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Deep neural learning based 
optimization for automated high 
performance antenna designs
Farzad Mir1, Lida Kouhalvandi2 & Ladislau Matekovits3,4,5*

The present paper introduces an optimization-oriented method here practiced for designing high 
performance single antennas in a fully automated environment. The proposed method comprises two 
sequential major steps. The first one devotes configuring the shape of antenna and determining the 
feeding point by employing the bottom-up optimization (BUO) method. In this algorithm, the number 
of microstrip transmission lines (TLs) used to model the radiator is increased consecutively and the 
shape of the antenna is revised up to finding the initial satisfying results. Secondly, for determining 
the best design parameters of the configured antenna shape in the first step (i.e., width and length 
of TLs), deep neural network (DNN) that is based on Thompson sampling efficient multi-objective 
optimization (TSEMO) is applied. The recommended optimization method is successfully attracted 
as a problem solver for designers to tackle the subject for antenna design such as the complexity and 
large dimensions of structures. Hence, the main advantage of the implemented optimization method 
in this article is to noticeably decrease the required designer’s involvement automatically generating 
valid layouts. For validating the suggested method, two wideband antennas are designed, prototyped 
and subjected to experiment. The first optimized antenna covers the frequency band 8.8–10.1 GHz 
(13.75 % bandwidth) characterized by a maximum gain of 7.13 dB while the second one covers the 
frequency band 11.3–13.16 GHz (15.2 %) which exhibits a maximum gain of 7.8 dB.

Antennas become an important part in any hi-tech content device. The technology development has increased 
the need of various types of antennas subject to different constrains set by various considerations extending from 
electromagnetic to thermal going through mechanical or space limits. Due to their remarkable advantages such as 
cost-effective, consolidated effortless fabrication process, reduce space occupation, conformable, satisfactory band-
width (BW), and adequate gain performance, microstrip patch antennas represent the most favorable class of anten-
nas which are mostly used in communication systems1. As world population enjoys a noticeable rise, that in turn 
increases the need of mobile and hand held devices, improvement of antenna performances has been sensed in order 
to provide the appropriate BW and nearly flat and constant gain performance in the operational frequency band(s)2.

One of the major critical design challenges consists of fulfilling the design goals in the considered operation 
BW. Hence, designing and optimizing antennas considering conventional electronic design automation (EDA) 
tools for achieving proper BW and very nearly constant gain would be rather difficult due to the complexity of 
antenna structures. During the last decade, a variety of optimization methods have absorbed the attention of 
designers to tackle the drawbacks of EDA tools in this sense. Some of the various reported optimization methods 
are: surrogate-based optimization3, particle swarm optimization4, spider monkey optimization5, genetic algo-
rithm optimization6,7, and K-nearest neighbor algorithm8. These algorithms are successful set of rules; however, 
due to the complexity of antennas more accurate and advanced multi-objective optimization techniques are 
required for optimizing designs. Recently, neural networks have proved their reliable performance and compe-
tence in modeling high dimensional radio frequency (RF) designs9–14. Deep neural networks (DNNs) in opposite 
to the shallow neural networks (SNNs), include multi layers in their structures that results in more accurate 
performance in the complex and high-dimensional designs9.

To the best of authors’ knowledge, it is for a very first time in the literature where a fully automated optimiza-
tion method is presented for configuring the antenna’s structure and sizing the design parameters, respectively. 
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The automated algorithm includes two main optimization procedures. The first step optimization is for configur-
ing the initial antenna shape using the bottom-up optimization (BUO) method15 where the number of microstrip 
transmission lines (TLs) are increasing sequentially and the suitable feeding point is optimized. And the second 
step of optimization devotes to sizing the antennas and augmenting antenna performances using the DNN-based 
Thompson sampling efficient multi-objective optimization (TSEMO) algorithm16. This algorithm is selected in 
this work due to the successful reductions in the hypervolume calculations16. The regression DNN is applied for 
accurately modeling and enhancing the overall performance and is devoted to synthesizing the final post-layout 
of antenna by applying electromagnetic (EM)-verified fabrication rules.

The present paper is organized as follow: in “Details of the proposed method” the proposed optimization 
method is presented. Section “Practical implementation of proposed automated optimization strategy” is devoted 
to the implementation of the proposed automated-optimization strategy. Section “Fabrication and measurement” 
describes the practical antenna design and verification by applying the proposed method. Fabrication details and 
measurement results are provided in this section. Finally, conclusions are presented in “Conclusion”.

