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Communication
On the Low-Frequency Behavior of Vector Potential Integral Equations for

Perfect Electrically Conducting Scatterers
Rui Chen, H. Arda Ulku, Francesco P. Andriulli, and Hakan Bagci

Abstract—Low-frequency behavior of vector potential integral equa-
tions (VPIEs) for perfect electrically conducting scatterers is investigated.
Two equation sets are considered: The first set (VPIE-1) enforces the
tangential component of the vector potential on the scatterer surface to be
zero and uses the fundamental field relation on its normal component. The
second set (VPIE-2) uses the same condition as VPIE-1 for the tangential
component of the vector potential but enforces its divergence to be zero.
In both sets, unknowns are the electric current and the normal component
of the vector potential on the scatterer surface and are expanded using
Rao-Wilton-Glisson (RWG) and pulse basis functions, respectively. To
achieve a conforming discretization, RWG, scalar Buffa-Christiansen,
and pulse testing functions are used. Theoretical and numerical analyses
of the resulting matrix systems show that the electric current obtained
by solving VPIE-1 has the wrong frequency scaling and is inaccurate at
low frequencies.

Index Terms—Loop-star decomposition, low-frequency behavior, low-
frequency breakdown, low-frequency electromagnetic simulation, perfect
electrically conducting scatterer, vector potential integral equations.

I. INTRODUCTION

Time-harmonic (frequency-domain) electromagnetic scattering
from a perfect electrically conducting (PEC) object is often analyzed
by solving field integral equations, e.g., electric field integral equation
(EFIE) or magnetic field integral equation (MFIE). However, it is
well-known that EFIE discretized using Rao-Wilton-Glisson (RWG)
functions [1] suffers from low-frequency and dense-discretization
breakdowns, i.e., the matrix system that arises from its discretization
becomes ill-conditioned [2], [3]. On the other hand, discretization
of MFIE using RWG functions yields a well-conditioned matrix
system regardless of the frequency, but the solution of this matrix
system is inaccurate at low frequencies [4]–[7]. In the past few
decades, many methods have been proposed to address these prob-
lems associated with field integral equations. These methods include
Helmholtz decomposition [8]–[12], preconditioning techniques [13]–
[18], mixed discretization schemes [5]–[7], and the formulation of
new integral equations where electric charge density is defined as
one of the unknowns to be solved for [19]–[22]. However, these
methods call for complicated discretization schemes [5]–[12], [16]–
[18], implementations that rely on perturbation analysis to address
inaccuracy issues [18], [21], and specific excitation formulations [19],
and/or come with higher computational requirements.

Recently, potential integral equations [23]–[32] have been pro-
posed as alternatives to the field integral equations for analyzing
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low-frequency electromagnetic scattering problems. In [24], [25],
formulations of different potential integral equations for dielectric and
PEC scatterers are derived using the equivalence principle and the
generalized Green theorem. These equations impose the continuity
of the tangential and normal components of the vector potential
on the scatterer surface and define the electric current and the
normal component of the vector potential on the same surface as
the unknowns to be solved for. The potential integral equations
proposed in [26] rely on the formulation from [24] but they enforce
the tangential component and the divergence of the vector potential
on the scatterer surface. These equations are free from an apparent
low-frequency breakdown but the efficient iterative solution of the
matrix system resulting from their discretization calls for a special
preconditioner (due to the presence of a saddle point problem as the
frequency approaches zero). This iterative solution often converges
faster than the solution of the matrix system resulting from the
discretization of the augmented EFIE [20] at low frequencies and/or
for densely discretized surfaces. The formulation in [28] starts with
the potential equations introduced in [26] but introduces an additional
equation which has the normal component of the gradient of the scalar
potential on the scatterer surface as the unknown. This additional
equation helps to compute the electric field in the near-field region
more accurately at low frequencies.

