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A B S T R A C T   

Flood prediction in ungauged catchments is usually conducted by hydrological models that are parameterized 
based on nearby and similar gauged catchments. As an alternative to this process-based modelling, deep learning 
(DL) models have demonstrated their ability for prediction in ungauged catchments (PUB) with high efficiency. 
Catchment characteristics, the number of gauged catchments, and their level of hydroclimatic heterogeneity in 
the training dataset used for model regionalization can directly affect the model’s performance. Here, we study 
the generalization ability of a DL model to these factors by applying an Encoder-Decoder Long Short-Term 
Memory neural network for a 6-hour lead-time runoff prediction in 35 mountainous catchments in China. By 
varying the available number of catchments and model settings with different training datasets, namely local, 
regional, and PUB models, we evaluated the generalization ability of our model. We found that both quantity (i.e. 
number of gauged catchments available) and heterogeneity of the training dataset used for the DL model are 
important for improving model performance in the PUB context, due to a data synergy effect. The assessment of 
the sensitivity to catchment characteristics showed that the model performance is mainly correlated to the local 
hydro-climatic conditions; the more arid the region, the more likely it is to have a poor model performance for 
prediction in ungauged catchments. The results suggest that the regional ED-LSTM model is a promising method 
to predict streamflow from rainfall inputs in PUB, and outline the need for preparing a representative training 
dataset.   

1. Introduction 

Accurate and computationally efficient hydrological models are 
necessary for streamflow prediction to issue timely warnings for flash 
floods (Moore et al., 2005). Physics-based hydrological models are the 
most robust models that can be used for this purpose. They simulate 
physical processes in the rainfall-runoff transformation with parameters 
that represent soil, land surface, and climate properties, that need to be 
optimized for each geographic location with observations. But most 
catchments worldwide lack hydrological monitoring data and are 
considered “ungauged” (Guo et al., 2021), meaning that direct calibra-
tion of catchment parameters in these catchments is not possible. For 
this reason, the problem of prediction in ungauged basins (PUB) has 
received considerable attention in the hydrological community 

(Sivapalan et al., 2003). 
One solution to the calibration of hydrological models for catch-

ments without available data utilizes the concept of parameter region-
alization. The idea is to use parameters calibrated in gauged catchments 
to predict the model parameters in a target ungauged catchment 
(Blöschl and Sivapalan 1995). Similarity-based and regression-based 
methods are widely used for model regionalization (Oudin et al., 
2008). For example, Beck et al. (2016) proposed a scheme for the 
regionalization of model parameters at the global scale based on a 
similarity approach by selecting 10 gauged catchments with the most 
similar characteristics as donors for parameter transfer. However, the 
question of how to identify the selection criteria for choosing the 
optimal donor catchments remains a challenge that restricts the wide 
application of this method. Ragettli et al. (2017) applied the 
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classification and regression tree (CART) method to explore parameter 
transferability in the full space of catchment descriptors for the hydro-
logical model and showed that this method can be an effective tool for 
identifying similarity among catchments. However, it is model depen-
dent and relies on manually identifying the similarity and then trans-
ferring the parameter set from a series of pre-defined hydrological 
models. 

An alternative solution to parameterized hydrological models for 
streamflow simulation in ungauged catchments is the use of data-driven 
deep learning (DL) models. These models can be directly trained with 
inputs from meteorological and catchment characteristic data to simu-
late streamflow without using a physical hydrological model to pre- 
define their similarity. For example, Kratzert et al. (2019) evaluated 
the ability of a Long Short-Term Memory (LSTM) model for the 
regionalization of over 500 catchments in the USA. They concluded that 
data-driven models had a strong capacity to learn non-linear climate- 
runoff relationships and to achieve model regionalization without 
identifying pre-defined criteria for similar donor catchments. 

