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Abstract

Ideally, Convolutional Neural Networks (CNNs) should be trained with high

quality images with minimum noise and correct ground truth labels. Nonethe-

less, in many real-world scenarios, such high quality is very hard to obtain, and

datasets may be affected by any sort of image degradation and mislabelling

issues. This negatively impacts the performance of standard CNNs, both dur-

ing the training and the inference phase. To address this issue we propose

Wise2WipedNet (W2WNet), a new two-module Convolutional Neural Network,

where a Wise module exploits Bayesian inference to identify and discard spu-

rious images during the training and a Wiped module takes care of the final

classification, while broadcasting information on the prediction confidence at

inference time. The goodness of our solution is demonstrated on a number of

public benchmarks addressing different image classification tasks, as well as on

a real-world case study on histological image analysis. Overall, our experiments

demonstrate that W2WNet is able to identify image degradation and misla-

belling issues both at training and at inference time, with positive impact on
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the final classification accuracy.

Keywords: Image Classification, Deep Learning, Convolutional Neural

Networks, Bayesian Convolutional Neural Networks, Data Cleansing

1. Introduction

Since the milestone study by Alex Krizhevsky and colleagues in 2012 Krizhevsky

et al. (2012), Deep Learning (DL), with particular emphasis on Convolutional

Neural Networks (CNNs), is the state-of-the-art method for image classification

in many different applications. Besides classification performance, the reason for

the success of CNNs is twofold: i) the recent boost of graphical processing units

(GPUs) and parallel processing, that allows to train very large models; ii) the

ever-growing availability of massive annotated task-specific datasets. Nonethe-

less, in many realistic applications many concerns may be raised about the image

and labelling quality of such datasets, and hence on the reliability of the CNNs

trained and tested on them.

As supervised DL models, standard CNNs for computer vision require a

large amount of annotated training data (images and corresponding labels) to

be proficiently trained. Ideally, CNNs should be trained and validated with

high quality images with minimum noise and correct ground truth labels. Nev-

ertheless, in practical scenarios different kinds of image degradation can heavily

affect the performance of a CNN both in the training and in the inference phase.

Problems concerning image acquisition devices, poor image sensor, lighting con-

ditions, focus, stabilization, exposure time or partial occlusion of the cameras

may lead to produce low quality samples, which challenge the training of CNN

models in many applications Roy et al. (2018); Moosavi-Dezfooli et al. (2016);

Dodge & Karam (2016); Hendrycks et al. (2021). On the other hand, even

though the CNN had been proficiently trained and validated on high quality

data, noisy inputs can heavily affect the inference phase, and cause classifica-

tion errors at run-time. A typical example are self-driving cars, where a partial

occlusion of the image acquisition device may lead to misinterpret a road sign,
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with catastrophic consequences. In such settings, the well-known limitations of

standard CNNs to broadcast information about how much the given input re-

sembles the ones the model was trained on - and hence, whether the associated

prediction should (or should not) be trusted - is also playing a major role.

Besides image quality, also collecting and associating error-free labels to a

massive number of representative images to adequately train CNNs may be ex-

tremely problematic in a number of real-world applications. If we take as an

example the medical domain, where available data is typically small to begin

with, image annotation is always a cumbersome and time-consuming task, that

is extremely error-prone. In a number of applications, inter-observer variability

is even so high as to necessitate consensus strategies to aggregate annotations

from several medical experts Karimi et al. (2020), which is anyway prone to

mislabelling. Conversely, in a number of non-medical real-world scenarios the

collection of massive labelled image datasets is relatively easy and straightfor-

ward: for example, using semi-automatic tools based on web search engines

and keywords Liu et al. (2017). Nonetheless, even in this case concerns may

be raised on the reliability of the image labels. Take as an example the JFT

dataset from Google, including 300M+ images labeled by an algorithm that

uses complex mixture of raw web signals, connections between web-pages and

user feedback Hinton et al. (2015); Chollet (2017): JFT annotations have been

found to be 20% wrong, even after some cleansing procedures Sun et al. (2017).

In the rest of this paper, we will refer to image degradation and to mis-

labelling errors respectively by the name of measurement and labelling noise

(formal definitions will follow).

Even though recent studies have proposed many techniques to compensate

the learning degradation due to measurement noise Dodge & Karam (2016);

Roy et al. (2018); Moosavi-Dezfooli et al. (2016) or labelling noise Karimi et al.

(2020); Xiao et al. (2015); Sun et al. (2017) specifically, very few researchers

have developed solutions to mitigate the impact of generic noise, where the two

effects may even coexist Bishop (2013); Shalev-Shwartz & Ben-David (2014).

Furthermore, there is still very little scientific understanding of how a CNN
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may behave in presence of noisy inputs at inference phase, i.e. when the final

model is applied to a given application, and how to make a CNN model robust

to unpredictable noise effects that may make the inputs considerably different

to what the model was specifically trained on.

In our study, we want to focus the attention on data-perturbation irrespec-

tive of whether it is a measurement or a labelling noise, and we will refer to

spurious (vs. meaningful) samples to indicate images affected by any of the two

types of noise. We therefore propose Wise2WipedNet (W2WNet), a Bayesian

CNN-based architecture able to i) model the distribution of spurious samples in

a generic dataset, which may be corrupted by both labelling and measurement

noise; ii) clearly identify the spurious samples within the training, by virtue

of an adaptive pruning criterion that is fully embedded into the learning algo-

rithm, and focus the training on the only meaningful ones; and iii) at inference

time, classify never seen images into the learned categories plus one, clearly

identifying noisy inputs by means of a statistically sound measure of prediction

confidence (see figure 2).

