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Introduction

Biology studies how parts of an organism cooperate and act like a sys-
tem. If parts of this system change, then these will affect other parts of
the system (1). Cancer is a common example of a complex disease with
systemic effects (2). Effects like disease make the connections and in-
teractions in biological systems a central theme in biology, a theme that
can be applied to all biological entities (3). Furthermore, some connec-
tions within the system will have their interactions directed in a partic-
ular direction. This is a sign of causality within a cell or organism. Un-
derstanding how the system’s parts are connected and their directed
nature is essential in the areas like hereditary and acquired diseases,
toxicity, growth and regulation, pharmacology, signalling and many
more biological phenomena. How elements of cells are interacting,
connected and the directions of these connections help us understand
how the elements of a biological system work together. This systemic
thinking allows researchers and scientists to look beyond single inter-
actions and instead to look at how the system works together. It al-
lows for a holistic approach that each time takes into account bigger
chunks of the system to study how they work together. The connec-
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tions and the direction of these interactions are not only the central
theme of this thesis work but also a concept central to understanding
biology itself.

Changes in how the system operates by changing parts alone can jus-
tify why it is important to study interactions, but directional informa-
tion also gives more specific information about how changes influence
the system and allows the construction of networks (4). Causal rela-
tionships, as are suggested by directional information for interactions,
also allow for the analysis of the effects of different interventions. This
goes to the very idea of causality, in that changes to expression of genes
can have a causal impact on downstream processes. Networks of gene
products do not need to be represented as pathways describing a bio-
logical process, but may be a network constructed of biological inter-
actions. In sources such as the STRING database (5) or in NetPath (6),
users are able to construct networks of interacting proteins or study
signalling pathways respectively. This is an interaction network that
represents protein-protein interactions which lacks the rest of the bi-
ological components of a pathway that influence biological functions.
Although pathways are more complex and represent more than indi-
vidual types of interactions, we can use the approaches developed us-
ing the work done for this thesis which focuses on biological pathways
for interaction modelling and networks of interactions which are used
in bioinformatics as a systematic approach to biology.

To provide access to this knowledge, websites for the pathway or bio-
logical compound databases have been used and developed for decades
now (7). These are useful when researching just a couple compounds
or interactions. However, the problem comes from when the need
arises to scale up the research to dozens or hundreds of entities and
their relationships for analysis. This is common when analyzing omics
data (8).

However, even the digital pathway drawings cannot easily be used if
they cannot be accessed and understood by algorithms or software de-
signed to interpret them. This is when web services come into play



in order to retrieve from databases the information that is specifically
needed to answer the scientists’ specific research question. This comes
in the form of Simple Object Access Protocol (SOAP) application pro-
gramming interfaces (APIs) and Representational state transfer (REST)
APIs and have developed over the years. SOAP APIs have been used
by the National Center for Biotechnology Information (NCBI), Euro-
pean Bioinformatics Institute (EBI), and others (9-11). REST APIs have
been deployed by providers such as Ensembl (12). Web services pro-
vide predefined queries that are available for users to programmati-
cally pull information from the databases and to be selective for the
information that they are looking to retrieve. Finally, researchers can
interact with these resources’” databases via a query language that al-
lows the user to purposely design the retrieval of the information they
are seeking rather than using predefined queries. There is still a place
for all of these forms of interaction with the biological resources, but it
shows the progression of how we interact with our data.

Resources like WikiPathways, Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), and Reactome are used by biologists to represent their
knowledge of how elements of an organism work together to enable
the organism to work and be successful (13-16). A diagram of a path-
way is a drawing to represent how elements of the pathway connect
and interact with each other. There are two major types of pathways
found in these resources, and they may also include some special-
ized research pathway types, for example adverse outcome pathways
found in WikiPathways. The two classes of pathways are signaling
pathways and pathways for metabolic processes. Signaling pathways
are used to describe the relay of messaging information. The signalling
pathways are an important communication mechanism for the system
to work properly. Metabolic processes are pathways that represent
energy production, molecular digestion, and production of structural
components for the organism. The metabolic pathways are essential
for energy and growth of the organism. The collection of pathways
are essential portions of the overall system and network, but relies
on a gene or gene product with a known function in order for peo-
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ple to want to include it in a pathway. For example, WikiPathways
in 2018 contains 50% of the unique human coding protein genes com-
pared to Ensembl, 66% of all disease causing genes compared to On-
line Mendelian Inheritance in Man (OMIM), and 71% of genes believed
to be involved in human metabolic processes from GO metabolic pro-
cesses (13, 17, 18). Insights in biology are the objective of this thesis
which can be gained from examining how the elements are connected
to each other and how they are directed from one place to another. We
measure and make pathway drawings based upon biological assays.
The pathway elements can be drawn in a diagram with all the nec-
essary connections but also need to be represented in ways that the
connections are computer readable for bioinformatics analysis (19).

Over the years, resources have been developed to address the needs
of biologists to create links across resources. Biological databases have
been created to fulfill niche understanding of biological processes. They
include, but are not limited to, HUGO Gene Nomenclature Commit-
tee (20) for genes name, Universal Protein Resource (UniProt) for pro-
tein sequence information (21), the Research Collaboratory for Struc-
tural Bioinformatics (RCSB) Protein Data Bank (PDB) for protein struc-
tures (22), and the Human Metabolome Database (HMDB) for human
metabolite information (23). Identifiers.org is a resolving system for
Uniform Resource Identifiers (URIs) in the scientific community (24).
Mapping services were also developed to identify IDs from different
sources to verify if they are describing the same entity (25). These help
scientists know that the entities that they put into their pathways, such
as proteins or metabolites, are what they intend to include.

Found within pathway diagrams are nodes that represent genes, ri-
bonucleic acids (RNAs), pathways, or metabolites. In general, datan-
odes in a pathway diagram can be connected with a line, a general in-
teraction, in which case the influence of one node upon another might
not be known. A more specific case would be when a line is drawn
between datanodes with an arrow head that indicates the direction
of influence from one datanode to another. The more specific inter-
actions are also able to be drawn in the pathway diagrams such as
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Figure 1.1: Cholesterol Biosynthesis Pathway, wikipathways:WP4141, illus-
trates how data nodes are represented and how they are connected by edges.
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enzymatic conversion of one metabolite form to another with accom-
panying catalyzing reactions. Inhibition effects can also be shown and
are observed in pathways as well as stimulation, and transcription-
translation events. Molecular Interaction Map (MIM) and Systems Bi-
ology Graphical Notation (SBGN) are two different interaction model-
ing schemas and common ways of classifying these interaction types (26,
27). Modeling systems like these allow for the semantic capture of in-
teraction information for pathway diagrams.

Knowing how the pathway elements are connected together has a ba-
sis in biological experiments and assays to help prove the validity of
the interactions for protein-protein interactions as well as for enzyme
reactions (28, 29). The connections are one portion of the represen-
tation, the other portion being the directional information. One por-
tion of the system has an influence on processes that are found down-
stream. An example of this would be seen with a drug or small mole-
cule that targets a protein and competitively inhibits its actions and has
a direct influence on proteins found downstream of the process that is
being targeted. Changes to the system cause changes elsewhere within
the system. These elements are complex systems and so changes meant
to target one area can have a profound effect on other areas. This can
be seen in the case of drugs having unintended side-effects (30), which
can be severe in nature such as kidney problems, allergic reactions,
or decreased immunity. This shows how important it is for a part of
the system to work in collaboration with each of the other parts. If the
parts do not work, then they can cause larger system wide issues. How
the system acts together is an area of study pertinent to understanding
biological outcomes.

1.0.1 General Aim

This thesis is centered around the idea of using connectivity data from
pathways to further biological understandings and how we can lever-
age biological pathway connectivity to further the field of biology. Com-
mon to all project parts is the theme of the elements of the system



being connected to each other and not acting alone. Related to the
idea of general connectivity of the system is the idea of directional in-
fluences. These influences help the understanding of biological sys-
tems, and make it possible to gain new knowledge in biology overall.
The pathway diagrams are the main resource used to understand these
connections.

These diagrams should allow us to leverage interaction data from var-
ious resources to obtain a better understanding of biology. It is apply-
ing this principle, of gathering, evaluating and combining data, that
marks the principles of this thesis work. WikiPathways is the main
resource used, but the biological knowledge comes from many places.
WikiPathways allows the user to cite primary literature to a specific
data node entity or the edge interactions between them. The Novem-
ber 2016 release of WikiPathways had 22889 citations. The identifier
mapping data used by WikiPathways comes from resources like Entrez
Gene (31), ChEBI (32), Ensembl (33), HMDB (23), and ChEMBL (34) as
well as others, while the pathway diagrams in WikiPathways can be di-
rectly based on literature or interaction databases but they often come
from or are inspired by KEGG (14), Reactome (35), and Pathway Com-
mons (36). It is this leverage of information from many sources that
makes this thesis possible. Biological information comes from several
places and the integration of these sources to make a coherent network
aids the study and future studies. This integration of data can be seen
in knowledge graphs like Wikidata and applied to the life sciences (37,
38). The integration of data from multiple sources makes other bio-
logical questions answerable and to also understand how the system
works together.

Unfortunately, it is not always easy to link up all these data sources.
But if done properly, it is possible that we cannot only use data from
a resource like WikiPathways but are able to combine it with outside
sources from the NCBI or EMBL-EBI using appropriate technologies.
Linking up the resources to recognize that an entity is the same in Wi-
kiPathways and NCBI is only part of the problem. The next problem
is how do elements of a pathway link up with these outside sources
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and what sort of inferences can we gain from these connections. While
identifier mapping addresses much of the interoperability for the bio-
logical data nodes, for interactions this is not fully explored yet. How
to describe and use these interactions then ends up being the bulk of
the work done here.

1.0.2 Outline of the Thesis

If we want to use WikiPathways content to analyze a full system in
an automated or semi-automated way, we need to make information
from WikiPathways into a more interoperable format. The semantic
web formalizes interoperability and is explored as a solution for path-
ways in Chapter 2. This chapter explores the modeling of WikiPath-
ways in the Resource Data Framework (RDF), allowing us to explore
the content of WikiPathways. Monthly updates to this machine read-
able information in RDF are provided on the WikiPathways SPARQL
endpoint (http://spargl.wikipathways.org/). Interactions are challenging
here: graphical lines from a diagram need to be accurately and consis-
tently turned into a form that is able to be queried and stored. The RDF
representation of the WikiPathways dataset is a fundamental step to-
ward making the data from WikiPathways available to the scientific
community in a form that fits many research interests. These updates
to the RDF in the SPARQL endpoint, allow for continuous use of rel-
evant queries for user research that benefits from the latest pathway
and pathway model updates.

One of the benefits of turning the WikiPathways graphical informa-
tion into semantic information is that it allows for WikiPathways data
to be integrated with data from other sources. Being able to query in-
formation from WikiPathways and merge it with data retrieved from,
for instance, ChEMBL or ChEBI allows for taking advantage of this in-
formation to answer new questions relevant to biology. This can for
instance be used to combine information about how the gene products
are interacting and how compounds associated with one gene prod-
uct may influence that interaction. This has implications in toxicology
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and pharmacology. The same kind of combined approaches can be
useful to study disease development and diseases where there is no
clear disease - gene associations. For purposes like this, WikiPathways
can be connected to resources like DisGeNet (39). Being able to inte-
grate WikiPathways data with other biological and chemical sources
from the internet allows for more advanced systems biology studies
to be performed. It is this ability to integrate WikiPathways with other
resources, that I evaluated in this thesis work, that is an important con-
tribution to biological understanding.

With the overall idea of the semantic web version of WikiPathways
done, the next feature needed is an accurate way to semantically de-
scribe pathway interactions. Therefore, we set out to explore how to
explicitly explain how interactions are modelled and represented in
WikiPathways, as described in Chapter 3. Here we study how the in-
teractions in the graphical diagrams can be modelled and represent the
connections between elements of pathways. The results of this work
are needed to provide descriptions for the interactions that will be used
later in the project. The objective being to explore if the WikiPathways
RDF semantic and connectivity data can be used to answer questions
in biology. There were two proposed examples that were used to test
this idea. MECP2 was used as an example because it is a protein with
implications in a rare disease like Rett syndrome. Our second exam-
ple, sphingolipid metabolism, is an example of a metabolism pathway,
with sphingolipids themselves being important structural elements of
cells. These are important examples of how the modelled interactions
can be used to explore biological questions of interest using the Wiki-
Pathways connectivity and direction information.

Explanation of how the interactions and reactions are modelled in Wi-
kiPathways using semantic representation is important to relaying the
information and work done by biologists on WikiPathways to other re-
searchers in a way that can be easily queried. This step to create, doc-
ument, and make available interaction information, through the Wi-
kiPathways SPARQL endpoint (https://spargl.wikipathways.org/sparql)
and vocabularies (https://vocabularies.wikipathways.org/), is what fa-
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cilitates the mentioned knowledge transfer. The examples of how the
semantic information can be used to answer specific biological ques-
tions demonstrate how others can also use the resource to answer their
own questions relating to how pathway elements influence each other.
Now that Chapters 2 and 3 have shown how the semantic web ap-
proach works for WikiPathways, we can focus on the reuse.

Chapter 4 shows a first use case of this reuse and studies how the
WikiPathways connectivity and directional information can be inte-
grated into the Open PHACTS drug discovery platform. This allows
the project partners and users to be able to use the integrated data from
WikiPathways to explore options only available from a pathway re-
source. The integrated pathway and connection information enables
the querying of the included API to answer questions pertaining to
pharmacology. Specifically, directional queries were added to the plat-
form and allowed queries for directional identification of upstream
or downstream targets from a protein of interest. Because the Wiki-
Pathways semantic data has information about how drug targets and
metabolites are connected and interact with each other, the data from
WikiPathways is useful for exploration of drug repositioning and re-
purposing. Making the integration of pathway information an impor-
tant aspect of the project. The addition of the WikiPathways data also
adds richness to the platform in aiding computational drug discovery
goals.

The addition of directionality of interactions for the Open PHACTS
Discovery Platform is a specific example of how the connectivity infor-
mation from WikiPathways can be used to answer questions in the area
of pharmacological research. This addition does facilitate answering
questions that are associated with how proteins influence each other.
In the case of pharmacology it allows for querying for targets upstream
of the protein of interest and having a similar downstream effect. Be-
ing able to move up or down from the original target allows for this
type of analysis to be performed for any protein target found in Wiki-
Pathways.

10



Having connectivity information from WikiPathways also means that
it is possible to construct networks. Being able to construct pathway
based networks by combining pathways into a larger network and
evaluating which nodes are active based upon a specific omics dataset
is significant for researchers interested in evaluating the most rele-
vant active or changed processes in biological studies. This makes this
work a powerful tool and approach for identifying active networks
from much larger networks. In Chapter 5 we explore this applica-
tion for rare diseases, and discover interaction networks in order to
study diseases that are often not yet studied at that level. Rare dis-
eases are hard to study because there are fewer patients with these dis-
eases, being able to find and isolate relevant subnetworks in these dis-
eases is harder because they are less studied with smaller datasets and
need further context to make informed conclusions. For example, con-
structing these subnetworks was used to create a network for Rett syn-
drome. In this case, MECP2 is a protein of interest in Rett syndrome.
MECP2 is a protein that can both activate and repress transcription
and is required for neuron development (40). MECP2 function is lost
for most cases of Rett syndrome with varying degrees of phenotypic
severity (41). The Gene Expression Omnibus (GEO) was used to find
an appropriate transcriptomics dataset for the study. A larger network
was created from WikiPathways for humans consisting of a network
of all human pathways. A subnetwork of active nodes was identified
from the human network for Rett syndrome. The subnetwork is a net-
work specific to this disease’s gene expression characteristics.

The significance of identifying active nodes of a larger network from
a publicly available dataset, means that it is possible to construct and
identify active subnetworks for biological study in places like rare dis-
eases. Rare diseases are less studied than their more common disease
counterparts. While rare diseases may have several datasets pertaining
to them, you often find these datasets are smaller. This means the un-
derlying system and system effects are less studied too. This basic sys-
tem information is important for scientists interested in translational
research.

11
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Another example of the use in pharmaceutical research is defined by
the drug synergy DREAM challenge (42), which was hosted by As-
traZeneca and Sanger as a community competition to address ques-
tions in systems biology. The challenge objective was to use drug data
to predict potential drug combination synergies. This shows that con-
nectivity and directional information gained from WikiPathways can
also be used in areas like cancer research. The idea being to use prior
biological knowledge to address cancer pharmacology. The central hy-
pothesis here is that synergetic effects originate from how the targets
they hit are biologically related. This is defined by the interactions in
the pathways. In Chapter 6 we explore how the WikiPathways data
can be used in pharmacology and cancer research. The specific chal-
lenge we chose was to use data provided by the DREAM challenge
organizers to predict synergies without the aid of training data, this
challenge was the inspiration for this chapter as further work was done
after the challenge had been completed.

Our approach is as follows. One model for prediction is the Loewe Ad-
ditivity Model that says if two drugs share the same target, the drug
combination can be mathematically calculated to be synergistic or ad-
ditive in nature. The first approach used for the calculations was to
take the idea of two drugs sharing a common target and apply it to
the idea that these two drugs do not have to share a common target
but instead need only share a common pathway. The idea being that
if two drugs are active and target two different proteins within the
same pathway then each drug is targeting a part of the same biolog-
ical process. This has a disadvantage that potential drug targets in a
pathway may not share the same arm or directed path through the
pathway and so may not have the same type of effect and may not
have much of an influence on one another. So the next approach was
to use specific connections between targets that are in the same com-
mon directed branch of the pathway to make connections for potential
drug targets. That is, of the two potential drug - target combinations
one needs to be directly upstream or downstream, by up to four inter-
mediate steps, of the other and thus they share a common path and the

12



downstream protein is being influenced by one that is upstream of it.
This means that the set of possible drug-target combinations is more
numerous than in the case of just making calculations with two targets
sharing the same target, but the approach is also more specific. This
approach targets protein combinations that share a common directed
path through connected biological interactions of the two targets, and
is more specific than the approach that uses targets that only share a
pathway. This makes the last approach of using targets found in the
same directed paths through a pathway as the preferred method for
proposing potential drug-target combinations. We can use previously
known knowledge of pathway connectivity to make predictions about
potential drug-target combinations. The specific biological meaning of
the interactions are essential here.

Using the semantic information from WikiPathways, and more specif-
ically directed interaction information, to identify possible synergistic
drug combinations, displays an important example of the ability of
integrating pathway data with data from other resources for use in re-
search. It is an important example of how the pathway diagrams can
be used for other applications other than pathway enrichment systems
biology approaches. It means that it is possible to use the directional
data from WikiPathways to make pharmacological predictions about
how they will interact with each other and the system.

The chapters of the thesis illustrate the describing and use of inter-
actions, connectivity, directional components, and demonstrate how
it provides an opportunity to explore the intricacies of pathway di-
agrams and how they are represented in a way that is applicable to
human biology. Chapters 2 and 3 chapter explain the semantification
of the interaction knowledge. Next, I show the applications of this ap-
proach in several fields such as pharmacology as seen in Chapters 4
and 6, cancer research as seen in Chapter 6, and network biology as
seen in Chapter 5. Chapter 7 will discuss the overall results of this the-
sis and argue that this approach provides a unique opportunity to use
pathway information to better explore biology.

13
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Chapter 2. Semantic Web for WikiPathways

Abstract

The diversity of online resources storing biological data in different
formats provides a challenge for bioinformaticians to integrate and
analyse their biological data. The semantic web provides a standard
to facilitate knowledge integration using statements built as triples
describing a relation between two objects. WikiPathways, an online
collaborative pathway resource, is now available in the semantic web
through a SPARQL endpoint at http://sparqgl.wikipathways.org. Hav-
ing biological pathways in the semantic web allows rapid integration
with data from other resources that contain information about ele-
ments present in pathways using SPARQL queries. In order to convert
WikiPathways content into meaningful triples we developed two new
vocabularies that capture the graphical representation and the path-
way logic, respectively. Each gene, protein, and metabolite in a given
pathway is defined with a standard set of identifiers to support link-
ing to several other biological resources in the semantic web. Wiki-
Pathways triples were loaded into the Open PHACTS discovery plat-
form and are available through its Web API (https://dev.openphacts.
org/docs) to be used in various tools for drug development. We com-
bined various semantic web resources with the newly converted Wiki-
Pathways content using a variety of SPARQL query types and third-
party resources, such as the Open PHACTS APIL The ability to use
pathway information to form new links across diverse biological data
highlights the utility of integrating WikiPathways in the semantic web.
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2.1 Introduction

Pathway analysis and visualisation of data on pathways provide in-
sights into the underlying biology of effects found in genomics, pro-
teomics, and metabolomics experiments (2-5). WikiPathways is a path-
way repository where content is provided by the community at large (6,
7). In a given pathway, elements like genes, proteins, metabolites, and
interactions are identified using common accession numbers from ref-
erence databases such as Entrez Gene (8), Ensembl (9), UniProt (10),
HMDB (11), ChemSpider (12), PubChem (13) and ChEMBL (14). Mul-
tiple databases can be referenced to annotate an element of the same
semantic type, e.g. Ensembl and Entrez Gene to annotate gene infor-
mation. Even single studies sometimes use different reference data-
bases to annotate experimental findings. It is common for bioinfor-
maticians to spend valuable time dealing with data mapping issues
that impede the actual data analysis and interpretation. In WikiPath-
ways we use the open source software framework BridgeDb (15), to
help resolve different identifiers representing the same (or related) en-
tities. Capturing a semantically correct description of biological enti-
ties and their connections across datasets is the broader challenge that
we have to address. The semantic web provides an approach to define
entities and their relationships. By explicitly defining these entities
and relationships the semantic web can provide a network of linked
data (16). The Resource Description Framework (RDF) consists of two
key components: statements and universal identifiers. Each statement
is captured as a triple, consisting of a subject, a predicate, and an ob-
ject. For example, the following triple defines the glucose molecule as
being part of the glycolysis pathway:

< Glycolysis > < HasMember > < Glycolysis >
SN—— —

subject predicate object

The notion of a semantic web surfaces as you link across large sets
of triples representing a vast number of objects and diverse types of
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concepts and predicates. The use of uniform identifiers, or URIs (17),
provides consistency when specifying subjects and objects. identifi-
ers.org (18), for example, provides a clearinghouse for a wide variety
of URIs for biological entities in the life science domain. WikiPath-
ways provides identifiers for all its pathways and identifiers.org pro-
vides the URI scheme to make these resolvable. Standardized URIs for
predicates come from efforts such as the Simple Knowledge Organiza-
tion System (SKOS) (19). For example, our example triple above can
be expressed in a more universal way as:

http : / Jwww.identi fiers.org/wikipathways/W P534

subject

http : | Jwww.w3.org/2004/skos/coremember

predicate

http : | Jwww.identifiers.org/chebi/CHEBI : 4167

-~
object

where each element is uniquely and universally resolvable to a de-
fined concept (glycolysis, “has member”, and glucose respectively).
Of course, the more human readable information can also be explic-
itly added by describing the labels in RDF. But that information is also
available by resolving the URIs.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX wp: <http://identifiers.org/wikipathways/>
PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
PREFIX chebi: <http://identifiers.org/chebi/CHEBI:>
wp:WP534 skos:member chebi:4167.
wp:WP534 rdfs:label

"Glycolysis and Gluconeogenesis (Homo sapiens) "(@en.
chebi:4167 rdfs:label "Glucose"(@en.

