
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Simulated Versus Monitored Building Behaviours: Sample Demo Applications of a Perfomance Gap Detection Tool in a
Northern Italian Climate / Chiesa, Giacomo; Fasano, Francesca; Grasso, Paolo. - STAMPA. - (2023), pp. 109-133.
[10.1007/978-3-031-15218-4_6]

Original

Simulated Versus Monitored Building Behaviours: Sample Demo Applications of a Perfomance Gap
Detection Tool in a Northern Italian Climate

Publisher:

Published
DOI:10.1007/978-3-031-15218-4_6

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973082 since: 2022-11-15T10:46:29Z

Springer



109

Simulated Versus Monitored Building 
Behaviours: Sample Demo Applications 
of a Perfomance Gap Detection Tool 
in a Northern Italian Climate

Giacomo Chiesa, Francesca Fasano, and Paolo Grasso

 Introduction

Sustainable and green energy solutions are progressively growing in consideration 
in the building sector for both new and retrofitted designs and actions. At a European 
level, the introduction of the EPBD (Energy Performance of Buildings Directive), 
since its initial 2002/91 version, has progressively supported Member States in 
introducing and/or upgrading energy and building regulations including the defini-
tion of minimal standards, e.g. U-values, supporting a progressive increase of the 
energy efficiency of the building stock. Furthermore, the EPBD is not a rigid instru-
ment, since it has been improved over time, including the EPBD recast 2010 version 
and the 2018 one. Recently, the EU (European Union) funded a series of specific 
H2020 projects to support the ‘next-generation of Energy Performance Assessment 
and Certification’ approaches under the call LS-SC3-EE-5-2018-2019-2020. 
Among these projects, the E-DYCE (Energy Flexible Dynamic Building 
Certification) project [1] identified five main open issues connected to EBPD topics. 
These issues include [2] (i) free-running and passive technologies, (ii) smart readi-
ness vision, (iii) energy metering and district network communication, (iv) dynamic 
hourly models and performance gap, and (v) renovation and operational roadmap. 
This paper outlines some initial outcomes of the E-DYCE project related to above- 
mentioned issues i, ii and iv are focussing on two demonstrative buildings localized 
in Northwest Italy and illustrating a new approach for performance gap detection in 
semi-real time using a dynamic simulation platform which is under development by 
the authors.
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 Chapter Objectives and Contents

As mentioned above, this chapter focusses on illustrating initial results of the appli-
cation of a new underdevelopment dynamic simulation platform to detect building 
performance gap comparing simulated and monitored building behaviours under 
free-running conditions. Simulated buildings are based on verified models, while 
the simulation’s operational inputs for performance gap are inputted by current 
standards, e.g. EN 16798-1:2019 [3]. Monitored data are based on a smart cloud- 
connected monitoring system, while weather data are retrieved from a cloud- 
connected meteorological station installed for the project. Tests were performed 
during the extended summer of 2021, also considering transitional periods from the 
late-spring to the beginning of autumn – from May to October. Additionally, the 
above-mentioned dynamic simulation platform is based on a Python tool named 
PREDYCE (Python semi-Realtime Energy DYnamics and Climate Evaluation) that 
is under implementation on the basis of different development actions, including the 
‘DYCE’ action, based on the mentioned E-DYCE project, and a ‘PRE’ action, based 
on another project and adding  additional functionalities. The ‘DYCE’ action 
includes a larger set of actions with respect to those presented in this chapter. The 
platform is based on EnergyPlus [4] that, among building energy dynamic simula-
tion engines, is one of the most widely used and recognized [5]: its white box model 
algorithm to model building dynamics can give very accurate results in terms of 
both consumption and environmental variable trends, considering it is also used to 
support the validity of other software used for energy labelling, e.g [6]. This moti-
vates the use of EnergyPlus in this chapter to detect the performance gap between 
simulated and monitored building behaviours and the increasing interest for both 
professionals and researchers in the past few years in developing libraries and tools 
supporting EnergyPlus input model editing and output analysis in a parametric and 
automatic vision, e.g [7, 8]. This chapter focusses on PREDYCE application sce-
narios that treat simulation and monitoring results together; see also section 
“Methodology and PREDYCE”. The chapter is organized as follows: Section 
“Methodology and PREDYCE” shortly introduces the mentioned PREDYCE tool 
focussing on the ‘DYCE’ developing action contents and details the methodological 
pipeline used in this chapter. Section “Demo Building Applications and Results” 
focusses on two real-project demo applications of this methodology including 
model verification results and performance gap detection samples. Finally, Section 
“Conclusions” shortly concludes the chapter by mentioning main results, limita-
tions, and future planned development steps.