In our previous work, we proposed a very preliminary version of our ap-

proach where the data cleansing criterion was not embedded into the training

of the network but only downstream of a Bayesian CNN, and the application

was limited to a medical imaging domain Ponzio et al. (2020). Here we present

an integrated neural architecture, where the concept of prediction confidence is

exploited in two ways: (i) during the training phase, to establish a separability

criterion between the good quality (a.k.a. meaningful) and the spurious sam-

ples, that is embedded into the learning algorithm to make the network able to

focus on the only meaningful ones; and (ii) during the inference phase, to im-

prove the robustness of the model to ambiguous inputs. To assess the goodness

of our approach in different types of settings, in this work we evaluate W2WNet

on several state-of-the-art public benchmarks, addressing different image classi-

fication tasks and types of noise, as well as on an extended real-world case study

from the medical imaging domain.

The rest of the manuscript is structured as follows. In Section 2 we pro-
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vide the background and state of the art of our work, and highlight our main

contributions. In Section 3 we describe our proposed methodology and im-

plementation details. In Section 4 we provide and discuss experimental results,

respectively on the public benchmarks and on the real-world case study. Finally,

Section 5 provides our final considerations and concludes the paper.

2. Background

In Section 1, we broadly categorized the many dataset quality issues affecting

CNN training and inference into measurement and labelling noise.

Measurement noise derives from image quality degradation. Hence, accord-

ing to a formal definition provided by Hendrycks et al. Hendrycks & Dietterich

(2019), it can be characterized by considering a classifier f : X → Y trained on

samples drawn from distribution D, and a set of corruption functions C. Such

corruption functions may obviously depend on the specific classification task

and imaging context. In surveillance applications, for instance, face recognition

from low quality images is a key aspect, and many studies address learning low-

quality faces Zou & Yuen (2011); Ren et al. (2012). In Ullman et al. (2016)

the authors show that CNNs behave very differently than human vision system

(HVS) in handling minimal recognizable configurations (MIRCs), that is the

smallest crop of an input image for which a human observer is able to provide

a categorization. More specifically, standard CNNs are generally worse than

humans at handling MIRCs, which are typically very small, and hence blurry

and low resolved. In Dodge & Karam (2016), the authors presented the first

large scale evaluation of deep networks on natural images affected by different

types and levels of image quality degradation, showing that the existing models

are especially vulnerable to blur. Finally, in Roy et al. (2018), authors show

the effects of image degradation on different CNN models, proposing a network

setup able to reduce the impact of specific types of perturbations. Following the

path of previous literature, in our work we address measurement noise by ap-

proximating the effect of corruption functions C with a set of image alterations
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that are commonly encountered in natural images Roy et al. (2018); Hendrycks

& Dietterich (2019); Dodge & Karam (2016) and we characterize our solution

in a number of different experimental configurations involving such alterations

(details in Section 4.1).

While measurement noise involves alterations of the image content, labelling

noise revolves around any mislabelling issues, either deriving from faulty manual

or automated annotations Karimi et al. (2020); Liu et al. (2017). A formal def-

inition can be derived from the work of Han et al. Han et al. (2018), where the

term labelling noise is used to refer to “corrupted ground-truth labels, which in-

evitably degenerate the robustness of learned models, especially for deep neural

networks”. Such type of noise is typically characterized by artificially inserting

increasing number of wrong labels to annotated benchmarks Han et al. (2018),

which is the same approach we followed in our work (details in Section 4.1).

Previous studies specifically addressing labelling noise can be categorized

into three main groups Frénay et al. (2014):

(i) Methods that focus on model selection or design. These methods aim at se-

lecting the model, loss function and training procedures that are most robust

to mislabelling Karimi et al. (2020). Literature shows that most supervised

loss functions are not fully robust to faulty labels Bartlett et al. (2006), unless

they are handled by overfitting avoidance Frenay & Verleysen (2014); Liu et al.

(2017).

(ii) Data cleansing methods. The rationale is in this case to remove samples with

incorrect labels. In this sense, voting among an ensemble of classifiers has been

proven effective Karimi et al. (2020). Other strategies include identifying mis-

labeled instances based on their impact on the training process. For example,

Köhler et al. (2019) prune and re-label training instances by setting a thresh-

old on the classification uncertainty, based on Monte-Carlo (MC) dropout. The

challenge of this group of methods is to distinguish the informative samples from

the harmful mislabeled ones Liu et al. (2017). In this sense, cleansing methods

built on top of an uncertainty measure are known to be highly dependent on

the given application (i.e. type and level of noise) and even on the architecture

6



of the classifier Köhler et al. (2019); Karimi et al. (2020). For instance, Köhler

et al. (2019) set a fixed threshold on the uncertainty distribution retrieved from

training samples, without modeling the distributions of the uncertainties of the

noisy and clean images. Hence, the optimal threshold needs to be tailored to

the given application, which may limit the usability in real-world scenarios.