In order to contribute pathway knowledge to the semantic web, we
have modeled the content of WikiPathways to form triple-based state-
ments. The interactions and reactions curated at WikiPathways are
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particularly well-suited to enrich the overall connectivity of the se-
mantic web. Pathways offer a meaningful context for relations be-
tween biological entities, such as proteins, metabolites and diseases
that are otherwise defined in disparate databases. We report on the
conversion process and the development of two new vocabularies es-
sential in capturing the semantics behind pathway diagrams. Finally,
we evaluate the use of the semantically linked pathway knowledge
through specialized queries and third-party resources, showing how
to link WikiPathways with disease annotations (from UniProt (10) and
DisGeNET (20)), with gene-expression values (from Gene Express At-
las) and with bioactive chemical compounds known to affect proteins
that occur in pathways (e.g. from ChEMBL).

2.2 Results and Discussion
2.2.1 Pathway vocabularies

There are existing standards to model various aspects of pathway knowl-
edge, such as BioPAX (21), SBGN (22), MIM (23), SBML (24) and SBO (25).
BioPAX and SBO are in fact already available in a Semantic Web-compatible
language called OWL (26). These standards provide valuable building
blocks for our “WP” vocabulary that captures the biological meaning
of pathways. However, not all of the graphical annotations, spatial
information and other subtleties critical for the visual representation,
the intuitive understanding and the usability for data visualisation of
the curated content at WikiPathways are captured by these standards.
Our “GPML” vocabulary directly reflects these features defined in the
XML format, GPML, or Graphical Pathway Markup Language. For
example, in GPML, all genes, proteins and metabolites are types of
data nodes, which are rendered as a rectangular box with properties
capturing among others its position, height, width, label, and external
reference. For example:

<DataNode TextLabel="Glucose" GraphlId="dba83" Type="Metabolite">
<Graphics CenterX="279.0" CenterY="468.0" Width="112.0"
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Height="20.0" zOrder="32768">
<Xref Database="ChEBI" ID="CHEBI:4167" />
</DataNode>

In the GPML vocabulary, used for semantic representation of pathway
diagrams, the markup elements and values are described as classes
and properties, each with their respective URIs.

<http://identifiers.org/chebi/CHEBI:4167> rdf:type gpml:DataNode .
<http://identifiers.org/chebi/CHEBI:4167> rdfs:label "Glucose"@en .
<http://identifiers.org/chebi/CHEBI:4167> gpml:graphId "dba83" .
<http://identifiers.org/chebi/CHEBI:4167> gpml:ZOrder 32768 .

The GPML vocabulary, in its current form, is mainly instrumental in
the representation of the spatial information captured at WikiPath-
ways. However, as we will describe below it can also be used to con-
vert pathway information from other semantic web resources into a
format amenable to being rendered and curated at WikiPathways. Ex-
plicit mappings to external (graphical) ontologies are not added, how-
ever through plugins such as Pathvisio-MIM (27) mappings to graphi-
cal notations such as MIM or SBGN, are possible. In an analogous way,
the WP vocabulary can be used to capture the biological relations from
other pathways in such a way that they can be used in resources using
this semantic layer of the WikiPathways RDF. We used this approach
for example to make the relations from Reactome pathways available
in the Open PHACTS discovery platform (28) starting from the con-
verted pathways at WikiPathways.

The WP vocabulary, focusing on biological meaning, issues URIs for
biological concepts and disregards layout and other rendering details.
Using URIs from this vocabulary allows stating that something is a
Pathway, or that a DataNode is a chemical compound or gene prod-
uct. The vocabulary also captures descriptive elements, such as la-
bels, shapes and lines that help annotate and contextualize the path-
way reaction details. The RDF generated consist of terms from the
vocabularies developed in this context. This is done to be able to re-
flect the semantics used in the WikiPathways community. However, to
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allow integration with external pathway resources—which is the pri-
mary objective of this project—we need to link to external ontologies.
For the subset of concepts in common with prior vocabularies, such as
BioPAX, we utilize the SKOS data model to express a range of similar-
ities from skos:exactMatch to skos:closeMatch (19, 29).

2.2.2 Pathway conversion and queries

With these vocabularies in place, the next step is the actual conversion
of GPML files into triples using the GPML vocabulary. Then rules are
applied to make the biological meaning explicit using the WP vocab-
ulary. For example a directed interaction is captured in GPML as two
“DataNodes”, a line and an arrowhead. The “DataNodes” have ex-
ternal references as properties. Rules are then applied to state that a
line is a Directed Interaction, with a source and a target. Figure 2.1
contains an example of such a rule based reasoning query that issues
triples with URIs from the WP vocabulary.

WikiPathways pathways are regularly curated by a team of volun-
teers that evaluate their usability for analysis and tag the pathways
as “curated”. WikiPathways contains 1000 pathways in the curated
set across over a dozen species that convert to a total of 1.6 million
triples. The triples are loaded in a SPARQL endpoint (http://sparq|l.
wikipathways.org), which allows semantic querying of the data with
the SPARQL query language (30). RDF, including new and updated
pathways, is generated and tested regularly and can be delivered upon
request. Updates of the RDF that is available for download and in the
SPARQL endpoint are triggered by crucial events, such as Reactome
or Open PHACTS data releases. This prevents discrepancies in qual-
ity control or curation, due to small differences between (frequent) re-
leases. Example SPARQL queries and their plain language translations
are given in Figure 2.2. A broad set of ~ 50 queries is available on the
help pages of WikiPathways (31).

A federated SPARQL query (18) enables querying over multiple SPARQL
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gpml:graphid

GPML > wp
CONSTRUCT query

Figure 2.1: A construct query is type of SPARQL query that enables the con-
version of one graph pattern to another. Here an interaction described by its
spatial properties (GPML) is converted into a semantic representation reflect-
ing its biological interpretation (WP). The SPARQL query is available in the
supporting information section.

endpoints. With a variety of SPARQL endpoints available with data
on disease annotations (e.g. DisGeNET and UniProt), significantly ex-
pressed genes (e.g. EBI Expression Atlas) and drug-target interactions
(e.g. ChEMBL), knowledge from these remote SPARQL endpoints can
be integrated. Example queries are given in Figure 2.3 and on the help
pages of WikiPathways (32)

2.2.3 Using linked data in common analysis platforms

Different common analysis platform allow the integration of linked
data for future analysis and visualization. One nice example of such
a analysis platform is R, a widely used software environment for sta-
tistical computing and graphics. R has a SPARQL library (33), which
enables the import of linked data for further processing in R. This al-
lows running common statistical tests or the creation of different visu-
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List the species captured in WikiPathways and the ~ SELECT DISTINCT ?organism ?label count(?
number of pathways per species pathway) as ?numberOfPathways
WHERE {
?pathway dc:title ?title.
?pathway wp:organism ?organism.
?pathway wp:organismName ?label.
?pathway rdf:type wp:Pathway.
}
ORDER BY DESC(?numberOfPathways)

Get all gene products on a particular pathway SELECT DISTINCT ?pathway ?label

(WP615 as an example) WHERE {
?geneProduct a wp:GeneProduct.
?geneProduct rdfs:label ?label.
?geneProduct dcterms:isPartOf ?pathway.
?pathway rdf:type wp:Pathway.
FILTER regex(str(?pathway), “WP615”).

}

Return all PubChem compounds in WikiPathways SELECT DISTINCT ?identifier ?pathway
and the pathways they are in WHERE {
?concept dcterms:isPartOf ?pathway.
?concept dc:source “PubChem-compound” **
xsd: string.
?concept dc:identifier ?identifier.
?pathway rdf:type wp:Pathway

doi:10.1371/journal.pcbi.1004989.t001

Figure 2.2: Example queries handled by the WikiPathways SPARQL end-
point.

alization of linked data. We recently published an R library that inter-
faces R with PathVisio (34) and allows manipulation of pathways and
data visualisation on pathways. Figure 2.4 shows up and down reg-
ulated genes in Diabetes Mellitus (efo:EFO_0000400, efo:EFO_0001359,
and efo:EFO_0001360) in the pathway diagram on insulin signaling in
human (32). This pathway diagram with color-coding parts indicating
up- and down regulated pathway elements, was created by integrat-
ing knowledge from two geographically dispersed and independent
resources, through a single SPARQL query embedded in a R script,
which is available online (35).

2.2.4 Rosetta stone function

A number of resources provide content from multiple pathway data-
bases, including Pathway Commons (36) and NCBIs BioSystems (http:
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/Incbi.org/biosystems). While BioPAX in fact is RDF, the NCBI system
is not. NCBI BioSystems uses NCBIs native identifiers: Geneld, Pro-
teinld, CID. We thus have a resource with pathways from different
origins that are already described in the same way. Since for WikiPath-
ways content we know how the different entities in these resources
map to the GPML and WP vocabularies we can now use that to pro-
duce RDF using these same ontologies for each of the other pathway
resources present in NCBI BioSystems. In fact, we can do the same for
Pathway Commons where this approach will lead to an improved ver-
sion of RDF with explicit mappings to the WP vocabulary. We made
a prototype script available on GitHub to be used for this type of con-
versions from BioSystems (37).

2.2.5 Use in discovery platforms

The semantically linked pathway data from WikiPathways RDF have
also been integrated into the Open PHACTS discovery platform (28,
38). Open PHACTS delivers and sustains an open pharmacological
space using semantic web standards and technologies. The Open PHACTS
platform currently provide 51 API methods of which thirteen deliver
pathway information (https://dev.openphacts.org/docs). Other infor-
mation collected in Open PHACTS describes other relationships like
drug-target (from ChEMBL) and protein interaction (from UniProt).
Having this all in one resource combined with a set of mapping tools
allows fast analysis across the domains. By combining Open PHACTS
API calls one can, for instance, find all protein targets for a drug and
then all pathways that contain these targets.
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From DisGeNET get disease-gene pairs on asthma and get all pathways where these genes have a role

PREFIX identifiers: <http:/identifiers.org/ensembl/>
PREFIX atlas: <http://rdf.ebi.ac.uk/resource/atlas/>
PREFIX efo: <http://www.ebi.ac.uk/efo/>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
SELECT DISTINCT ?wpld ?pwtitle (group_concat(distinct ?wpgene_identifier;separator = “; ”) as ?
wpgenes) WHERE {
SERVICE <http://rdf.disgenet.org/sparql/> {
GRAPH <http://rdf.disgenet.org> {
?gda sio:SIO_000628 ?gene,?disease.
?gene rdf:type ncit:C16612;
rdfs:label?genelLabel.
?disease rdf:type ncit:C7057;
rdfs:label?diseaselLabel.
FILTER regex(?diseaselLabel, “asthma”, i")
?gene sio:SIO_010078?protein.
}

?wpgene wp:bdbEntrezGene ?gene.
?wpgene dcterms:identifier ?wpgene identifier.
?wpgene dcterms:isPartOf ?pathway.
?pathway a wp:Pathway.
?pathway dc:identifier 2wpld.
?pathway dc:title ?pwtitle.

}

For the genes differentially expressed in asthma (found in the EBI Expression Atlas), get the gene products
associated to a WikiPathways pathway

PREFIX identifiers: <http://identifiers.org/ensembl/>
PREFIX atlas: <http:/rdf.ebi.ac.uk/resource/atlas/>
PREFIX atlasterms: <http:/rdf.ebi.ac.uk/terms/atlas/>
PREFIX efo: <http://www.ebi.ac.uk/efo/>
SELECT DISTINCT ?wpURL ?pwTitle ?Ensembl ?EntrezGene ?expressionValue ?pvalue WHERE {
SERVICE <https://www.ebi.ac.uk/rdf/services/atlas/spargl> {
?factor rdf:type efo:EFO_0000270.
?value atlasterms:hasFactorValue ?factor.
?value atlasterms:isMeasurementOf ?probe.
?value atlasterms:pValue ?pvalue.
?value rdfs:label ?expressionValue.
?probe atlasterms:dbXref ?dbXref.

?pwElement dcterms:isPartOf ?pathway.

?pathway dc:title ?pwTitle.

?pathway dc:identifier 2wpURL.

?pwElement wp:bdbEnsembl ?Ensembl.
?pwElement wp:bdbEntrezGene ?EntrezGene.

}
ORDER BY ASC(?pvalue)
doi:10.1371/journal.pcbi.1004989.t002

Figure 2.3: Example federated queries handled by the WikiPathways

SPARQL endpoint.
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Figure 2.4: The colored boxes represent genes which are up (red) or down
(blue) regulated in diabetes mellitus. PIK3R2, MYO1C, PRKAAZ2, LIPE are
down regulated in pre-diabetes. STX4A is down regulated in type 1 di-
abetes longstanding. PRKCQ, PTPN11, FOXO3A are down regulated in
type 2 diabetes. GAB1, RHEB, MAP4K4, SNAP23 are up regulated in pre-
diabetes. RHOJ, PRKCB are up regulated in type 1 diabetes recent onset.
MAPK14UP, EIF4EBP1 are up regulated in type 1 diabetes clinical onset.
From these 17 up or down regulated genes, 9 are being reported as being
in the top 10 disease and phenotype associations for the selected gene in Dis-
GeNET (i.e. PIK3R2, PRKAA?2, LIPE, STX4A, PRKCQ, FOXO3A, MAP4K4,
SNAP23, and PRKCB) (Gene-disease association data were retrieved from the
DisGeNET Database, GRIB/IMIM/UPF Integrative Biomedical Informatics
Group, Barcelona. (http://www.disgenet.org/). 04, 2016)
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2.3 Materials and Methods

Use of Open PHACTS RDF guidelines In collaboration with partners
in the Open PHACTS project, we proposed guidelines for presenting
data as RDF (39), most of that can be considered as general guidelines
to produce RDF in the biomedical domain. The guidelines consist of
a prerequisite and 11 steps, covering the licensing (step 0), designing
(step 1-5), implementation (steps 6-9), and presentation (steps 10-11)
of the data in the semantic web. In the work presented here we follow
these steps:

2.3.1 Licensing

WikiPathways content is covered by the Creative Commons Attribu-
tion 3.0 Unported license (https://creativecommons.org/licenses/by/3.
0/). This is stated in the VoID headers of the RDF made. These headers
are automatically generated by the same script generating the Wiki-
Pathways RDE. Open PHACTS provides a template for these header
files.

2.3.2 Implementation

We used a Java RDF framework, Jena (http://jena.apache.org/), to gen-
erate the RDF for WikiPathways. The pathway diagrams were ob-
tained through the web services of WikiPathways, after which they
were converted into RDF with the Jena RDF framework. The code of
the serializer is available on GitHub (https:/github.com/wikipathways/
wp2lod). The vocabularies were generated with a vocabulary frame-
work called Deri Neologism (http://neologism.deri.ie/).

2.3.3 Presentation

The resulting RDF triples are available from (http:/rdf.wikipathways.
org) and loaded on a instance of the Virtuoso Open-Source Edition
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(http://virtuoso.openlinksw.com/) and available through its SPARQL end-
point at http://spargl.wikipathways.org. The triples are also loaded on
the Open PHACTS discovery platform (https://dev.openphacts.org/docs/
1.5) where they can be accessed through eleven API calls.

2.3.4 |dentifier mapping

In the context of the semantic web, it is impractical to burden query
writers with handling identifier mapping per resource and per query.
Rather, the mapping results themselves need to become part of the se-
mantic web. We applied two distinct approaches to addressing identi-
fier mapping in our WikiPathways and Open PHACTS projects.

2.3.5 Query expansion

The Open PHACTS framework provides query expansion function-
ality through its Identifier Mappings Services. When an identifier is
queried the SPARQL query is enriched with all possible identifiers to
retrieve an expanded set of related entities. This approach is the most
efficient in terms of the number of triples, since it requires only a sin-
gle identifier per relationship, eliminating redundancy. However, it
also requires a hosted identifier mapping service that it called along
with every query.

2.3.6 Unified identifiers

In the case of WikiPathways, which does not host a mapping service,
we chose a unified identifier approach, where all identifiers are mapped
ahead of time to a set of common identifier systems. In this way,
the database effectively contains the results of a limited number of
identifier mappings in form of partially redundant triples. For exam-
ple, in the WikiPathways RDF, all identifiers have been unified to En-
trez Gene (wp:bdbEntrezGene), Ensembl (wp:bdbEnsembl), UniProt
(wp:bdbUniprot) for gene products and HMDB (wp:bdbHmdb), and
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ChemSpider (wp:bdbChemspider) for compounds like metabolites and
drugs. The original identifier provided by the pathway curator is stored
as a triple, with the predicate dc:identifier, and a URI from identifi-
ers.org, which points to both the identifier and the resource.

2.4 Summary

We present a semantic web representation of WikiPathways together
with vocabularies needed to cover the graphical pathway layout and
the biological meaning and solutions to map between different iden-
tifier systems. The public availability allows rapid integration with
other biological resources. The availability of two vocabularies al-
lows to convert between different pathways resources. Different an-
alytical tools now support the import of semantic web data, allow-
ing integrated use of data from different resources with a single query.
We demonstrate this with a federated query across multiple resources
where the resulting differentially expressed genes for a disease where
shown on a discovered pathway using PathVisio.

Availability
The following resources are publically available as beta releases just

like WikiPathways. They are maintained as part of the open source
WikiPathways project

Vocabularies

GPML: http://vocabularies.wikipathways.org/gpml
WP: http://vocabularies.wikipathways.org/wp
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WikiPathways on the Semantic Web

SPARQL endpoint: http://spargl.wikipathways.org
Open PHACTS: https://dev.openphacts.org/docs/
RDF download: http://rdf.wikipathways.org

Source code

GitHub: https://github.com/wikipathways/wp2lod
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Abstract

To grasp the complexity of biological processes, the biological knowl-
edge is often translated into schematic diagrams of, for example, sig-
nalling and metabolic pathways. These pathway diagrams describe
relevant connections between biological entities and incorporate do-
main knowledge in a visual format making it easier for humans to
interpret. Still, these diagrams can be represented in machine read-
able formats, as done in the KEGG, Reactome, and WikiPathways da-
tabases. However, while humans are good at interpreting the message
of the creators of diagrams, algorithms struggle when the diversity
in drawing approaches increases. WikiPathways supports multiple
drawing styles which need harmonizing to offer semantically enriched
access. Particularly challenging, here, are the interactions between the
biological entities that underlie the biological causality. These interac-
tions provide information about the biological process (metabolic con-
version, inhibition, etc.), the direction, and the participating entities.
Availability of the interactions in a semantic and harmonized format is
essential for searching the full network of biological interactions. We
here study how the graphically-modelled biological knowledge in dia-
grams can be semantified and harmonized, and exemplify how the re-
sulting data is used to programmatically answer biological questions.
We find that we can translate graphically modelled knowledge to a suf-
ficient degree into a semantic model and discuss some of the current
limitations. We then use this to show that reproducible notebooks can
be used to explore up- and downstream targets of MECP2 and to anal-
yse the sphingolipid metabolism. Our results demonstrate that most
of the graphical biological knowledge from WikiPathways is modelled
into the semantic layer with the semantic information intact and con-
nectivity information preserved. Being able to evaluate how biological
elements affect each other is useful and allows, for example, the iden-
tification of up or downstream targets that will have a similar effect
when modified.
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Author summary

Resources like WikiPathways contain many biological pathway dia-
grams and within these diagrams are even more pathway elements,
representing genes, proteins, and metabolites. In the case of Wiki-
Pathways, the basic elements of the diagrams are nodes with biolog-
ical information about gene products, metabolites, as well as other
pathways, and edges that represent the biological interactions, com-
plemented with graphical elements meant to make diagrams easier to
read. While these elements can generally be understood by a biolo-
gist upon visual inspection, it takes implementation of technologies
like RDF and shape expressions (ShEx) to make the pathway diagrams
able to be batch queried by a computer. This allows researchers to
query the entire resource at once to observe systemic patterns. The
work presented here is intended to inform how biological elements
are interacting with one another and how to leverage this information
to answer biological questions.
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3.1 Introduction

Human cells contain around 20,000 protein-coding genes and numer-
ous non-coding genes (2) and each coding gene can encode many pro-
teins. Furthermore, the Human Metabolome Database (HMDB) de-
scribes over 100,000 metabolites (3). The number of interactions be-
tween biological entities is even higher. For example, cells also con-
tain many membrane and soluble protein complexes (4), the latter es-
timated as at least 600 (5), while many more are predicted (6). The
size and complexity of the system gives a system-wide overview, but
sometimes breaking the system into smaller pieces that can be used for
analysis and experimentation is wanted (7, §).

WikiPathways is an open source pathway repository that is open to
the community to create and modify pathway diagrams so that they
can be shared with everyone in the community (9). The WikiPath-
ways database depicts biological processes and their connections to
each other. The connections of elements within a pathway are shown
as edges from one node to the next. These edges themselves have bi-

Table 3.1: Abbreviations for semantic web technologies used to harmonize
the biological interaction information from WikiPathways.

Abbreviation Full Name/Meaning

GPML Graphical Pathway Markup Language
GPMLRDF RDF for Graphical Pathway Markup Language
MIM Molecular Interaction Map

RDF Resource Description Framework

SBGN Systems Biology Graphical Notation

ShEx Shape Expressions

SPARQL SPARQL Protocol and RDF Query Language
WikiPathways RDF  The combination of GPMLRDF and WPRDF
WPRDF RDF for WikiPathways
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ological meaning that can be modelled and represented in WikiPath-
ways (10).

For interoperability, WikiPathways also has a Resource Description
Framework (RDF) set associated with it (11). The RDF is the seman-
tic representation of pathway diagram elements that are displayed and
generated from the original Graphical Pathway Markup Language (GPML)
in which WikiPathways stores the pathways (see Table 3.1 for termi-
nology used in this article). The WikiPathways RDF then includes
both the graphical RDF (GPMLRDF) and the semantic elements of the
RDF (WPRDF). The RDF allows users to go from creating an image
of a biological pathway to trapping the elements and keeping them
in a machine readable way and made available to be queried. One
of the advantages of this is that it is also a linked data resource that
can be queried by users at the WikiPathways SPARQL Protocol and
RDF Query Language (SPARQL) endpoint, to query RDF databases
(http://spargl.wikipathways.org/). This store of the WikiPathways RDF
can be accessed both directly from the WikiPathways SPARQL end-
point, but also by remote requests via federated queries.