In [27], a more generalized approach to derive potential integral
equations for dielectric scatterers is described. Four different traces
of the vector potential, namely, tangential component of curl of the
vector potential, tangential component of the vector potential (same
as the one in [24]–[26]), normal component of the vector potential
(same as the one in [24], [25]), and divergence of the vector potential
(same as the one in [26]) are used to derive four different integral
equations in unknowns electric current and normal component of
the vector potential on the scatterer surface. These two unknowns
can be obtained by solving any combination of two of these integral
equations. Note that, for the specific vector potential integral equation
(VPIE) formulation in [27], the first one of the four equations (the
one obtained using the trace of the tangential component of curl
of the vector potential) is MFIE (in only electric current), which is
decoupled from the other three equations.

In this work, the low-frequency behavior of VPIEs for PEC
scatterers is investigated. Since the solution of MFIE discretized
using RWG functions is inaccurate at low frequencies, any choice
of combinations that includes MFIE is also expected to suffer from
the same problem. Therefore, two sets of VPIEs that do not include
MFIE are studied here. The first set includes the two equations
obtained using the tangential and normal components of the vector
potential [25] (this set is termed VPIE-1), and the second set includes
the two equations obtained using the tangential component and the
divergence of the vector potential [26] (this set is termed VPIE-2).

To numerically investigate the low-frequency problem, the electric
current and the normal component of the vector potential are ex-
panded using the RWG and pulse basis functions, respectively, and
these expansions are inserted into VPIE-1 and VPIE-2. To obtain
a conformal discretization, VPIE-1 is tested using RWG and scalar
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Buffa-Christiansen (BC) functions [14], [31] and VPIE-2 is tested
using RWG and pulse functions. The resulting matrix systems are
then solved for the unknown expansion coefficients. To analyze the
frequency behavior of the solutions of VPIE-1 and VPIE-2, loop-
star decomposition [8] is used. This analysis and the numerical
experiments, which are carried out for two different vector and scalar
potential representations of the incident wave [23], show that the
electric current solution of VPIE-1 is inaccurate at low frequencies,
more specifically, it scales with the incorrect frequency dependence
as the frequency approaches zero. Note that, a preliminary version
of this work is presented in a conference contribution [32].

II. FORMULATION

A. VPIE

Let Γ represent the (closed) surface of a PEC object that resides in
an unbounded homogeneous background medium with permittivity
ε0 and permeability µ0. Time dependence ejωt is assumed for
all sources, fields, and potentials. An electric field Einc(r), which
is characterized by vector potential Ainc(r) and scalar potential
Φinc(r), is incident on Γ. Upon this excitation, Γ supports surface
electric current J(r) = n̂(r) × ∇ × A(r)/µ0. Here, A(r) =
Asca(r) + Ainc(r) is the total vector potential, Asca(r) is the
scattered vector potential, and n̂(r) is the outward pointing unit
vector at r on Γ. On Γ, n̂(r) × A(r) = 0 and ∇ · A(r) = 0.
Asca(r) can be represented as [24], [26], [27]

Asca(r) = S[µ0J](r)−∇S[n̂ ·A](r) (1)

where
S[X] =

∫
Γ

G(r, r′)X(r′)ds′

G(r, r′) = e−jk0|r−r′|/(4π |r− r′|) is the Green function, and k0 =
ω
√
µ0ε0 is the wavenumber in the background medium. Inserting (1)

into

n̂(r)×∇×A(r) = n̂(r)×∇×Asca(r) + n̂(r)×∇×Ainc(r)

n̂(r)×A(r) = n̂(r)×Asca(r) + n̂(r)×Ainc(r) = 0

n̂(r) ·A(r) = n̂(r) ·Asca(r) + n̂(r) ·Ainc(r)

∇ ·A(r) = ∇ ·Asca(r) +∇ ·Ainc(r) = 0

for r ∈ Γ yields four VPIEs in unknowns J(r) and n̂(r) ·A(r) [27]:

µ0J(r)− n̂(r)×∇× S[µ0J](r) = n̂(r)×∇×Ainc(r) (2)

n̂(r)× S[µ0J](r)−n̂(r)×∇S[n̂ ·A](r) =−n̂(r)×Ainc(r) (3)

− 1

2
n̂(r) ·A(r) + n̂(r) · S[µ0J](r)− n̂(r) · ∇S[n̂ ·A](r) (4)

