 41 - 25000 - 65
Bandwidth Hz 10,000 - 200 50,000 1 7?

Technology nm 180 180 180 180 65 180
Area mm2 0.208 0.78 2.25 3.17 0.07 0.00046

Supply V 1.8 > 1.1 1.8 1.2 1.2 0.4
Power µW 311.4 16 73.9 19 25 0.0047

Digital out - no yes yes yes yes yes

†EIS: electrochemical impedance spectroscopy.
? Limited by M , traded with noise.

years for chronoamperometry and cyclic voltammetry, whose
performance is summed up in Tab.I, the proposed DDSP
operates at the lowest supply voltage (3× less than [15] and
[16]) while dissipating the smallest power (3,400× less than
[13]) at the smallest area (150× less than [16], which is though
fabricated in a more scaled technology).

The DDSP reports the best linearity R2 = 0.99997, with
an rms current noise of 65 pArms (more than the 41 pArms

of [13]) while showing a smaller dynamic range of 58 dB
(comparable to [15]).

These results are establishing the DDSP as a promising
solution for Body Dust applications, thanks to its ultra low
power and area, low supply voltage and robustness against
process, temperature and mismatch variations.

V. CONCLUSION

In this paper, an original fully digital potentiostat designed
in 180nm CMOS technology has been presented as an ac-
quisition front-end for chronoamperometric electrochemical
detection of glucose.

Based on post-layout simulations, the digital potentiostat
operates down to 0.4 V power supply voltage (3× less than
[15] and [16]) having 58 dB dynamic range, with a significant
advantage in terms of power (4.7 nW, 3,400× less than [13])
and area (460µm2, 150× less than [16]) compared to recent
alternatives, thus meeting the requirements of Body Dust
applications.
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