In order to represent connectivity between nodes in a pathway dia-
gram, the meaning of a drawn line connecting nodes needs to be un-
derstood. WikiPathways RDF has connectivity information stored as
point A is connected to point B. To a human looking at a pathway, it is
more obvious what an arrow connecting two points means or what is
implied by the arrow, but the RDF needs this stated explicitly if any in-
ferences about how elements are connected is to be gleaned. In fact that
is even true when standardised graphical representations for interac-
tions like Molecular Interaction Maps (MIM) (12) and Systems Biology
Graphical Notations (SBGN) (13) are used.

Furthermore, to ensure the biological causality is reflected in the graph
representation in the RDF, we need to make sure the latter reflects that
interactions can be directed and undirected. Information about the di-
rection and connectivity in a pathway diagram helps to explain the
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biological processes and therefore helps understand cause-effect rela-
tionships represented in the pathway. However, not all interactions
have a clear direction: while the direction of a metabolic conversion
follows chemical thermodynamics, interactions like the associations
that exist in a complex are symmetrical and do not have a direction.
Even more complex is a ligand binding, where the physical interaction
is not only directed, but the interaction arrow also reflects the move-
ment of the ligand. Therefore, it is important to know if an interaction
has a directed route as part of a path and the RDF needs to preserve
this information.

To ensure that pathway interaction drawings and notations can be bi-
ologically interpreted, the RDF needs to have standardized types for
the interaction. That will allow users to query for all reactions of a
similar (biological) type rather than worry about which notation was
used in the drawing. WikiPathways supports several drawing nota-
tions, which can be general WikiPathways notations, MIM notations,
and SBGN notations. Based upon WikiPathways GPML data model
and the underlying ontology, these three can all be used and shown on
WikiPathways. The available interactions themselves can be classified
into nine different types: conversions, bindings, interactions, directed
interactions, catalysis, transcription translation, complex bindings, in-
hibitions, and stimulations.

When interactions in various notations are normalized, more biologi-
cal knowledge can be explored, and new questions answered. This in-
teroperability effort makes it possible to gain implied knowledge from
how a pathway diagram is drawn. For example, if two enzymes are
catalyzing some chemical substrates in succession then there would
typically not be a direct link or arrow drawn from one enzyme to
the other, but in order for the second enzyme to work the product
from the first reaction must be present. This has the implication that
the second enzyme is biologically downstream of the first enzyme,
even though this interaction is not explicitly drawn. Having seman-
tically clear directions and interaction types is essential to reach this
conclusion from the RDF. Drawing of interactions with the WikiPath-
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A MIM inhibition

NOG ﬂ BMP2

B SBGN inhibition

NOG ] || BwPr2

Figure 3.1: Differences in drawing of MIM vs SBGN inhibition interaction. A
shows a MIM - inhibition interaction. B shows a SBGN - inhibition interac-
tion.

ways and MIM notations can be done with the default installation of
the PathVisio core (10), while SBGN needs a PathVisio plugin https://
github.com/PathVisio/pathvisio.github.io/blob/master/plugins/sbgn.md.

The PathVisio pathway editor thus makes it possible to annotate an in-
teraction as a simple line with an arrowhead, as a MIM interaction, by
default, or to create a SBGN drawing using plugins. It then becomes
necessary to unify common types from the different graphical stan-
dards so that a MIM-Inhibition and a SBGN-Inhibition are understood
as the same thing. Figure 3.1 shows the differences in drawing of an
inhibition between SBGN and MIM notation. After all, in both cases,
the interaction is indicating an inhibitory effect of one entity upon an-
other. Knowing the interaction types gives important context of the
connection and the entities involved. A small note about how com-
plexes are represented is also essential. In the RDF all the entities are
connected to each other with an undirected interaction. This keeps
them all connected to each other as well as with any interaction that
they are associated with as a complex.

The general interaction type is used to denote an interaction between
data nodes and thus all interactions are of this type. A directed inter-
action, on the other hand, means there is a direction that says one data
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node is influencing another but the exact mechanism is not known, or
at least not described by the pathway creator (author). Directed inter-
action is also the general data type for all interactions that have some
directional information included. Therefore, all interactions have the
type directed interaction except binding and complex binding, with
the directed interaction itself being a child of the general interaction
type. We therefore wanted to study to what extent we can derive
knowledge from biological interactions, by semantically capturing bi-
ological meaning of interactions and harmonizing the notation in path-
way drawings. We tested our hypothesis that this can be done by
answering the following questions. First, can we translate graphi-
cally modelled biological knowledge to a semantic model of biologi-
cal knowledge that harmonizes interaction types and captures implied
directional information And second, can we then take advantage of
the semantic translation of the graphical biological knowledge to pro-
grammatically answer biological questions. For this latter question, we
studied two specific biological questions as examples: in one example
we look at MECP2 and explore alternative targets for this protein by
looking for targets either upstream or downstream as they both have
an effect on MECP2’s role. For the other example we studied how lipid
metabolism is captured in the Ganglio Sphingolipid Metabolism pathway
(wikipathways:WP1423, WikiPathways Project et al., 2019).

The description of interaction information allows for the advancement
of curation efforts by the WikiPathways team. This curation in turn
allows the team to improve the quality of pathways and a more com-
plete overview of which elements are in the pathways and how they
are connected to one another. Using SPARQL queries for curation the
curators can identify why the interactions are not converted from the
graphical description of WikiPathways to the semantic description of
the WikiPathways RDF and can explore how to improve this.

When we understand how interactions work we can also pre-define
the form or shape that such a specific interaction type takes. For this
the Shape Expressions (ShEx) standard can be used (14-16). A ShEx
determines what information is expected for, in this case, a specific
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interaction type. ShEx will be created for all interaction types in Wiki-
Pathways. The shape expression can then be used to monitor transla-
tions of knowledge of one format or notation to another, for example,
when adding data from one database to another (17). This allows us
to focus more on the biology and less on the bioinformatics, as we get
alerted about unexpected shapes.

To explore these approaches, we look at two biological research top-
ics studied in our group: a rare disease and human lipid metabolism.
MECP2 is a protein involved in a rare disease and important in the
methylation of DNA (18). Mutations in the MECP2 gene have been
linked to the development of Rett Syndrome (19). This disease is re-
sponsible for a host of neurological developmental issues that affects
infant development. The MECP2 gene lays on the X-chromosome and
Rett Syndrome is found in females (20) because the severity in males is
too high for patients to be viable. The severity of the disorder is related
to the specific mutation found in the individual patient (21). Ehrhart et
al. have already demonstrated the power of integrating different data-
bases to retrieve links between genetic variants and phenotypes (22).
Being able to look at alternative targets that are a part of the sequence
of developments that lead to disorders such as Rett may end up help-
ing us to expand the knowledge about alternative causes and treat-
ment opportunities. The types of interactions described for MECP2
are a simple case of connectivity and directional information captured
in WikiPathways and make a good example to demonstrate how this
can be used to allow observation of upstream and downstream inter-
actions.

The second example describes the metabolic regulation and modifica-
tions of sphingolipids which are known to regulate several cell func-
tions (23). Sphingolipids are produced in the endoplasmic reticulum
and the modifications of this lipid class alters the effect of the specific
sphingolipid’s function (24). The conversion of these metabolites from
one form to another is regulated by enzymes that act as a catalyst for
the reaction to take place. Sphingolipids also play a role in signal trans-
duction (25). The sphingolipids play an important role in the mem-
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brane of eukaryotic cells and are often associated with disorders in
the degradation of lipids (26). This shows the importance of proper
metabolite regulation and metabolism as disruptions can lead to se-
rious diseases with high mortality rates. Understanding how these
elements of the pathway are connected to one another and how they
are directed helps to understand when the elements are not working
correctly. There are also a large number of proteins that are known
to interact directly with sphingolipids and are necessary for cell func-
tion (27). In WikiPathways, these types of interactions are most of-
ten drawn with an arrow that shows the conversion of the metabolites
from one form to another along with an associated catalysis reaction
that is facilitated by an enzyme. Looking at how metabolism is mod-
elled in wikipathways:WP1423 helps illustrate how these conversion
and catalysis reactions are stored. Metabolism interactions are a more
complicated set of interactions as an enzyme is typically seen acting
on another interaction. The sphingolipid metabolism pathway dis-
plays this more complex observation and allows the identification of
the order of the enzymes found for potential upstream/downstream
analysis.

3.2 Materials and methods
WikiPathways Data

Interaction modeling

The interactions in WikiPathways are modeled by taking the graphical
semantic information from the pathway diagram’s GPML representa-
tion. The harmonization of interactions is part of the WPRDF genera-
tion. This is done by analysis of the lines that represent interactions in
the graphical representation, and using these to decide how the partic-
ipants in the interactions are connected. All harmonized interactions
have a unique ID, are linked to the participants, and have an interac-
tion type as outlined in the introduction. If it is a directed interaction,
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it will also have a source and target node for the interaction. JUnit
(https://junit.org/) was used to test the harmonization with several tests
to verify that these connections in the GPML are being converted to
RDF as expected. These tests include the original GPML and the ex-
pected outcomes as described in the code repository at https:/github.
com/BiGCAT-UM/WikiPathwayslInteractions/tree/master/FilesGPML.

Benchmark data

We used the RDF from the WikiPathways June 2019 release (https:
//zenodo.org/record/3369380). Both the WPRDF and the GPMLRDF
components of the WikiPathways RDF were used in this study. To ex-
amine how pathways are drawn and used in WikiPathways, the analy-
sis used only pathways from the Curated collection and only for Homo
sapiens, and therefore excludes the Reactome collection (28, 29).

Data Analysis

To aggregate and analyze the date, Jupyter Notebooks running Python
were used to collect all SPARQL queries that were used to query the
WikiPathways SPARQL endpoint (30). The notebooks are available
from (https://github.com/BiGCAT-UM/WikiPathwayslInteractions/): DataN-
odeStats.ipynb, and InteractionStats.ipynb, and two for the two biological
examples. The first two represent two different categories of queries.
DataNodeStats retrieves information about data nodes in both parts of
the WPRDF while the InteractionStats.ipynb file is used to return data
about connectivity between the nodes in the WikiPathways RDF, rep-
resenting both the semantic and the graphical RDF elements. Example-
MECP2.ipynb is the file for the query related specifically to the MECP2
up and down stream targets example. Finally, ExampleLipidMetabolism.ipynb
is the notebook for the case of sphingolipid metabolism. These notebooks
and their use are further described below.
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Datanode Harmonization

Data nodes needed to be harmonized first in order to be able to exam-
ine the connections between the nodes. There are two conditions that
determine the conversion of the interactions: the participating datan-
odes are converted, and second, the interaction is converted. That al-
lowed us to better estimate how well the interaction harmonization
itself went. Therefore, we first looked at the data nodes. The DataN-
odeStats.ipynb notebook contains Python code to calculate a series of
counts of data nodes, to estimate the amount of data and to get a base-
line number of what we can expect for the success of conversion and
harmonization of interactions. It is important to realize that for inter-
actions where one of the participating data nodes is not in the WPRDF,
the conversion script will not to be able to create the interaction due
to the absence of participants. Therefore this interaction will not be
found in the WPRDF and will affect our interaction counting. The
notebook calculates the total number of data nodes of a certain type,
in the Jupyter Notebook section Datanode Type Counts, and the corre-
sponding numbers of GPMLRDF data nodes without a WPRDF data
node equivalent. Furthermore, it determines the number of GPML-
RDF data nodes of type complex without WPRDF equivalents. This is
used to specifically track which data nodes that are part of the com-
plexes that can be found in the graphical elements part of the RDF but
not found in the WPRDF, the biological component of the WikiPath-
ways RDF. These complexes are not annotated as biologically known
complexes. Those exist because the biological meaning of complexes is
currently not always well-defined in pathway drawings in WikiPath-
ways.

Interaction Harmonization

The InteractionStats.ipynb notebook contains code to calculate numbers
that reflect the harmonization of interactions in the biological WPRDE,
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by taking into account the different drawing notations as a unified in-
teraction type. The first few sections calculate overall statistics, the
Number of Non-Directed Interactions (for example, bi-directional bind-
ing), Count of Interaction Types (reflecting the biological nature of the
interaction), Interaction Count with Unspecified Type, and the percentage
of non-directed interactions. The second set of sections characterize the
nature of the interactions, e.g. Interaction counts by participants, Partici-
pants for Interactions (which reflects what datanode types are involved
in an interaction), and Identifier IDs by data source.

In order to evaluate the conversion success, it calculates the comple-
mentary GPMLRDF Interactions without a WPRDEF equivalent and GPML-
RDF Interactions with a WPRDF equivalent, and the resulting percent-
ages of success (see GPMLRDF Interaction with Equivalent WPRDF out
of Total GPMLRDF Interactions). The GPMLRDF Interactions without
a WPRDF equivalent was used to check to see how many interactions
that are present in the graphical version of the RDF but not present
in the biological WPRDE. The query for the percentage of WPRDF In-
teractions that are of unspecified type was used to see how accurately
detailed the biological pathways are annotated. Finally, the percent-
age of non-directed interactions in the notebook calculated how many
of the WikiPathways interactions are of non-directed type. When these
are between metabolites and they may reflect missing biological anno-
tation of directions.

Usability

To test our hypothesis that we can harmonize the interaction informa-
tion, we developed the Jupyter Notebooks to first collect and query the
data from the WikiPathways RDFE. We then created several unit tests to
validate how the modelled interactions behaved and to verify that they
are created correctly. This ensures that when an interaction is drawn,
we can keep track of the relevant semantic data represented, such as
what nodes are connected to each other, what type of interaction is
drawn between them, and how many nodes are expected to be part of
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the interaction. We can then test assumptions like: ”interactions be-
tween metabolites should be directed conversions” and “interactions
between different proteins should not be conversions” and add other
aberrant results as curation tasks. We further tested with two biolog-
ical examples if the harmonized semantified interactions give inter-
pretable answers.

Curation

The Jupyter Notebook created for interaction curation uses the query
for GPML RDF interactions without a WP RDF equivalent to generate
a list of interactions that are not found in the semantic portion of the
RDE. The next query in the notebook finds the specific elements for
the interactions in this list that will help the curator identify which
elements are missing. The query includes the interaction ID for the
GPML RDF, the pathway in which it can be found, and the connecting
elements found on either end of the interacting line.

ShEx

Shape expressions were created manually for the modelled WikiPath-
ways interactions. ShEx for WikiPathways interactions were formed
following the standards laid out by the ShEx project (https://shex.io/).
These shape expressions can be found in the shape expressions subdi-
rectory on the GitHub repository

(https://github.com/BiGCAT-UM/WikiPathwaysInteractions/tree/master/
ShExInteractions). The harmonized interaction types were expressed
as ShEx. ShEx can be used for curation events to verify that the interac-
tion fits the shape that is expected by the WikiPathways model, and in
this way help detect data issues. The npm module shex (https://www.
npmjs.com/package/shex) was used to run the shape expression on the
harmonized model. A GNU/Linux Makefile on GitHub demonstrates
the combination of SPARQL to list all resource IRIs of a certain interac-
tion type and the JSON query tool jq (https://stedolan.github.io/jq/) to
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process the ShEx module output to count the number of errors for each
interaction. This allowed running the shape expression on all directed
interaction in the WPRDE.

MECP2 up- and downstream targets

For the specific example used for MECP2 metabolism, the Jupyter Note-
book used a SPARQL query to the WPRDF. This query works by first
searching for targets that are upstream or downstream of MECP2. The
query then identifies data nodes that are associated with the HGNC
symbol MECP2. The query in the Jupyter Notebook finally finds as-
sociated pathways that have this HGNC symbol present and matches
interactions that have MECP2 as a target in the interaction.

Sphingolipid metabolism

In the case of the specific example used for sphingolipid metabolism,
the Jupyter Notebook used a SPARQL query to the WPRDEF. The query
retrieves the source portion of an interaction and displays its label. In
the case of sphingolipid metabolism, the queries identified enzymes
that are associated with conversions in the pathway and returned re-
sults with the enzyme, interaction, the source metabolite and the target
metabolite product.
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Table 3.2: Datanode Type Counts, as defined by the WikiPathways ontol-
ogy. The Datanode counts for each type of node.

Datanode Type | Count (WPRDF) | Count (GPMLRDF but not WPRDF)
Datanode 28402 —
GeneProduct 21270 1084
Protein 8255 141
Metabolite 4038 219
RNA 1204 66
Complex 980 16
Unknown —_— 218
Pathway — 250
3.3 Results

To understand the amount of data that can be accessed via the RDEF,
we looked at the available RDF data for WikiPathways as GPMLRDF
and WPRDE, the first being a direct translation of the original graphi-
cal depiction of the GPML files and the second covering the biological
content. A quick count of the June 2019 release shows that the WPRDF
used in this paper had 24,220 data nodes, and 13,928 interactions and
is available at http://data.wikipathways.org. The subject of the paper is
the interactions between data nodes, but we first need to understand
that edges of a network connect datanodes to one another and so un-
derstanding the fundamentals of the biomolecular data nodes is nec-
essary. This defines some context for the following results.

Datanode Results

With regards to the data nodes, because of the hierarchical annotation
the most prevalent node type is the general datanode type. It is the
base type for any datanode, as described by the WikiPathways Vocab-
ularies (https://vocabularies.wikipathways.org) and thus is used for ev-
ery data node, it may include any of the descriptive data types. More
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specific but still generic, the GeneProduct type is the next most preva-
lent node type. These include explicitly typed proteins and RNAs and
while the remaining GeneProduct typed nodes are not specified fur-
ther. Table 3.2 illustrates the size of the WikiPathways semantic RDF
part and the types of nodes present in WikiPathways. There are a total
of 28,402 data nodes, the majority of which are gene products. Proteins
are the next common type followed by metabolites and RNA. There are
also Complex nodes to represent clustered groups of other node types,
specifically proteins, gene products, and RNA. Pathways are not typed
as Datanode in the WPRDF, which is why the value is blank in the ta-
ble. Overall, 7.0% of GPMLRDF data nodes do not have a WPRDF data
node equivalent and thus 93.0% of the GPML data nodes are found in
both parts of the RDFE.

Also seen in Table 3.2 are the data nodes that are found in the GPML-
RDF but not found in the WPRDEF. The reason typically is that the node
exists but is not linked to a clear biomolecular database identifier, in
other words we do not know exactly what it is. Datanodes are any
node type in the pathway diagram and the count of gene products also
includes proteins and RNAs as these are specifications of the products
produced. Complexes are a combination of several other node types
that form a unit with one another. We can also see how many data
nodes are found in both parts of the RDF.

If we specifically look at some examples of data nodes that are present
in the GPMLRDF but not carried over to WPRDF, we can see a list of
sixteen complex data nodes, and the details of these are given in the
S5 File. This second table also includes the labels for the complexes,
shedding some light on which complexes were not transferred over to
the semantic portion (WPRDF) of the RDF from the graphical portion
(GPMLRDF). For all these nodes, they lacked database identifiers.

When we do this evaluation for the pathways of the two use cases, we
find that for wikipathways:WP4312, which pertains to MECP2, there
is 1 gene product type data node that is found in the GPMLRDF but
not found in the WPRDF. This represents 1 gene product out of 148
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other gene products that were found in the WPRDF and out of 152
total data nodes found in the WPRDE. In the instance for wikipath-
ways:WP1423, which is related to sphingolipid metabolism, there is
1 metabolite that is found in the GPMLRDF but is not found in the
WPRDF. This is 1 metabolite from 38 total metabolites found in the
sphingolipid metabolism pathway and out of 62 data nodes found
in the WPRDF for wikipathways:WP1423. The last metabolite (Gal-
GIcNAc-GM1b) is modified with two sugars, and not found in the
reference databases. Future WikiPathways releases can annotate such
nodes with the InChIKey, for which no database record is required.

In the S1 File there are tables with examples of data node types that are
found in the GPMLRDF but not in the WPRDF for various pathways
(as counted in Table 3.2). In this file, the query results are retrieved
along with the table to give some idea why they may not be translated.
In the S2 and S3 Files there are tables for the data node counts for the
specific WikiPathways example pathways of MECP2 and sphingolipid
metabolism.

Interaction Results

Similar to what we did for the data nodes, we calculated non-directed
interactions and non-specific interactions along with the specific inter-
action types and counts. Non-directed interactions being all interac-
tions that do not have any directional information, such as in the case
of a binding event. Non-specific, on the other hand, means that an in-
teraction does not even have a specified non-directed interaction like a
binding.

First, we identified nine interaction types. The overview of mappings
to WPRDF of the GPML interaction types that can be found in Wiki-
Pathways, is available from https://github.com/BiGCaT-UM/WikiPathwaysInteractions/
tree/master/FilesGPML. The nine types of interactions found in the
GitHub page are catalysis, complex binding, conversion, general undi-
rected interaction, inhibition, stimulation, transcription/translation, an
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Table 3.3: Interaction Type Counts, as defined in the WikiPathways ontol-
ogy. The sum of DirectedInteration and NonDirected equals the Interaction
Total. Of the directed interactions, subsets are typed as Conversion, Inhibi-
tion, etc. The NonSpecified interactions is a subset of NonDirected interac-
tions. More than 12 thousand interactions are only found in the GPMLRDFE.

Interaction Type Count (WPRDF) | Count (GPMLRDF but not WPRDF)
Interaction 15525 —_—
DirectedInteraction 11819 —
Conversion 1447 —_—
Inhibition 1091 —
Catalysis 1231 —
ComplexBinding 940 —_—
Binding 1513 —
Stimulation 842 —
TranscriptionTranslation | 256 —
NonDirected 3706 —
NonSpecified 2766 —
Unknown — 12287

unspecified directed interaction, and a directed interaction with mul-
tiple inputs and multiple outputs. This GitHub repository contains
example GPML files for each interaction type that can be found at
https://vocabularies.wikipathways.org/, along with an example of what
the interactions look like in GPML, as well as files with statistics about
the interaction as it appears in the WPRDEF. These numbers are used in
the JUnit tests to verify that the different models are harmonized into
the single interaction model in WPRDE. These tests are now available
as part of the regular testing of RDF generation (see https://github.com/

wikipathways/GPML2RDF, src/test/java/org/wikipathways/wp2rdf/interactionTests

folder). When we look at the full WPRDF, the types of generic non-
directed and nonspecific interactions can be seen. Out of a total of
15,525 interactions, 3,706 (23.9%) were non-directed of which 2,766
(17.8%) were non-specific (see Table 3.3). Thus 11,819 (58.3%) of the
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interactions have some sort of direction information. The number of
non-specific interactions can be either an indication that there is just
not sufficient evidence to explain what the interactions are or that bet-
ter curation is necessary. Examples of how interactions are drawn in
WikiPathways can be seen in Figure 3.2.