The catchment characteristics (e.g. topography, land use) and the 
climatic training dataset are the two most important factors that affect 
the model regionalization and the setup of a physical hydrological 
model in ungauged catchments (Teutschbein et al., 2018; Gong et al., 
2021). While the performance of hydrological models in ungauged 
catchments is sensitive to these two factors, there are only a few studies 
that evaluated the generalization ability of data-driven DL models. For 
example, Potdar et al. (2021) predicted flood peak discharge in unga-
uged catchments based on the gradient boosted trees model (XGBoost) 
and found that catchment geomorphologic attributes have a higher 
impact on the prediction skill than climatologic attributes. Gauch et al. 
(2021) studied the sensitivity of the prediction skill of the LSTM model 
for daily streamflow in the USA to additional training samples and 
showed that it is not enough to train data-driven models on a few gauged 
catchments, but one should strive to use as many catchments as possible. 
Fang et al. (2022) proposed a concept of ‘data synergy’, pointing out that 
to achieve higher predictive performance, a representative dataset with 

large but heterogeneous training samples (i.e. different characteristics of 
catchments) is needed. However, the generalization of DL models to the 
PUB problem with respect to the representativeness of the training 
dataset and catchment characteristics has not been studied thoroughly 
yet. 

This study aims to evaluate the generalization ability of a DL model 
to predict floods in ungauged catchments considering the above factors. 
For this purpose, an Encoder-Decoder LSTM (ED-LSTM) neural network 
was applied to set up a forecast model for a 6-hour lead-time streamflow 
prediction in 35 mountain catchments in China. Three model setups: (i) 
a local model for each catchment; (ii) a regional model; and (iii) regional 
PUB models which differ in the choice of training and testing catch-
ments, were applied. Their performances were compared to the CART 
regionalization method to evaluate the ability of the DL model to predict 
streamflow in the ungauged catchments (Ragettli et al., 2017). The 
analysis of the generalization ability of the PUB models concerning the 
training dataset and catchment characteristics was conducted by 
comparing the three model setups. The main purpose is to provide 
recommendations on the importance of preparing representative 
training datasets in the context of PUB with DL methods. We aim to 
answer the question of how ED-LSTM models (and other rainfall-runoff 
DL-based models) may be used for event-based flood forecasting, and 
which data requirements have to be present to provide reasonably ac-
curate predictions in ungauged basins. 

2. Data and models 

2.1. Study area 

The study focuses on 35 mountainous catchments (Table S1) located 
in ten Chinese provinces (Fig. 1). The catchments were classified as 
northern catchments (17) and southern catchments (18) based on the 
traditional geographical south-north division of China, which is called 
the Huai river-Qin mountain line. This line approximates the 0 ◦C 
January isotherm and the 800-mm isohyet (Zhao et al., 2015). Mean 

Fig. 1. Locations of the 35 studied catchments are divided into northern (17, orange cross) and southern (18, blue cross) regions, which are corresponding to the 
location of local hydrological stations. The black solid line represents the south (S) – north (N) division of catchments along the Huai river-Qin mountain line 
(Ragettli et al., 2017). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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annual precipitation in the north is on average 57 % lower than in the 
south and mean annual air temperatures are on average 6 ◦C lower. 

The catchment areas range from 14 to 1693 km2, whereas the mean 
catchment size is 278 km2. Hourly hydrological and meteorological data 
are available from stream and rain gauges located within or in close 
vicinity to the catchments (Fig. 1). In addition, the county weather 
stations record daily maximum and minimum 2-meter air temperature. 
On average, 11 years of data are available per catchment, with 1 to 7 
storm events occurring per year between April and October. We consider 
storm events as days with total precipitation greater than 5 mm d− 1, 
following the definition by Ragettli et al. (2017). Each of the catchments 
is characterized by several static variables (Kratzert et al., 2019) 
describing their climatic, vegetation, soil, and topographical properties 
(Table S3). 

2.2. Long Short-Term memory (LSTM) network 

LSTM networks are a type of recurrent neural network that can learn 
time dependencies in time series data (Hochreiter and Schmidhuber 
1997). It has cell and hidden states which can account for the long-short 
term memory effects. Therefore, it is a good choice for modeling time 
series of runoff as it can account for a range of time-dependent delays, 
like seasonality and natural annual variability cycles (long-term, months 
to years), and the immediate rainfall-runoff response (short-term, mi-
nutes to hours). 