= −n̂(r) ·Ainc(r)

∇ · S[µ0J](r) + k2
0S[n̂ ·A](r) = −∇ ·Ainc(r). (5)

Note that in (5), ∇ · ∇S[n̂ ·A](r) = ∇2S[n̂ ·A](r) is replaced by
−k2

0S[n̂ ·A](r) using the Helmholtz equation [26].
To solve for two unknowns, J(r) and n̂(r) · A(r), one has to

choose one equation from (2)-(3) and another equation from (4)-
(5) [27]. Note that, (2) is MFIE [in only one unknown J(r)] and
decoupled from (3)-(5) and it is clear that any equation set that
includes (2) suffers from the inaccuracy problems that MFIE has at
low frequencies [4]–[7]. In this work, two equation sets that do not
include (2) are studied. The first equation set includes (3) and (4)
and is termed “VPIE-1” [25]. VPIE-1 does not have any explicit
dependence on the frequency, but its solution becomes inaccurate
at low frequencies with an RWG-based discretization. The second
equation set includes (3) and (5) and is termed “VPIE-2” [26].
VPIE-2 depends explicitly on frequency via k2

0 , but its RWG-based
discretization yields an accurate solution at low frequencies.

B. Discretization

To numerically solve VPIE-1 and VPIE-2, first, Γ is discretized
into a mesh of triangles denoted by Γh. The unknowns J(r) and
n̂(r) ·A(r) belong to the Sobolev spaces H−1/2

div (Γ) and H−1/2(Γ),
respectively [5]–[7], [14], [31]. Therefore, they are expanded using
RWG basis functions fRn (r) [1] [that reside in H−1/2

div (Γh)] and pulse
basis functions fP

n (r) [29] [that reside in H−1/2(Γh)] , respectively:

µ0J(r) =

NR∑
n=1

{IR}nf
R
n (r) (6)

n̂(r) ·A(r) =

NP∑
n=1

{IP}nf
P
n (r). (7)

Here, NR and NP are the numbers of edges and triangular patches,
and IR and IP are the vectors that store the unknown expansion
coefficients of fRn (r) and fP

n (r), respectively. As explained in [5]–
[7], [14], [31], testing function should reside in the dual space of the
range of the integral operator. Considering the mapping properties
of the integral operators in (3)-(5) [31] and the basis functions used
in (6)-(7), it can be shown that the range spaces for (3), (4), and (5)
are H−1/2

div (Γ), H−1/2(Γ), and H1/2(Γ), respectively. Therefore,
functions used for testing (3), (4), and (5) should reside in their
dual spaces, namely, H−1/2

curl (Γh), H1/2(Γh), and H−1/2(Γh), re-
spectively [31]. This means that to obtain a conforming discretization,
rotated RWG function n̂(r)× fRm(r), scalar BC function fB

m(r) [14],
[31], and pulse function fP

m(r) can be used to test (3), (4), and (5),
respectively.

Inserting (6) and (7) into (3)-(4) (VPIE-1) and (3)-(5) (VPIE-2) and
testing the resulting equations with n̂(r)× fRm(r), m = 1, 2, ..., NR,
fB
m(r), m = 1, 2, ..., NP, and fP

m(r), m = 1, 2, ..., NP yield the
matrix system [

ZRR ZRP

ZPR ZPP

] [
IR
IP

]
=

[
VR

VP

]
. (8)

Here, the entries of the matrix blocks ZRR, ZRP, ZPR, and ZPP are
given by

{ZRR}mn =
〈
n̂(r)× fRm(r), n̂(r)× S[fRn ](r)

〉
=

∫
ΓR
m

fRm(r) ·
∫
ΓR
n

G(r, r′)fRn (r′)ds′ds
(9)

{ZRP}mn =
〈
n̂(r)× fRm(r),−n̂(r)×∇S[fP

n ](r)
〉

=

∫
ΓR
m

∇ · fRm(r)

∫
ΓP
n

G(r, r′)fP
n (r′)ds′ds

(10)