Only a small percentage of the interactions have associated identifiers.
Having such identifiers can make it easier to find information about
the provenance of that interaction occurring in a pathway and it is use-
tul for linking experimental data or modelling results to the pathway
or to find descriptions of the interactions in external resources. Ta-
ble 3.4 contains provenance information about the databases to which
identifiers for interactions refer. UniProt-TrEMBL has the most inter-
actions represented in WikiPathways. There were some unexpected
database links. Sources like kegg.compound and ChEBI are not expected
to have interaction data information but are included because the user
identified them as the database resource for the interaction. These un-
expected sources come from two pathways, wikipathways:WP3634,
and wikipathways:WP3635. These two pathways use very specific no-
tation and while unexpected, have been intentionally annotated like
this. These pathways use the SBML notation and represent the nor-
mal versus disease state of insulin signaling (31). Generally, the main
reason that currently most interactions do not have any database iden-
tifier associated with them is that the mechanism to add these is rela-
tively new.

Finally, to further characterize the interactions present, Tables 3.5 and
3.6 provide examples of the makeup of the interactions seen in Wiki-
Pathways. Table 3.5 shows example Interaction IDs, along with their
interaction types, and what type of datanode type is participating in
the interaction. And Table 3.6 shows the profile with the interaction
participants and a count of how many times this interaction profile
was counted in WikiPathways and the type of these interactions.

When the PathwayStatsMECP2.ipynb and PathwayStatsSphingolipid.ipynb
notebooks were applied to the pathways of the two use cases, we found
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Table 3.4: Interaction Identifier ID counts by data source.
Database Source | Interactions
Rhea 313
Uniprot-TrEMBL | 213
KEGG Pathway
pato
kegg.compound
ChEBI
KEGG Reaction
Reactome
WikiPathways
XMetDB
SPIKE
BIND

N
e}

— NN WWO

that for wikipathways:WP4312, which pertains to MECP2, there are 5
interactions that are found in the graphical GPMLRDF but not found
in the semantic WPRDE. This represents 5 interactions out of 45 non-
specified interactions that were found in the WPRDF and out of 37 di-
rected interactions found in the WPRDF. In the instance for wikipath-
ways:WP1423, which is related to sphingolipid metabolism, there are
24 interactions that are found in the GPMLRDF but not found in the
WPRDF. Still, we find 49 directed interactions in the WPRDF for the
sphingolipid metabolism pathway, of which 13 are typed as catalytic
reactions.

In the S2 and S3 File tables can be found for the interaction counts of
the two specific pathways for MECP2 and sphingolipid metabolism.
These contain the types of interactions found in these pathways as well
as how many interactions were found in the GPMLRDF but not in the
WPRDF resources for WikiPathways as described above.
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Table 3.5: Participants for Interactions. Twenty example interaction syn-
taxes shown in table below. First twenty interactions from the WikiPathways
RDF along with their interaction type and the participants for each interaction

Interaction Interaction Type | Interaction Participants

WP3668 197639 / ComplexBinding /b916e Binding Complex, GeneProduct

WP2879 194789 / ComplexBinding /c939%e Binding Complex, GeneProduct, Metabolite

WP4262 197132 /ComplexBinding /dae4b Binding Complex, GeneProduct, Metabolite
WP585_1r94686 /WP /Interaction/ida141949 Catalysis GeneProduct, Protein

WP2533_1r95594 /WP /Interaction/adbe3 Catalysis Conversion, DirectedInteraction, Interaction, Protein
WP1601.r95004 /WP /Interaction /ida833b0dc | Catalysis Conversion, DirectedInteraction, GeneProduct, Interaction
WP1423_r94289 /WP /Interaction/idde73da53 | Catalysis DirectedInteraction, GeneProduct, Interaction
WP3865_r88186 / ComplexBinding / d5e4f ComplexBinding | Complex, GeneProduct

WP2446 187639/ ComplexBinding / e75ff ComplexBinding | Complex, GeneProduct, Protein, Rna
WP2795_1r97631/ComplexBinding /b5fa4 ComplexBinding | Complex, GeneProduct, Protein
WP3580.r96434 /WP /Interaction/id6d378f23 | Conversion Metabolite

WP134 194935 /WP /Interaction/a5dec Conversion Metabolite

WP3627 190137 /WP /Interaction/id14d637fe | Conversion Metabolite

WP2436_197673 /WP /Interaction/b1b2f Conversion Metabolite

WP4149 194399 /WP /Interaction/id30000f59 | Inhibition GeneProduct, Protein

WP2261_r89520/WP /Interaction/id65877034 | Inhibition GeneProduct, Protein

WP306.1r97459 /WP /Interaction/e8847 Inhibition GeneProduct, Protein

WP2526_196312 /WP /Interaction/ddfel Stimulation Protein

WP1984_r95143 /WP /Interaction/id8ba5f251 | Stimulation GeneProduct, Metabolite

WP1984 195143 /WP /Interaction/iddde89331 | Stimulation GeneProduct, Protein
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Figure 3.2: Interaction types that are not found in Table 6. A shows a
complex binding of SULT1A1, SULT1E1 and SULT2A1 that catalyzes cis-4-
hydroxytamoxafin to trans-4-sulfoxytamoxifen with PAPS to PAP formation
found in Tamoxifen Metabolism (wikipathways:WP691). B shows transcrip-
tion translation interaction for BST2 to BST2 in Host-pathogen interaction of
human corona viruses - MAPK signaling pathway (wikipathways:WP4877).

Curation

As can be seen in the Jupyter Notebooks for curation, 11081 interac-
tions are found in the GPMLRDF but not found in the WPRDE. The
details for the first 20 results are found in Table 3.7. As can be seen
in the table, the query identifies the interaction information from the
GPMLRDF, the graph reference ID from the GPMLRDE, and the label
for the participants. This can be used to help identify problematic in-
teractions that are not being converted to the WPRDEF.

ShEx

All of the ShEx forms can be found on the GitHub repository https://
github.com/BiGCAT-UM/WikiPathwayslInteractions/tree/master/ShExInteractions.
The interaction types found at https://vocabularies.wikipathways.org/

are general WikiPathways interactions (wp:Interaction), the general
WikiPathways directed interactions (wp:DirectedInteraction), the har-

monized WikiPathways binding (wp:Binding), complex binding (wp:
ComplexBinding), coversions (wp:Conversion), inhibitions (wp:Inhibition),
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Table 3.6: Top 20 most occurring directional interactions by participants
combination. The most abundant interaction is a directed interaction be-

tween two metabolites.

Interaction Participants Count | Type

Metabolite, Metabolite 2675 DirectedInteraction
GeneProduct, GeneProduct 1423 DirectedInteraction
GeneProduct, Protein, GeneProduct, Protein 1334 DirectedInteraction
Metabolite, Metabolite 1125 Conversion
Metabolite 474 DirectedInteraction
GeneProduct, Protein, GeneProduct 445 DirectedInteraction
GeneProduct, GeneProduct, Protein 438 DirectedInteraction
GeneProduct, Protein 420 DirectedInteraction
GeneProduct 315 DirectedInteraction
DirectedInteraction, Interaction, GeneProduct 315 DirectedInteraction
GeneProduct, Protein, Protein 292 DirectedInteraction
Metabolite, GeneProduct 291 DirectedInteraction
DirectedInteraction, Interaction, GeneProduct 274 Catalysis

Protein, Protein 273 Stimulation
GeneProduct, GeneProduct 270 Inhibition

Protein, Protein 262 DirectedInteraction
DirectedInteraction, Interaction, Conversion, Protein | 227 DirectedInteraction
DirectedInteraction, Interaction, Conversion, Protein | 226 Catalysis
GeneProduct, Metabolite 180 DirectedInteraction
GeneProduct, DirectedInteraction, Interaction 151 DirectedInteraction

catalysis (wp:Catalysis), stimulations (wp:Stimulation), and transcription-
translation (wp:TranscriptionTranslation) interactions. For example,
the shape expression representation for a conversion interaction is seen
in Figure 3.3. These represent the harmonized interaction types found
in the WikiPathways RDF and their expression in ShEx.
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CONVERSIONS

efix wp: <http://vocabularies.wikipathways.org/wp#> .
dcterms: <http://purl.org/dc/terms/> .
o/ /rdf .wikipathways.org/Pathway/WP1946_r96397/WP/Interaction/af536>
a wp:Conversion , wp:DirectedInteraction , wp:Interaction ;
dcterms:isPartOf <http://identifiers.o kipaths 1946_r96397> ;
wip:isAbout <http
wp:participants  <http hmdb/HMDBE@@1481> , <http://identifiers.org/chebi/CHEBI:28887> ;
wp:source <http://identifiers.org/chebi/CHEBI:28087> ;
wp:target <http://identifiers.org/hmdb/HMDBRGE1401> .

WP1946_r96397/Interaction/afs36> ;

Shex for Conversion interactions:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX wp: <http://vocabularies.wikipathways.org/wp#>
<interaction> {

wp:participants IRI {2,} ;

wp:source IRT ;

wp:target IRI

}

Figure 3.3: Example ShEx shape for the WikiPathways harmonized Conver-
sion interaction element (RDF shown in the top half), that requires two or
more participant IRIs and exactly one source IRI and one target IRL

MECP2 up and down stream targets

We created Jupyter Notebooks to evaluate the example pathways, as
described in the Methods section. The SPARQL queries used in the
Jupyter Notebooks will return the interactions that have MECP2 as a
participant and then the associated upstream source of the interaction
or the associated downstream target of MECP2 and can be found in Ta-
ble 3.8. Figure 3.4 shows examples of the directed nature of influences
by MECP2. The query identified ten gene products that are known to
influence or be influenced by MECP2. Three gene products were up-
stream of MECP2 and have an influence on MECP2, while the other 7
gene products were downstream of MECP2 and indicate that they are
influenced by MECP2. This basically captures the semantics of the bi-
ological meaning of the pathway, a rare disease caused by a damaged
gene that has a variety of effects and interactions.
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SHANK3

V
RHOBTB2 HDAC1 _—

Figure 3.4: Example of direct interactions of gene products that both influence
MECP2 and are influenced by MECP2 from Rett syndrome causing genes
(wikipathways:WP4312). In this example, MECP2 is being influenced by
HDAC1 and CDKL5. MECP2 then in turns influences SHANKS3 and inhibits
the activity of FOXG1.

Sphingolipid metabolism

For sphingolipid metabolism, a Python script was devised that queries
the WPRDF for WikiPathways pathway wikipathways:WP1423, Gan-
glio Sphingolipid Metabolism, and returns a table with directed in-
teractions that have an enzyme that is catalyzing the reaction. The
query limits results to wikipathways:WP1423 as a matching criteria,
then finds interactions that are annotated as being a catalysis reaction.
It retrieves the associated protein for the catalysis along with the in-
teraction that is being acted upon. Finally, the query also retrieves the
source (substrate) and target (product) for the directed interaction that
was being catalyzed. Figure 3.5 shows an example enzymatic reason.
The results of the query are shown in Table 3.9, five conversion anno-
tated interactions in this pathway were returned.
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Figure 3.5: Representation of conversion of different sphingholipids to their
products and the relevant enzyme catalyzing the reaction from the Ganglio
Sphingolipid Metabolism pathways (wikipathways:WP1423). In this case,
GD3 is converted to GD2 by the enzyme BAGALNT1. GD2 is then in turn
converted to GD1b and catalyzed by B3GALT4.
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Table 3.7: Curation query showing Interaction, GPML Graph Ref from the

WikiPathways RDEF, and label for node at end of interaction.

GPML Interaction GPML Graph Ref | Participant Label
WP107_r105846 /Interaction/d2818 e82 EIF4E
WP107_1r105846 /Interaction/cc170 ceb ITGB4BP
WP107_r105846 /Interaction/{3bb6 fc8 EIF5A

WP1403_ 1106688/ Interaction/ide379f87¢c | b9666 GLUT4
WP1403_1r106688 /Interaction/b1235 f344c Calcium
WP1403_r106688 / Interaction /c4810 9726 FA Synthase
WP1403_ 1106688 /Interaction /f8d22 d9cf5 cAMP
WP1403_r106688/Interaction/d8a35 aB4ee Leptin

WP1403_ 1106688/ Interaction/b166¢ ad4a4 Malonyl-CoA
WP1403_r106688 /Interaction /e0f9b d4875 Fatty Acid Oxidation
WP1403_r106688 /Interaction/af18d dcd84 MEF2B
WP1403_1r106688 /Interaction /e4288 b35fe Torc2
WP1403_1106688 /Interaction/c0527 aeb8f HMG CoA Reductase
WP1403_1r106688 /Interaction / cff59 d8c91 HuR
WP1403_1106688 /Interaction/ae70c b3840 Metformin
WP1403_ 1106688 /Interaction/d14e4 b2489 Glucose
WP1403_r106688 / Interaction /bedc0 af2e8 Raptor
WP1403_r106688/Interaction/c7163 f156e PI3K (III)
WP1403_ 1106688/ Interaction/a04e2 df1do HNF4A
WP1403_1106688 /Interaction/d7df8 f3d7e 4E-BP1

3.4 Discussion

The analysis in this paper only involves human pathways on Wiki-
Pathways from the original, non-Reactome, collection. For other species,
the results would have been affected by the more limited curation ef-
fort that has been spent on those in general. To allow us to do meaning-
ful interaction analysis we need to have sufficient information about
the interactions and their participants. Generally, a data node might
be found in the graphical portion of the RDF and not in the seman-
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tic portion because of incorrect annotations, because the curator really
meant to add something atypical, like an organ, or because of a failure
by the conversion scripts to successfully convert the graphical infor-
mation into semantic information.

Interaction types were harmonized by the scripts to turn pathway graph-
ical information into semantic data if there was an appropriate ana-
logue and drawing for the different notation types. This allows for
example, a user to draw either a SBGN, a MIM, or a general WikiPath-
ways inhibition drawing to have a harmonized interaction type called
wp:Inhibition. In this example, since all three different notation types
have the same biological meaning of indicating an inhibition event, it
allows the user the flexibility to draw the pathway in the notation they
are most comfortable using and still preserving the meaning of the in-
teraction edge.

In addition to harmonization of the WikiPathways interaction types, it
is shown to be possible to represent the interactions as shape expres-
sions or ShEx. ShEx were created for all the harmonized interaction
types that are found in WikiPathways. The ShEx for an interaction in-
forms the user what is expected to be found from a certain resource.
For interactions, this means it is possible to know the general shape to
expect for any interaction found within the WP RDFE.

For the more curated human pathways, we find that gene products
that are in the GPMLRDF but not in the WPRDE, typically these are
nodes that do not have a selected database resource type, like Ensembl
or NCBI Gene. From Table 3.2 we learn that most of the data nodes al-
ready do have enough information to be included in the semantic part
of the RDEF. Future curation tasks to identify appropriate sources for
the data nodes with missing annotations would enable them to become
part of the semantic information. Curation efforts are a part of improv-
ing the quality of WikiPathways as a resource but also improving the
coverage of interacting elements that are queryable by biologists that
are looking to explore their genes or processes of interest.

67



Chapter 3. Interactions and Connectivity for WikiPathways

Three further examples of existing problems with data nodes exist for
nodes of unknown type, pathway nodes, and complex data nodes.
The unknown nodes do not have an associated data type or an associ-
ated database. Pathways nodes are currently part of the WPRDF data
model, but only typed as data node and not as pathway, and therefore
only get counted as data node.

In the case of data nodes for complexes, there were only 18 complex
nodes that do not have an equivalent in the semantic information.
These complex data nodes also share the problem of missing database
resource or missing data node identifiers, and therefore cannot be con-
verted into WPRDE.

We also saw how data node types and interaction types complement
each other. For example, Table 3.4 shows specific interactions as well as
the type of the interaction and the interaction’s participants. This can
also be a useful aid in helping to identify areas of curation that need to
be addressed. For example, if the participants retrieved for a conver-
sion reaction are metabolites then this makes sense, but if the partic-
ipants are proteins then there is a possibility that a post-translational
modification is described but it is also possible that the user used the
wrong annotation for the interaction type, especially when the two
proteins are known to be derived from different genes. Based upon
the results summarized in Table 3.5, we can get an estimate of what
combinations of participant and interactions types are most prevalent.
This gives us an indication of the accuracy of the data. For example,
we found a large number of directed interactions connect two metabo-
lites without a specific type. These are likely conversions but they still
miss that typing.

We further found that one reason why interactions are captured by
the GPMLRDF but not the WPRDF is because some interactions are
lines connecting one or more text labels. These are not converted into
the semantic layer. The WikiPathways database also allows informa-
tion added as graphical annotation for the user to better understand a
pathway diagram and to provide background information. This type

68



of graphical annotation is only visually curated data but is not meant
to show up in the WPRDE.

A third reason why some interactions are not captured in the semantic
layer is because one of participants is a user defined group or complex.
Ideally, when the participant really is a complex, then that complex
itself should be identified with an external identifier like one from the
Complex Portal at EBI (https://www.ebi.ac.uk/complexportal/home) (4).
In that case it is clear that all elements of such a complex are involved
in the reaction, although the curator may still have made clear that
one element is directly involved. In that case, the interaction will be
graphically connected with an element inside the complex.

Also in the GitHub repository is a directory titled pastReleases with ta-
bles of values for the queries that were performed on the November
2016 release of the WikiPathways RDF as a comparison to the June
2019 release used in this paper. The S4 file is also included as a zip
file for the results of the June 2016 release. What is reflected in this
comparison is that there is ongoing growth of the WikiPathways da-
tabase and its semantic descriptions which sees a 43.8% increase in
datanodes and an 23.3% increase in interactions from the 2016 release
to the more recent release. All datanode types and interactions saw an
increase in the later release compared to the earlier release, except for
the case of stimulation interactions. This value went down between the
releases as a result of curation efforts that identified that several of the
interactions annotated as stimulations were incorrectly typed as such.
Because of this curation the interactions were re-typed as their appro-
priate interaction type and thus we see a decrease in their number of
interactions.

There is an ongoing discussion on user defined groups too, e.g. on how
those should be connected and represented in the RDF as there might
not be a single solution to address all the use cases of user groups.
For example, these user groups often represent a class of enzymes
that are all capable of catalyzing the same reaction, this can be seen
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in the example of the sphingolipid metabolism pathway, wikipath-
ways:WP1423. Several intended interactions are not included in the
WPRDF since the participants belong to a group of isoenzymes and
will not be found in SPARQL query results. For this case, a simple so-
lution would be to connect each element of the group via a duplicate
interaction that is annotated as a catalysis towards the conversion, but
not connect the isoenzymes to each other as is implied in the case of
a biological complex. However, a user group could currently be any
sort of convenient grouping and so this solution would not be a catch
all solution for all groups, and further specifications would have to be
included in the WikiPathways drawing options set itself.

The modelled biological knowledge of WikiPathways has previously
been reported in the Waagmeester et al. paper (11). During that anal-
ysis, the first release of WPRDF was explored to determine how ele-
ments were connected to one another in that semantic part of the RDF.
As discussed above, there were many interactions that are drawn in
the pathway and in the graphical information about a pathway but
not found in the semantic layer. This was partly addressed by curation
efforts that made sure that data nodes are drawn, typed and identified
correctly and interactions are drawn for instance from anchors of the
data nodes to another anchor in the drawing program. Overall 56% of
interactions in the graphical information is now represented in the se-
mantic portion. The WikiPathways connection information helps the
WikiPathways team with their curation efforts with automated queries
that have been implemented on the Jenkins platform (32).

Nevertheless, as was shown in the two biological examples above, it
is possible to take advantage of the semantic information in the RDF
to answer relevant questions. MECP2 was chosen as it is a signaling
pathway and ganglio sphingolipid metabolism is a metabolic path-
way. Both MECP2 and spingolipids are active research lines in the
group. For MECP2, known to be a core epigenetic regulator, it was
possible to identify MECP2 in pathway diagrams and then use con-
nectivity information to find which other elements have a direct influ-
ence upon it and which elements MECP2 influences directly. In sph-
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ingolipid metabolism, conversion of metabolites from one form to an-
other by a catalysis reaction were shown. This has interesting implica-
tions as it is then possible to expand this knowledge to infer informa-
tion about the hierarchy of enzymes in this pathway. Meaning that, for
example, GD3 is converted to GD2 by enzyme B4AGALNT1 and GD2
is converted to GD1B by enzyme B3GALT4. This means that anything
that acts upon and affects the activity of the upstream B4AGALNT1 en-
zyme, will also affect the conversion of GD2 to GD1B by B3GALT4
through influence on substrate availability. This is more of an indirect
influence of one element upon another but it is possible to then retrieve
these indirect interactions.

The connectivity information from WikiPathways has already been de-
ployed and taken advantage of in several instances. Pathway connec-
tivity RDF information was integrated into the Open PHACTS Discov-
ery Platform (33). The connectivity information used in Open PHACTS
was necessary to answer basic competency questions for the platform (34).
The connectivity information also became a useful way to create a net-
work of pathways to identify active subnetworks in rare diseases (7).
This is part of a larger process involved with creating RDF of pathway
data and using that information to answer questions in biology.

Conclusion

It was demonstrated that most of the graphical biological knowledge
from WikiPathways is modelled in the semantic layer (WPRDEF) of Wi-
kiPathways RDF with the semantic information intact and connectiv-
ity information preserved. This semantic translation allows us to an-
swer biological questions. The MECP2 example shows directional reg-
ulatory information captured by the WPRDEF, and for the other exam-
ple of sphingolipid metabolism complex successive biochemical reac-
tions are captured. MECP2 involvement in regulatory, epigenetic in-
teractions has implications for the understanding of the rare disease
Rett syndrome. Sphingolipids are important parts of cell function and
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structure. Being able to evaluate the order in which biological elements
affect each other allows, for example, the identification of up or down-
stream targets that will have a similar effect when modified.

The usability of the WikiPathways pathway and connectivity informa-
tion has shown to be useful and has been integrated into platforms
such as the Open PHACTS Drug Discovery Platform (33). Improve-
ments in WikiPathways curation and in the conversion to WikiPath-
ways RDF support these other platforms and will allow giving a more
complete picture of connectivity in biological systems. Continued cu-
ration efforts will incrementally improve many of the shortcomings of
data and will continually make the semantic information better. The
addition of shape expressions is a new method introduced that allows
researchers to identify the form to expect from an interaction. Efforts to
improve on the conversion scripts can address lost connectivity infor-
mation that is for instance the result of using groups and complexes.
Pathways themselves are also continually being added to WikiPath-
ways and will continue to add to the richness of knowledge of biolog-
ical interactions.

