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Abstract—Several strategies are available for solving the in-
verse source problem in electromagnetics. Among them, many
have been focusing in retrieving Love currents by solving, after
regularization, for Love’s electric and magnetic currents. In this
work we present a dual-element discretization, analysis, and
stabilization of an inverse source formulation providing Love
data by solving for only one current. This results in substantial
savings and allows for an effective quasi-Helmholtz projector
stabilization of the resulting operator. Theoretical considerations
are complemented by numerical tests showing effectiveness and
efficiency of the newly proposed method.

I. INTRODUCTION

Inverse source strategies based on external measurements
are widely used for several applications including antenna di-
agnostics and near-field (NF) to far-field (FF) transformations.
These methods are challenging because of the ill-posedness
of the radiation operator. The different approaches present
in literature can be divided into two categories: methods
that consider both electric and magnetic currents and deal
with the null-space introduced by enforcing an additional
constraint to the solution—often the Love (or zero-field inside)
condition [1]—and strategies that partially reduce the space
of solutions by restricting the unknowns to a single type of
current [1], [2]. In both cases, the Love conditions can be
enforced. While the Love constraints have no impact on the
reconstruction of the FF, their enforcement can be useful for
diagnostic purposes and can be performed either explicitly
or implicitly by leveraging an approximation of the Steklov-
Poincaré operator [2].

In this work we propose a scheme falling in the second
category that targets the reconstruction of only one of the two
Love currents. Differently from previous works, however, we
propose a single source approach that does not rely on any
approximate impedance condition, but directly targets a stable
discretization of the Steklov-Poincare operator that leverages
on dual elements. This has two advantages: in addition to
providing Love currents without scattering approximations, it
enables the stabilization of the formulation at lower frequen-
cies. A second contribution of this work is, in fact, a low-
frequency stabilization of the Steklov-Poincaré operator based
on quasi-Helmholtz projectors. The effectiveness of the new
schemes is validated both by theoretical considerations and by
numerical results that show the relevance of the methods in
real case scenarios.

II. NOTATION AND BACKGROUND

Let Γ be a closed, simply connected surface surrounding
an electric source. By means of the equivalence theorem,
equivalent electric and magnetic surface currents densities J
and M can be obtained on Γ that radiate the same external
field as the original source. We define the operators

T (J)(r) = k Ts(J)(r) + k−1 Th(J)(r) , (1)

K(J)(r) = −n̂r × p.v.

∫
Γ

∇× eik|r−r′|

4π |r − r′|
J(r′) ds′ (2)

with Ts(J)(r) = in̂r ×
∫
Γ

eik|r−r′|
4π|r−r′|J(r

′) dr′, Th(J)(r) =

in̂r × ∇
∫
Γ

eik|r−r′|
4π|r−r′|∇s · J(r′) dr′, and where k is the

wavenumber and n̂r is outside pointing normal vector at r ∈
Γ. Let P+ and P− be respectively the external and the internal
Calderón projectors that satisfy the property P−P+ = 0, from
which we obtain that

P−
[
−M e

η0J
e

]
=

[I
2 +K −T
T I

2 +K

] [
−M e

η0J
e

]
= 0 (3)

where M e and Je are Love magnetic and electric currents on
Γ (radiating zero-fields inside and the original field outside).
Given a second measurement surface Γm external to Γ, we
denote by

R =

[
−Kr Tr
−Tr −Kr

]
(4)

the tangential projection of the radiation operator that defines
the relation between the currents on Γ and the tangential elec-
tric and magnetic fields (n̂r×E, n̂r×H) on the measurement
surface Γm, with Tr = T . The operator Kr is similar to K
without the principal value. The corresponding linear system
is

R
[
−M
η0J

]
=

[
n̂r ×E

η0n̂r ×H

]
. (5)

III. A STABLE DISCRETIZATION OF THE
STEKLOV-POINCARÉ OPERATOR

In a general inverse source setting, current sources can be
recovered by pseudo-inverting (or iteratively pseudo-inverting)
the discretized counterpart of R in (5) and to which additional
equations are added to enforce the Love condition [1]. In this
work, instead, we consider a single row of (4) (e.g. the first
row, related to the electric field) and we formally solve for
one of the currents which yields the equation(