VPIE-1 : {ZPR}mn =
〈
fB
m(r), n̂(r) · S[fRn ](r)

〉
=

∫
ΓB
m

fB
m(r)

∫
ΓR
n

G(r, r′)n̂(r) · fRn (r′)ds′ds

VPIE-2 : {ZPR}mn =
〈
fP
m(r),∇ · S[fRn ](r)

〉
=

∫
ΓP
m

fP
m(r)

∫
ΓR
n

G(r, r′)∇′ · fRn (r′)ds′ds

(11)

VPIE-1 : {ZPP}mn =

〈
fB
m(r),−1

2
fP
n (r)−n̂(r) · ∇S[fP

n ](r)

〉
= −1

2

∫
ΓB
m

fB
m(r)fP

n (r)ds

+

∫
ΓB
m

fB
m(r)

∫
ΓP
n

n̂(r) · ∇′G(r, r′)fP
n (r′)ds′ds

(12)
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VPIE-2 : {ZPP}mn =
〈
fP
m(r), k2

0S[f
P
n ](r)

〉
= k2

0

∫
ΓP
m

fP
m(r)

∫
ΓP
n

G(r, r′)fP
n (r′)ds′ds

and the entries of the vectors VR and VP are given by

{VR}m =
〈
n̂(r)× fRm(r),−n̂(r)×Ainc(r)

〉
= −

∫
ΓR
m

fRm(r) ·Ainc(r)ds
(13)

VPIE-1 :{VP}m =
〈
fB
m(r),−n̂(r) ·Ainc(r)

〉
= −

∫
ΓB
m

fB
m(r)n̂(r) ·Ainc(r)ds

VPIE-2 :{VP}m =
〈
fP
m(r),−∇ ·Ainc(r)

〉
= jωµ0ε0

∫
ΓP
m

fP
m(r)Φinc(r)ds

(14)

Here, ΓR
m, ΓB

m, and ΓP
m denote the support of fRm(r), fB

m(r), and
fP
m(r), respectively. Note that in (14), Lorenz gauge ∇ ·Ainc(r) =
−jωµ0ε0Φ

inc(r) is used [23], [24]. Two kinds of vector and scalar
potential representations of the plane-wave excitation are considered
in this work. For the first representation, Ainc

1 (r) = 1/(−jω)Einc(r)
and Φinc

1 (r) = 0 [26]. This representation does not lead to a stable
uncoupling of the potentials since Ainc

1 (r) is unbounded as ω →
0 [23]. For the second representation, Ainc

2 (r) = −√
µ0ε0k̂

inc[r ·
Einc(r)] and Φinc

2 (r) = −r · Einc(r), where k̂inc represents the
direction of propagation [23]. This representation yields potentials
that satisfy the Lorenz gauge and are bounded as ω → 0 [23].

C. Comments

For VPIE-2, the matrix system (8) has a saddle point problem
at low frequencies [26], [33]. Therefore, for its efficient iterative
solution, one has to use a special preconditioner [26], [33]. Note
that, even though it is not discussed in [26], the construction of
this preconditioner is not trivial at very low frequencies: One of
its diagonal blocks behaves like a (discretized) Laplacian operator
and has an isolated zero eigenvalue [20], [21], [34]. Since this work
focuses on the accuracy of VPIE-1 and VPIE-2 at low frequencies
(rather than their efficient solution), matrix system (8) is solved
using LU decomposition. However, as ω → 0, VPIE-2’s matrix
system has one isolated eigenvalue that approaches zero (due to
charge neutrality/redundancy [20], [21]). Therefore, a matrix deflation
method is applied [20] before LU decomposition is used.