G. Chiesa et al.
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 Methodology and PREDYCE

 PREDYCE Introduction and Use Scenarios

PREDYCE is a newly developed Python library composed of three main modules 
able to manage EnergyPlus input files (IDFs) in a parametric and automatic mode, 
executing multiple parallel simulation runs and handling the obtained results. 
Moreover, additional modules have been developed to manage other important 
aspects linked to EnergyPlus simulations, e.g. to compile EPW input weather files 
starting from monitored data from weather stations. A detailed PREDYCE library 
scheme is illustrated in [9] and in [10, 11]: its architecture is based on the previously 
mentioned main modules, i.e. (i) an IDF editor module, (ii) an EnergyPlus running 
module, and (iii) a KPI calculator module. Each module has been built to work 
harmoniously with the others but also independently in tailored scripts, thus guar-
anteeing high flexibility and modularity in terms of, for example, data sources for a 
KPI calculator module, whose input can accept both simulation results and struc-
tured monitored data, allowing the development and testing of new methodologies. 
Similarly, the IDF automatic editing module is able to modify numerous building 
aspects such as activities, simplified HVAC systems, and envelope materials. The 
provided set of Python methods for IDF editing and KPIs computation, combined 
with the integrated EnergyPlus launcher, can help in performing different tasks like 
sensitivity analysis, retrofitting suggestions, performance gap analysis, or model 
verification, either automatically or semi-automatically.

The different tasks, which exploit all PREDYCE functionalities, are organized in 
separate scripts (herein referred to as use scenarios), easily executable by command 
line or also through a dedicated web service. Thanks to future actions, each script 
could be treated as a pre-built use scenario through a common application. In par-
ticular, the basic PREDYCE scenario is devoted to perform sensitivity analysis 
allowing parametrization of numerous building characteristics and computation of 
many possible KPIs according to the most recent European standards. Based on this 
more general use scenario, two other scenarios have been developed to introduce 
monitored data in the automatic loop: one is devoted to help in model verification 
phases, while the other aims to compare KPIs computed on calibrated building 
models and on monitored data, in order to highlight potential gaps in performance. 
Each scenario takes in input files and generates output files that are structured in the 
same way, as shown in Fig. 1. In particular, the main inputs are the building model 
in IDF format and the weather data in EPW format, which are needed to feed an 
EnergyPlus simulation; an input JSON file used to personalize the parametric 
request and apply preliminary modifications to the building model if needed; and 
finally, a CSV of environmental monitored data if required by the chosen applica-
tion scenario, e.g. the performance gap one. Main outputs, instead, include a CSV 
file named data_res containing aggregated KPI results for the considered time 
period; a CSV file named data_res_timeseries containing timeseries KPI results 
with definable timestep resolution (hourly by default) for each performed 
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Fig. 1 PREDYCE scenario generic input/output workflow

Fig. 2 Example of input JSON file for PREDYCE

simulation; and finally, plots (e.g. carpet plots, energy signature) allowing us to 
deepen the meaning of KPIs.

Figure 2 shows a simple example of a standard PREDYCE JSON input file, in 
order to explain its structure and general potential. It is made by keywords, which 
are later used by the scenario scripts to understand how to execute a simulation, and 
values, which can contain names of IDF objects to be added or modified in the 
model or values to be set. IDF editing actions, in accordance with specific materials 
or object names, are made possible by the presence of internal databases of IDF 
objects that are hidden to the final user. Looking at the main keywords in Fig. 2, the 
building name is the name of the main block of the IDF which is utilized by the tool 
to know which zone elements need to be edited and then perform calculations on it; 
the preliminary actions are the actions which are executed only once before running 
the simulations such that all simulated buildings have in common the same modifi-
cations listed in this section (e.g. changing the run period or also activating/deacti-
vating the HVAC system); the actions are the parametric modifications that have to 
be applied to the building (e.g. changing infiltration through windows or adding an 
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insulation layer to the ceiling, eventually filtering based on the building’s thermal 
zones); and finally, the KPI section includes the key performance indicators that are 
computed at the end of each simulation (in the example, Q_c and Q_h are the pri-
mary energy needs for cooling and heating in the building).

Considering the PREDYCE scenarios that involve comparisons between moni-
tored and simulated data, a structured nomenclature of both sensors located in the 
building and the IDF model thermal zones is necessary to obtain a correct and auto-
matic spatial association within the tool without the need of an intermediate transla-
tor, such that spatial aggregations for KPI analysis correspond. Consequently, the 
following nomenclature has been adopted for sensors: building name_block name_
thermal zone name_sensor identifier_type of variable. The naming part preceding 
the sensor identifier (e.g. MAC address) follows the IDF model naming structure, 
which always includes the building name, the block name, and the thermal zone 
name. To apply this nomenclature, the mentioned naming scheme must be used both 
within the building model  – when initially creating it through an interface, e.g. 
DesignBuilder or OpenStudio – and on sensor ID. This coherence allows a strict 
spatial correspondence, making it possible to aggregate analyses and results at both 
the building and block level. Moreover, at the end of the naming structure, the name 
of the measured variable must be included. The variable name is then used inside 
each KPI calculator methodology to recognize which CSV columns need to be 
included in the computation. The proposed scheme leaves freedom to build the IDF 
model as desired (e.g. following a multi-zone or a mono-zone approach), allowing 
different thermal zone aggregations, without impacting the matching. In this chap-
ter, two sample applications of both the performance gap scenario and the model 
verification scenario are shown assuming preliminary data of two demonstration 
buildings of the E-DYCE project; see section “Demo Building Applications and 
Results”.

