POLITECNICO DI TORINO Repository ISTITUZIONALE

Packet Utilisation Standard and Mission Operations: a Service Frameworks Comparison

Original

Packet Utilisation Standard and Mission Operations: a Service Frameworks Comparison / Gagliardini, LORENZO MARIA. - (2021). ((Intervento presentato al convegno Aerospace PhD Days.

Availability: This version is available at: 11583/2971676 since: 2022-09-23T12:49:07Z

Publisher: MUL2

Published DOI:

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Lorenzo Gagliardini Politecnico di Torino, ITALY

Packet Utilisation Standard and Mission Operations: a Service Frameworks Comparison

Politecnico di Torino- STAR Team

STAR Team: Undergraduate and PhD students led by Prof. Sabrina Corpino

Main Topic: CubeSat

Research areas:

- Aerospace mission and system design
- Space system Assembly integration
- Functional verification
- Technology development

Main facilities:

- CubeSat Concurrent Design Facility
- Clean room ISO 7
- Laminar Flow Bench ISO 5
- Ground Control Station for CubeSat

Service Oriented Architectures (SOA)

	Ground systems	Spacecraft	
Application Level	High level service consumer	High level service provider	
• Service Level	High Level Service Common SM&C Service	High Level Service Common SM&C Service	
Communication Level	Communications	Communications	

□ Each Application Process constitutes a separate entity

□ The applications/components rely on the service level to exchange data

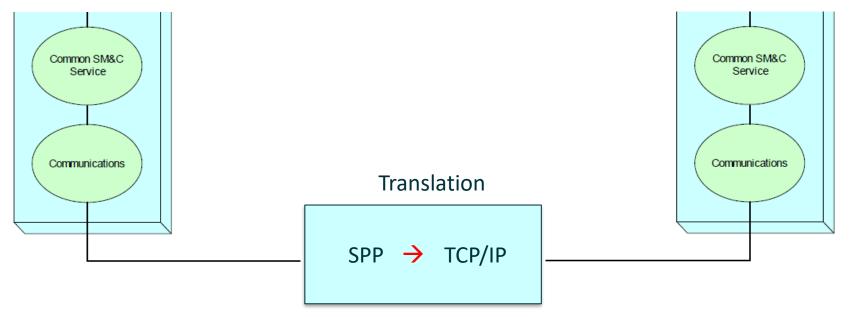
No common standard for conceiving the On-board elements

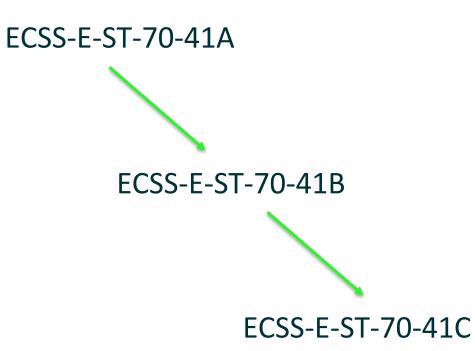
Both ECSS Packet Utilisation Standard and CCSDS Mission Operations define the features of this layer, in terms of:

□ The type of information

□ The intrinsic semantic of the information

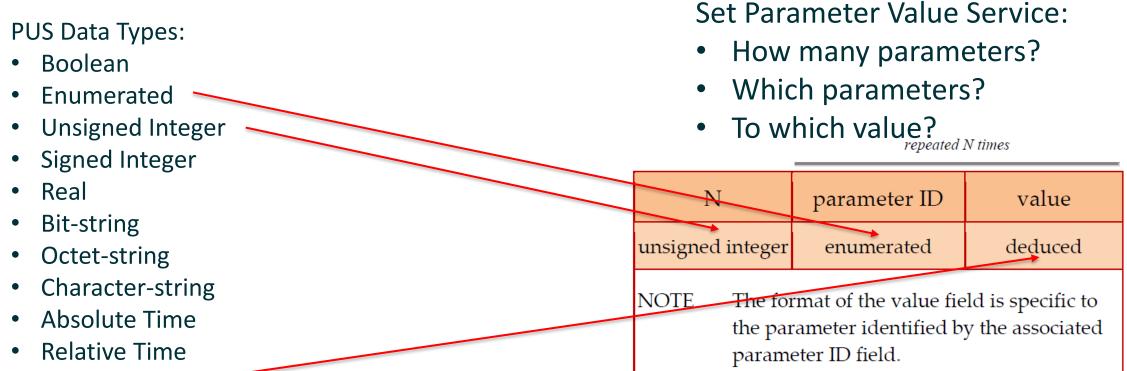
□ The communication behaviours with other application processes




The Communication level allows the translation:

Service specific information (e.g. Parameter Setting)

Protocol consistent structure



service type				
name	ID			
request verification	1			
device access	2			
housekeeping	3			
parameter statistics reporting	4			
event reporting	5			
memory management	6			
(reserved)	7			
function management	8			
time management	9			
(reserved)	10			
time-based scheduling	11			
on-board monitoring	12			
large packet transfer	13			
real-time forwarding control	14			
on-board storage and retrieval	15			
(reserved)	16			
test	17			
on-board control procedure	18			
event-action	19			
parameter management	20			
request sequencing	21			
position-based scheduling	22			
file management	23			
Note: The reserved service type identifiers w	ere used in previous			
versions of this Standard. This Standard no l of these service types but does not preclude	· ·			
implementations are reused for new missions.				