List of Abbreviations

RDF - Resource Description Framework, GPML - Graphical Pathway
Markup Language, GPMLRDF - RDF for Graphical Pathway Markup
Language, MIM - Molecular Interaction Map, SBGN - Systems Biol-
ogy Graphical Notation, WP - WikiPathways, WikiPathways RDF -
The combination of GPMLRDF and WPRDF, WPRDF - RDF for Wi-
kiPathways, SPARQL - SPARQL Protocol and RDF Query Language,
KEGG - Kyoto Encyclopedia of Genes and Genomes, HGNC - HUGO
Gene Nomenclature Committee, ShEx - Shape Expressions

73



Chapter 3. Interactions and Connectivity for WikiPathways

Supplemental

Supplemental material and files can be found in the original article.
The DOI of which is https://doi.org/10.1371/journal.pone.0263057.
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4

Explicit interaction information from
WikiPathways RDF in the
Open PHACTS Discovery Platform

Adapted from: R. A. Miller et al. Explicit interaction information
from WikiPathways in RDF facilitates drug discovery in the Open PHACTS
Discovery Platform. F1000Research. 2018. 7: 75.
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Chapter 4. Directional interactions in the OPDP

Abstract

Open PHACTS is a pre-competitive project to answer scientific ques-
tions developed recently by the pharmaceutical industry. Having high
quality biological interaction information in the Open PHACTS Dis-
covery Platform is needed to answer multiple pathway related ques-
tions. To address this, updated WikiPathways data has been added to
the platform. This data includes information about biological interac-
tions, such as stimulation and inhibition. The platform’s Application
Programming Interface (API) was extended with appropriate calls to
reference these interactions. These new methods of the Open PHACTS
API are available now.
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4 1 Introduction

Targeting proteins to ideally restore normal biological processes is a
common starting point in drug discovery (2). The Open PHACTS Dis-
covery Platform (OPDP) was designed to help identify protein tar-
gets and information about their associations with each other (3-5).
The OPDP supports target identification and validation by including
target-target interactions from WikiPathways (6-8). Of these inter-
action networks, proteins sharing a downstream path allows investi-
gation of alternative drug target combinations. Even the knowledge
of which biological pathways participate in disease-related processes
provides insight in the pathway topology between the targets. The im-
portance and need of providing access to interaction information for
real-world research questions was outlined in a recent Open PHACTS

paper (9).

The Open PHACTS project was born out of the desire to integrate phar-
macological data from multiple precompetitive sources to efficiently
address scientific questions that cannot be answered with single data
sources (9). It integrates data using linked data approaches (4) from
chemical and biological sources such as ChEBI, ChREMBL, UniProt, and
WikiPathways (7). However, the OPDP did not previously include
calls to access specific up- and downstream interaction effects. This
information is needed for questions related to drug repositioning and
repurposing. Up- or downstream targets may be interesting alterna-
tives with similar therapeutic effect to targets, for which it is partic-
ularly hard to develop a drug agent. Thus, finding a target that has
already been drugged or is more drug tractable will be advantageous.
Here we describe how to identify alternative targets in the same cellu-
lar pathway using OPDP against the WikiPathways data.
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4.2 Methods

4.2.1 Implementation

The WikiPathways Resource Description Framework data (WPRDF) is
released as part of the monthly releases (6). The native format for Wi-
kiPathways is Graphical Pathway Markup Language (GPML) based
on the eXtensible Markup Language (XML) standard. The RDF ex-
port is transformed from the original GPML. In the RDF representation
we use two distinct controlled vocabularies, to distinguish between
the graphical notation of a pathway and the biological meanings ex-
pressed in the pathway. This is done to allow integration with other
pathway repositories which use other graphical notations or none. The
WikiPathways RDF also includes details about directed and undirected
interactions. Directed biochemical interactions capture the source and
target which are depicted as an arrow in simple pathway drawings.
WikiPathways adds biological meaning to interactions with Molecu-
lar Interaction Map (MIM) interaction types, like inhibitions, enzyme
catalyzed reactions, and stimulations (10), as well as Systems Biology
Graphical Notation (SBGN) interactions (11). Reactome pathways in
WikiPathways use SBGN interactions (12, 13). However, because MIM
and SBGN use different drawing styles, we normalize their inhibition
types into a common inhibition type, defined by the WikiPathways on-
tology (https://vocabularies.wikipathways.org/wp).

The WikiPathways basic drawing tools also contain generic arrows
and T-bar annotations that give the user the ability to create basic dia-
grams without the semantic meaning of MIM or SBGN notations. The
interactions connecting these nodes are captured, but the only explicit
information is that it is a directed interaction from a source to a target.
To handle more complicated enzyme reaction drawings, where there is
not a single line that directly connects targets in a cascade of enzymatic
reactions, a query was developed that recognizes these types of reac-
tions. However, this is not implemented in the current Open PHACTS
Application Programming Interface (API).
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Version 2.1 of the OPDP API contains three new calls for interactions
and their pathways. The first call, /pathway/getInteractions, returns all
interactions involved in a pathway. To use this feature, the user speci-
fies a pathway URI and OPDP returns its interactions including infor-
mation about direction and the connected entities. The direction in-
formation is relayed as a starting node having a wp:source annotation,
while the end of the interaction has the wp:target annotation. In its
simplest form, this means that if gene product A is interacting with a
gene product B, then we have wp:source for product A and wp:target for
product B. However, the presented new methods also support interac-
tions with multiple sources and targets for more complex interactions
that are more accurately represented this way.

The second added call, /pathways/interactions/byEntity, returns the di-
rection of the interactions involving this entity. An entity is specified
by a URI and can be a metabolite, protein, gene product, or RNA. API
options allow the user to select only upstream or only downstream
interactions. If a direction is not specified in the call, all the adjacent
interactions will be retrieved regardless of their direction. The results
also specify the interaction type (e.g. inhibition, stimulation, conver-
sion). Vocabularies.wikipathways.org also identifies catalysis and bind-
ing events as well as a more generic directedInteraction in the case
where the type of the interaction is not identified. This ability to se-
lect the interaction direction is specifically what allows users to answer
scientific questions around upstream and downstream effects, such as
those defined by Open PHACTS. The third API call is /pathways/interac-
tions/byEntity/count which is a helper function that returns the number
of interactions for a target.

4.2.2 Operation

The OPDP API calls are backed by SPARQL searches against the loaded
WikiPathways RDE. The query parameters that are required or op-
tional are given in the documentation of Open PHACTS (https://dev.
openphacts.org/docs/2.1). As in previous versions, the API uses HTTP
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Example input for /pathways/interactions/byEntity call for AKT2

Curl

Request URL

Parameters
Parameter Value Description Parameter Type  Data Type

http:/ /identifiers.org 1 query string

EpeLcl 0a081d11 query. string
Your access application id

CELY df2facbe3d5cee743dc500a1589e53bf I query string

que strin
The rdfsilabel for the pathway i 8

organism (URL encode). e.g.: Homo.

only I
specifies entity is the target, and
‘down’ returns only Interac
where the specified entity is the
source,

v 3 query string
_ The type of interaction to return.

One of: 'directed’, 'undirected".

Figure 4.1: Parameters (bottom) and curl command (top) for the GET /path-
ways/interactions/byEntity call. The GET portion tells the API to retrieve data
with the associated call. It takes an entity URI, the Ensembl ID for AKT2, and
returns a list interactions for AKT2. The obligatory parameters are shown in
bold. Entity IDs that are acceptable for queries include Ensembl, Entrez Gene,
and UniProt for genes, proteins, and RNAs. For metabolites the ID sources
HMDB, ChEBI, and ChemSpider, for example, are acceptable entity IDs

GET to call methods and needs a (free) application ID and key (see https:
//dev.openphacts.org/signup) (4).

To ensure multiple URI schemes can be used to identify genes, pro-
teins, and metabolites, the Open PHACTS platform uses an Identifier
Mapping Service (IMS) (7). This ensures that people can use Ensemb],
NCBI Gene, and others for genes, UniProt, Ensembl, etc. for proteins,
and HMDB, ChEBI, CAS registry number, and PubChem for metabo-
lites. Furthermore, it supports identifiers.org formatted URIs, further
simplifying entering identifiers (14).
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Example query results for /pathways/interactions/byEntity call for

AKT2
"items": [
{

"_about": "http://rdf.wikipathways.org/Pathway/WP1544_r75258/WP/Interaction/id28bfdd47",
"isPartOf": {
"_about": "http://identifiers.org/wikipathways/WP1544"
"title_en": "MicroRNAs in cardiomyocyte hypertrophy",
"title": "MicroRNAs in cardiomyocyte hypertrophy",
"inDataset": "http://www.wikipathways.org",
"latest_version": "http://identifiers.org/wikipathways/WP1544 r75258",
"pathway_organism": {
"_about": "http://purl.obolibrary.org/obo/NCBITaxon_9606",
"inDataset": "http://www.wikipathways.org",
"label": "Homo sapiens"

+

I
"inDataset": "http://www.wikipathways.org",
"source"

"_about http://identifiers.org/ensembl/ENSG00000207875",

"inDataset": "http://www.wikipathways.org"

“type": [
"http://vocabularies.wikipathways.org/wp#GeneProduct",
"http://vocabularies.wikipathways.org/wp#Rna"

1

I
"target": {

"_about": "http://identifiers.org/nchigene/208",

"inDataset": "http://www.wikipathways.org",

“type": [
"http://vocabularies.wikipathways.org/wp#Protein",
"http://vocabularies.wikipathways.org/wp#GeneProduct"

1

r

"type": [
"http://vocabularies.wikipathways.org/wp#DirectedInteraction",
"http://vocabularies.wikipathways.org/wp#Inhibition"
1

+

Figure 4.2: Result in the JSON format of the AKT2 query from Figure 4.1. The
participants of the interaction are directed from source (hsa-let7b) to target
(AKT2). It also shows the type of interaction (inhibition), and the biological
types of the interaction participants.

4.3 Example Queries

We are demonstrating the platform with three example calls. All the
API calls require use of an application ID and an application key. This
key and ID can be acquired by creating a free Open PHACTS account.
The first example is an application to the PI3K/AKT pathway for cell
growth regulation which contain important targets for cancer treat-
ment (15) 14. The AKT protein has a central role and usefully shows
the API call’s ability to return connected elements with the /pathways/in-
teractions/byEntity and the /pathway/getInteractions calls. The API calls
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Example input for /pathways/interactions/byEntity/count call for
AKT2

Curl

Request URL

Parameters
Parameter Value Description Parameter Type  Data Type

http:/ /identif 10 query string
P:// An entity URL

aFE g 0a081d11 query string
Your access application id

app_key 743dc500a1 query. string
Your access application key

query string
The rdfsilabel for the pathway

organism (URL encode). e.g.: Homo
ns.

The type of interaction to return.
One of: 'directed", 'undirected".

Figure 4.3: Parameters (bottom) and curl command (top) for the GET /path-
ways/interactions/byEntity/count call. It takes a URI for an entity, in this case
the Ensembl ID for AKT2 and returns a count of the interactions to which this
gene product is involved. Only the entity URI, app ID, and app key are re-
quired fields. Optional parameters are pathway organism, direction, or type
of interaction.

can help aid drug discovery by taking a target, in this case AKT, and
easily identify other connected proteins that could potentially be used
as drug targets with a common downstream effect.

Figure 4.1 shows the web interface of the API call that returns the con-
nectivity of the AKT2 target to both upstream or downstream proteins
or gene products. This method allows the user to identify connections
to other targets in the pathway. The results of that API call (Figure 4.2)
show the AKT2 interaction with microRNA. A helper method (Fig-
ure 4.3): /pathways/interactions/byEntity/count is also included. It re-
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Example input for /pathways/getInteractions call for MicroRNAs in
cardiomyocyte hypertrophy pathway

Curl

Request URL

Parameters
Parameter Value Description Parameter Type  Data Type
-/ Jidentifi iki query string
hitp:/ fidentifiers.org/wikipathways/WP1544 | o o0

app_id 0a081d11 query string
Your access application id

app_key df2fachi 1 query string
Your access application key

Figure 4.4: Parameters (bottom) and curl command (top) for the /pathways/get-
Interactions call. It is intended to take the pathway URI from WikiPathways
and return a list of interaction involved in that particular pathway. Pathway
URI, app ID, and app key are the only required values for this call.

turns the number of all interactions in which an entity is participates.
This helps the user get a sense of the prevalence of the queried entity
with interactions in pathways found on WikiPathways. An example
result for this query can be found in Supplementary Figure 1.

The other call implemented, /pathway/getInteractions (Figure 4.4), demon-
strates an API call to return all interactions in the MicroRNAs in car-
diomyocyte hypertrophy pathway (16). This pathway has interaction
details for AKT, mTOR, and PI3K, which are all important targets in
cancer research (17). For each interaction the participants are given
and whether it is a directed or undirected interaction. An example re-
sult for this query can be seen in Supplementary Figure 2.

Example workflows

In order to demonstrate the basic use of the introduced API methods,
we developed two workflows, available in the Supplementary Mate-
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rial. One uses Python to return a file with the results in a table and
the other uses a HTML webpage using the ops.js JavaScript client li-
brary (18). More involved workflows have been developed for KNIME
and Pipeline Pilot (19, 20).

The Python script example uses the Open PHACTS /pathway/getInter-
action API call and prompts the user to enter a WikiPathways pathway
number that they wish to query, such as 1544 for WikiPathways path-
way WP1544. Invocation of the API call with the pathway identifier
returns information about the directed interactions that are involved
with the pathway. The information that is returned is the interaction
ID used by WikiPathways, the interaction type, and URIs for the source
and target of the interaction. In order to convert the URIs into some-
thing more readable, a SPARQL query is then executed to get labels,
from the WikiPathways SPARQL endpoint, for the source and target
of the interaction. The results are written to a file with the interaction
ID, interaction type, URIs for the source and target, as well as alias
IDs, the curl for the API call, the pathway ID used, and a number of
interactions returned.

The second example uses a HTML5 webpage and the ops.js JavaScript
client library to retrieve interactions for a particular gene, using the
URI for the gene’s Ensembl identifier and the /pathways/interactions/byEn-
tity API method. The ops.js library passes the returned JSON with
interaction information to a callback function, where the interacting
source and target are extracted and the interacting entity determined.
For each interacting entity, which may be a protein, RNA, or small
compound, a call to the /pathways/interactions/byEntity/count method is
made to return the number of interaction that entity has.

4.4 Summary

While the calls identified here are simple calls, workflow tools make
it possible to take advantage of the integrative nature of the OPDP
to make API calls in succession. Two such workflow tools that work
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with the OPDP are KNIME and Pipeline Pilot. With these tools, it is
possible to perform a directional query of a target and identify alter-
native targets that can then be queried against the chemistry calls to
identify active compounds for these alternative targets. The client li-
braries ops.js, ops4j, and ropenphacts also support Open PHACTS and
the interaction calls for pathways. This allows users to perform API
calls to the OPDP using their preferred language or platform, such as
JavaScript, Java, or R.

The addition of interactions with direction information allows OPDP
to answering more of the pre-defined scientific questions (3). The di-
rectional information allows the user to explore how proteins and gene
products are connected with one another and easily access this infor-
mation. This is illustrated in the example queries using the cancer tar-
get AKT.

Software availability

Online service: https://dev.openphacts.org/docs/2.1
Latest source code is available at:
https://github.com/openphacts/OPS_LinkedDataApi
Archived source code of discussed version:
https://doi.org/10.5281/zenodo.1068252 (21)

Supplemental

Supplemental material can be found in the original article. The DOI of
which is https://doi.org/10.12688/f1000research.13197.2.
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Chapter 5. Active Subnetworks in Rett Syndrome

Abstract

Pathway and network approaches are valuable tools in analysis and
interpretation of large complex omics data. Even in the field of rare
diseases, like Rett syndrome, omics data are often available, and the
maximum use of such data requires sophisticated tools for compre-
hensive analysis and visualization of the results. Pathway analysis
with differential gene expression data has proven to be extremely suc-
cessful in identifying affected processes in disease conditions. In this
type of analysis, pathways from different databases like WikiPathways
and Reactome are used as separate, independent entities. Here, we
show for the first time how these pathway models can be used and
integrated into one large network using the WikiPathways RDF con-
taining all human WikiPathways and Reactome pathways to perform
network analysis on transcriptomics data. This network was imported
into the network analysis tool Cytoscape to perform active submodule
analysis. Using a publicly available Rett syndrome gene expression
dataset from frontal and temporal cortex, classical enrichment analy-
sis including pathway and Gene Ontology analysis revealed mainly
immune response, neuron specific and extracellular matrix processes.
Our active module analysis provided a valuable extension of the anal-
ysis prominently showing the regulatory mechanism of MECP2, espe-
cially on DNA maintenance, cell cycle, transcription and translation. In
conclusion, using pathway models for classical enrichment and more
advanced network analysis enables a more comprehensive analysis of
the gene expression data and provides novel results.
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5.1 Introduction

In a diseased state, many molecular processes in the human body are
affected and dysregulated. Performing pathway analysis on molecular
data sets comparing healthy vs. diseased subjects is immensely effec-
tive in finding affected pathways and it enables researchers to study
the underlying processes in detail, to reveal possible disease mecha-
nisms. While standard enrichment methods have limitations and path-
ways are analysed independently with their arbitrary process bound-
aries (2), the pathway models themselves are very interesting from
a network science perspective. These models contain detailed infor-
mation about biological molecules and their interactions with one an-
other, which can be visualized and analysed using network biology
tools (3). The detailed models of these biological processes are col-
lected in online pathway databases like WikiPathways (4) and Reac-
tome (5). The availability of pathway models in the structured and
semantic Resource Description Framework format (RDF) creates the
possibility to integrate all pathway models into one large network and
therefore incorporate the relations and overlap between them (6). By
removing artificial boundaries, this will enable us to study the sys-
temic effects of diseases, such as Rett syndrome, using network biology
methods. Specifically, we can look for subnetworks, even if not present
in pathways as found in pathway databases, which reflect modules of
differential biological activity.

Rett syndrome (MIM:312750, (7)) is a rare genetic disorder, caused in
most patients by a loss of function mutation in the MECP2 gene (8).
The accompanying MECP2 protein is multifunctional and acts as an
epigenetic repressor, transcriptional repressor and transcriptional ac-
tivator. MECP2 binds DNA on methylated CpG islands and is in-
volved in several regulatory activities: attracting histone deacetylases
(HDAC1), increasing packing density of DNA, repressing and in spe-
cific genes also activating gene expression, and due to its phosphoryla-
tion sites, MECP2 activity is sensitive to intracellular signalling (9, 10).
Due to its regulatory role, many downstream genes are affected in case
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of loss of function, resulting in a broad range of symptoms including
moderate to severe intellectual disability, gait problems, stereotypic
movements, dystonia, scoliosis, epileptic seizures, and sleep problems (11,
12). In the past ten years, omics data analysis on the level of genome,
transcriptome or proteome saw an increase in importance, to analyse
and understand the holistic impact of MECP2, respectively, the im-
pact of an impaired MECP2. (13) recently reviewed the available tran-
scriptomics studies on Rett syndrome and came to the conclusion that
the most researched impact of MECP2 dysfunction lies with dendritic
connectivity and synapse maturation, mitochondrial dysfunction, and
glial cell activity. Recent pathway analysis results of single and inte-
grated studies identified changes in intracellular signalling, including
EIF2 (eukaryotic translation initiation) signalling, cytoskeleton and cell
metabolism including mitochondrial function (14, 15) .

In this study, we aim to investigate the molecular changes in Rett syn-
drome patients using a network-based approach by integrating exist-
ing pathway models from WikiPathways and Reactome into one large
network and identifying disease-affected submodules that show dif-
ferential gene expression. We will compare the results with standard
enrichment analysis methods, including pathway and Gene Ontology
analysis, and expect that the identified disease modules will also con-
tain interactions in pathways not found through those methods.

5.2 Material and Methods
Dataset

The publicly available dataset studying the transcriptome in human
brain tissue of Rett syndrome patients and healthy controls from the
Gene Expression Omnibus (GEO) was used (GEO:GSE75303). The orig-
inal study was published by (16). The dataset contains transcriptome
data obtained with Illumina HumanHT-12 V4.0 expression beadchips.
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The samples were taken postmortem from human frontal and tempo-
ral cortex of three Rett syndrome patients (MECP2 mutations c.378-
2A>G, c.763C>T, c.451G>T) and three age-, gender- and ethnicity-
matched controls.

Raw and normalized data as well as study metadata were obtained
(GEO:GSE75303) and subjected to quality control, including signal dis-
tribution and sample grouping analyses, using plotting functions from
ArrayAnalysis.org (17). No samples were excluded for further anal-
ysis. The normalized data was filtered to remove all probes with a
detection p-value of 1 for all samples, indicating overall absence of
expression. Thereafter, the limma package for R (version 3.30.13, (18))
was used to compute differential expression between Rett patients and
controls for the frontal and temporal cortex samples separately. For
each probe, this results in estimates of the log2 fold change and p-value
significance between the patient and control groups. Probes were re-
annotated with Ensembl gene identifiers based on Ensembl build 91
using the BridgeDbR package (version 1.8.0, (19)) with the Hs_Derby _-
Ensembl 91.bridge database (20).

Enrichment analysis

We performed pathway analysis with PathVisio (version 3.3.0, (21))
and Gene Ontology (GO) analysis with GO-Elite (version 1.2, (22)).

For GO analysis with GO-Elite, the input gene lists for frontal and tem-
poral cortex contained all significantly changed genes (p-value < 0.05)
with an absolute fold change cutoff of 1.5. Ensembl identifiers of all
measured genes in the datasets were provided as the background list.
Number of permutations was set to 2,000. Pruned GO-term results (i.e.
GO terms for which genes in subterms that were found to be signifi-
cant were removed) were filtered based on Z-score (> 1.96), permuted
p-value (< 0.05) and a minimum number of changed genes of five.

Pathway analysis was performed on a combined human pathway col-
lection from all curated WikiPathways pathways including the Reac-
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tome pathway set (in total 903 pathways, October 2018 release). Differ-
ential gene expression was mapped to genes on the pathway diagrams
using the Hs_Derby_Ensembl 91.bridge identifier mapping database.
Thereafter, pathway statistics was performed on differential gene ex-
pression for temporal and frontal cortex using the following criteria to
select only significantly differentially expressed genes (absolute fold
change cutoff of 1.5 and p-value < 0.05):

(lLog2FC < -0.58 OR log2FC > 0.58) AND p-value < 0.05.