(iii) Methods that propose classifier training and labelling noise modeling into a

unified framework. This category somehow integrates the two aforementioned

families. For instance, probabilistic models have been exploited to model the la-

belling noise and thereby improve classifiers Köhler et al. (2019). Other method-

ologies aim at identifying and penalizing samples with incorrect labels during

the training procedure Karimi et al. (2020).

While there is a large body of literature coping with either measurement or

labelling noise individually, very little efforts have been directed so far to han-

dling both the problems at one time. Nonetheless, this is a non-trivial issue in

most real-world applications, where a-priori knowledge about the type of noise

affecting the data may not be available. Moreover, while labelling noise affects

the only training phase, as the supervised learning requires an appropriate la-

belling of the training samples, measurement noise may affect CNNs even at

the inference phase. As already mentioned in Section 1, this may lead stan-

dard CNNs to catastrophic failure in several real-world applications. Starting

from these considerations, we propose a methodology (a.k.a. W2WNet) able on

the one hand to deal with both measurement and labelling noise, and, on the

other hand, to provide a statistically sound measure of prediction confidence

at inference phase. Our methodology follows in the footsteps of the earlier

work by Köhler et al. (2019), where the authors exploit uncertainty measures

retrieved by MC dropout to identify and remove mislabelled samples. Never-

theless, we are substantially different from Köhler et al. (2019) in the following:

(i) we tackle both measurement and labelling noise in parallel; (ii) we propose

an end-to-end framework, embedded into a single CNN model; (iii) we provide

a pruning strategy for the spurious samples which is totally automatized and

adaptive to the given application; (iv) we exploit prediction uncertainty in two
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Figure 1: Overview of the training phase of the proposed architecture.

different ways. First, to model, recognize and remove the spurious samples from

the training strategy. Second, to broadcast information on the prediction con-

fidence, which is exploited to make CNNs robust to noisy inputs at inference

time.

3. Methods

As represented in Figure 1, our architecture includes two main modules:

(i) the Wise, that is in charge of a two-fold aim: on the one hand, to provide a

reliable measure of predictive uncertainty associated to samples (Figure 1(a));

on the other hand, to model the distribution of the spurious samples for the

purpose of removing them from the training dataset (Figure 1(c)).

(ii) the Wiped, that is the expert system trained on the cleaned dataset and

designated to the actual classification phase (Figure 1(b)).

3.1. The Wise: uncertainty estimation

As already mentioned, the Wise must be a noise-aware model, able to as-

sociate to each prediction a corresponding uncertainty measure. Last trends in

deep learning show a growing body of literature around the theme of uncer-

tainty estimation for predictive classification models Lakshminarayanan et al.
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(2017); Gal & Ghahramani (2016); Köhler et al. (2019). With special regards to

CNNs, the canonical softmax score is erroneously regarded as a measure of pre-

diction confidence, that is: the lower the output of the softmax, the higher the

uncertainty on the corresponding prediction. Nonetheless, it has been shown

that this is not true, as the softmax merely acts as a normalization Gal &

Ghahramani (2016); Hendrycks & Gimpel (2016). As a consequence, a tradi-

tional CNN might provide confident (wrong) predictions even on samples that

are completely unrelated to what it was specifically trained for.

The most consolidated way to incorporate uncertainty estimation into a

CNN leverages on Bayesian formalism Gal & Ghahramani (2016); Kwon et al.

(2020). In a Bayesian perspective, individual parameters values (i.e. the weights

of the network) are replaced with prior distributions. Hence, the learning strat-

egy is conceived as a probabilistic optimization problem, where the posterior

distribution over the parameters is computed, given the training data. As a

consequence, the output of the model will also be a posterior predictive distri-

bution of values, from which a statistic can be derived to serve as uncertainty

measure.

Formally, the weights ω of a CNN are handled as random variables, and

assuming the CNN to be exhaustively described by its weights ω, we can write

the predictive distribution for a new input x∗, and its corresponding label y∗,

as Gal & Ghahramani (2016); Kwon et al. (2020):

p(y∗|x∗, X, Y ) =

∫
Ω
p(y∗|x∗, ω)p(ω|X,Y )dω, (1)

where X corresponds to the training images and Y the corresponding labels.

Since the term p(ω|X,Y ), integrated upon the whole parameters space Ω, makes

the predictive posterior of a CNN analytically and numerically intractable Lak-

shminarayanan et al. (2017); Kwon et al. (2020), a variety of approximations

have been proposed, including Laplace approximation MacKay (1992), Markov

chain Monte Carlo (MCMC) methods Neal (2012) and variational Bayesian

methods Graves (2011); Louizos & Welling (2016). Nevertheless, the reliability

of the uncertainty measure derived from these approximation strategies strictly
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depends on two different factors: (i) the approximation quality constrained by

computational requirements; (ii) the choice of the Bayesian prior, which can ul-

timately lead to biased predictive uncertainties Lakshminarayanan et al. (2017).