 PREDYCE Model Verification Scenario

The PREDYCE semi-automatic model verification scenario has been used previ-
ously to the performance gap scenario execution in order to adjust the considered 
building models to the real indoor air temperature trend, speeding up the manual 
procedures usually adopted for this purpose. Temperature is adopted as a target veri-
fication variable, given that this chapter focused on summer free-running condi-
tions. The following IDF editing values were varied to try aligning the simulated 
trend to actual building behaviour: U-value of the walls and roof; U-value and 
SHGC (solar heat gain coefficient) of the windows; internal mass and equipment 
gains in each thermal zone; and ACH (air changes per hour) ventilation and infiltra-
tion. Model verification is made possible by PREDYCE’s ability to handle both 
simulation results and monitored data. The adopted model verification methodology 
is inspired by [12] and consists in optimizing a combined error measure which 
includes RMSE (root mean square error) and MBE (mean bias error) (see Eq. (1)) 
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on a given variable or combination of variables, which is in this case represented by 
the indoor dry bulb temperature.

 Error RMSE MBEtot � �2 2

 (1)

The calibration signature described in [12] is computed according to Eq. (2), con-
sidering indoor dry bulb temperature an objective variable.

 
Calibrationsignature

measured simulated

measured
db
i

db
i

�
�T T

max TTdb
i

· %100
 

(2)

The different IDF editing actions allow the user to shift the curve (e.g. acting on 
ACH, equipment gains), change coefficient and inclination, and modify amplitude 
variations – e.g. acting on internal mass – thus reaching a flat line within a 5% error 
range, which corresponds to reference suggestions for model calibration (see also 
ASHRAE Guideline 14-2014 for calibration criteria) [13]. Figure 3 shows an exam-
ple of calibration signature plots before and after the calibration of one of the con-
sidered buildings.

The model verification scenario is currently considered to be semi-automatic 
since. In order to minimize the number of performed simulations, it requires obser-
vation of calibration signature plots and at the CSV of aggregated total error results 
to better choose which parameters to vary and in which ranges. This procedure may 
be further automatized in future actions, but the current potential of PREDYCE to 
simultaneously test multiple building parameters and automatically edit the model 
provides a considerable improvement in terms of effort and time with respect to 
traditional manual procedures, taking few hours to reach results such as the one 
shown in Fig. 3.

Fig. 3 Example of calibration signatures: (a) starting point and (b) after model verification on the 
residential demo building
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 PREDYCE Performance Gap Scenario

After the model verification phase, updated IDF files are saved as new simulation 
starting points, and the PREDYCE performance gap scenario is run on the two sam-
ple demo cases, considering different building settings. Figure 4 shows the perfor-
mance gap scenario input/output workflow: among main inputs there is the CSV file 
containing monitored environmental data; the EPW file that should be also built 
from monitored data, necessarily an actual weather file; and the input JSON file 
which allows the user to define schedules, setpoints, and other building activities- 
related fields as simulation parameters in order to test the parameter impact on the 
gap against actual behaviour. Moreover, an optional weather input in CSV format is 
also available, giving the possibility to exploit EPW compiler module functional-
ities within PREDYCE instead of providing a previously built EPW: in this case, 
weather station coordinates should be passed through the input JSON file, such that 
eventually missing weather variables can be computed by the compiler exploiting 
well-known meteorological formulas. Outputs are instead composed by a zip folder 
containing the CSV file of aggregated results in which each row represents a con-
sidered EnergyPlus run (e.g. the different simulation settings recognizable by key-
words simulated_x, monitored condition, and finally the delta between monitored 
KPI and simulated_x KPI), the CSV file containing timeseries KPIs with default 
hourly resolution for both monitored, simulated and delta KPIs (computed as moni-
tored minus simulated results), and finally the optionally required plots.