The resulting ranked pathway list was filtered based on Z-score (> 1.96),
permuted p-value (< 0.05) and minimum number of changes (positive)
genes of five.

Pathway-based network construction

Biological pathway models are small sub-networks describing specific
biological processes. Connecting and integrating pathway models in
one large network enables us to use network biology tools and ap-
proaches to study and investigate the network.

We used the WikiPathways RDF from October 2018 release (6) to re-
trieve information about all interactions in the pathway models of two
major pathway databases, WikiPathways and Reactome. The SPARQL
query language was used to retrieve the relevant data. The scripts
to generate the constructed network are available on GitHub (https:
//github.com/wikipathways/wprdf2cytoscape). Interactions with at least
two annotated interaction participants (gene product, metabolite, com-
plex) are included. Gene products have unified Ensembl (23) iden-
tifiers, metabolites have either Wikidata (24), ChEBI (25) or HMDB
identifiers (26), and complexes have Reactome identifiers. A list of fre-
quently occurring small molecules (Supplementary Table 1), like HT,
H>0, ATP, etc, were removed from the network to prevent inclusion of
paths with no specific biological relevance. Such small molecules tend
to be artificial hub nodes simply because e.g. ATP is used/produced
in a lot of metabolic reactions. As shown in Figure 5.1, each interaction
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Figure 5.1: WikiPathways network structure. Each interaction is represented
as a node in the network with links to all participants. If the interaction is di-
rected, the information about source and target nodes is added as an edge
attribute. The nodes represented as small, red rounded rectangles are in-
teractions, blue circles represent gene products and green diamonds show
metabolites. Edge thickness indicates in how many different pathways the
interaction is present.

is represented by an interaction node in the network with edges to all
participant nodes (either source, target or participant). For each inter-
action, it is recorded in which pathway or pathways the interaction is
present. By connecting all the retrieved interactions, a large network
representing all human pathway models was created.

Active module analysis

The constructed network was loaded into Cytoscape (version 3.7.0), a
network analysis and visualization tool (27). Differential expression
analysis data (log2 fold changes and p-values) for both frontal and
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Temporal cortex Temporal cortex Temporal cortex
down-regulated not changed up-regulated
Frontal cortex 88 44 1
down-regulated W - T
Frontal cortex 171 18,576 55
not changed -l -- -t
Frontal cortex 3 62 23
up-regulated ™ - ™

Table 5.1: Differentially expressed genes in frontal and temporal cortex. 133
and 88 genes were significantly down- and up-regulated in frontal cortex, re-
spectively. 262 and 79 genes were significantly down- and up-regulated in
temporal cortex, respectively. 88 genes are down-regulated, and 23 genes are
up-regulated in both brain regions. Only four genes show different expres-
sion patterns. The following filtering criteria were used: p-value < 0.05 and
absolute log?2 fold change > 0.58.

temporal cortex were added as node attributes to the network.

The Cytoscape app jActiveModules (version 3.2.1, (28)) was used to
identify active submodules in the large network that show significant
changes in expression. These subnetworks are freed from the artificial
pathway boundaries of conventional pathway models found in Wiki-
Pathways and Reactome. The following parameters were used to find
active submodules: p-value as the node attribute, number of modules
was set to five, overlap threshold of 0.8, and search strategy with a
search depth of two.

5.3 Results
Gene expression

The total number of probes measured was 37,707 from which 29,024
could be linked to Ensembl identifiers. After merging multiple probe
identifiers for the same Ensembl identifier, 19,023 unique gene identi-
fiers remained. Differential gene expression analysis revealed 1,953 in
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Figure 5.2: Pathway analysis results for frontal and temporal cortex data.
Pathways are clustered in this heatmap based on their Z-scores. Pathways
with a high Z-score (>1.96) contain significantly more changed genes than
expected and are considered pathways of interest. An asterisk next to the
Z-score value indicates pathways with a significant Z-score (>1.96) but less
than five changed genes.

the frontal cortex and 2,436 significantly changed genes in the tempo-
ral cortex samples of RETT syndrome patients versus controls. Only
221 in frontal and 341 of the significantly changed genes in tempo-
ral cortex had a more than 1.5-fold increase or decrease in expression
(Jlog2 fold change| > 0.58). In both brain regions, more genes were
down-regulated in Rett syndrome patients than up-regulated, see Ta-
ble 5.1, which matches the original publication (16).
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Gene Ontology analysis

Gene Ontology overrepresentation analysis identified 39 and 50 bio-
logical processes as altered in frontal and temporal cortex, respectively
(Supplementary Tables 2 and 3). Summarizing, neuron specific and
immune system-related processes were found to be enriched in both
brain regions for Rett syndrome patients. In temporal cortex, addition-
ally, regulation of translational initiation (GO:0006446) and an extracel-
lular matrix/cytoskeleton-related process (GO:0007229) were found to
be enriched. Interestingly, the microglia relevant complement factors
C10QB and C1QC were found in the enriched GO classes defense re-
sponse (GO:0006952) and immune effector process (GO:0002252).

Pathway analysis

Pathway analysis was performed in PathVisio for both brain regions
separately. Overrepresentation analysis revealed 18 and 21 pathways
altered in the datasets for frontal and temporal cortex, respectively (Z-
score > 1.96, minimum five changed genes), see Figure 5.2. Interest-
ingly, eight pathways were altered in both frontal and temporal cor-
tex. Similar to the results of the GO analysis, several immune system-
related and extracellular matrix/cytoskeleton-related pathways were
found to be enriched. Additionally, calcium channel related processes
including muscle contraction pathways were found in both brain re-
gions. Although muscle contraction pathways are not expected in brain
tissue samples, the overlapping differentially expressed genes were
mostly ion channels and signalling cascade proteins also highly rel-
evant for neurons. Figure 5.3 is an example pathway visualization
for a pathway that has a high Z-score in both tissue types, Microglia
Pathogen Phagocytosis Pathway (29).

Pathway-based network construction

From the 904 pathway models in the WikiPathways and Reactome col-
lection, 860 pathways contained 27,410 unique interactions. On aver-
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age, a pathway contained 35 interactions (min = 1, max = 510, median
= 22). Interestingly, 3,264 interactions occur multiple times but only
2,103 interactions are present in more than one pathway. As an exam-
ple, one of the highest occurring interactions is the complex binding of
the three subunits of the IxB kinase complex which plays an important
role in the propagation of cellular response to inflammation (30) and is
present in 25 different pathways.

The resulting network consists of 48,639 nodes and 106,137 edges. The
network consists of one major component (46,756 nodes) and 427 smaller
components with each less than twenty nodes. The network contains
8,643 gene products, 2,704 metabolites and 9,882 complex / group nodes.
Most common interaction types are directed interaction (13,572), com-
plex / group participation (5,298), catalysis (4,787), inhibition (1,185)
and conversions (896).

Active module analysis

Active modules were calculated using the jActiveModules app. The
top five modules with the highest active paths scores were identified
for both comparisons, frontal and temporal cortex. The modules for
frontal cortex contained between 300-350 nodes and 560-1,020 edges.
The top modules for temporal cortex tended to be smaller ranging
from 230-290 nodes and 450-1,000 edges. Figures 5.4 and 5.5 show the
highest-ranked module for frontal and temporal cortex, respectively.
Gene expression changes are visualized as node color and significance
is indicated by the node border color. All modules only contained gene
products and no metabolites were found. The complete submodule
analysis results for both datasets can be found in Supplementary Data
1 (zip file containing two Cytoscape session files).

The highest ranked active module for frontal cortex contains 303 nodes
(79 interactions and 224 gene products) and 568 edges, see Figure 5.4.
The subnetwork contains eight significantly down-regulated genes (blue
rounded rectangles) including two F-Box genes, FBOX32 and FBXO9,
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involved in phosphorylation-dependent ubiquitination. The subnet-
work contains five significantly up-regulated genes (red rounded rect-
angles) with diverse roles. The identified hubs in the active module
network of frontal cortex are two gene products not measured in the
dataset, RPS27A and UBA52. Both are involved in protein degrada-
tion via 26S proteasome, ubiquitination, translation and DNA exci-
sion repair. In the central part of the network, the ribosomal pro-
teins including RPL14, RPL29 and RPL3 form a cluster. This cluster
is connected via PPP2CA and PPP2R1A, two phosphatases involved
in cell cycle, DNA replication and transcription, to a cluster of cen-
trosomal proteins including CEP78, CEP57 and CEP131. The module
combines interactions from 47 unique pathways (Supplementary Table
4) including class I MHC mediated antigen processing and presenta-
tion (WP3577), nonsense-mediated decay (WP2710), cell-cycle related
pathways (WP1859, WP1775, WP1858, WP2772), and eukaryotic trans-
lation elongation and initiation (WP1811, WP1812).

The highest ranked active module for temporal cortex contains 238
nodes (84 interactions and 154 gene products) and 457 edges, see Fig-
ure 5.5. The module partially overlaps with the module found for
frontal cortex. The module contains 24 significantly down-regulated
genes (blue rounded rectangles) including several ubiquitin conjugat-
ing enzymes (UBE2E1, UBE2E3) and translation initiation factors (EIF4A2,
EIF4H, EIF4G2). Only five significantly up-regulated genes are found
in the subnetwork (red rounded rectangles) but the distance between
them is large. This subnetwork contains similar hub nodes as in the
frontal cortex subnetwork including RPS27A, UBA52 and PPP2R1A.
Additionally, NCBP2 and NCBP1, proteins involved in RNA process-
ing, play an important role in the subnetwork. The module combines
interactions from 51 unique pathways (Supplementary Table 5) includ-
ing transcription / translation (WP1889, WP1906, WP1812), cell cycle
(WP1859, WP1775, WP4109), and immune response (WP3577, WP2658)
related processes.
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Figure 5.3: Visualization of the frontal and temporal cortex gene expression
on the Microglia Pathway Phagocytosis Pathway. In the left half of the
gene boxes, the gene expression change in the frontal cortex is shown. In
the right half of the gene boxes, the gene expression in the temporal cortex
is shown. The blue colors represent down-regulation of the gene in Rett syn-
drome patients (negative log2 fold change), while the red shades are for the
up-regulated genes. The darker the color, the stronger the effect. Green bor-
ders indicate significance of the change (p-value < 0.05). Grey colored nodes
are not annotated or measured in the dataset.
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Figure 5.4: Top-ranked active module for frontal cortex data. The subnet-
work contains 303 nodes and 568 edges. It contains 13 significantly changed
genes (rounded rectangles) when applying the same cutoff as for enrich-
ment (absolute fold change > 1.5). Other measured gene products are cir-
cular nodes. Blue fill color indicates down-regulation while red indicates up-
regulation. The darker the color, the stronger the effect. Gray hexagons are
gene products not measured in the data set. The very small, gray nodes rep-
resent interaction nodes. These were combined from 47 different pathways
with none of the pathways providing more than six interactions.
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Figure 5.5: Top-ranked active module for temporal cortex data. The subnet-
work contains 238 nodes and 457 edges. It contains 29 significantly changed
genes (rounded rectangles) when applying the same cutoff as for enrich-
ment (absolute fold change > 1.5). Other measured gene products are cir-
cular nodes. Blue fill color indicates down-regulation while red indicates up-
regulation. The darker the color, the stronger the effect. Gray hexagons are
gene products not measured in the data set. The very small, gray nodes rep-
resent interaction nodes. These were combined from 51 different pathways
with none of the pathways providing more than six interactions.
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5.4 Discussion

MECP?2 is a multifunctional protein which is involved in several tran-
scriptional inhibitory and activational processes. MECP2 was gener-
ally regarded as a repressor, however its role as genetic activator has
also been confirmed (31). In previous studies, a loss of function in
MECP2 due to a mutation has been found to influence a variety of
pathways and biological processes, including pathways related to not
only neuron development and function, but also to the immune sys-
tem, transcription and translation related processes (which were iden-
tified mainly by transcriptome analysis, (13-15, 32)). The affected path-
ways identified with our study closely match the results previously
found by (15), in which human brain tissue data of Rett syndrome pa-
tients (published by (33)) was analysed. The expression of the MECP2
protein itself is not significantly affected in this dataset (minor, in-
significant down regulation (log2 fold change of -0.1) in both brain
regions).

The original study by (16) from which the dataset analysed in this pa-
per was acquired, focused on the significant down-regulation of cer-
tain complement system factors in Rett syndrome (C1QA, C1QB, C1QC).
Complement system factors are produced generally in liver, however
their expression was also found to be changed in stimulated microglia.
Furthermore, there is emerging evidence that C1Q factors are involved
in several non-immunogenic activities, such as synaptic pruning in mi-
croglia (34).

As expected, our pathway and GO analysis revealed a substantial num-
ber of immune system related pathways to be affected in Rett syn-
drome frontal and temporal cortex tissue samples. Inflammatory pro-
cesses have been identified previously in Rett syndrome patients, mouse
models and in vitro systems, and are suspected to contribute to the
development of Rett syndrome (15, 35). Figure 5.2 shows many of
affected pathways in both frontal and temporal cortex, with similar
results found by GO analysis. Interestingly, no complement system
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or transcription / translation related pathways show up (except Mi-
croglia Pathogen Phagocytosis Pathway, which includes C1Q factors).
Only seven of the 31 pathways found through pathway analysis con-
tribute interactions to the active modules identified for frontal and
temporal cortex. The modules mainly contained interactions from tran-
scription / translation and cell cycle related pathways, which were not
found with the classical enrichment analysis. These processes were
also previously found in transcriptome pathway analysis of Rett syn-
drome (14, 15). Overall, the regulatory effects of MECP2, especially
on DNA maintenance, cell cycle, transcription and translation, is more
prominently shown in the active modules, while immune system re-
lated responses are more present in pathway analysis. Importantly,
the active module approach does not replace analyses like classical en-
richment analysis but augments it.

This was the first time the entirety of the WikiPathways knowledge-
base, including Reactome pathways, has been used to create a compre-
hensive human pathway-based network for network analysis of tran-
scriptomics data. Identifying active modules from a large network has
some major benefits, such as the easy applicability to any gene expres-
sion dataset, ignoring predefined boundaries used in traditional path-
way diagrams, and incorporating the relations and overlap between
the pathways. Additionally, this method does not require researchers
to predefine a certain cutoff since genes are ranked based on their sig-
nificance.

Some considerations arose when constructing and analyzing the net-
work. For instance, some common metabolites like ATP, ADP or NADH,
while biologically necessary, were excluded from the network, since
their involvement in a multitude of interactions created links between
almost every node. Additionally, this approach is strongly depending
on the a priori input of pathway data in terms of coverage and qual-
ity. Currently, human pathway databases contain a little over 50% of
the protein coding genes (4), which is also a probable number for the
coverage of metabolites and interactions. Pathway models generally
contain information about directionality of the interactions. However,
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available active subnetwork analysis methods only take topology but
not directionality into account. This could strongly affect the identifi-
cation of active submodules and would be an important extension of
existing algorithms.

The active module discovery approach should be considered as an ad-
ditional step after classical enrichment analysis. In this study, we used
human brain transcriptomics data from a study with Rett syndrome
patients, however our approach is not unique to this application or
rare diseases. These diseases are by definition less common and often
less extensively studied, which may result in lower availability of spe-
cific pathway models. Nonetheless, the active module approach suc-
ceeds and shows great power for additional discoveries. While rare
genetic diseases have the advantage that the causative gene is (usu-
ally) known, the resulting downstream consequences can be diverse
and affect a variety of pathways. By using pathway models in an in-
tegrative network approach, further use of the invaluable resources
present in pathway databases is enabled and subnetworks of interest
can be retrieved based on the entire body of pathways available. Using
Cytoscape allows using all available apps such as the jActiveModules
app to analyse our network. Importantly, the complete interaction net-
work of WikiPathways with 48,639 nodes and 106,137 edges can be
opened and analysed in Cytoscape, despite of the network to be too
large to be visualized. The use of graph databases like Neo4j, which
already have connections available to Cytoscape (cyNeo4j app, (36)),
could be a useful addition to the approach.

Conclusion

Pathway models have proven themselves as powerful tools for biolo-
gists to describe and analyse biological processes. The collaboration
between the widely-adopted pathway databases WikiPathways and
Reactome and the availability of their data in RDF format allowed us
to integrate a large number of pathways from both databases into one
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large network. This enables us to perform advanced network analy-
ses like active submodule identification. By comparing classical en-
richment methods with the active submodule identification on a Rett
syndrome dataset in two different brain regions, we found that both
approaches provided valuable insights into the disease. Importantly,
they were strongly complementary and did not show the same re-
sults.

Data Availability Statement

The dataset analyzed for this study can be found in the Gene Expres-
sion Omnibus: (https://www.ncbi.nIlm.nih.gov/geo/query/acc.cgi?acc=
GSE75303).
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An approach to the proposal of drug
combination for cancer therapy
using a pathway data connectivity
approach

Adapted from: R. Miller et al., An approach to the proposal of drug
combination for cancer therapy using a pathway data connectivity approach,
ChemRxiv, Mar. 2022, (https://doi.org/10.26434/chemrxiv-2022 -
0n8fp).
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Chapter 6. Drug Target Networks

Abstract

Within the next twenty years, the number of cancer patients is expected
to rise by 70%. Current cancer treatments still face several limita-
tions, such as severe side effects and a high incidence of disease recur-
rence. Drug combination therapies are a promising strategy to achieve
higher therapeutic effects while reducing side effects. This new di-
rection in cancer drug research has led to data-driven medicine. To
predict whether certain drugs would have a synergistic effect when
combined, the DREAM Challenge coordinators released data for thou-
sands of experimentally tested drug combinations. The DREAM Chal-
lenge served as inspiration for selecting drug combinations that have
the potential to be synergistic. We here describe an approach using bi-
ological pathway knowledge and applying this to the selected combi-
nations with a previously described mathematical model, the Loewe-
Additivity approach. The calculated interaction index (II) served to
distinguish between synergistic (I/ < 1), additive (// = 1) and an-
tagonistic (// > 1). Pre-selection of putative drug combinations was
performed prior to synergy prediction based on four case scenarios: 1)
two drugs share the same target protein, 2) two drugs share the same
pathway, 3) drugs are separated by one degree from two targets or 4)
drugs are separated by more than one degree from two targets but act
upon the same biological pathway. Results - The first method tried was
using a drug synergy prediction method called the Loewe-Additivity
model, in which two drugs share the same target and form the ini-
tial findings for this paper. The Loewe model acts as a baseline esti-
mation to see if more combinations can be identified using the other
methods tested. The remaining methods used were able to find ad-
ditional drug combinations that were not proposed by the standard
Loewe model. Although the additional methods did find additional
combinations that would be predicted to be synergistic, a prediction is
not a guarantee of success, so validation of the new or novel combina-
tions would be needed to verify their effectiveness. This could be done
by comparing our results to known data or against biological assays.
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6.1 Introduction

Over the last two decades, the mortality rates associated with can-
cer have steadily decreased, constituting an overall fall of 23% in 21
years (2). This decrease in cancer cases can be explained by better pre-
vention and an earlier diagnosis, together with better and more effec-
tive treatment options. Although mortality rates are declining, cancer
is still among the leading causes of death and morbidity worldwide,
with the number of cases estimated to rise by 70% in the next twenty
years, according to the GLOBOCAN project (3, 4).

This shows a pressing need for not only improved preventive and de-
tection methods, but also for treatment options. Cancer treatments
such as chemotherapy, immunotherapy and radiation therapy still face
several challenges (5). Although various single drug pathway-inhibitors
have been developed, cancerous cells, specifically found in solid tu-
mors, are known to have a high resistance to drug treatment allowing
the disease to recur (6). Currently, the most effective strategy to over-
come drug resistance in oncology treatments consists of administering
a combination of drugs rather than a single drug (7), resulting in a
multi-target therapy that takes advantage of the multifactorial nature
of cancer.

Due to the fact that cancer is caused by varying underlying mutations
in different genes, several cellular pathways are affected by its manifes-
tation; this set of pathways is referred to as the hallmarks of cancer (8).
The pathways include proliferative signaling, angiogenesis, evasion of
growth suppressors, invasion and metastasis, resisting apoptosis, in-
flammation, genomic instability, and unlimited replication potential.
Inhibition of one of these key pathways may still allow cancerous cells
to survive and adapt to the administered drug therapy. The likelihood
of drug resistance decreases when multiple pathways that are known
to be relevant in cancer are targeted (9, 10). There still needs to be a
consideration of the role of the pathways targeted and their relation-
ship between one another.
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The first choice as an alternative to the selection of two drugs that share
a common target was to use two drug targets present in the same path-
way, because under the standard version of mathematical results, we
use two drugs that are targeting the same protein. The rationale to
extend this to a whole pathway is that pathways are typically used
and drawn to describe a particular biological process. Presumably this
means that the protein targets found within a pathway are all part of
a related biological process. We can then evaluate these combinations
as a baseline to see what sort of predictions of synergy we get from its
application. From here we can work on approaches that do not include
the same pathway and look at targets that are connected at a distance
from each other regardless of their pathway association.

Drug combinations can induce an additive effect; in which the thera-
peutic outcome is equal to the effect of monotherapy; an antagonistic
effect which reduces therapeutic effects or they can lead to a synergis-
tic effect in which the therapeutic effects are enhanced (11). Synergis-
tic combinations may offer advantages over mono-drug therapies, be-
cause the therapeutic effect in synergistic drugs is greater than simply
adding the two drugs’ effects together (12, 13). In addition, reduced
drug resistance may occur due to synergistic drug combinations, be-
cause each individual drug needs a lower dose. Furthermore, a drug
compound which normally does not induce an effect on its own could
potentially have an effect when in combination with another drug,
giving rise to a larger range of possible drug treatments. Due to the
large number of possible drug combinations, large and complex data
make studying every possible combination difficult. Important devel-
opments include the use of genomic data in drug discovery, the shar-
ing of clinical-trial data, as well as the increased availability of data
from claims and patient registries (14). This new paradigm has been
referred to as data-driven medicine (15), an area which explores big
data, that is, datasets that are too large and complex for traditional data
processing applications to work with. Thus, large amounts of data en-
courage the use of advanced computational analytical methods which
enable researchers to take into account a wide set of data beyond those
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generated in standardized clinical trials and analyzed through clas-
sical biostatistics. Harnessing the power of big data can potentially
improve success rates in the outcomes of patients receiving treatment
as well as enabling pharmaceutical companies to enhance the produc-
tivity of their research and development (16, 17). With the use of big
data, researchers can pursue more computational approaches to drug
development such as the one described in this paper that would be
predicted to have a synergistic outcome or not.