In practical terms, Bayesian CNNs (BCNNs) are cumbersome to implement and

hard to train, as they require a specific training pipeline handling a very high

number of possible hyper-parameters, as well as the high computational cost

of the approximation technique Lakshminarayanan et al. (2017). An interest-

ing insight by Gal and Ghahramani Gal & Ghahramani (2016) suggested using

Monte Carlo dropout (MC dropout) technique to get a principled predictive un-

certainty estimation, which is based on using Dropout Srivastava et al. (2014) at

inference time. Since many different neurons are randomly dropped across dif-

ferent model calls, MC dropout method implements a Bayesian sampling from

a variational distribution of models. In other words, MC dropout can be seen as

an ensemble methodology, where the predictions are averaged over an ensemble

of CNNs sharing the same parameters. In such setting, estimating the model

uncertainty for a given sample is as simple as keeping the dropout mechanism

switched on at inference time, and performing multiple predictions for the same

input Lakshminarayanan et al. (2017). By using MC dropout, we can rewrite

equation (1) with the following approximation, where T is the number of MC

forward passes for input x∗:

p(y∗|x∗, X, Y ) ≈
∫
Ω
p(y∗|x∗, ω)q(ω)dω ≈

1

T

T∑
t=1

p(y∗|x∗, ω̂), (2)

Thanks to variational inference Gal & Ghahramani (2016); Rączkowski et al.

(2019), we can approximate the posterior distribution p(ω|X,Y ) in (1) with a

variational one q(ω). Hence, by means of MC dropout, we assume q(ω) ∼ ω̂,

where ω̂ is an estimation resulting from a variational dropout call.

Starting from the above-mentioned considerations, our Wise module (see fig-

ure 1(a)) was implemented as a BCNN, leveraging MC dropout. As anticipated

in the previous section, the initial task of the Wise is to provide an uncertainty

measure for the inputs samples, on the top of which the model can distinguish

the spurious samples from the meaningful ones. Downstream of the uncertainty

10



estimation, the Wise is able to: (i) identify and eventually remove the spurious

samples, thus providing a cleaned dataset to train the Wiped ; (ii) associate a

confidence measure to the outcome of the Wiped ’s classification, that can be

exploited to express the reliability of the model’s prediction on a given input.

To build our BCNN-based Wise, we put into effect equation (2) through a

DenseNet121 model Huang et al. (2017), inserting a dropout layer with 0.3 rate

after each convolutional, pooling and fully connected layer Gal et al. (2017). In

our implementation, we set the number of forward passes equal to 100. The

DenseNet-based architectures connect all layers directly with each other: each

layer obtains additional inputs from all preceding layers and forwards on its

own feature-maps to all downstream ones Huang et al. (2017). By exploiting

such feature reuse paradigm, DenseNets typically offer exceptional classification

capabilities with reduced number of parameters. As it was recently observed

that models with less parameters are generally more resilient to image degrada-

tions Roy et al. (2018), we chose DenseNet121 as best trade-off between clas-

sification performances and model compactness. This is in line with previous

literature Gal et al. (2017). Nonetheless, our preliminary experiments showed

that W2WNet’s performance is not dependent on the backbone CNN. Hence,

the Wise module can be easily converted into any other state-of-the-art CNN

architecture, by simply exploiting MC dropout instead of softmax.

Ultimately, we need to define a statistically sound measure of uncertainty.

To do so, we adopted the methodology proposed by Kwon and colleagues Kwon

et al. (2020): starting from (2), the predictive uncertainty of a BCNN may

be computed as the sum of the predictive variances of each class [19]. Such

predictive variance can be further decomposed into the aleatoric component,

able to represent the intrinsic noise in the samples, and the epistemic component,

which stems from the parameters and the architecture of the model:

1

T

T∑
t=1

diag(p̂t)− p̂◦2t︸ ︷︷ ︸
aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)◦2︸ ︷︷ ︸
epistemic

(3)

Here p̂ = Softmaxf(ωt, x
∗); p̄ =

∑T
t=1 p̂t/T ; the operator ◦m is the m− th
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Hadamard power Jain (2017), and T is the number of forward passes for input

x∗. T has been empirically set to 25 as the best trade-off between computational

time and reliability.

3.2. The Wise: modelling of spurious samples distribution

The aforementioned uncertainty measure provides a way to distinguish be-

tween spurious and meaningful samples. The Wise has a two-fold functionality.

On the one hand, during the training phase (see Figure 1), it should identify an

epoch ej so that the uncertainty of the spurious samples is significantly higher

than the uncertainty of the meaningful samples. Hence, the Wise’s training

should proceed until (i) the separation between high uncertainty (i.e. spurious)

and low uncertainty (i.e. meaningful) samples is large enough, and (ii) this sep-

aration is sufficiently stable over the training epochs. On the other hand, the

Wise must identify an uncertainty threshold UTh (see Figure 1(c)) that will be

exploited at inference time, to broadcast information on the level of confidence

of the final prediction (see Figure 2).