□ The service message structure reflects the semantic of the servicespecific information

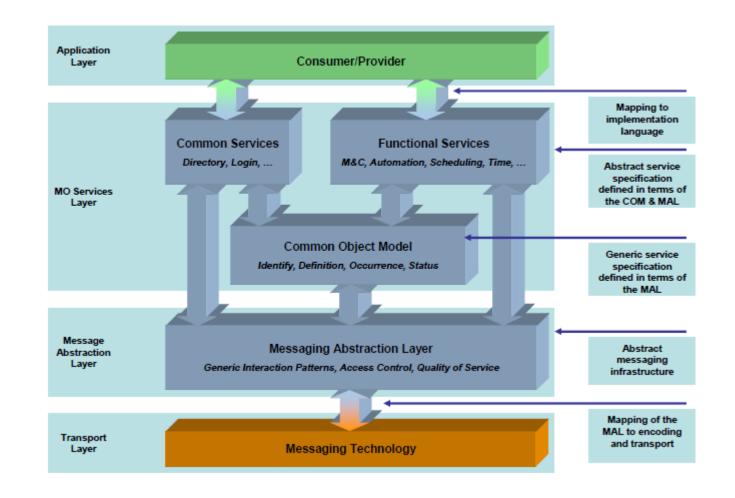
- Deduced
- Packet

Marked distinction between:

□ On-board processes

□ Ground-based processes

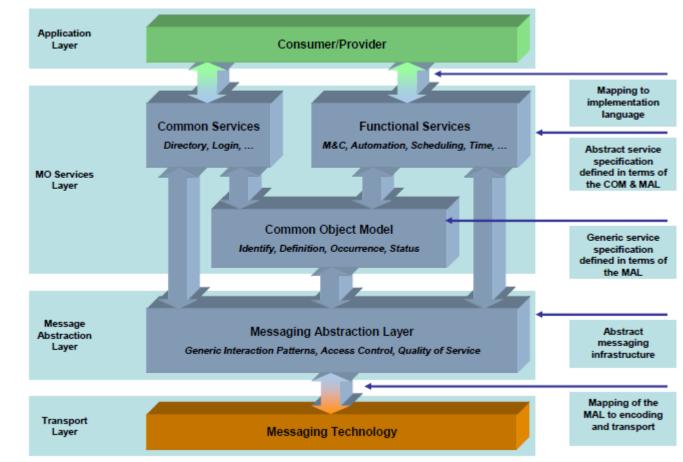
This Standard promotes using space packets compliant to the CCSDS space packet protocol to transport the PUS messages. It does not prescribe the protocol used to transport requests initiated on-board and reports destined for on-board.


□ A **"telecommand packet"** is the data unit that is used to carry a service request from an application process on the ground to an application process on-board

□ A "telemetry packet" is the data unit that is used to carry a service report from an application process on board to an application process on the ground.

Reduced heritage if compared with PUS

Marked subdivision within the service layer

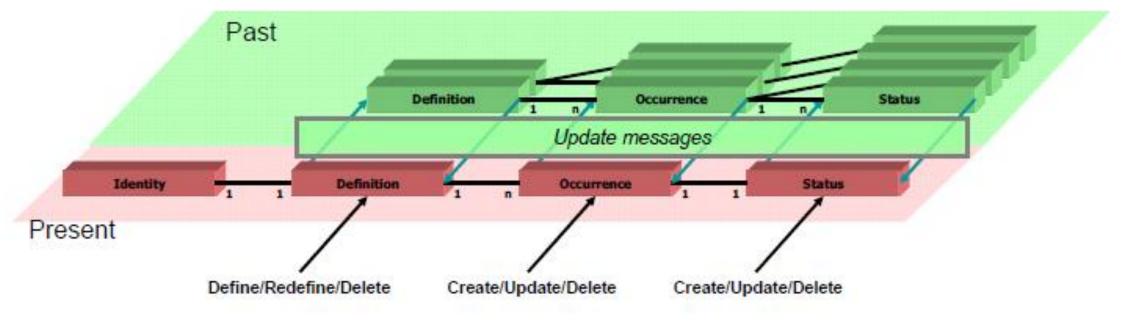

The Message Abstraction Layer (MAL) is responsible

for the definition of:

□Interaction patterns

Data types as basis for data structures

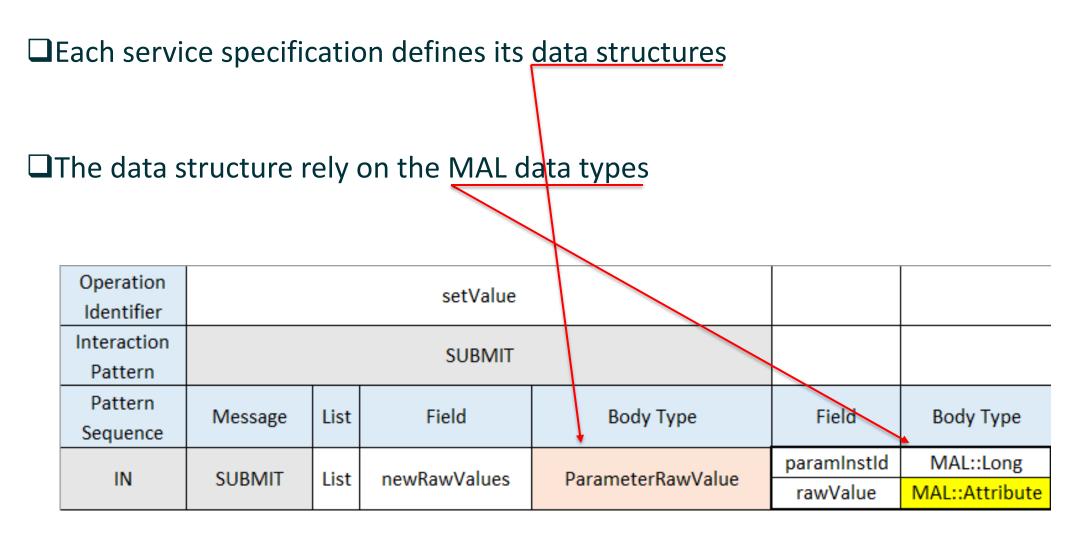
Abstract definition of the message header



The Common Object Model (COM) defines:

□ How object refer to each other

□ The rules for managing service objects


 No distinction between on-board and ground-based processes

 Interaction patterns composed by message sequences

Service message structure

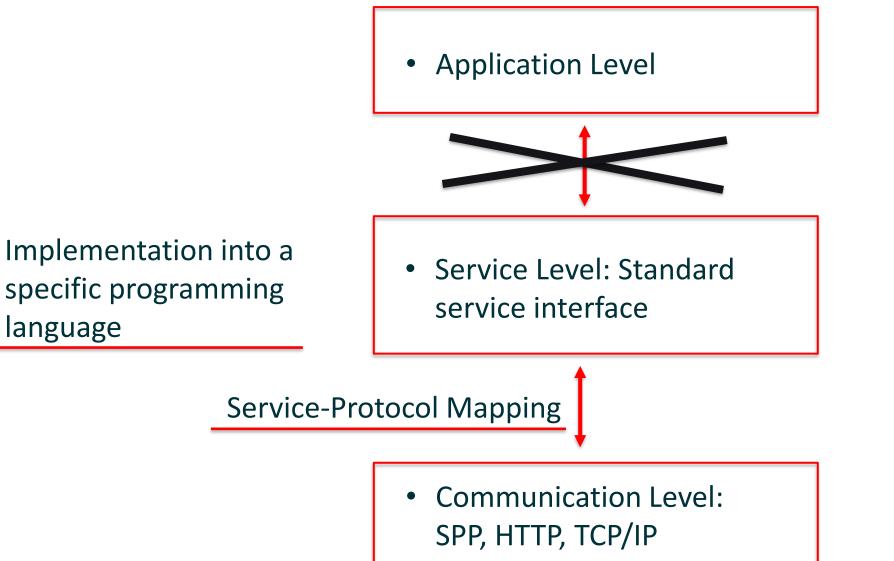
Field	Туре	Value	
URI From	URI	Message Source URI	
Authentication Id	Blob	Source Authentication Identifier	e Packet Protocol
URI To	URI	Message Destination URI	
Timestamp	Time	Message generation timestamp	
QoSlevel	QoSLevel	The QoS level of the message	
Priority	UInteger	The QoS priority of the message	
Domain	List <identifier></identifier>	Domain of the message	TCP/IP
Network Zone	Identifier	Network zone of the message	
Session	SessionType	Type of session of the message	
Session Name	Identifier	Name of the session of the message	
Interaction Type	InteractionType	Interaction Pattern Type	
Interaction Stage	UOctet	Interaction Pattern Stage	HTTP
Transaction Id	Long	Unique to consumer	
Service Area	UShort	Service Area	
Service	UShort	Service	
Operation	UShort	Service Operation	
Area version	UOctet	Areaversion	••
Is Error Message	Boolean	'True' if this is an error message; else 'False'	

Conclusions

ECSS PUS:

- □ High heritage
- Limited standardisation span
- □ Too prescriptive in single parts
- Heavy documentation
- Which leads to:
- Difficulties in adaptation
- Need for very high expertise

CCSDS MO:


□ Limited presence in the market

Independency from:

- Transport protocol
- □ Implementation language
- Which allows:
- □ Migration of platform
- □ Software reuse
- □ Separation of concerns

Next Steps

Thank You