But more data does not directly give us new answers. As we see more
and more data available to researchers, we need new ways to look at
and approach this data to look for meaningful connections. Under this
mindset we see companies, organizations, and governments releasing
some of their data to crowdsource new approaches to using their data.
AstraZeneca, for example, established a partnership with the Euro-
pean Bioinformatics Institute, the Sanger Institute, Sage Bionetworks
and the DREAM community and released approximately 11.5k exper-
imentally tested drug combinations measuring cell viability in several
cancer cell lines and challenged the public domain to explore potential
synergistic drug combinations (18). The question remains, however,
how this data can be used to get new insights in the applicability of
drug combinations. Combinations of drugs are used in medicine to
treat ailments that are complex diseases, such as cancer, and can have
synergistic effects (19). Drug synergy is defined as the effect of a com-
bination of drugs that is greater than summing the effects of the indi-
vidual drugs together. There are different models for predicting effects
based on component-based approaches, with the independent model
(IA) and the concentration addition model (CA) being described by
Tanaka and Tada (20). The CA model is for similarly acting chemi-
cals, while the IA model is used to describe chemicals with different
modes of action. The CA model is generally considered to be a better
predictor of the synergy than the IA model in the case of a mixture
of many substances (20). The Loewe-Additivity model is an example
of a CA model and follows the model of similarly acting substances if
they target the same targets and processes as defined by the equation
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Figure 6.1: Example interaction from DNA damage response pathway (wiki-
pathways:WP707) from WikiPathways. The line and the arrow between the
gene product nodes is the interaction and directional information captured in
the WikiPathways RDFE.

Synergyrocwe = % + % = 1 for additivity, where if Synergyroewe < 1
is synergistic and Synergyroewe > 1is antagonistic with d1 and d2 rep-
resent doses that have an effect when in combination and D1 and D2
have an effect when used alone.

Therefore, starting from the ideas of additivity of drug synergy, and
the knowledge how genes are related via their biological processes,
the aim of this research paper is to propose and select drug combi-
nations that are connected biologically, either by process type or by
common branch connectivity. This could facilitate the identification
of potential drug combinations to investigate for synergy without al-
ready having measured information about the drugs’ potential syn-
ergy previously. The approach being examined is that drug combina-
tions can be identified with network connectivity and extend an al-
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ready established mathematical model, the Loewe-Additivity mathe-
matical model. The principle of Loewe-Additivity model is that two
drugs that work on the same drug target can be calculated whether the
combination is additive, antagonistic, or synergistic (21). The standard
Loewe-Additivity model has limitations in that two drugs must share
a common target (see Figure 6.3A).

Drug-target information that was already supplied by the DREAM
challenge coordinators was the basis for expanding with pathway con-
nectivity data from sources that have information based upon prior
knowledge about target interactions with each other. This collection of
diagrams are the pathways found on WikiPathways (22). Within this
collection is information about the connectedness of nodes to form a
diagram of biologically related information as seen in Figure 6.1. The
nodes in the diagram are representations of gene products, metabo-
lites, proteins, and RNA. This connected diagram supplies information
about the interactions involved. With the inclusion of interaction infor-
mation from WikiPathways, information about the direction in which
an interaction is directed is also captured. In this case, this is direc-
tional information between “gene product” or “protein” nodes. This
allows the data nodes that represent gene products or proteins to be
found in a one way direction from the node of interest. The pathway
data’s semantic representation is in the form of the WikiPathways Re-
source Description Framework (23). For example, in WikiPathways
we have interaction directions that indicate that PI3K activates AKT
which in turn inhibits the TSC1/TSC2 dimer in the PI3K pathway (Fig-
ure 6.2, wikipathways:WP4141), which is an attractive pathway to tar-
get in cancer research (24). What this directional information permits is
finding connections to new gene products or proteins at increasing dis-
tances. The pathway data used to find target combinations of increas-
ing distance from each other was the WikiPathways RDF (23). The Wi-
kiPathways RDF was used because it contains the semantic informa-
tion for the pathway diagrams at WikiPathways.org. The RDF being
the semantic representation of the nodes, interactions, and metadata
associated with the pathways. The WikiPathways RDF specifically
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TSC1

/.; Tsc2 | |

Figure 6.2: Example directional interaction of PI3K activating AKT which
in turn inhibits the TSC1/TSC2 dimer found in WikiPathways (wikipath-
ways:WP4141)

captures information about interactions and which elements come be-
fore or after another (25). Because the RDF has this connection infor-
mation, the WikiPathways RDF makes a logical choice when one wants
to traverse a pathway from one point to another. In this case, it would
be to look for drugs that share the same pathway or for paths within a
pathway that share drug targets.

The WikiPathways SPARQL endpoint (sparql.wikipathways.org) is a
public resource where users can construct queries to retrieve anno-
tated information about the targets (22). In this case, the information
retrieved was first to see if a certain distance between targets, in rela-
tion to each other, maintained enough biological relations. This was
extended to include drug combinations that shared a common path-
way and should yield more results. Finally, in an attempt to observe
what happens when the network extends beyond the immediate bio-
logical processes, a network was constructed to connect drugs across
pathways via directional queries.
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Table 6.1: Example of mono-drug therapy measures of two drugs and their
targets.

0 07525 |75 |25 |75 | (=Agent2)
0 100 97.8 (997 [ 947 [ 95 | 92.9
0.01 96.5 NA | NA | NA | NA | NA
0.03 97.6 NA | NA | NA | NA | NA
0.1 95.6 NA | NA | NA | NA | NA
0.3 88.8 NA | NA | NA | NA | NA
1 79.4 NA | NA | NA | NA | NA
(=Agent]) NA | NA | NA | NA | NA
Agentl | AKT NA | NA | NA | NA | NA
Agent2 | ADAMI17 | NA | NA | NA | NA | NA

6.2 Methods

6.2.1 Drug-Target Information

There were several methods and approaches that were used to pro-
pose potentially synergistic drug combinations. As part of the DREAM
challenge (26), the coordinators provided information about which drugs
were used on 85 different cell lines and the targets of these drugs. It
was the drug target list that was used for the potential combinations
in the different approaches. The list of potential targets is found in the
“targetlist.csv” file at https://github.com/RyAMiller/DrugTargetSynergy.
Table 6.1 shows AKT 1 concentrations (um) identified in the first col-
umn. ADAM17 (um) is identified in the first row. The numbers in the
second row and column are cell survival rates at the corresponding
concentrations. The targets used were the Agentl and Agent2 values
from these tables.

123


https://github.com/RyAMiller/DrugTargetSynergy

Chapter 6. Drug Target Networks

6.2.2 Mathematical model for determining a drug combination’s
synergy

The Loewe-Additivity model is the mathematical starting point used
to predict drug synergies (27). As part of the challenge data, we have
information about the drug compounds and their targets. Therefore
we can calculate whether the combination is synergistic or not (27).
Since the conditions for this model are already well accepted and can
be used to calculate drug synergies, this does not give many new or in-
teresting combinations that have yet to be explored for potential syn-
ergistic effects. In this case, the established model is considered the
standard that will be compared against the new models proposed. The
decision was then made to try and extend the model to gene products
and proteins that are biologically related, in order to find new com-
binations that could potentially be synergistic, without just grabbing
every permutation of two drugs from the drugs used. This extension
is done using biological databases such as WikiPathways, technologies
like the Resource Description Framework (RDF), and SPARQL Proto-
col and RDF Query Language (SPARQL).

Thus the first step was to use a SPARQL query to the WikiPathways
endpoint with the query being available in the GitHub repository. This
returned a table of source and target proteins that are associated with
the compounds used for synergy analysis. The tables were then im-
ported into a spreadsheet program and the concatenate function was
used to return pairs of drug combinations to be evaluated for drug
synergy separated by a comma.

The first query proposes the drug combination synergies under the
assumption of the Loewe-Additivity Model, that two potential drugs
both targets act on the same protein. In order to expand this assump-
tion and assuming that proteins in the same pathway are involved in
similar biological function, we created a list of synergistic drugs that
was a combination of the standard two drugs, one target approach and
added a list of two drugs that share one pathway.
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Figure 6.3: The first case for combination selection is done by using the stan-
dard conditions for the Loewe-Additivity model. It predicts synergy of the
combination based on the two drugs sharing the same target. B: To expand
the selection criteria, if both members of a drug combination are present in a
common pathway then the combination is selected and sent for synergy cal-
culations. C: The connectivity of the targets to each other is represented in
this selection method. If there is a directed interaction between the targets
and the drugs share a common interaction stream, then they are selected and
are sent to be evaluated for synergy.

Then directional queries were used to say that the two drug targets
must be directly upstream or downstream of each other and the results
can be seen from the Java script found on the GitHub project page. A
similar list of drug target combinations was generated by concatenat-
ing drug and target columns and this list was added to the standard
two drugs, one target list of drugs to return drug synergy predictions
based upon two targets being involved in the same path and can be
traced directly from one target to another.

6.2.3 Application Using Loewe Model: Synergy using standard
Loewe-additivity model

The first tests were based on using a standard Loewe approach to pro-
pose synergy (i.e. two drugs, same target) (see Figure 6.3A). Each of
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the selected combinations from the scenario where two drugs share
the same target were synergistic based upon the mathematical model
of the Loewe-Additivity model. These combinations were our baseline
list of potentially synergistic drug combinations. Other approaches to
propose combinations all include this original list of combinations.

6.2.4 Alternative 1: Drug combination shares a common
pathway

One crucial assumption that is made is that a particular family of tar-
gets that is identified, includes all potential members of that family in
the number of possible combinations. Since the pathway diagram de-
scribes a particular process or processes, the RDF can also be used to
see if two targets are part of the same pathway and if they are part
of the same process then the combination could be potentially syner-
gistic. The simplest list of combinations to construct was the list that
has the two drugs sharing a common pathway (Figure 6.3B). This has
to be done using the drugs’ targets rather than the drugs themselves,
because gene products and proteins are the entities that are most repre-
sented in WikiPathways’ pathway diagrams. The way the annotations
are represented in the WikiPathways RDF allows the use of a SPARQL
query to determine if two drugs share a common pathway. The query
takes a list of the targets and attempts to match the targets to path-
ways. A query result is returned when all the conditions of the query
are met, mainly that the query finds any two targets that are present in
any pathway and filters targets to match those identified targets. This
again allows the creation of target combination lists. The targets are
then associated with their specific drug. This list of combinations plus
the list from the Loewe model our the next list of potentially synergis-
tic drug combinations.
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Gene Product A Gene Product B

Figure 6.4: Dark red circle highlights a basic interaction. The arrow points
from one direction to another and implies directional information about the
interaction.

6.2.5 Alternative 2: Combinations share a common path within
a pathway

The important aspect of the WikiPathways RDF, for this application, is
that it contains information about connectivity of gene products and
proteins. This can be applied using SPARQL queries designed to re-
trieve data about adjacent nodes. The queries used were implemented
using Java since the size of the queries required will cause the Wiki-
Pathways SPARQL endpoint to time out. The Java code and queries
can be found on GitHub. The RDF also contains information about the
direction of the interaction (Figure 6.4). Having information about the
start and end point of an interaction allows the user to have knowledge
of direction of the interaction. In other words, in which direction the
arrow is pointed. First the queries started with one of the targets from
the challenge data and returns all the targets that are n interactions
downstream of the original target list, this can be seen in Figure 6.3C.
In this case, n steps are 4 downstream checks. Since the starting point
must be one from the list of targets, we would find all combinations
of two targets that are associated with the drugs in both the up and
down direction. If starting at the origin point of targets is recognized
in combination with another target gene within the 4 steps, it is used in
the model to test if it is a potentially synergistic combination of targets
that can be used against the drugs. This should generate a list of tar-
gets that is closely related biologically but adds some freedom to the
original Loewe model.
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1
. Target A
Drug

Figure 6.5: Selection criteria is based upon a more indirect connection be-
tween targets that have drugs with multiple effective targets. In this case
Drug 1 and Drug 4 would be selected as a potential combination to calculate
drug synergy.

6.2.6 Alternative 3: Network extended beyond pathway
boundaries

The final step to test the limits of the mathematical model, was to cre-
ate networks of pathways with the target proteins and compare the list
of drug combinations to the lists created in the previous approaches,
as seen in Figure 6.5. This was done by creating a network in Cy-
toscape (28) of drug and pathways. The Python library, NetworkX,
was then used to calculate the shortest path for all different possibil-
ities across the network that had two drugs from the challenge data.
This list of edge connections is what NetworkX requires in order to
calculate distance across a particular network. Since the drug targets
are the elements linking the pathways together, the minimum distance
to give a potentially unique solution was five nodes on the network
away from each other and not just another case of two targets sharing
a common pathway as done before.
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6.2.7 Repository

A GitHub repository at https://github.com/RyAMiller/DrugTargetSynergy
contains the scripts used for this project. This repository contains java
scripts with SPARQL queries for directional interactions and the ta-
bles for drug targets. The lists of drug combinations files are also
found in this repository as well as the CytoScape networks used in
this manuscript.
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Figure 6.6: Drugs that share a common target network. This is a simple net-
work based upon the drugs and their targets. Drugs are connected by the
targets with which they are involved.
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Figure 6.7: Drug/Pathway Network. Expanding the network to also include
drugs that are connected via the same pathway.

6.3 Results

6.3.1 Workflow

The standard Loewe model and the other methods were completed as
described above. Based upon the models, lists of potentially synergis-
tic combinations were created.
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6.3.2 Loewe model network results

The selection of drug combinations that are applied to the model in dif-
ferent ways. In the common model for the Loewe-Additivity model,
the graphical representation looks like Figure 6.3A where two drug
compounds have a predicted synergy if they interact with a common
target. In Figure 6.6, the network is created for the drug-target combi-
nations. This network shows that there are 132 edges and 161 nodes.
This shows what kind of connectivity there is with a well studied model
like the Loewe-Additivity model. This yields 328 drug combinations
that are possibly synergistic.

6.3.3 Targets share the same pathway

The Loewe-Additivity model is already well described so in Figure 6.7
the idea was to use the same mathematical model but apply it to a com-
bination of two drugs that shared a common pathway and then create a
network of the drug-pathway combinations. This shows a much larger
network that has 177 nodes and 1811 connections. This increased con-
nectedness, compared to the standard approach, also gives an increase
in the number of potential combinations to send to the scoring algo-
rithm. This also greatly increased the number of combinations that are
possibly synergistic to 1089.

6.3.4 Directional information between targets

Just because two drugs share a common pathway does not mean that
the two individual drugs are even in the same arm of the pathway
with common effects to be seen downstream. In an attempt to have a
set of combinations only with two drugs sharing a common interaction
stream, a different approach was specifically done to have only com-
binations which share common effects if targeted (Figure 6.8). This
network has 6449 edges and 648 nodes. At a limit of 4 interactions
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"

Figure 6.8: Directionality from a starting point (defined as targets) and using
directional information from WikiPathways’ pathways four interactions re-
moved from the starting point.

allowed between the two drug targets, the number of pottential syn-
ergies is 1089. The directional method produced a similar number of
potential combinations as the shared pathway approach but in the di-
rectional method, there is increased confidence about the targets hav-
ing a common path that connects the two and more confidence in their
relation to each other biologically.

6.3.5 Network extended beyond pathway boundaries

The final attempt at determining possible combinations would be to
look for combinations that are only connected by interaction informa-
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Figure 6.9: Indirect connections. In this case the network was constructed so
that the pathway boundary was not a limitation to connections. A gene prod-
uct or protein can be connected with a pathway but the pathway shares some-
thing in common with the next pathway.

tion from WikiPathways but without regard to pathway boundaries
(Figure 6.9). The idea of this last approach was to find new poten-
tial combinations by extending the network with connections to other
pathways that are not associated with the gene products or proteins
that are the identified targets. This type of expansion, however, is
likely to be much too far removed from the biological explanation us-
ing the mathematical model. This did turn up a far greater number of
predictions at 7545 synergistic predictions, with 2223 edges and 315
nodes. This means that the network becomes more and more con-
nected the further the network is expanded. If extended too far, then
the entire WikiPathways graph will connect all pathways and nodes to
each other and almost every combination of drug targets is possible.
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6.4 Discussion and Conclusion

This manuscript proposes a method to create combinations of drugs
that could potentially be synergistic in nature by looking at process
and connectivity information for their targets in order to screen com-
binations of drugs that are acting upon a common mechanism within
a biological system. The specific challenge identified by the coordina-
tors that was undertaken was to not use training data to try and make
predictions for drug combinations that are synergistic. This was done
using an existing mathematical model, but trying to give the model
parameters outside its normal range. The approaches that were used
were done in order to use existing biological knowledge about how
potential drug targets are connected and use this connectivity informa-
tion with the assumption that the combinations are working on similar
biological processes. Retrieving specific interaction about target con-
nectivity information acquired from WikiPathways allowed us to se-
lect combinations for predictions based upon publicly known pathway
data about connectivity of gene products that share the same biologi-
cal course. It is this connectivity that allows this approach to be rooted
in accepted biological principles. The project was successful in propos-
ing drug combinations based only on biologically relevant connections
from pathway data, and the application of the Loewe mathematical
model to conditions outside the model’s normal parameters, unique
combinations can be identified that are overlooked by the standard
Loewe model.

What we saw as the networks grew was that as the networks grew
bigger, it allowed for more permutations of drug combinations. If the
drug targets were too distant from each other, then almost all permu-
tations of the two drug combinations were possible. One way to help
combat this is to use directional information about the connectivity be-
tween the two targets to keep combinations in the same branch with
the assumption that regulation of one of the targets has a downstream
effect upon the other target and targeting the processes at different
points has the potential to have a greater than standard effect at the
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drug dosage. The distance between elements cannot grow too large as
the possibilities of alternative paths of expression becomes greater.

While the approach described in this paper was successful in using
connectivity information to link the drugs to the processes that they
are targeting and finding combinations that affect similar processes
we see the limit of the standard Loewe mathematical model becomes
a concern when we start to work outside the original specifications of
the model when trying to predict drug synergy. That is when we start
applying the model to conditions different from two drugs sharing the
same target. The Loewe model makes the assumption that two drugs
are both acting upon a common target. A more appropriate approach
would be to use a Generalized Concentration Addition (GCA) model
that handles common processes better than a standard CA approach
like the Loewe-Additivity Model. In order to further develop and re-
fine this method of combination prediction for drug synergy, it would
be interesting to look at a mathematical model more suited for our
combinations. One technique that would be possible would be to use
the GCA model since it improves upon the more basic CA model (20,
29). In follow up experiments, we would prefer to use find transcrip-
tomics data to see if the pathways which contain the targets are also
affected by the drugs of interest. Labib et al. (29) performed an inter-
esting study to predict hazards associated with complex mixtures of
polycyclic aromatic hydrocarbons. They did this by using the GCA
model in combination with a pathway benchmark done. They first se-
lected pathways relevant for cancer formation and then calculated the
dose-response for each individual compound and pathways using CA,
IA, and GCA models and compared their predictions to observations.
A similar approach could be used as a followup for our combination
predictions and would require transcriptomics data for the drugs at
various concentrations.

The implication of the identified combinations is that the predictions
are potentially synergistic combinations. Real world effectiveness of
the drug combination predictions has yet to be determined, but present
combinations of drugs that target proteins that are biologically con-
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nected to each other through pathways and identify different protein
targets at multiple points in pathways. If the team were to repeat this
experiment again, we would use a mathematical model, such asa GCA
model, that follows the parameters for our specific data and approach.
The biological information and how genes are connected does impact
synergy. This is shown in the application of methods that share a com-
mon route through the pathway and the predicted combinations list is
generated.
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Discussion

This thesis explores to what extent it is possible to use connectivity and
directional information of a resource such as WikiPathways (1) to in-
crease understanding in biology. A biological organism is a system of
things working together, and the elements of a system rarely act out-
side the system as the system cooperation is necessary for a healthy
organism. This means that changes to individual parts of the system
have effects on other parts of the system. These make it advantageous
to look at not only individual parts of a system, the genes, proteins, or
metabolites, but also studying the entire system for changes (2). Study-
ing changes at a system or organism level allows for studying effects
and conditions that are more complicated than a single element or re-
lationship such as diseases (3), changes caused by drugs in pharmacol-
ogy (4), or holistic network approaches in cancer (5). The higher level
view of the system demonstrates the importance of this work to make
pathway data and connectivity data available to the scientific commu-
nity and shows applications about how it can be used.

How the parts of a system are connected to one another in systems bi-
ology is an important aspect of understanding how an organism works

141



Chapter 7. Discussion

together to succeed in life. The directional nature of the edges con-
necting pathway elements reflect the biological influence of one part
on the other, whether that is inhibiting another part or if it is stimu-
lating it. This thesis has shown that not only knowing the direction
but also understanding the type of influence can also be useful to un-
derstanding. Whether it is inhibition, stimulation, conversion, cataly-
sis, transcription-translation, or more general directional arrow types
of interactions which are supported by resources like WikiPathways,
they also give additional information to aid in the understanding of
how all the system’s parts work together. Knowing if, for example,
that an entity inhibits the expression of another gene or protein or if it
stimulates its production (6), is important contextual information that
further explains an organism or a specific biological function. It is this
understanding of these parts of a biological system such as the direc-
tion of an interaction or the type of an interaction that is a consistent
theme of this thesis. These biological parts make pathway diagrams
more useful via machine-readable format and computational queries,
it shows how this furthers the study and understanding of the system
as a whole.

7.1 Semantic Pathway Representation

In order to represent pathway diagrams, which are graphical repre-
sentations of a biological process, we converted the graphical format
used for pathways to a semantic representation. For WikiPathways
this involved turning the GPML, which is an XML-based format and
the output file for pathway diagram saved in PathVisio (7) and turn-
ing these GPML pathway files into RDF. An RDF representation al-
lows for query languages like SPARQL to query the data using an ap-
propriate SPARQL endpoint. Although GPML is a semantic format
as well it is not a widely used standard that allows for the query of
multiple sources with one standard used across many biological data-
bases as RDF does. An endpoint was established for the WikiPathways
data that is publically available. An advantage of having an endpoint
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for the WikiPathways RDF is that it is able to be queried using feder-
ated and non federated queries. These federated queries allow for the
querying of data from WikiPathways and other resources simultane-
ously. This means that one query is able to access both WikiPathways
and another data source at once, for example, a single query can be
made to query WikiPathways and Ensembl (8) together. Allowing for
the easy integration of data from both sources, which may be miss-
ing information. Allowing WikiPathways to provide some information
about how things are connected and Ensembl to provide information
about specific gene entities. This is the ability to represent pathway
diagrams as semantic data that can be queried and retrieved later.