To pursue the stated goals, for a generic j − th training epoch the learning

proceeds as follows:

(i) The Wise computes for each training sample a corresponding classification

uncertainty value, by means of equation (3); thus, given N training samples, we

obtain a vector of N uncertainty values, referred to as u⃗j in Figure 1(c);

(ii) K-means clustering algorithm is applied on the vector u⃗j , which gathers

the uncertainty values corresponding to the training images. We set K = 2,

since the low-uncertainty and the high-uncertainty clusters should represent the

meaningful and spurious clusters, respectively. To avoid converging to a local

minimum, we leverage a k-means++ initialization scheme Arthur & Vassilvitskii

(2006). After applying K-means, the difference between the two clusters’ sizes

is computed and normalized upon the total number of training samples. Hence,

after j training epochs, we obtain a signal δ made of j such values, whose

evolution over time can be exploited to estimate the stability of the clustering

at the given epoch. That is, the more stable δ is over the epochs, the lower the
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number of samples that are re-assigned to a different cluster, and hence, the

more stable the clustering;

(iii) At this stage, we need a quantitative stability criterion to stop the Wise’s

training. First, δ is low-pass filtered via a median filter with a window size of

11. Second, the standard deviation is computed over a sliding window of size

40 and a stride of 1, obtaining the signal referred to as std(∆) at the bottom

of Figure 1(c)). To decide on the stability of the clustering at epoch ej , and

hence on whether to stop the training, std(∆) is imposed a threshold STDTh,

which is set to 0.01 (see Figure 1 (a)). In other words, we stop the training

of the Wise if more than 99% of the training samples are stably assigned to

the same cluster for 40 consecutive epochs. At inference time, the centroid of

the spurious cluster will be exploited as an uncertainty threshold, referred to as

UTh, in order to identify the samples upon which the model’s prediction is not

sufficiently confident.

3.3. The Wise & the Wiped: classification

While providing a framework to estimate prediction uncertainty, standard

BCNNs are often less accurate than their deterministic counterparts at inference

time Shridhar et al. (2019); Ponzio et al. (2020). To address this issue, as it

can be gathered from Figure 2, in our model both the Wise and the Wiped

take part in the inference phase. Given a classification task involving C classes

and a generic test sample x∗, the Wise initially computes the corresponding

uncertainty u∗ through equation 3. Then, u∗ is compared with the threshold

UTh, identifying x∗ either as a confident or a not-confident prediction. Beside

this first categorization, the Wiped will also assign a classification label in the

range [1, C] to x∗.

4. Experimental Analysis

In this Section we present the experimental validation of our W2WNet. In

the following subsections, we provide (i) a detailed description of the datasets
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Figure 2: Overview of the inference phase of the proposed architecture.

employed to characterize W2WNet, exploiting widely used public benchmarks;

(ii) a description of the experimental setup, including all hyper-parameters tun-

ing and learning strategies; (iii) the characterization of W2WNet in terms of

data cleansing capability; (iv) the assessment of W2WNet ’s classification per-

formance, in comparison with state-of-art counterparts; (v) a real-world case

study involving histopathological image classification.

4.1. Benchmarks description

So far, there is no agreed upon benchmark protocol to evaluate learning

methods in the way they handle measurement and labelling noise. Therefore,

following the path of previous literature, we started from two well-known public

datasets, the MNIST LeCun et al. (1998) and the CIFAR10 Krizhevsky et al.

(2009), and we artificially corrupted such datasets in a controlled way. By doing

so, we tried to replicate different types of real-world noisy scenarios:

(i) Labelling noise (labels from a different classification task).

In text processing, handwritten character classifications are typical main-

stream tasks for CNNs. The MNIST dataset, that is made of 60000 black

and white images of handwritten digits (0 to 9), was corrupted by adding

a controlled percentage of alien samples randomly extracted from the EM-

NIST dataset Cohen et al. (2017), which contains handwritten alphabeti-
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cal characters. Hence, the resulting corrupted dataset, referred to as Sp-

MNIST, contains either digits (that are still the majority of the images)

and letters, all with a white foreground and black background. By doing

so, we simulate a real-world situation where a pre-processing pipeline may

produce spurious samples to a downstream classifier that was specifically

trained on digit classification, due to text parsing errors. This scenario

is similar to any other instances of data corruption, where the spurious

samples share the same characteristics of the meaningful ones in terms of

color range and encoding, but belong to different classifications tasks (in

this case, digits and alphabets).

(ii) Labelling and measurement noise (labels from the same classification task).

As anticipated in Section 1, in natural image classification, datasets may

be corrupted by both labelling and measurement noise. Mislabelling may

sometimes occur due to errors during the automatic collection of a large

amount of annotations from the Internet (for example, by extracting tags

from the surrounding texts or keywords from search engines). On the other

hand, measurement errors can always occur because of problems with ac-

quisition and storage of the images. To simulate such scenarios, we used

the CIFAR10 dataset, which consists of 50000 32x32 RGB images of 10

classes of natural objects. As regards to labelling, the dataset was artifi-

cially corrupted by two different types of noise patterns: symmetric and

pair. In the former, original labels are randomly flipped to another label.