The input JSON file is used to define both standard and standard modified condi-
tions in which the building model is simulated: particularly, standard modified mod-
els were adapted considering a more realistic building usage concerning occupancy, 
ventilation, and schedules by taking advantage of an inspection-based approach, 
e.g. see [14]. Moreover, the KPIs to be computed are listed in the input file. In par-
ticular, since it focuses on free-running building conditions, distribution of 

Fig. 4 PREDYCE performance gap scenario input/output workflow
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datapoints in adaptive comfort model (ACM) categories is calculated assuming the 
adaptive thermal comfort model of EN 16798-1:2019 [3]. Additionally, the percent-
age outside the range (POR) is calculated, returning the percentage of cumulated 
hours when thermal comfort is not reached, considering them discomfort hours out-
side cat. II boundaries. Moreover, CO2 concentration is considered one of the main 
symptoms of under- and overventilation, returning the number of hours above the 
threshold of 1000 ppm and under the threshold of 600 ppm, as suggested in Ref. 
[15]. Besides aggregated KPI results – which are computed on a weekly basis in 
order to recurringly inform users – when data are not too old to be detached from 
operational choices while sufficient to describe building phenomena, even time-
series results are returned for CO2 and indoor dry bulb temperature with an hourly 
timestep, allowing the user to better identify where a potential problem could be 
located.

Figure 5 shows part of the input file used for the performance gap analysis in the 
residential unit: the list of KPIs can be seen, together with the spatial aggregations 
on which each KPI has to be computed (the different activities refer to different 
rooms in the house, while r01 refers to the entire unit); inside the preliminary 
actions field a list of two JSON structures can be seen, the first referring to building 
modifications needed to reach standard conditions, the second to reach standard 
modified usage conditions (e.g. changing ventilation rate or the occupancy). 
Keywords used within the preliminary_actions field refer to methods in the 
PREDYCE IDF editor module, while KPIs name the methods within the PREDYCE 
KPI calculator module.

The described methodology can be summarized by the pipeline shown in Fig. 6, 
including EnergyPlus building model development, model verification adopting 
monitored data, and the PREDYCE scenario of the same name, followed by the 

{
"scenario": "performance_gap",
"building_name": "r01",
"start_date": "2021 10 25",
"end_date": "2021 11 01",
"kpi": {

"adaptive_comfort_model": {}, "n_co2_aIII": {},
"n_co2_bI": {}, "timeseries_t_db_i": {}, "timeseries_co2": {}

},
"aggregations": {

"adaptive_comfort_model": ["act105aa", "act104aa", "act103aa", "r01"],
"timeseries_co2": ["act104aa"],
"n_co2_aIII": ["act104aa"],
"n_co2_bI": ["act104aa"],
"timeseries_t_db_i": ["act105aa", "act104aa", "act103aa", "r01"]

},
"preliminary_actions": [

{"<to_standard>" :{}},
{"change_ach": {

"ach": 3,
"Schedule_Name": "_residenziale 16798 1",
"filter_by": "r0", "relative": false},

"change_occupancy": {"value": 0.011, "filter_by": "r0", "relative": false},
"…" : {}
}]}

Fig. 5 Example of input JSON file

G. Chiesa et al.
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Fig. 6 The methodological pipeline adopted by this chapter

application of the performance gap PREDYCE scenario adopting standard and stan-
dard modified IDF input data. Standard scenario is based on given EU input data 
from standards and norms, e.g. EN 16798-1:2019, while the standard modified sce-
nario refers to adapted input data upon collecting inspection data from the real 
building including regional and national adaptation, e.g. adapting set points and 
occupation scheduling.

 Demo Building Applications and Results

 Demo Buildings General Description

Two demo buildings are adopted in this chapter to support application testing. Both 
buildings are participating as demonstrations of the EU H2020 project E-DYCE, 
and they represent two different building typologies: a single-family building and a 
public school. These buildings are located in Torre Pellice, a small city located in 
the Turin metropolitan area, in the Pellice Valley, in Northwest Italy. Even if posi-
tioned at the bottom of the valley, the climate is cold and influenced by the Alps. It 
is classified in the Italian climate zone F, reaching 3128 heating degree-days20. 
According to the Italian Presidential Decree n° 412/93 et seq., the climate zone F 
does not have any specific limitations to the heating activation period, although, for 
the purposes of this paper, the heating systems were considered active from 5 
October through 22 April on the basis of interviews. Torre Pellice is a very represen-
tative demo city for small municipalities in Northern Italy and in the Piedmont 
Region, and it is positioned 5357th in terms of population among the 7978 Italian 
municipalities (ISTAT 2018). Nevertheless, with 4545 inhabitants Torre Pellice is in 
line with most small cities, considering that the Italian average is 7980, but the 
median is 2457. The single-family house typology is also very representative as a 
demo case considering that, typically, small cities are mainly composed of small 
houses rather than the multi-block buildings that characterize medium-to-large 
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Fig. 7 The considered residential building: (a) comprehensive view and (b) internal view

Fig. 8 The considered school building: (a) comprehensive view and (b) basement floor

cities; see related ISTAT data. Moreover, the considered municipality school is also 
representative of Italian public school constructions, as it was built in 1975 and 
features reinforced concrete pillars and external walls with a double layer of bricks 
and minor infilled insulation due to the cold climate.