D. Low-frequency Analysis

To investigate the accuracy of VPIE-1 and VPIE-2 as ω → 0, J(r)
is separated into its solenoidal and non-solenoidal components using
loop-star decomposition as [8]

µ0J(r) =

NL∑
n=1

{IL}nf
L
n (r) +

NS∑
n=1

{IS}nf
S
n(r). (15)

Here, NS = NP − 1 = NR − NL, fLn (r) and fSn(r) are the loop
and the star basis functions, and IL and IS are vectors that store
their coefficients, respectively. Inserting (15) and (7) into (3)-(5) and
testing the resulting equations with n̂(r)× fLm(r), m = 1, 2, ..., NL,
n̂(r)×fSm(r), m = 1, 2, ..., NS, fB

m(r), m = 1, 2, ..., NP, and fP
m(r),

m = 1, 2, ..., NP yieldZLL ZLS ZLP

ZSL ZSS ZSP

ZPL ZPS ZPP

ILIS
IP

 =

VL

VS

VP

. (16)

Here, the entries of the matrix blocks ZMN, M,N ∈ {S,L,P} are
given by

{ZLL}mn =
〈
n̂(r)× fLm(r), n̂(r)× S[fLn ](r)

〉
=

∫
ΓL
m

fLm(r) ·
∫
ΓL
n

G(r, r′)fLn (r
′)ds′ds

(17)

{ZLS}mn =
〈
n̂(r)× fLm(r), n̂(r)× S[fSn ](r)

〉
=

∫
ΓL
m

fLm(r) ·
∫
ΓS
n

G(r, r′)fSn(r
′)ds′ds

(18)

{ZLP}mn =
〈
n̂(r)× fLm(r),−n̂(r)×∇S[fP

n ](r)
〉

=

∫
ΓL
m

∇ · fLm(r)

∫
ΓP
n

G(r, r′)fP
n (r′)ds′ds

(19)

{ZSL}mn =
〈
n̂(r)× fSm(r), n̂(r)× S[fLn ](r)

〉
=

∫
ΓS
m

fSm(r) ·
∫
ΓL
n

G(r, r′)fLn (r
′)ds′ds

(20)

{ZSS}mn =
〈
n̂(r)× fSm(r), n̂(r)× S[fSn ](r)

〉
=

∫
ΓS
m

fSm(r) ·
∫
ΓS
n

G(r, r′)fSn(r
′)ds′ds

(21)

{ZSP}mn =
〈
n̂(r)× fSm(r),−n̂(r)×∇S[fP

n ](r)
〉

=

∫
ΓS
m

∇ · fSm(r)

∫
ΓP
n

G(r, r′)fP
n (r′)ds′ds

(22)

VPIE-1 :{ZPL}mn =
〈
fB
m(r), n̂(r) · S[fLn ](r)

〉
=

∫
ΓB
m

fB
m(r)

∫
ΓL
n

G(r, r′)n̂(r) · fLn (r′)ds′ds

VPIE-2 :{ZPL}mn =
〈
fP
m(r),∇ · S[fLn ](r)

〉
=

∫
ΓP
m

fP
m(r)

∫
ΓL
n

G(r, r′)∇′ · fLn (r′)ds′ds

(23)

VPIE-1 :{ZPS}mn =
〈
fB
m(r), n̂(r) · S[fSn ](r)

〉
=

∫
ΓB
m

fB
m(r)

∫
ΓS
n

G(r, r′)n̂(r) · fSn(r′)ds′ds

VPIE-2 :{ZPS}mn =
〈
fP
m(r),∇ · S[fSn ](r)

〉
=

∫
ΓP
m

fP
m(r)

∫
ΓS
n

G(r, r′)∇′ · fSn(r′)ds′ds

(24)

and the entries of the vectors VL and VS are given by

{VL}m =
〈
n̂(r)× fLm(r),−n̂(r)×Ainc(r)

〉
= −

∫
ΓL
m

fLm(r) ·Ainc(r)ds
(25)

{VS}m =
〈
n̂(r)× fSm(r),−n̂(r)×Ainc(r)

〉
= −

∫
ΓS
m

fSm(r) ·Ainc(r)ds
(26)

where ΓL
n and ΓS

n denote the support of loop and star functions,
respectively. Note that entries of ZPP and VP are already provided
in (12) and (14), respectively. In (19) and (23), ∇ · fLm(r) = 0 and
∇′ · fLn (r′) = 0, respectively [8]. This ensures that ZLP = 0 for both
VPIE-1 and VPIE-2, and ZPL = 0 for VPIE-2.