−Kr − Tr
(
I
2
+K

)−1

T

)
(−M) = n̂r ×E , (6)



where
(I
2 +K

)−1 T is the Steklov-Poincaré operator. Equa-
tion (6) can, upon discretization, be pseudo-inverted using a
Moore-Penrose pseudo-inverse to obtain the magnetic Love
current. In practice, however, the stable discretization of (6)
cannot be achieved by only using the well known Rao-Wilton-
Glisson (RWG) functions. One possibility is to rely on an
approximation of the Steklov-Poincaré operator as is done
in [2]. Here we will follow a different approach based on
dual elements which, in addition to providing a consistent dis-
cretization of the operator, will also allow for its stabilization
with quasi-Helmholtz projectors as will be discussed in the
next section. After approximating the geometries of Γ and of
Γm with meshes of triangular elements with Ne and Nm edges
respectively, the discretization we propose is(

−Kr − Tr (G/2 +K)
−1

T
)
(−m) = e (7)

where [e]m = ⟨n̂r × gm, n̂r ×E⟩Γm
, M(r) ≈∑Ne

n=1 [m]n fn(r), f(r) are the RWG basis functions
(defined without edge normalization), g(r) are the
Buffa-Christiansen basis functions (see [3] for their
definition), and where [Kr]ij =

〈
n̂r × gi,Krf j

〉
Γm

,
[Tr]ij =

〈
n̂r × gi, T gj

〉
Γm

, [G]ij =
〈
n̂r × f i, gj

〉
Γ

,
[K]ij =

〈
n̂r × f i,Kgj

〉
Γ

, and [T]ij =
〈
n̂r × f i, T f j

〉
Γ

,
with ⟨a, b⟩Γ =

∫
Γ
a(r) · b(r) ds. After solving (7) and

recovering m, the other Love current can be obtained by
applying the Steklov-Poincaré operator once more.

IV. LOW-FREQUENCY STABILIZATION

The operator in (7) (as well as the original system (5))
is affected by low frequency breakdown, i.e. its condition
number increases as the frequency decreases, leading to the
insurgence of numerical errors. The stabilization we propose
is based on Quasi-Helmoltz projectors that are defined as
PΣ = Σ(ΣTΣ)+ΣT, PΛH = I − PΣ, PΛ = Λ(ΛTΛ)+ΛT,
and PΣH = I − PΛ, where Λ and Σ are respectively the
loop- and the star-decomposition matrices defined in [4], and
+ denotes the Moore-Penrose pseudo-inverse. The stabilized
equation reads

M
(
−Kr − (Tr (G/2 +K)

−1
T
)
Mx = Me (8)

where Mx = −m, M = 1/
√
kPΛH + i

√
kPΣ and M is the

same as M with the roles of Λ and Σ exchanged. We have
to omit the technical details for the sake of conciseness, but
we can rigorously prove the stabilization by leveraging the
cancellations of Th on the solenoidal subspaces, the mutual
orthogonality of loop and star coefficients, and finally on our
proof of the property limk→0 ∥PΛ (G/2 +K)

−1
PΣ∥ = 0.

V. NUMERICAL RESULTS

The effectiveness of the approach we proposed has been
verified by imaging an electric dipole oscillating at 3.16GHz
located in the center of a spherical equivalent surface Γ
with a radius of 4 cm. First, the equivalent currents have
been reconstructed from the fields scattered by the dipole at
a distance of one wavelength from Γ; these currents have
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Fig. 1: Relative error of the reconstruction of the fields over the
distance from the equivalent surface in terms of wavelength.
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Fig. 2: Condition number of the stabilized operator in function
of the frequency.

then been radiated on several concentric spherical surfaces
with increasing radii. The error of the reconstructed fields
with respect to the ones obtained from the dipole is depicted
in Fig. 1 and clearly show that the Steklov-Poincaré-based
approach achieves similar results in the reconstruction of the
fields with respect to the popular standard formulation—based
on the solution of (5) with Love constraints—despite being
involving a significantly smaller linear system. Furthermore
we verified that the condition number of the stabilized operator
evaluated at the pseudo-inversion threshold does not increase
when the frequency decreases (Fig. 2), showing that the new
method is free from low frequency conditioning breakdown.
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