Focussing on the selected buildings, base geometrical models are shown in 
Figs. 7 and 8, showing the residential building and the school building, respectively. 
Considering the single-family house, it has a 93-m2 surface area subdivided into 
three main rooms, two bathrooms, a corridor, and a technical space. The house is on 
a single floor, with a minor change in elevation between the northern – recently 
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adapted to a residential space – and southern part. Considering, instead, the munici-
pality school, it is composed of four floors similarly organized with a long corridor 
on the north façade and teaching areas facing south. Three of the four floors (ground 
to second) are used as a middle school, while the basement floor is used as a kinder-
garten, directly facing an outside recreational area on the north side. Since the 
school is a complex building, characterized by different usages and consequently 
schedules and standard requirements, this chapter only focusses on the kindergarten 
floor. Unlike other floors, the kindergarten is characterized by larger teaching areas: 
in particular, the area at the end of the corridor is used mainly for lunch and as a 
sleeping area in the afternoon, while the two rooms at the beginning of the corridor 
are divided by a movable panel and kept often open as a single, bigger playroom or 
also used partially as a sleeping area; finally, the central room is used for daily 
activities.

Sensors have been installed for environmental data acquisition since April 2021 
and allow temperature monitoring in all rooms, relative humidity in most rooms, 
CO2 in the most representative spaces, and extra parameters in limited rooms, such 
as TVOC and illuminance, although the latter are not investigated in this chapter. 
Sensors and monitoring gateways are based on the Capetti WineCap system [16]. 
The solution allows to access monitored data remotely and in almost real time by 
developing a SOAP-based API [17] or by using the provided interface. Additionally, 
a meteorological station has been installed in order to collect weather variables to 
feed simulation with the same real boundary conditions of monitored data. The sta-
tion includes a Thies US climate sensor that monitors temperature, relative humid-
ity, wind (direction and velocity), precipitation data, illuminance, atmospheric 
pressure, and correlated data, plus a delta ohm pyranometer (class 1) for collecting 
global horizontal irradiation. Among split irradiation models, the well-known 
Boland-Ridley-Lauret model [18] has been applied to retrieve diffuse and direct 
components.

 Application of the Model Verification PREDYCE Scenario

Regarding the residential house, the month of June 2021 was chosen as model veri-
fication time period, without having any information of actual house occupancy but 
assuming it was occupied.

Figure 9 compares initial and verified model results vs. monitored data (mea-
sured) of the single-family house case. The two graphs clearly demonstrate that the 
model verification scenario may support an improvement in building behaviours 
with respect to monitored data thanks to the adaptation of boundary modelling con-
ditions. Figure 10 plots monitored and simulated internal temperatures (building 
average values of both sensors and simulated thermal zones) considering initial and 
verified models. These graphs help to better understand improvements in the model 
supported by the PREDYCE tool. Generally speaking, these changes are obtained 
by manually performing several simulations, i.e. via an EnergyPlus interface, but 
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Fig. 9 Indoor temperature measured vs monitored before and after residential house calibra-
tion process

Fig. 10 Indoor temperature trend over time before and after residential house calibration process

the new developed tool allows to automatically compare the two series (without 
requiring post-production) and to support automatic changes of IDF parameters in 
given ranges, avoiding to manually perform this task. It is hence possible to verify 
models in a quicker and more productive way by testing both statistical discrepan-
cies between simulated and monitored data and potentially also analysing the impact 
of different parameters on these differences. As it is visible from Fig. 10, at the end 
of the month larger discrepancies occur between verified model and monitored data. 
Consequently, a drastic change in building usage can be supposed in those days, for 
example, because of the beginning of a holiday period with consequent occupancy 
and ventilation going to zero values.

The peculiar construction of the house, made of a newly renovated area and an 
older uninsulated part, increased the complexity of the process, since both boundary 
walls and ceiling for the two areas were calibrated as separate parameters, e.g. con-
cerning vertical walls, the best-found values led to a reduction of the model U-value 
by 90% in the renovated insulated part of the house and an increase of 15% in the 
old non-renovated area. To reduce the amplitude of differences in temperature 
between monitored and simulated data, the most effective action was the increase of 
internal mass, probably because of the massive structure of the mountain house 
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Fig. 11 Kindergarten calibration signatures, before and after the calibration process

considered old. Even internal gains increased, while infiltration through windows 
drastically dropped. The obtained values are consistent with the building materials 
and technical elements identified during the inspection phase that followed this 
analysis.

Regarding the kindergarten building model verification, the chosen time period 
was from 21 June to 21 July 2021, corresponding to the school closure. Consequently, 
ventilation was considered inactive and was not used as a variable in the calibration 
process.