In the latter, labels are systematically flipped to the subsequent one. Both

the patterns are well know in literature, as they are experienced in several

image classification tasks Köhler et al. (2019). As regards to measurement

noise, we picked a random pool of images from CIFAR10 and applied three

different types of transformations: (i) blurring, via a median filter with

kernel size 11; (ii) random cropping; (iii) random scaling. Even in this

case, such image degradation is widely reported by literature, and known

to be troublesome for CNN learning in many classification tasks Dodge
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Dataset
Train Test

Meaningful Spurious Meaningful Spurious

MNIST 60000 - 10000 -

Sp−MNIST − 10 60000 6000 10000 1000

Sp−MNIST − 20 60000 12000 10000 2000

Sp−MNIST − 30 60000 18000 10000 3000

Mixed−MNIST − 10 60000 - 10000 1000

Mixed−MNIST − 20 60000 - 10000 2000

Mixed−MNIST − 30 60000 - 10000 3000

CIFAR10 50000 - 10000 -

Sp− CIFAR10− 10 50000 5000 10000 1000

Sp− CIFAR10− 20 50000 10000 10000 2000

Sp− CIFAR10− 30 50000 15000 10000 3000

Mixed− CIFAR10− 10 50000 - 10000 1000

Mixed− CIFAR10− 20 50000 - 10000 2000

Mixed− CIFAR10− 30 50000 - 10000 3000

Table 1: Validation benchmarks: number of images

& Karam (2016). As a result of our artificial corruptions, in the final

dataset, referred to as Sp-CIFAR10, a known subset of images are either

given a wrong label (which, differently from the previous case, belongs to

the same classification task of the original dataset), or altered in terms of

image definition, scale and dynamic range.

To push the capabilities of our methodology to its limits, for both the above-

mentioned settings, we introduced increasing amount of spurious samples (re-

spectively, 10, 20 and 30% of the size of the original dataset). A full character-

ization of the obtained validation datasets is reported in Table 1. In this table,

each dataset is referred to as [Sp]− name− [N ], where the Sp prefix indicates

the presence of spurious samples, name is the acronym of the original dataset

and N is the percentage of spurious samples with respect to the total size of the

corresponding original dataset.

Finally, to characterize the capability of W2WNet of dealing with images af-

fected by a perturbation that is not known at training time, we run experiments

with so-called Mixed datasets, hereafter referred to as [Mixed]−name− [N ]. In

this experimental configuration, only the test set is corrupted, while the train-
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ing is the original one from the public benchmark. Again, N is the percentage

of spurious samples with respect to the total size of the corresponding original

dataset.

4.2. Experimental setup

As already anticipated, the Wise and Wiped modules are respectively a

Bayesian and a deterministic DenseNet121 model. Before being fed to the

Wise, which is randomly initialized, the training samples are pre-processed by

zero-centered normalization. The Wise is trained with Stochastic Gradient De-

scent (SGD), setting weight decay to 0.001. As previously demonstrated in

He et al. (2019), the batch size and learning rate ratio are typically dataset-

dependent, and should be carefully controlled to achieve a good generalization

ability. Hence, in our work we empirically set the learning rate to 0.1 and

0.01, and the batch size to 64 and 256, respectively for the datasets derived

from MNIST and CIFAR10. Lastly, the number of training epochs of the Wise

model is self-optimized as explained in Section 3. We apply the same parame-

ters values also to the Wiped module, which is trained on the only meaningful

samples as pre-identified by the Wise, with the only difference that the number

of epochs is fixed and equal to 100.

4.3. Data cleansing capability

As a matter of principle, our W2WNet should follow four fundamentals: (i)

if spurious samples are present, it should remove as many of them as possible

(i.e. high sensitivity); (ii) the number of meaningful samples that are mistakenly

removed should be as few as possible, as they might be essential for the training

of the model (i.e. high specificity); (iii) it should be able to handle dataset that

do not contain any spurious samples (that is the ideal case), and possibly leave

them untouched; (iv) it should be able to handle spurious samples at inference

phase, even though such type of noise was not seen during the training. To assess

all the mentioned specifications, we trained and tested our W2WNet both on

the corrupted datasets (i.e. the ones with the Sp and Mixed prefix in Table 1)
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as well as on the corresponding original ones, in the exact configuration of their

reference papers.

In Figure 3 we show the results of our experiments. The plots show the

percentage of images removed per dataset, averaged upon the different classes

(the error bars represent the standard deviation among the classes), separately

for the training and for the test phase. In the former case, removed images

means that the model tagged them as spurious and hence removed them from

the training set. In the latter case, the trained model tagged them as spurious

at inference time.

Figure 3(a) and (c) report the percentage of spurious samples which were

correctly identified and removed (i.e. the sensitivity of the model), respectively

from the corrupted Sp datasets and from the Mixed ones. Figure 3(b) and (d)

report instead the number of meaningful samples mistakenly tagged as spurious

on the same datasets. Lastly, Figure 3(e) shows the number of meaningful

samples that were mistakenly tagged as spurious in the original versions of the

dataset. As mentioned earlier, the lower these numbers, the higher the specificity

of the model.

As it can be gathered fromFigure 3(a) and (c), W2WNet was able to remove

at least 27% and at best 70% of the spurious images, when considering both

the training and the test sets. Apart from the training of the Sp− CIFAR10,

where it is possible to see a decreasing trend of the bars, the performance was

quite stable at increasing number of spurious samples. The relation between the

sensitivity on the training and test sets was different for the two applications:

higher on the training than on the test set for the Sp − CIFAR10 datasets,

the opposite for the Sp − MNIST ones. Also the test folds of the Mixed −

CIFAR10 datasets present a higher sensitivity than the Mixed−MINST ones.

Remarkably, W2WNet was able to remove 27% to 50% of the spurious samples

even in the most challenging Mixed datasets, where the training set did not

contain any of such noisy examples.