The frequency scaling of IL, IS, and IP as ω → 0 can be derived
from the scaling of all the matrix blocks and excitation vectors
in (16). Note that the Green function and its gradient present in the
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expressions of the entries of these matrix blocks scale with O(1) as
ω → 0 [4], [18]. This means that the blocks of the matrix in (16)
scale as

VPIE-1:

ZLL ZLS ZLP

ZSL ZSS ZSP

ZPL ZPS ZPP

=
O(1) O(1) 0
O(1) O(1) O(1)
O(1) O(1) O(1)


VPIE-2:

ZLL ZLS ZLP

ZSL ZSS ZSP

ZPL ZPS ZPP

=
O(1) O(1) 0
O(1) O(1) O(1)
0 O(1) O(ω2)

 (27)

Consequently, the scaling of the inverses of these matrices can be
found using Schur complement [35]:

VPIE-1:

ZLL ZLS ZLP

ZSL ZSS ZSP

ZPL ZPS ZPP

−1

=

O(1) O(1) O(1)
O(1) O(1) O(1)
O(1) O(1) O(1)


VPIE-2:

ZLL ZLS ZLP

ZSL ZSS ZSP

ZPL ZPS ZPP

−1

=

 O(1) O(ω2) O(1)
O(ω2) O(ω2) O(1)
O(1) O(1) O(1)

.
(28)

On the other hand, the scaling of the right-hand side vectors VL,
VS, and VP depends on the selection of Ainc(r) and Φinc(r). As-
sume that the electric field of the plane-wave excitation is expressed
as Einc(r) = E0e

−jk0k̂
inc·r, where E0 is the polarization vector.

As frequency approaches zero, Einc(r) scales as O(1) [4]. Using
this one can easily see from (26) that VS scales as O(ω−1) and
O(1) with the first and the second kinds of potential representations,
respectively. The scaling of VP depends not only on the kind of
potential representations but also on the choice of VPIE. It can be
seen from (14) that VP scales as O(ω−1) and O(1) for VPIE-1
with the first and the second potential representations, respectively,
and as O(ω) for VPIE-2 with the second potential representation.
Note that, Φinc

1 (r) = 0 ensures VP = 0 for VPIE-2 with the first
potential representation. On the other hand, derivation of the scaling
of VL calls for a more-involved investigation as described next. The
loop basis function fLm(r) can be expressed as [36]

fLm(r) = n̂(r)×∇sφm(r) (29)

where φm(r) is a pyramid-shaped function defined at r ∈ ΓL
m and

∇s denotes the surface gradient. Inserting (29) into (25) with two
kinds of potential representations and using the chain rule and the
divergence theorem in the resulting expressions yield [7]

{VL}m =
−1

jω

{
−jk0

∫
ΓL
m

φm(r)n̂(r) · [k̂inc ×Einc(r)]ds

+

∮
∂ΓL

m

m̂(r) · [φm(r)n̂(r)×Einc(r)]dl

}
=

√
µ0ε0

∫
ΓL
m

φm(r)n̂(r) · [k̂inc ×Einc(r)]ds

(30)

{VL}m = −√
µ0ε0

{∫
ΓL
m

φm(r)n̂(r)·[∇×(k̂inc(r·Einc(r)))]ds

+

∮
∂ΓL

m

m̂(r)·[φm(r)n̂(r)×(k̂inc(r·Einc(r)))]dl

}
= −√

µ0ε0

∫
ΓL
m

φm(r)n̂(r) · [e−jk0k̂
inc·r∇× (k̂inc(r ·E0))

− (k̂inc(r ·E0))×∇e−jk0k̂
inc·r]ds

=
√
µ0ε0

∫
ΓL
m

φm(r)n̂(r) · [e−jk0k̂
inc·r(k̂inc ×E0)]ds

(31)

for (Ainc
1 ,Φinc

1 ) and (Ainc
2 ,Φinc

2 ), respectively. Here, m̂(r) denotes
the unit normal vector pointing outwards on ∂ΓL

m, the boundary
of ΓL

m. Since φm(r) = 0 on ∂ΓL
m [36], contour integrals in (30)

and (31) are zero. Since Einc(r) scales as O(1) [4], one can show
that VL scales as O(1) for both representations of the incident plane
wave. In summary, one obtains