Figure 11 compares original and verified model calibration signatures. Even in 
this case, the original model shows evident discrepancies, while the verified model 
presents an error perfectly fitting suggested calibration error thresholds; see 
ASHRAE Guideline 14-2014. Original errors in calibration signatures shifts from a 
[−2 to −15] range to a [+4, −4] one. The other two following graphs (see Fig. 12) 
plot internal temperatures over time including in the same graph monitored and 
simulated results. The latter model (verified) shows a very good correlation and is 
able to represent real building behaviours under actual weather conditions. The best 
values found allowed an increase in the U-value of the walls to 1.25 W/(m2 K), 
coherently with results found during a subsequent inspection. Roof U-value, instead, 
fell from 1.79  W/(m2 K) to 1.2  W/(m2 K), and infiltration through windows 
increased. Also, internal mass increased by 20%, while internal equipment gains 
dropped.

 Application of the PREDYCE Performance Gap Scenario

 Standard and Standard Modified Scenarios

The verified models retrieved in the previous section “Application of the Model 
Verification PREDYCE Scenario” are adopted here to run the PREDYCE perfor-
mance gap scenario. The input JSON file is used to impose to the models (i) 
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Fig. 12 Indoor temperature trend over time before and after the kindergarten calibration process

standard settings according to Annex C of EN ISO 16798-1:2019, overwriting cer-
tain values previously calibrated (e.g. ventilation rate), and (ii) standard modified 
settings, considering a more realistic building use defined after an inspection. 
Regarding the residential case, considering its dimension and adjacency (despite 
through only one wall and floors) to other residential units, the ‘residential apart-
ment standard case’ of the EN 16798 standard was considered. Concerning internal 
gains, 28.3 m2/person are used as a standard, while in the standard modified case, 
the knowledge that the house is inhabited by only one person is used, leading to the 
total 93 m2/person. With the units being scheduled for occupancy, appliances and 
lighting are not modified in the standard modified setting with respect to the stan-
dard, since the house is not actually used with a specific home-office pattern, and it 
was not possible to structure a proper schedule. Ventilation in standard modified 
conditions was increased from the 0.5  l/(m2/s) considered as the standard with 3 
ACH (air changes per hour), a high value able to perform ventilative cooling, since 
during the inspection a high usage of natural ventilation during the summertime was 
underlined.

Concerning, instead, the kindergarten, standard conditions consider a continuous 
building usage over the year without including any holiday: weekends are consid-
ered unoccupied, while a typical weekday is considered occupied from 7 a.m. to 
7 p.m., for a total of 12 h per day. Regarding internal gains, 3.8 m2/person are con-
sidered to lead to 4.92 l/(m2/h) as a CO2 generation rate. Standard air flow for ven-
tilation is supposed to be 4.5 l/(m2/s), and the outdoor temperature setpoint for its 
activation was set to 17.5 °C, corresponding to the standard heating setpoint. Those 
values were modified considering a more realistic building usage in the considered 
kindergarten: schedules were changed, since around 16:30 all children leave the 
school and no after-school service is provided in the rooms; also, holidays were 
considered assuming the traditional Italian calendar. Moreover, child presence in 
the main activity areas was reduced with respect to the standard, considering that 
some of them go home after lunch and that even the outside area is used, reducing 
the overall indoor presence. Also, ventilation was increased to 2 ACH always active, 
considering the COVID-19 government advice to keep windows open as much as 
possible.

G. Chiesa et al.
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Fig. 13 CO2 KPIs in residential unit kitchen and living room area representing the difference in 
number of hours between the simulated (standard = 1; standard modified = 2) and monitored val-
ues. The graph on the left shows hours above 1000 ppm, while the graph on the right the number 
of hours below 600 ppm

 Performance Gap Results

Concerning the residential unit, a single CO2 sensor was installed in a room used 
both as a kitchen and living room; thus the CO2 analysis was performed for this 
specific room, called act104aa. Figure 13 shows weekly aggregated results of num-
bers of hours below the threshold of 600 ppm and above 1000 ppm. Since the per-
formance gap with the standard simulated buildings is negative, it means that there 
are more hours above 1000  ppm of CO2 concentration with a standard building 
behaviour than considering the actual one, except in the beginning of the autumn 
season. Oppositely, the number of hours below the 600-ppm threshold is greater in 
the actual monitored behaviour than the standard one. However, it can be seen that, 
especially from the late spring to the early autumn, the standard modified behaviour 
results were much more similar to the actual ones than the standard ones, which 
show a greater gap. This means that the ventilation was probably higher than in 
colder weeks, with the occupant behaviour causing ventilative cooling, while in 
later weeks the cold season implied a different usage of window openings to prevent 
heat dissipation, i.e. the difference between the standard modified and real behav-
iour become negative for hours below 600 ppm.

Looking at the timeseries of CO2 in the room (Fig. 14), it can be seen that moni-
tored data follows a random behaviour, which is difficultly represented by simulated 
trends that follow a fixed schedule in each weekday. Consequently, aggregated 
results are more useful to highlight potential behavioural gaps in the residential unit. 
Moreover, looking at the graph on the right in Fig. 14, it can be seen that in late June 
monitored data flattened, reinforcing the hypothesis of a holiday made upon observ-
ing the model verification results in Fig. 10.