As it can be gathered from Figure 3(b) and (d), W2WNet proved to be rea-

sonably specific for both the corrupted Sp datasets and the Mixed ones, remov-
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Figure 3: W2WNet removal rates in the validation datasets (error bars represent

standard deviation among different classes).

ing as little as 17% of meaningful samples in the worst case (SP −CIFAR−30)

and almost 0% in the best case (SP−MNIST ). Interestingly, for all the Mixed
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(a) (b)

Figure 4: Examples of images tagged as spurious from MNIST (a) and CIFAR

(b).

configurations the amount of meaningful samples removed was higher in the

training set compared to the test set.

Finally, by looking at Figure 3(e), the number of meaningful images that

were on average mistaken as spurious in the original datasets were 5 and 10%,

respectively in MINST and CIFAR10. A more thorough analysis revealed that

in both cases these samples are very ambiguous images, that a human observer

can hardly ascribe to any of the training categories (see Figure 4). Hence,

tagging such images as spurious is totally reasonable, and more importantly,

it does not have a negative impact on the training, as will be showed later

on. Overall, W2WNet is reasonably sensitive and specific in the identification

of spurious samples, and the reliability of the uncertainty measure, associated

with the final prediction, is proved by the shown results. Furthermore, W2WNet

seems to be adequately sensitive and specific also in the detection of spurious

samples of the Mixed dataset, where both measurement and labelling noise were

unknown during the training phase.
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4.4. Classification performance

At last, to assess the effectiveness of our solution in terms of positive impact

on the classification performance, we compared W2WNet against a canonical

deterministic counterpart on all the datasets reported in Table 1. For this

purpose we used a deterministic DenseNet121 model, as it is also the backbone

of our W2WNet architecture, and hence it is totally equivalent to our model in

terms of depth and classification potential. For the training of the deterministic

CNNs, we set the hyper-parameters as described in Section 4, with the only

difference of having set the MC dropout rate to zero.

As already anticipated in Section 1, to the best of our knowledge, there is

no published literature on deep learning methods addressing measurement and

labelling noise coexisting together. Nonetheless, to better contextualize our val-

idation, besides our approach and its deterministic counterpart, we also provide

results obtained by representative algorithms facing either measurement or la-

belling noise. For the former category, we tested the methodology by Roy and

colleagues Roy et al. (2018), which leverages on a not trainable low-pass filter-

like CNN layer to reduce the impact of image degradation on the classification

performance. For the latter, we put into effect the work by Kohler et al., in

the configuration made up of a single MC droput-based classifier with 25 for-

ward passes Köhler et al. (2019). For a fair comparison, both the methods were

implemented using a DenseNet121 model as the backbone.

The results of our experiments are reported in Figure 5, where we show

the mean classification accuracy obtained by the four models (our W2WNet, a

deterministic DenseNet121, ad the two literature data cleansing approaches).

As it can be observed from the plot, for all the approaches, the mean classi-

fication accuracy decreases at increasing number of spurious samples affecting

the dataset (from 10 to 30 %, see also Table 1). This is absolutely consistent

with previous literature Köhler et al. (2019). When considering the corrupted

datasets, our W2WNet outperforms the deterministic DenseNet121 of a value

between 5% and 10%. In addition, W2WNet overcomes both the baseline lit-

erature solutions, which both behave similarly to DenseNet121. This is not
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Figure 5: Mean accuracy of W2WNet compared with representative works from

literature. Error bars represent standard deviation of values among different

classes.

surprising, as both methods are specifically tailored to address one type of noise

solely. By a lesser margin, the accuracy of our W2WNet was the highest even

in the non-corrupted datasets.

4.5. Real-world case study: histological images classification

Histological image analysis is the gold standard for the diagnosis and gauging

of large number of cancers Ponzio et al. (2019). Typically, when there is a sus-

picion of cancer, the patient goes through a biopsy, where a thin layer of tissue

sample is resected, fixed on a slide, and stained (for example, by Hematoxylin

and Eosin). Then, the pathologist analyzes the slide on the microscope looking

for malignancies, which commonly cause alterations of the normal tissue archi-

tecture. The recent diffusion of digital scanners imposed the transition from

standard histological slides to very large born-digital multi-resolution images

called Whole-Slide Images (WSIs, see Figure 6(a)), whose typical size may be

100, 000× 100, 000 pixels. This is rapidly changing the workflow of clinical lab-

oratories Farahani et al. (2015): the traditional visual evaluation of the samples
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directly under the microscope is progressively shifting to Computer-Aided Di-

agnosis (CAD) systems, encouraging a complete automatization of downstream

image analysis.

Recently, researchers have shown an increased interest in applying DL tech-

niques (most often based on CNNs) to the automated assessment of the WSIs.

Nonetheless, obtaining good quality training sets for the CNNs is an extremely

cumbersome task, involving a number of steps: (i) manually dividing each WSI

into regions of interest (ROIs), that should be homogeneous in terms of tissue

architecture; (ii) manually labelling ROIs, based on the tissue category (e.g.

cancer vs no-cancer, see Figure 6(b)); (iii) cropping ROIs into a regular grid

of small tiles, that can be fed into a CNN together with their corresponding

label (the same of the corresponding ROI, Figure 6(c)). Due to image artifacts,

imprecision in the ROI delineation, or non-homogeneous content of the ROIs,

the outcome of this procedure is typically a dataset which may contain a large

amount of spurious tiles: that is, a significant number of tiles may have a content

that is either too blurred (measurement noise) or unrelated to the label they

were associated to (labelling noise), and then potentially harmful for the train-

ing of the CNN. For example, in Figure 6(e), a number of tiles labeled as cancer

contain a prevalence of background glass, which is obviously not meaningful to

the cancer category. This makes it a significant case-study for the exploitation

of our W2WNet.