VPIE-1:

VL

VS

VP

={[O(1) O(ω−1) O(ω−1)
]T

,
(
Ainc

1 ,Φinc
1

)[
O(1) O(1) O(1)

]T
,
(
Ainc

2 ,Φinc
2

)
VPIE-2:

VL

VS

VP

={[O(1) O(ω−1) 0
]T

,
(
Ainc

1 ,Φinc
1

)[
O(1) O(1) O(ω)

]T
,
(
Ainc

2 ,Φinc
2

) .

(32)

Finally, multiplying (28) with (32) yields the frequency scaling of
IL, IS, and IP in (16) as

VPIE-1:

ILIS
IP

={[O(ω−1) O(ω−1) O(ω−1)
]T

,
(
Ainc

1 ,Φinc
1

)[
O(1) O(1) O(1)

]T
,
(
Ainc

2 ,Φinc
2

)
VPIE-2:

ILIS
IP

={[O(1) O(ω) O(ω−1)
]T

,
(
Ainc

1 ,Φinc
1

)[
O(1) O(ω) O(1)

]T
,
(
Ainc

2 ,Φinc
2

) .

(33)

One can expect that the scaling of IP (which stores expansion coeffi-
cients of n̂ ·A) should be different under different representations of
the excitation. But this should not be the case for IL and IS (which
store expansion coefficients of J) since the field representation of the
excitation is unique. Having said that, the correct frequency scaling of
IL and IS has been discussed in the literature [4], [21] and is shown
to be O(1) and O(ω), respectively. These results are obtained from
the asymptotic solution of EFIE or MFIE as ω → 0. The latter can
also be seen easily from the current continuity equation [4], [21].

Looking at (33), one can see that the scaling of IL and IS obtained
by solving VPIE-2 is correct but the same can not be said for those
obtained by solving VPIE-1. Indeed, this conclusion is supported
by the numerical results presented in Section III. Note that since
(the scaling of) IP depends on the potential representation of the
excitation, one has to be careful while computing the scattered fields
from the solution of VPIE-2 as ω → 0 [28].

III. NUMERICAL RESULTS

In this section, low-frequency behaviour of VPIE-1 and VPIE-
2 is investigated via numerical experiments. In all simulations, the
scatterer is a PEC unit sphere that resides in free space and is
centered at the origin. The excitation is a plane wave with electric
field Einc(r) = x̂e−jk0z . The surface of the sphere is discretized
using NP = 2560 triangular patches resulting in NR = 3840 edges.
The deflation method [20] is applied to the VPIE-2 matrix system
when the frequency is smaller than 1 KHz. LU decomposition is
used to solve the matrix systems in (8) (for VPIE-1 and VPIE-2) and
the matrix system modified by deflation (for VPIE-2) to ensure that
the error in the matrix solution is at the machine precision level.

A. Accuracy of VPIE-1 and VPIE-2

In this section, the accuracy of VPIE-1 and VPIE-2 is investigated
by comparing the radar cross section (RCS) of the unit sphere
computed using IR after solving VPIE-1 and VPIE-2 (for two
kinds of potential representations of the incident plane wave) to
RCS computed using the Mie series solution [37]. Fig. 1(a) and
(b) plot RCS for θ = [0◦, 180◦] and ϕ = 0◦ at 300MHz and
0.1Hz, respectively. Fig. 1(a) shows that RCS computed using VPIE-
1 and VPIE-2 solutions at 300 MHz matches very well to RCS
computed using the Mie series solution (for both representations
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Fig. 1. RCS computed using VPIE-1 and VPIE-2 solutions with two potential
representations of the incident plane wave and the Mie series solution for
θ = [0◦, 180◦] and ϕ = 0◦ at (a) 300MHz and (b) 0.1Hz.