Figure 15, instead, shows differences in weekly hour distribution in ACM cate-
gories, giving an idea of indoor thermal comfort monitored with respect to standard 
conditions. Unshown categories resulted to be empty for both simulated and moni-
tored data, meaning that the residential unit is maintained quite cold in the whole 
period considered. Particularly, monitored data turn out to be, on average, colder 
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Fig. 14 Timeseries CO2 values in residential unit kitchen and living room area for different periods

Fig. 15 Distribution of hours in ACM categories, averaged on all residential unit zones

than what is expected in standard conditions, except for the first weeks in May, 
when there are more simulated hours below comfort cat. III than monitored ones.

Looking at indoor temperature trend over time, the average behaviour shown in 
Fig. 16 is quite different depending on specific thermal zones, as shown in Fig. 17 
(the kitchen) and in Fig. 18 (the second living room located in the newly renovated 
part of the building). In fact, despite the average monitored behaviour is almost in 
line with both standard and standard modified simulated conditions, the kitchen 
area shows several peaks at a higher temperature during the entire month of May 
and then gradually flattening at the end of the month. The newly renovated area, 
instead, shows a colder trend with respect to simulated standard conditions, but 
quite in line with the standard modified in which occupancy is more realistically set. 
Kitchen peaks are explainable because of a wood stove located in the room, which 
was used despite the end of the heating season to face the last colder weeks of the 
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Fig. 16 Timeseries of average air temperature values in all residential unit zones

Fig. 17 Timeseries air temperature values in residential unit kitchen (left) and second living room 
area (right)

Fig. 18 Timeseries air temperature values in newly renovated residential zone

year. However, the more the other rooms are far from the kitchen, the less they can 
benefit from the impact of the stove, resulting in colder monitored data even with 
respect to the standard. The same observations can be made by looking at the POR 
in Fig. 19, considering both the kitchen and the zone average: during the first simu-
lated weeks in May, simulated behaviour is worse than monitored behaviour, espe-
cially in the kitchen, where a higher temperature is maintained, and then during the 
proper summer season comfort is maintained with almost all hours in cat. II, result-
ing in POR = 0. Finally, with the beginning of the autumn season, simulated behav-
iour was recorded to be slightly better than monitored, perhaps because – waiting 
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Fig. 19 ACM POR in the kitchen/living room (left) and average in all residential unit zones (right)

Fig. 20 Timeseries CO2 values in kindergarten act201aa thermal zone

for the beginning of the heating period – the stove was not used even in the first, 
colder days.

Concerning the kindergarten results, Figs. 20, 21, and 22 show CO2 trends over 
time in the three main activity areas of the floor (act201aa/ab/ac) during 4 weeks in 
May and June 2021. The three rooms show a more regular behaviour with respect to 
the residential case, because of the cyclic schedule followed by children in the 
rooms. However, the three areas show quite different trends, underlining the need to 
analyse different spatial aggregations to investigate the average behaviour that could 
be affected by room values distribution and to better localize potential problems. 
Particularly, the three rooms seem to be used in different moments of the day, sug-
gesting the need of even more detailed schedules to better simulate a standard modi-
fied behaviour. Act201aa is mainly used in the afternoon, which corresponds to 
lunchtime and the afternoon nap. Differently, act201ab is mostly used in the 
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Fig. 21 Timeseries CO2 values in kindergarten act201ab thermal zone

Fig. 22 Timeseries CO2 values in kindergarten act201ac thermal zone

morning, while act201ac usually shows two peaks, one in the morning and the other 
in the afternoon, corresponding to the double use as playroom in the morning and 
sleeping area in the afternoon. Peaks of CO2 concentration seem to increase towards 
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Fig. 23 CO2 KPIs aggregate results of all kindergarten teaching areas

the warmer summer periods, as if natural ventilation were drastically decreased not 
to overheat the rooms in the afternoon or reduce airflows or noise during the nap. 
Moreover, unlike the first weeks of May, when CO2 trends seem to reach 1000 ppm 
peaks given the outdoor temperature is still too cold to allow high ventilation rates, 
in late May all rooms show lower CO2 peaks, usually below 700 ppm, suggesting an 
increased natural ventilation usage. In general, CO2 peaks can be affected by the 
unnatural ventilation approach forced by covid-19 rules, which can lead to the 
opposite undesired result of overventilating an area. The latter risk is mainly impact-
ing during the winter months due to higher heating requirements but may also lead 
to unwanted draft during nap time.