Details of the proposed method
This section provides brief details of the two employed optimization methods for modeling the antenna struc-
ture and sizing the design parameters of the configured antenna, respectively. The design goals are S11 , and gain 
specifications at the whole frequency band that are achieved by sizing the design parameters using our proposed 
method.Constructing the initial antenna shape and optimizing the feeding point are performed by using the 
BUO method while sizing the antenna parameters is achieved with the multi-layer neural network (i.e., DNN) 
using multi-objective optimization method. Here, the theories of these optimization methods are described 
clearly. Whole of the optimization process is automatically executed that results in high performance single 
antenna designs in terms of flat gain and wide BW. Following is the in detail descriptions of proposed method.

Optimizing the initial antenna configuration.  Determining the initial antenna shape is critical which 
paves the way of designers. For this case, the BUO method is employed for configuring the primary antenna 
shape and also for determining the suitable feeding point. In this part, we explain the theory of BUO method in 
detail which automatically generates the initial antenna geometry with feeding point. The summary of employed 
BUO method is provided in Algorithm 1 and Fig. 1 at the end of this section.

Constructing an automated environment.  For minimizing the designers’ interruptions, fully automated optimi-
zation environment is created by the combination of EDA tool such as keysight ADS and the numerical analyzer 
as MATLAB. In this phase, the ADS software works in the background and the MATLAB tool handles the gener-
ated output data from the file namely as spectra.raw17 and does the mathematical analysis.

Employment of the BUO method.  The BUO method is a combination of lower-level components where the 
higher-level design is decomposed into several hierarchical blocks similarly as it is done in a general domain 
decomposition15. Providing the starting point of optimization that represents the general geometry of the sin-
gle antenna is a significant role. Hence, this optimization method is employed where both the single antenna 
configuration with feeding point are determined and optimized. The BUO algorithm considers the fine-tuning 
exploiting the sensitivity of the resonance to the geometrical dimensions. With the help of this method, the 
initial configuration of antenna is generated through BUO method that the number of transmission lines are 
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Figure 1.   Flowchart of employed BUO method for primarily configuring the antenna shape.
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increasing sequentially. All the data (including the width and length of transmission lines) is saved in the output 
file namely as ‘spectra.raw’ file.

As presented in “Constructing an automated environment”, firstly the automated environment that is the 
combination of ADS and MATLAB is created. Afterwards a sample netlist file is created from ADS and then the 
optimization process is initialized. In this algorithm, the number of TLs is increasing continuously and various 
shape of TLs are examined up to achieving primary responses in terms of gain and band frequency. Beside, the 
suitable biasing point is also determined by the help of this algorithm. The output responses are achieved in the 
spectra.raw file and MATLAB is analyzing these generated outcomes. 

Predicting and sizing the antenna parameters using DNN.  After determining the suitable antenna 
configuration, it is time to obtain the optimized design parameters as length (L) and width (W) of included TLs. 
The target of this part is to enhance the flatness of 16gain within the BW. Hence, advanced multi-objective opti-
mization methods are required to deal with multi-objective specifications. In this work, we employ the TSEMO 
algorithm by using the regression DNN. The TSEMO algorithm is selected in this works due to the fast optimiza-
tion process by building the Gaussian process surrogate models and also the ability to evaluate different simula-
tions, in parallel. For applying the TSEMO algorithm the DNN, includes multi-layers and optimal neurons, is 
used which results in accurate antenna modeling. In this section, firstly the theory of the TSEMO method is 
explained and then the procedures for constructing and using the DNN in the multi-objective optimization is 
described, briefly.

Thompson sampling efficient multi‑objective optimization (TSEMO).  TSEMO inference.  After constructing 
the initial configuration of the single antenna, the optimized values for design parameters must be achieved. The 
brief definitions for this algorithm is as following:

The TSEMO algorithm as a multi-objective optimization is defined in (1):

where χ is the design space, x is the decision vector and G is a vector of m objective functions ( gi(x)).
Generally, this algorithm is used in global multi-objective optimization of expensive-to-expensive black-

box functions. It is based on Bayesian optimization (BO) approach that builds Gaussian process (GP). 
The single objective method of TSEMO in BO is to find the accurate global minimizer x∗ of a function 
g(x∗εargminxεχ⊆Rd g(x) ). This single-objective in BO is extended to the multi-objective case. Basically, TSEMO is 
getting points to approximate the pareto optimal front (POF) of the different objective functions. Figure 2 shows 
an example of two objective functions that the final output includes the points that are close to the Pareto set.