The WikiPathways vocabulary is also defined and focuses on biolog-
ical meaning as demonstrated in Chapter 2. The RDF uses this vo-
cabulary to provide appropriate predicates for the RDF triples. These
vocabularies were necessary to describe diagrams drawn in WikiPath-
ways. Other ontologies are also found in pathways, such as dcterms
from the Dublin Core. For WikiPathways, identifiers.org is used to
provide resolvable Uniform Resource Identifiers (URIs) (9). The se-
mantics of WikiPathways along with federated queries allows for Wi-
kiPathways data to be queried via various analysis platforms, like for
example, in the Open PHACTS discovery platform. In order for the
WikiPathways RDF to be more usable, to a wider audience, we still
need to describe how elements are connected to one another within
the RDF.

7.2 Pathway Interactions

Understanding the semantics of the pathway is the first need to un-
derstand how to use pathway connectivity in the WikiPathways RDF
to be able to answer questions in biology. Pathway connectivity is an
essential dynamic for studying other conditions. Chapter 3 studied
how the semantically harmonized pathways can be used to study the
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interations. It shows that it is possible to use semantic data from Wi-
kiPathways to answer questions related to how pathway elements are
connected with each other and what the biological meaning is. This
was demonstrated with two use cases: e.g. 1. sphingolipid metabolism
and 2. connectivity of MECP2. Sphingolipids are important biological
structural molecules that need to be managed by organisms and cells
and are used in regulation (10). Understanding how metabolites are
converted from one form to another by an enzyme catalyzing their re-
action is important to understanding the regulatory nature of sphin-
golipids. We found that such enzymatic reactions can be readily rec-
ognized with a query.

The other pathway element studied was the protein encoded by MECP2.
MECP2 is a gene that is responsible for suppressing expression of other
genes found in nerve cells. When the protein is not functioning prop-
erly it can cause problems in the development of mammalian organ-
isms (11, 12). MECP2 is linked to rare developmental diseases such
as Rett Syndrome (13). Understanding how MECP2 influences and is
influenced by other elements can give an idea of how the changes in
MECP2 can directly influence other parts of the organism’s normal bi-
ological system. Here, I showed that it is possible to easily retrieve el-
ements upstream and downstream of MECP?2 to clearly illustrate how
MECP2 influences or is influenced by other elements in the system,
but more than one interaction away. This demonstrates how many ele-
ments are upstream of MECP2 and how many are downstream of it. A
user would want to use this because they can apply this method to any
gene or protein of interest and find influences without manually count-
ing individual interactions emanating from or converging on said gene
or protein. This captures the semantics of the biological meaning for
the pathway.

This chapter also studied how Shape Expressions (ShEx) (14) can be
used for biological interactions in WikiPathways. We applied shape
expressions to the harmonized interaction types and inform the users
and curators what to expect as the shape of the interaction. Along with
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continuous curation of WikiPathways, we can improve the pathway
drawings and their conversion on a regular basis.

The two examples show how the basic interaction information can be
used, when semantically represented. This chapter also shows how in-
teractions can be harmonized, but it cannot harmonize things that are
not drawn consistently. This brings the discussion to harmonization of
the interaction types. In this harmonizing step the interaction types,
regardless of the drawing schema used to create the interaction, are
given a common type. The examples used show how it is possible to
use the modeled interactions from WikiPathways in order to answer
different questions where connections between elements of a pathway
are important. In specific instances we see the importance of directions
of the interactions involved. This shows causality and is an important
concept in understanding of normal bodily functions and also disease
progression. The idea that changes in one portion can disrupt an or-
ganism system is an important concept in network biology and this is
why it is necessary to model the interactions for a pathway resource.

7.3 WikiPathways in the Open PHACTS Discovery
Platform

With the notion that we can represent biological pathways in semantic
web formats, that we can harmonize the meaning of interactions, and
that this can be used to study biological questions, the next question is
if this can be used in drug discovery. Therefore, the WikiPathways RDF
and the connectivity data was incorporated into the Open PHACTS
Discovery Platform (OPDP) (15). Chapter 4 described the application
of Chapters 2 and 3 in drug discovery. The OPDP already had infor-
mation about small molecules and other drugs via ChEMBL (16), as
well as information about their intended targets as well as disease in-
formation via UniProt (17). The addition of WikiPathways data added
pathway and connectivity information for these targets. Because the
OPDP does not provide direct access to the SPARQL endpoint, but via
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a REST-like Application Programming Interface(API), new API calls
had to be developed and incorporated into the platform to query the
pathway interaction data to return information about how targets are
connected with one another.

This allowed Open PHACTS to become a uniform platform with infor-
mation about drugs and targets and now the associated connections
between targets allows more understanding of biology. Knowing how
drug targets are connected with one another as well as information
about their influence adds versatility to the platform. This endeavor
saw the successful integration of WikiPathways semantic data into the
Open PHACTS platform and creation of queries to navigate pathway
diagrams. The adding of the queries associated with connectivity and
directional influence was a powerful addition to the project and al-
lowed for researchers to leverage this information in their own work
in the realm of pharmacology and drug research. This additional in-
formation and being able to query it via the Open PHACTS API was
an addition to the project with applications in drug repurposing and
repositioning (18).

The API calls that were added to the Open PHACTS Discovery Plat-
form may be straightforward, but using workflow tools, these tools
can be used in more complicated workflows to leverage data from Wi-
kiPathways as well as from compound and gene information found in
the rest of the platform. Tools like KNIME and Pipeline Pilot are ex-
amples of such workflow tools that work with the Open PHACTS Plat-
form to create these new flows (19-21). There are also client libraries
for JavaScript, R, and Neo4j that can access the OPDP. For example,
a directional call can be made to find an alternative target and then a
call to the OPDP for chemistry information about this new target for
alternate active compounds. These workflows can make it possible to
understand more context for pharmacology information.

It is important to remember that this is proof of concept that the addi-
tion of interaction queries to the Open PHACTS Drug Discovery Plat-
form enriches the platform to make the platform able to answer more
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biology in one place. One does not have to go to many different re-
sources to do research and data can be accessed from a single API. The
APl is focused on pharmacology but it also contains pathway, metabo-
lite, drug data, gene, and gene disease associations which allows other
areas of biology to be studied too. In this paper we proposed to an-
swer pre-defined questions about biology using the Open PHACTS
Discovery Platform (15). A platform that links drug information to
gene information, pathways, and gene/protein connectivity informa-
tion allows the user to identify alternative drug targets that are useful
in drug repurposing and drug repositioning, as discussed elsewhere
in the thesis. The continued update of platform data along with the
platforms continued availability is required to keep the platform up to
date and thus identifies a limitation of the platform along with most
data backed platforms. The calls added to the platform allowed us to
perform these alternative targets.

7.4 Subnetwork Analysis

With a large network of biological interactions now readily available,
it is important to explore how these large network can be used effi-
ciently. A large network describing everything about the biology of an
organism is too complex to grasp. Therefore, we had to explore how
subnetworks can be discovered from the large network. The active
subnetworks chapter explores how to identify networks from a larger
network in order to identify elements and connections in a rare disease
and specifically Rett Syndrome. These subnetworks allow us to iden-
tify smaller active networks from datasets that are available and relate
them to the condition being observed. Although Rett Syndrome was
used for the study the same approach and principles can be applied
to other diseases or any process that is less studied. In areas that are
less studied with regards to the connections between elements, this ap-
proach proposes a network of elements and connections that are pre-
dicted to be active. This is done by constructing a larger network that
represents the larger human network by combining common elements

147



Chapter 7. Discussion

of pathways to link pathway diagrams together in order to create a
large human network. New connections being added reflects our in-
creasing understanding of how the system works together.

There are two important elements in order to make this work, a larger
network that is reflective of the system that one is trying to observe and
an appropriate dataset the defines what aspects of the larger network
are worth zooming in on. We constructed our network for human
pathways from WikiPathways. We then identified a suitable transcrip-
tomics dataset specific for Rett Syndrome that was publically available
on GEO (22). The dataset specifies which genes in the large network
should be part of the subnetwork to be created. That is, it is possi-
ble to use the information from the dataset to identify the portions of
the network that have changes in their expression and construct a net-
work from this. Pathway analysis was also performed and it can be
seen that from the dataset, the elements were distributed across multi-
ple pathways. In the case of the active subnetworks, we have a single
network that represents the expression data from our dataset, instead
of the biology captured in individual drawings.

These approaches take advantage of all the interactions in the network,
giving context to just a list of differentially expressed genes. This can
be especially useful in the case of rare diseases where we have tran-
scription data but not much information about how the transcript ele-
ments work together to have an influence on the system. In the case of
rare diseases, they are often less well studied so this approach can be
a boon to increase their understanding of how elements are connected
when less is known about connectivity. This is a quick way to propose
a disease-relevant network when research resources are limited.

This was the first time that the entire WikiPathways knowledge was
used to construct a complete human network based upon the human
pathway diagram found in WikiPathways. The construction of this
human network enables more coverage than individual pathways can
convey. This means that any dataset can be used against the network
to identify new subnetworks that help describe the disease or process
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being studied. The complete network from WikiPathways is too large
to usefully visualize in Cytoscape but the subnetworks that are more
specific to the process being studied are more manageable (23). These
subnetworks have the advantage of not being bound by artificial hu-
man boundaries of a pathway drawing that need to be drawn smaller
for humans to more easily understand. Overlap between pathways
helps us construct this larger human network. The subnetworks allow
us to study processes and diseases that are oftentimes not specifically
drawn in pathway diagrams. This has advantages of being able to per-
form analysis of more poorly understood diseases or processes. We
can apply the knowledge of the larger human network to identify ac-
tive subnetworks of more poorly described processes to pinpoint the
relevant components and interactions in these processes. This has big
implications in the area of rare diseases where less knowledge is often
known. A researcher can apply this approach by using connectivity
data described in Chapters 2 and 3 to other datasets on GEO to learn
more about human biology and further their own research.

The subnetwork approach presented in Chapter 4, however, has one
important limitation: the new network was constructed with regard to
only how the elements of the network are connected with one another
and it does not take into account the directions of the interactions con-
necting the elements of the network. Without directions as a part of
the network, it is not possible to imply causality within the network,
but adding directions allows the examination of which elements are
responsible for elements downstream of it. Adding directions to the
network is the next step needed to complete these networks. This also
furthers the research to add more understanding of how the elements
of these networks influence each other.

7.5 Drug Synergy

Finally, we wanted to know if an interaction network can be used for
drug synergy predictions. The idea was to take pairs of cancer drug
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combinations and predict which drug pairs would be predicted to be
synergistic without the aid of training data (24). We wanted to be able
to use biological information that we know about pathways in order
to predict the effect of drug combinations. This involves using both
the connectivity information and directional information about inter-
actions between drug targets to identify suitable drugs that target these
genetic elements. Finding combinations that were connected via com-
mon paths through the pathway was the objective and then determine
the synergy of the combination.

In order to tackle this problem, we used a previously known mathe-
matical model, the Loewe Additivity Model (25), for predicting whether
two drugs would be synergistic, but applied it using different param-
eters in order to predict which combinations are synergistic to one an-
other. The different parameters used were expanding using two drug
targets sharing a common pathway, connections across pathways, and
the two targets sharing a common path of interactions with each other.
The major assumption for the Loewe Additivity Model is that in order
to predict if two drugs in combination are synergistic, the two drugs
must share the same target. We expanded this model in several differ-
ent scenarios in order to use the model when two drugs are not sharing
the same target. The first scenario being that since a pathway diagram
typically describes a biological function of an organism, then two po-
tential targets of the drugs should be involved in similar functions, so
in this scenario, drug combinations were created for the case that two
targets share the same pathway. This includes neither connectivity nor
directionality. The next scenario was to assume if two drug targets
were found in different pathways but connected via a common inter-
action between them, then they are adjacent to each other and these
combinations of drugs were calculated if they were synergistic or not.
The final scenario using connections between targets that they have in
common. If target A is connected to protein B and B is connected to
target C, then we propose that combination targets A and C might be
closely enough related in process to each other to apply the Loewe Ad-
ditivity Model to predict whether the combinations are synergistic.
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The objective being that if we can take things we do know about syn-
ergy and pathway connections, can we predict synergy without the aid
of a training dataset. Since we have no background data about which
combinations were synergistic or not to train a model we had to use
prior knowledge to propose a method that could still predict a com-
bination’s synergy. We were then able to use knowledge of biological
connectivity to propose predicted synergistic drug combinations to be
scored by the organizers for their accuracy. This leveraging of data
from sources outside the challenge data that we already have allows
us to make predictions on synergy even if we would normally require
more data to try and make these predictions about drug synergy of
individual drug combinations.

7.6 Discussion

The common theme across all the papers is how information about
how biological entities in a pathway are connected to one another help
computational models gain more understanding of biology. Partic-
ularly, this thesis studies how connectivity and directional informa-
tion of pathway elements support gaining insights to answer biologi-
cal questions and expand our understanding of biology. This connec-
tivity information has applications to better understanding of various
topics in biology like identifying disease networks within a larger net-
work. This connectivity information can be useful in the area of phar-
macology when looking for alternative targets for either repositioning
or repurposing of current drugs. Finally, in the case of predicting drug
synergy for combinations of drugs, the connection and directional in-
formation about how two targets are connected is useful when we lack
adequate outcome data to predict a combination’s synergistic nature or
not. The common thread across all outcomes being that in biology we
have a system of elements that work together in order for an organism
to function normally. If we see disruptions in elements of the system,
we can cause changes to happen elsewhere in the system. In the case
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of disease, a process is not acting normally and causes changes else-
where. For pharmacology, we use small molecules in order to bring
these functions back to normal states that we can use to treat patients
with abnormal functions. This thesis has shown how the system ele-
ments work together in Chapters 2 and 3, in Chapters 4 and 6 we see
the applications for pharmacology, and Chapter 5 we have seen the
application of the interactions in rare disease networks.

Being able to analyze an entire biological process has the advantage
of being able to observe effects outside of the immediate pathway ele-
ment or relationship that we normally study. Connectivity helps with
the understanding of detailed biology, often including cellular and tis-
sue location, causality, activation, and more. Also having informa-
tion of directional influences enriches this understanding even further.
Being able to understand the fundamental causality of influence is a
powerful tool in biological research. It has implications in the under-
standing and progression of disease as well as with the treatment pro-
cesses in pharmacology. It also can be applied in areas like toxicology
to study how chemicals outside the system might alter the expression
of the organism and the cascade of effects that can be observed through
that process. The papers described in the previous chapters are appli-
cations of how this research can be used in order to advance our very
understanding of biology itself. This was shown in multiple research
lines and puts on full display the power of this systematic approach to
understanding biology. This is not the limits of the research that can
be applied using these approaches, making it potentially even more
powerful for understanding other areas of biology.

Connectivity and directional information giving a more specific un-
derstanding of how the system works together by making pathway
information readily available and queryable to the scientific commu-
nity is an essential concept in biology and why this research is worth
pursuing. This thesis demonstrates how to use this connectivity in-
formation in several fields of biology. This work was done in order
to advance our understanding of how biological processes work and
work together to help an organism survive. The thesis advanced the
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field by making connectivity and directional interactions available to
the community for pathway networks and showing how they can be
used in the areas of pharmacology, rare diseases, and systems biology.
In itself this is not new: approaches like the SBML do this too (26).
WikiPathways is also flexible in its drawing and pathway drawing do
not always have the necessary components to make a formal SBML
drawing possible. This work shows, however, that with semantic web
approaches we can harmonize interaction knowledge in biological di-
agrams in different formats, including MIM and SBGN (see Chapter
3). Connection and directional information is a fundamental concept
in biology and understanding how they work together has applica-
tions in several fields of living organisms. The thesis work has wide
ranging implications in biological research. The work makes it possi-
ble to use connectivity data to repurpose drugs through platforms like
Open PHACTS, to propose drug combinations that have the potential
to be synergistic, and propose subnetworks of the larger human net-
work to suggest active subnetworks in rare diseases. The thesis work
from the thesis chapters presented show just how useful this work can
be in advancing scientific study in biology.

While the thesis was able to show how and why this work is important,
there still remain some areas for development and some limitations.
While the connectivity and directional information is useful in its cur-
rent form, it does depend on continual development and curation of
pathway sources. This was demonstrated in Chapter 3 where we show
that interaction data in WikiPathways is incomplete. A platform like
Open PHACTS is helpful but it requires continual updates to maintain
current and up to date connections that reflect our latest understand-
ing of biology. This is painfully clear when you realize that the original
ODPD has been offline for some time now. Predicting drug synergies
using directional information could be improved with a more robust
mathematical model to calculate the synergies of the combinations.
The inclusion of directional information to the active subnetwork con-
nections would give a more accurate representation of the model that
we are trying to recreate. One can image how federated approaches
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can extend the semantic pathway knowledge with detailed informa-
tion about enzymatic reactions, ligand-protein binding, and protein-
protein interactions. These outweigh the limitations involved with the
work presented here, and makes for interesting future development to
enhance our understanding of these biological networks further.
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Summary

The conclusion of this thesis is that we model and describe the biolog-
ical interactions of a resource such as WikiPathways as needed. The
implications are that we can further our understanding of biology by
tuning the amount of detail we need. This is accomplished by knowing
how the portions of a pathway diagram interact with each other and
what sort of influence can be observed. Understanding not just that
they interact with each other but how they interact with each other is a
significant development to the platform. The first two chapters of this
thesis describe how the WikiPathways knowledgebase is modelled for
both data nodes and edges. This addition enriches WikiPathways as
a platform for studying system effects of changes in gene product ex-
pression.

This had influences outside of the platform. Even though WikiPath-
ways is primarily used for pathway analysis of changes in gene ex-
pression or in metabolomics studies, WikiPathways can also be used
for whole network analysis of an organism such as Homo sapiens as
seen in the chapter dealing with identifying active subnetworks in Rett
Syndrome. This demonstrates how WikiPathways data can be used to
identify proposed subnetworks using an appropriate dataset. This can
be used to study disease subnetworks and is particularly practical in
the case of rare diseases where less is known about the underlying
mechanisms of connectivity to each other.

The chapter relating to cancer biology and the Open PHACTS Discov-
ery Platform are clear indications of how WikiPathways can be used in
the realms of pharmacology as well as general toxicity. Open PHACTS
is a platform designed with pharmacology in mind and as such has an
interest in compound interactions. The inclusion of the WikiPathways
knowledgebase with appropriate queries to the Open PHACTS appli-
cation programming interface (API) meant that a new class of research
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questions were able to be answered with the connection information
for potential targets. Research questions relating to drug repurposing
by finding alternate targets are now possible.

In the case of cancer biology, we were tasked with identifying poten-
tial drug combinations that we would predict to be synergistic. Using
information provided by the DREAM challenge coordinators relating
to drug dosage concentrations to achieve cell death for cancerous cells
and the interaction information from WikiPathways we were able to
propose several lists of drug pairs that could be potentially synergis-
tic. These lists were dependent upon our understanding of how drug
targets are connected with each other and how they affect similar pro-
cesses. Constructing pairs of drugs that affect similar processes in this
way takes advantage of our collective previous knowledge in a new
way to generate lists of potentially synergistic drug combinations.

The thesis and its papers have demonstrated how valuable connec-
tivity information can be to further biological understanding of how
systems work together. The information itself is a valuable commod-
ity to be used in scientific analysis. The description of how inter-
actions are modeled within the WikiPathways ecosystem makes the
platform available for more users to understand and deploy in their
own solutions. Several examples of how this information can be lever-
aged to answer scientific questions have been explored in areas such
as pharmacology, rare diseases, and cancer biology have been explored
throughout this thesis and provide a solid foundation for further work
to be done in these areas or in system biology studies in general.

The inclusion of the work done and its advanced understanding allows
the answering of more questions related to biological processes and is
an advancement of studies in biology. Using the techniques and work
done for this thesis, it is possible to study biology from the perspective
of how biological systems work together or from the perspective of
pharmacology, toxicity and systems biology in general.
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Impact

The work described in this thesis regarding how interactions within
pathways define biological processes and the larger biological system
as a whole has impacts that can be seen in other areas outside systems
biology. This can be seen in areas such as pharmacology. Published
papers pertaining to WikiPathways have many citations with many
discussing their desire to integrate WikiPathways data and network in-
formation into other platforms. The paper pertaining to WikiPathways
connections practical effects can be seen in areas like drug synergy
where connectivity of targets is important. The work done with inter-
actions and WikiPathways was incorporated into a larger IMI project
called the Open PHACTS Discovery Platform and linked WikiPath-
ways connectivity information with drug chemistry and gene product
data. The platform made the data available via a publically available
API that researchers could use in drug discovery and general pharma-
cological research. These large European IMI projects also affect future
work in areas like medicine as a whole. Thus the work is anticipated
to reach a wide audience outside of systems biology.

The work was also put to use in one of the DREAM challenges, which
proposes to use community expertise and competition to further un-
derstanding in a particular area. In this case the work was used to
address the area of drug synergy in cancer research. This work has an
impact in medicine, pharmacology, cancer research, and toxicology. It
has a very wide audience that can use my work to advance their un-
derstanding of these topics.

The wider implication of this work means that the description of inter-
actions from WikiPathways can assist biologists in their understand-
ing of how their genes and their proteins influence or be influenced by
other elements in the system. This goes to the idea of causality and
how changes in one portion of the system have effects that can be ob-
served in other portions of the pathway. Processes being described
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need not only the DataNode elements also require descriptions of the
edges that connect the nodes. These edges can be directed or undi-
rected as well as have information about the type of interaction that
it is. Explicit semantics that are formalized and contain links to the
meaning in the pathway is currently being used by the WikiPathways
project to automatically find inconsistencies and pathways that have
potential need of biological curation.

This greater understanding of how pathway portions are connected
with each other has consequences beyond studies in systems biology.
It has wider applications for the field of biology as a whole and allows
biologists to know how their own genes and proteins that they study fit
into a biological system. Understanding how their proteins influence
or are influenced by other portions of the pathway gives Biologists im-
portant context for how their proteins affect biological processes.

The work advances our understanding of science in a more general
sense. Principles from systems biology can be used in any network.
Networks are becoming more important in science and technology.
The principles of which are similar in both the case of biology and
other types of networks. Network analysis approaches are the same
regardless of the application. Data nodes connected by edges are how
we analyze biological networks but this modelling and description is
used throughout science and technology.

This type of work and thinking can be seen mirrored in many areas
in our lives. Systems build upon each other to build up complexity.
First we have individual atoms and molecules of elements that work
together to form an organism. Then we have organisms that work to-
gether and we can see reflected in nature. This build up of complexity
of systems forms the world that we know. Our world itself is part of an
even larger system that forms solar systems and galaxies and beyond.
We can even see networks that form between people that forms our
social structures. This shows the pervasiveness of systems of things
working together toward a larger end.
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