In fact, looking at aggregated weekly results in Fig. 23, both standard and stan-
dard modified building simulation settings tend to overestimate the number of 
weekly hours above the threshold of 1000 ppm despite the performance gap is lower 
with respect to standard modified behaviour, because of the adapted occupancy 
schedule which avoids a late-afternoon CO2 drop and a natural ventilation strategy. 
For the same reason, the number of hours below the threshold of 600 ppm is greater 
in the monitored data. Particularly, standard behaviour looks more incongruous 
with the standard modified than actual monitored behaviour, because of the better 
balance between occupancy and ventilation and, especially in the summer weeks, 
the appropriate holiday schedules.

Similar observations can be made also by looking at each room’s temperature 
trend. Particularly, Fig. 24 shows the average teaching area temperature in the same 
weeks analysed for CO2 concentration. During the month of May, monitored data 
show very low temperatures due to the end of the heating season and to the still cold 
outdoor temperature. Overventilative tendencies could explain the very low peaks 
in early morning that can reach 15 °C. In June, instead, monitored indoor tempera-
ture gets closer to the simulated standard profile, suggesting that the adopted venti-
lative strategies are also closer to the standard ones. Standard and standard modified 
behaviours turn out to be very similar in terms of temperature trends, given the input 
differences are also limited with respect to the residential demo case.

The same results can also be highlighted by the weekly aggregated results for the 
considered time period. Figure 25 shows the distribution of the identified gaps in 
ACM categories, together with the POR.  Since the POR shows mainly positive 
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Fig. 24 Timeseries of average air temperature values in all kindergarten teaching areas

results, it means that overall, the kindergarten behaved slightly worse than expected 
in standard conditions. Particularly, standard behaviours show more hours in adap-
tive thermal comfort categories I, II up, and III up, while monitored data tend to 
represent colder temperatures with more data in categories II, III down, and even 
below cat. III. A similar behaviour can be seen in the central summer weeks, espe-
cially in late June and early September, when monitored data are more present in 
cat. I, while standard behaviours tend to show hotter temperatures than the actual 
building trend. The central summer weeks, instead, in July and August, are affected 
by an incorrect standard occupancy, which does not consider holidays.

Considering that the two considered buildings are located in a mountain region, 
the main problem to reach the best free-running mode in terms of both thermal 
comfort and indoor air quality was recorded to be, even in the late spring and late 
summer, finding a good balance between natural ventilation strategies and conse-
quent natural cooling. Especially in the school, the application of a non-optimized 
ventilation strategy could result in very cold days and even in increased heating 
consumption in the corresponding season. Results show that, despite trying to apply 
the best strategies to maintain indoor thermal comfort and air changes (also consid-
ering the pandemic), it is difficult without the aid of visual supports and eventual 
suggestions to understand when the pollutant concentration is increasing above a 
certain level and when it is low enough to not require additional ventilation. Also, 
this suggests that mechanical ventilation machines could be of great aid in maintain-
ing indoor comfort in a school building, especially during colder hours and periods, 
when overcooling may represent a risk. For this reason, three mechanical ventila-
tion units have been recently installed in another floor of the school building to 
support further tests and verifications.
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Fig. 25 Average distribution of hours in ACM categories and POR in all kindergarten teach-
ing areas
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Results also showed the relevance of both aggregated and timeseries data in 
understanding potential problems inside the considered space: aggregated results 
are indispensable in case of random trends, much like the CO2 concentration in the 
residential unit, while timeseries data resulted to be of great aid in understanding the 
more regular school behaviour. Also, considering different levels of spatial aggrega-
tion, such as specific rooms or thematic areas (e.g. all the teaching areas together), 
resulted to be useful in understanding localized problems that could disappear in an 
average behaviour. Furthermore, the adoption of single zone-specific analyses may 
help to underline and justify peculiar effects like those given by the wood stove in 
the residential unit.

 Conclusions

The chapter describes initial applications of a new Python library tool able to man-
age EnergyPlus simulations for different purposes. The current version of the 
PREDYCE tool is described by detailing the needed inputs and potential outputs of 
its main scenarios with special regards to the model verification scenario, able to 
support calibration processes comparing monitored and simulated building data 
and allowing parametric changes to suggest model error reduction. Furthermore, 
the performance gap scenario is described to support the identification till real time 
of discrepancies between monitored and model/simulated building KPIs. The 
methodology is applied to real demonstration buildings, showing how the pro-
posed pipeline may be used in practice. Results clearly show the potential of the 
new underdevelopment tool, suggesting several development lines, including the 
integration on a large building management middleware to support multi-data 
source integration, taking advantage of the PREDYCE simulation flexibility. This 
work is part of a larger project that aims to suggest new paths and issues for the 
next generation of building energy performance certification visions. Currently, 
PREDYCE faces some limitations: it is developed to work with EnergyPlus ver-
sion 8.9 (8.x in general), although it may be upgraded to v9.x in future. Additionally, 
the run of several simulations may benefit from a server facility but may be easily 
managed through remote REST API services or future middleware solutions. 
Finally, larger tests on additional demos, considering different building typologies, 
climates, and national backgrounds, are planned to be performed throughout the 
coming months.
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