(1)minimizexεχ⊆RdG(x) =
[

g1(x), g2(x), . . . , gm(x)
]
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Figure 2.   Example of Pareto front in two-objective optimization.
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TSEMO algorithm outline.  To start the optimization, initial data set from space-filling design such as a Latin 
hypercube design18 is needed for initializing GPs. The detailed description of GP is described below up to (8). 
The prior Gaussian distributed noise with noise variance σ 2

n is as follows:

with mean function (3) and covariance function (4), respectively.

The posterior definition of GP is needed as the prior of GP does not depend on observations. The refinement 
of prior by using Bayes’ rule is as follows:

where

for n points of X =
{

x1, . . . , xn
}

 where xi is 
[

xi1, . . . , xid
]T and yi is the corresponding observations at xi for the 

set Y =
{

y1, . . . , yn
}

 and the vector y =
[

yi1, . . . , yid
]T.

Therefore, for training hyperparameters the maximum posterior estimate (MAP) for inferring is used. The 
MAP hyperestimation is given in (8) where LMAP(ξ) is the MAP likelihood.

Secondly, a set of candidate for sampling must be specified. The inputs of the data collected and the corre-
sponding responses of each function , gj(x) with j = 1, . . . ,m are Xi :=

{

x1, . . . , xn, xn+1, . . . , xn+i+1

}

 and 
Yi
j :=

{

y1j , . . . , y
n
j , y

n+1
j , . . . , yn+i

j

}

 , respectively. For each Yi
j  independent GP is trained as described before. In 

this case, m sample functions are obtained as 
{

f i1(x), . . . , f
i
m(x)

}

 . The approximate Pareto set of the sampled 
functions at each iteration is found.

For the output data set as 
{

Yi
1, . . .Y

i
m

}

 and current reference point for the hypervoume calculation defined 
as ri , Pareto front is defined as ρi . In this optimization algorithm (i.e., TSEMO) the aim is to find the maximum 
hypervolume improvement ( �HV  ) added to ρi (Pareto front) (9).

Lastly, the data sets as Xi+1 :=
{

x1, . . . , xn, xn+1, . . . , xn+i+1

}

 and Yi
j :=

{

y1j , . . . , y
n
j , y

n+1
j , gxn+i+1

j

}

 for 
j = 1, . . . ,m are updated and repeated up to obtaining the determined goal.

Construction of the regression DNN.  For constructing an accurate regression DNN, some requirements must 
be set that are: suitable amount of data set, number of hidden layers with number of neurons, and also input 
and output layer features. Figure 3 presents the general structure of the regression DNN aiming to predict the 
optimal component values, automatically. The detail descriptions for each named requirement is as following:

(2)y(x) ∼ GP(m(x), k(x, x́))

(3)m(x) :=Ef [f (x)]

(4)k(x, x́) :=Ef [(y(x)−m(x))(y(x́)−m(x́))]

(5)f (x) ∼ GP(m(x), k(x, x́) | X,Y)

(6)m(x) | X,Y =
∑

(x,X)
∑−1

y

(7)k(x, x́) | X,Y =k(x, x́)−
∑

(x, y)

−1
∑∑

(x,X)T

(8)ξMAPεargmaxξLMAP(ξ)

(9)xn+i+1 ∈ argmaxHV(ρi ∪
{

yc
}

, r
i)−HV(ρi

, r
i)as x ∈ Ci

Figure 3.   Proposed regression DNN for sizing the antenna shap with BUO.
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Data generation.  After configuring the initial antenna shape, optimal design parameters must be determined. 
All the optimization process is performed automatically in the created platform described in “Constructing an 
automated environment”. For accurately modeling the antenna, a suitable amount of data set includes training, 
validation and test data ( XTrain , XVal , and XTest ), and corresponding desired outputs ( YTrain , YVal , and YTest ) sets 
are needed. The generated data set is split into three groups of training, validation, and testing data with the rates 
of 70%, 15%, 15%, respectively.

Any designer can select this ration by his/her idea. What is an important concept is to devote large ratio of 
data for training since as much as data is large, the neural network will be constructed accurately. The target of 
each set is as following:

•	 Training set: This set is used for training the model such as antenna and to encourage the model to learn the 
hidden features. In this case, the model is trained for all diverse data and will be able to predict the unseen 
future data. As the neural network is trained with these data, large ratio of data set (i.e., 70% ) must be devoted 
to training the neural network.

•	 Validation set: The validation set is used to answer this question to the designer that: the model training is 
done in accurately or not. Hence, 15% of data is devoted to this data set.