More specifically, in our experiments we refer to the same case study de-

scribed in our earlier work Ponzio et al. (2020), focused on Colorectal Cancer

(CRC) categorization. In this case, the classes of interest are three: (i) Ade-

nocarcinoma (AC), corresponding to recognizable CRC; (ii) Tubulovillous ade-

noma (AD), a precursive lesion of CRC, and (iii) Healthy tissue (H). As detailed

in Ponzio et al. (2020), downstream of the automated ROI cropping and labelling

procedure represented in Figure 6, a total number of 19644 non-overlapping an-

notated tiles were obtained from 27 different WSIs. After ad-hoc re-examination

of the tiles by a pathologist, 6144 of them were tagged as spurious, as the pre-

vailing content of such slides (either blood vessels, adipose cells, background
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Figure 6: Automated generation of a digital patholohy dataset to train CNNs.

(a) Whole Slide Image (WSI). (b) Identification and labelling of homogeneous

Regions of Interest (ROIs). (c) Cropping ROIs into small tiles, which are all

given the same label of the originating ROI. (d) Meaningful tiles (e) Spurious

tiles (that is, tiles whose content is not fully representative of the given label).

glass or stroma, see figure 6(e)), was not deemed meaningful to any of the three

classes of interest.

For training and testing purposes, we exploited a five-folds cross-validation

strategy. To ensure a complete independence of the folds, taking into account

the intrinsic variability among different subjects that is typically recognized in

digital pathology Ponzio et al. (2019), we made sure that train and test folds in

each repetition of the cross-validation are non-overlapping in terms of patients.

The results of our experiments are shown in Figure 7, where the error bars

represent the standard deviation of accuracy values among different folds. As

it can be gathered from the left plot, W2WNet was able to identify about

89% and 59% of the spurious samples from training and test set respectively,

with a reasonable standard deviation among the five different repetitions of the

cross-validation process. The impact on the classification accuracy is shown on

the right plot, where we compare the mean classification accuracy of W2WNet

with: (i) the one obtained by its deterministic counterpart, a DenseNet121 CNN,

trained from scratch with learning rate set to 0.0001 and SGD optimizer; (ii) the

state-of-the-art literature solutions already discussed in the previous paragraph.
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Figure 7: Removal rate of spurious samples with W2WNet (left) and classifica-

tion accuracy comparison of W2WNet, DenseNet, and the baseline counterparts

on the CRC dataset. Error bars represent standard deviation of the mean accu-

racy values among the different folds configuration in the 5-fold cross-validation

setting.

Even in this case, the accuracy of our W2WNet was higher on average by about

10%.

5. Conclusions

Unfortunately, measurement and labelling noise are unavoidable in many

real-world applications of CNNs. On the one hand, the training phase of a

CNN may be affected by many types of image degradation, due to problems

of acquisition, encoding or storage, and mislabelling, due to faults of the man-

ual annotation or of the automated labelling systems. On the other hand, at

inference time, a CNN that was trained on a good quality dataset may be fed

with low-quality images, that are completely unrelated to the ones the model

was trained on. Even in such cases, a standard CNN is neither able to provide

a correct prediction, nor to communicate its impossibility to provide a reliable

answer.

To address this issue, in this paper we proposed W2WNet, a CNN archi-

tecture exploiting Bayesian probabilistic inference to i) identify the peculiar

distribution of spurious samples in a dataset, that may be affected by both

measurement and labelling noise; ii) clean the training dataset from the spuri-
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ous samples and focus the learning strategy on the only meaningful ones; iii) at

inference time, provide a statistically well-founded measure of prediction confi-

dence on the new inputs, clearly identifying the ones on which the network is

too uncertain.

Our experiments on MNIST and CIFAR10 datasets, artificially corrupted by

a controlled number of spurious samples, has shown that W2WNet can cope well

with measurement and labelling noise, both in terms of sensitivity and specificity

in the identification of the spurious samples. As an effect of this, W2WNet

improves on the classification accuracy of a DenseNet121 CNN, which is the

deterministic counterpart of our classifier, as well as of state-of-the-art methods,

which are tailored to one specific type of noise. On top of that, we found that

W2WNet outperformed the other techniques even in the classification of non-

corrupted datasets (i.e. original MNIST and CIFAR10), thanks to its capability

of discarding a limited number of ambiguous images from such datasets.

Ultimately, we evaluated W2WNet in a real-world case study from medi-

cal image analysis, that is the classification of histological samples from WSIs.

Even in this case, W2WNet was able to handle the presence of several spuri-

ous samples, that were generated by a typical dataset generation pipeline in

digital pathology Ponzio et al. (2020), and improve on the performance of the

DenseNet121.

In conclusion, we believe that our findings have important implications for

the proficient exploitation of DL models in many real-world settings, where

the presence of image quality and labelling issues typically challenge the use of

classic CNN architectures, both during the training and the inference phase.
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