of the excitation). However, as shown in Fig. 1(b), at 0.1Hz, only
RCS computed using the VPIE-2 solution agrees well with RCS
computed using the Mie series solution. The L2-norm RCS error
values of VPIE-2 are 8.24× 10−3 and 8.52× 10−3 for the first and
second representations of the excitation, respectively. VPIE-1 solution
is not accurate for neither representation of the excitation. This result
agrees with the conclusion of the analysis carried out in Section II-D:
The electric current obtained by solving VPIE-1 is not accurate at
low frequencies while that obtained by solving VPIE-2 maintains
its accuracy. Fig. 1(b) also shows that the L2-norm RCS error of
VPIE-1 with the first representation of the excitation (1.96 × 1027)
is larger than that of VPIE-1 with the second representation of the
excitation (1.54 × 108). This might be explained by the fact that
vector potential used in the first representation becomes unbounded
as ω → 0. Indeed, as shown in the next section, both IL and IS
obtained from the solution of VPIE-1 with the first representation
follow the behaviour of the vector potential of the excitation and
also become unbounded. This increases the RCS error [4].

B. Frequency Scaling of VPIE-1 and VPIE-2 Solutions

In this section, the frequency scaling of IL, IS, and IP ob-
tained from the VPIE-1 and VPIE-2 solutions as ω → 0 is
numerically investigated. The frequency is swept in the interval
[0.01Hz, 300MHz]. Note that IL and IS are not obtained by directly
solving (16). First (8) (for VPIE-1 and VPIE-2) and the matrix system
modified by deflation (for VPIE-2) are solved for IR, then IL and
IS are obtained from IR via a post-processing [11]. Fig. 2(a), (b),
and (c) plot the L2-norm of IL, IS, and IP versus the frequency
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Fig. 2. L2-norm of (a) IL, (b) IS, and (c) IP versus the frequency for VPIE-1
and VPIE-2 with two different potential representations of the incident plane
wave.

for VPIE-1 and VPIE-2 with both potential representations of the
incident plane wave, respectively. Fig. 2(a) clearly shows that ∥IL∥
obtained from the solution of VPIE-1 with the first and the second
representations scales as O(ω−1) and O(1) as ω → 0, respectively.
∥IL∥ obtained from the solution of VPIE-2 with both representations
scales as O(1) as ω → 0. As shown in Fig. 2(b), ∥IS∥ obtained
from the solution of VPIE-1 with the first and second representations
scales as O(ω−1) and O(1), respectively, and ∥IS∥ obtained from
the solution of VPIE-2 with both representations scales as O(ω).
Fig. 2(c) shows that ∥IP∥ obtained from the solutions of VPIE-1 and
VPIE-2 with the first representation scales as O(ω−1) while ∥IP∥
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obtained with the second representation scales as O(1). The results
presented in Fig. 2 support the conclusions of the analysis carried out
in Section II-D: The scaling of the electric current solution of VPIE-
2 follows the theoretical prediction while that of VPIE-1 does not,
and this applies to both representations of the incident plane wave.
In addition, the scaling of the solution for the normal component of
vector potential depends only on the representation of the incident
plane wave.

IV. CONCLUSION

Low-frequency behavior of VPIEs for PEC scatterers is inves-
tigated. Two equation sets are considered: VPIE-1 enforces the
tangential component of the vector potential on the scatterer surface
to be zero and also uses the fundamental field relation on its normal
component, and VPIE-2 uses the same condition as VPIE-1 for
the tangential component of the vector potential but enforces its
divergence to be zero. To numerically solve VPIE-1 and VPIE-2,
the electric current and the normal component of the vector potential
on the surface of the scatterer are expanded using RWG and pulse
basis functions, respectively. VPIE-1 is tested using RWG and scalar
BC functions while VPIE-2 is tested using RWG and pulse functions.
Theoretical analysis carried out using loop-star decomposition on the
resulting matrix equations and numerical experiments show that the
electric current obtained by solving VPIE-1 has the wrong frequency
scaling and is inaccurate at low frequencies.

This work considers only simply connected scatterers. The low-
frequency behaviour of VPIEs enforced on non-simply connected
surfaces will be theoretically and numerically analyzed in future
work.
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