•	 Testing set: After completing and training the neural network, the last divided 15% of data set is devoted to 
test that the trained neural network.

For the configured initial antenna shape in “Employment of the BUO method”, the related ’netlist’ file is extracted 
and then randomly the design parameters (include W and L of TLs) are changed within the different range of 
∓5% , ∓10% , and ∓15% . The large amount of simulation results for different parameters are presented in the 
output file namely ’spectra.raw’. Each of the output files consist of S11 , and gain results which are the input fea-
tures for the depicted regression DNN in Fig. 3. For each achieved output response, the POF of two functions 
(i.e., S11 , and gain) is obtained using the TSEMO method (see Fig. 2). These POF responses yields the output 
layer’s parameters.

Structure of the DNN.  As explained before, DNNs consist of multiple layers that each layer include some neu-
rons. Determining optimal hyperparameters (i.e., number of hidden layers with neurons) is not straightforward 
and requires optimization techniques as well. In this work, we apply the BO for predicting the optimal hyper-
parameters of the employed regression DNN as it is more accurate than grid search and randomized search19. 
The employed DNN in this work consists of three Long short-term memory (LSTM) layers and one fully con-
nected layer as Fig. 3.The used activation function and loss function are the rectified linear unit (ReLU) and the 
mean squared error, respectively. After constructing the DNN, this neural network refer to the ‘spectra.raw’ file 
includes the sizes of transmission lines and picks the values of gain and S11 from this file to employ the TSEMO 
method and finding the optimal design parameters. The overall flowchart of our proposed methodology is pro-
vided in Fig. 4.

A summary of the proposed algorithm for obtaining the best component values is the following: 

Practical implementation of proposed automated optimization strategy
This section provides a sequential construction of the proposed optimization strategy that is performed automati-
cally. In the first phase, the general antenna structure with location of the feeding point are determined using the 
BUO method. For this case, the BUO method is employed where Fig. 5 presents the two generated microstrip 
antennas where 12 design parameters for the first antennas and 13 design parameters for the second one are 
provided. The initial structure starts with a simple square block and by applying the BUO method, the structure 
of the antenna became updated and the final configuration is achieved. As these antennas are consisting of TLs, 
the constrains presented in20 are applied during the optimization process for passing the EM simulations suc-
cessfully. As Figs. 6 and 7 illustrate, the BUO method is suitable enough for generating the initial configuration 
of antennas in comparison with genetic algorithm (GA), particle swarm optimization (PSO), ABC (Artificial 
Bee Colony), and ACO (Ant colony optimization). As it is clear, these algorithms could not be powerful for 
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achieving high performance outcomes, so substantial need for the our proposed method in “Predicting and 
sizing the antenna parameters using DNN” is required.

In our proposed method, the LSTM layers are used for optimizing antennas in a large frequency band. In 
this method, gain and S11 performances of each frequency with the bandwidth of 100 MHz are optimized. For 
this case, the proposed DNN in Fig. 3 is used which is based on the TSEMO algorithm. As described before, the 
employed DNN consists of three LSTM layers with one fully connected layer. By applying the BO method, 3 layers 
where each layer includes 250 neurons are determined where the normalized root mean square error (RMSE) for 
the constructed regression DNN becomes 0.10 and 0.12 for the first and second optimized antennas, respectively. 
In total for both antennas, 3500 sequences with divided data of 2450, 525, and 525 sequences for XTrain , XVal , 
and XTest , respectively. Each sequence includes multi-segment S11 and gain values in the required band frequency.

Fabrication and measurement
To verify the proposed method of optimization, two microstrip patch antennas have been designed and fabri-
cated as illustrated in Figs. 8 and 12. In this paper, two different antennas in terms of their structures have been 
fabricated on Rogers 4003 substrate with tan δ = 0.0027 , εr = 3.55 and thickness of 1.52 mm. For both antennas, 
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the final configurations with feeding point are achieved using BUO, and the design parameters are predicted 
automatically using the DNN that is based on the TSEMO method.

Figure 8 presents the first microstrip patch antenna which is designed by using two triangular shapes on the 
top right and the down left of the structure. In this single antenna, the final design parameters have been pre-
pared that are estimated using the proposed DNN. This antenna exhibits a 32.5 % impedance BW which covers 
8.8–10.1 GHZ as it is shown in Fig. 9 (left). Our antennas are designed to work in X and K frequency bands which 
are mainly used for communication and satellite functions (radar signals). These frequency bands are selected 
as in our future work, we will use these antennas for matching to the working frequency band of aimed power 
amplifiers. For clearly observing the effects of more hidden layers and the more accuracy output response in the 
third layer during the optimization process, the performance of S11 and gain are presented with three hidden 
layers. Any neural network can be either shallow neural network (i.e., a network with one hidden layer) or deep 
neural network (i.e., a network with more than one hidden layer). We start optimizing antenna with a neural 

Figure 6.   S11 parameter of antenna-1 with ABC, ACO, BUO, GA and PSO methods (left); gain of antenna-1 
with ABC, ACO, BUO, GA and PSO methods (right).

Figure 7.   S11 parameter of antenna-2 with ABC, ACO, BUO, GA and PSO methods (left); gain of antenna-2 
with ABC, ACO, BUO, GA and PSO methods (right).
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Figure 8.   Optimized antenna-1; simulated (left) fabricated (right). Unit is mm.
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network with one hidden layer and we develop the number of layers. When the desired output specifications are 
achieved, increasing the hidden layers are stopped. So in our simulation environment, the automated process 
is stopped when the desired specifications are obtained. For our antennas, when the number of hidden layers 
becomes 3, the optimization process is stopped that is meaning that the desired antenna goals are obtained. For 
the mentioned impedance BW of the optimized antenna, the gain performance is shown in Fig. 9 (right) and it is 
between 6.8 and 7.13 dB which represents the flat gain for this antenna. The minimum return loss for antenna-1 
is −22 dB which takes place at 9.7 GHz. By achieving the optimized design parameters from the optimization 
method, this antenna has been fabricated that both impedance BW and gain performance depict a good matching 
as illustrated in Fig. 9. As it is represented in Figs. 10 and 11 radiation pattern for both simulated and measured 
antenna-1 at three different frequencies 8.7 GHz, 9.55 GHz and 10 GHz have been achieved according to the 
value of φ = 90 and φ = 0 , respectively.

For validating the proposed optimization strategy, another single microstrip antenna is optimized. Figure 12 
shows the optimized antenna shape with the appropriate dimensions. In this antenna, more efforts have been 
done such as two circle with 7 mm radius at the both side of the antenna, also four circle with the same radius 
as above hinted are provided at the corners of the antenna.

Figure 12 depicts the final and optimized design parameters which covers the frequency band from 11.3 to 
13.16 GHz (37.2 % of total range usable bandwidth). Figure 13 (left) represents S11 for different hidden layers. 
Gain performance for this type of antenna shows an acceptable gain and reaches to 7.8 dB in the third layer as 
expressed in Fig. 13 (right). The final design parameters has been approached after analyzing the antenna with 
three hidden layers. Thus, the antenna with finalized design parameters has been fabricated with the same pro-
cess. Figure 13 illustrates a perfect matching for both simulated and measured antenna. The minimum S11 ( −18 
dB) for antenna-2 which happens at 11.7 GHz. The same process of radiation pattern in Figs. 14 and 15 have 
been implemented for simulated and measured antenna-2 for its radiation pattern which has been tested at three 
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different frequencies as hinted above for two value of φ = 90 and φ = 0 . The overall time costs for generating the 
initial antenna configurations and sizing the design parameters for antenna-1 and antenna-2 are around 3 h 30 
min and 3 h 50 min, respectively. Hence, any designer can get benefit of this method for automatically generating 
post-layouts without manual interruptions and with reduced attempt.

Conclusion
The purpose of this study is to apply an automated optimization method by the means of the BUO and DNN 
based multi-objective optimization to obtain desired BW and flat gain performance. Proposed optimization 
methodology in this paper is presented for the very first time in the literature and includes two phases, which 
are applied sequentially. The first phase is responsible for configuring the initial single antenna configuration 
and also for determining the suitable feeding point. The second step of the optimization corresponds to apply-
ing the multi-objective algorithm as TSEMO method through regression DNN to determine the design values, 
that in turn gives rise to achieve the design goals. The regression DNN helps designers to model the complex 
antenna designs accurately where it provides a regression environment for applying multi-objective algorithms. 
The advantage of our proposed method is to reduce the designer intervention and prepare ready-to-fabrication 
layouts by applying fabrication rules and constrains. To verify the effectiveness of the proposed method, two 
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single microstrip antennas in the frequency band of 8.8–10.1 GHz and 11.3–13.16 GHz are designed, fabricated, 
and measured where the measurement results show well-agreement convergence to the simulated results. In our 
method, two specifications as gain and S11 are optimized and broadside direction with radiation efficiency will 
be considered as the future work.
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