Equations 1 to 6 provide the mathematical formulation of the LSTM 
at each time step: 

f [t] = σ[Wf•x[t] + Uf•h[t − 1] + bf ] (1). 
i[t] = σ[Wi•x[t] + Ui•h[t − 1] + bi] (2). 
c[t] = tanh[Wg•x[t] + Ug•h[t − 1] + bg] (3). 
o[t] = σ[Wo•x[t] + Uo•h[t − 1] + bo] (4). 

c[t] = f [t] × c[t − 1] + i[t] × c[t] (5). 
h[t] = o[t] × tanh(c[t]) (6). 
where f[t], i[t], c[t], o[t], and h[t] represent the forget gate, input 

gate, cell state, output gate, and hidden state at each time step respec-
tively; W, U, and b are the weights and bias term of the neural network. 
The σ (sigmoid function) and tanh are two activation functions and x[t] 
are the inputs. 

The LSTM cell has three gates maintaining and adjusting its cell state 
and hidden state (Fig. 2), including a forget gate (Eq. 1), an input gate 
(Eq. 2), and an output gate (Eq. 4). Each gate has a sigmoid function that 
adds non-linearity to the linear combination of the input x[t] and hidden 
state from last time step h[t-1]. Eqs. 3 and 5 represent how much input 
and last hidden state is contributed to the cell state c[t]. Finally, the 
output h[t] of the current time step is calculated from the output gate 
and cell state shown in Eq. 6. Cell state and hidden state are then passed 
to the next time step. 

The Encoder-Decoder (ED) (Fig. 2) structure has been used in the 
field of sequence-to-sequence prediction problems, especially for lan-
guage translation (Cho et al., 2014). The encoder and decoder enable the 
model to operate on different input and output time steps. The ED-LSTM 
model consists of two LSTM networks in both the encoder and the 
decoder parts. The application of the ED structure in LSTMs can effi-
ciently improve the performance of ahead-time prediction in the field of 
hydrology since the existence of the encoding and decoding architecture 
can eliminate the restriction on the length of input and output sequences 
(Kao et al., 2020). In this case, the input and output sequences do not 
necessarily have the same time steps. The input and output can be 
flexible to embed different types of input data. For example, catchment 
static variables and rainfall time series can be used as input to the model 
at the same time. 

Unlike the basic LSTM structure, the encoder layer only outputs the 

Fig. 2. Configuration of the LSTM cell: σ and tanh represent sigmoid and tanh activation functions, respectively. X represents the input while C and h are the cell 
state and hidden state at the current time step. 
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hidden state from the last cell. Then, it is copied as input for each LSTM 
cell in the decoder layer. It contains information collected from the input 
sequence at each time step. Thus, it could be effective to use this 
structure to improve long-term dependencies for longer time step pre-
diction than in the regular LSTM. In this study, five additional dense 
layers were set after the LSTM decoder layer for better decoding of the 
sequence output at each time step. 

3. Experiment setup 

3.1. Input data composition 

The ED-LSTM model experiments described in the next section 
require dynamic and static inputs. The dynamic input data includes the 
following climate variables: (i) hourly precipitation; (ii) hourly 
streamflow; and (iii) maximum/minimum 2-m daily air temperature. 
The dynamic inputs were divided into an observation phase and a pre-
diction phase (Fig. 3). The first phase includes 24-hour precipitation, 
temperature, and streamflow data, computed from the hourly observed 
data before the prediction phase. The second phase contains the 6-hour 
precipitation and temperature as driving data for the streamflow fore-
cast. Also, previously observed streamflow was used as the dynamic 
input because it is known to improve forecast (e.g. Song et al., 2020). 
Daily maximum and minimum temperature data are used to better ac-
count for snow-induced streamflow processes (e.g. Xiang et al., 2020). 

We reduced the number of static catchment attributes from a total of 
27 (Table S2) to 14 (Table S3) using a principal component (PC) anal-
ysis, preserving only the uncorrelated attributes that represent best the 
natural clusters in each category of catchment characteristics (Singh 
et al., 2014). The absolute PC scores (Table S4) of each selected attribute 
were taken to represent the uncorrelated patterns rather than the indi-
vidual catchment characteristics (Ragettli et al., 2017). 

3.2. Numerical experiments 

Three different ED-LSTM numerical experiments were set up: (i) 
local models, i.e. a unique ED-LSTM setup for each of the catchments; 
(ii) a regional model simulating all catchments at once; and (iii) regional 
PUB models – models that include both gauged and ungauged catch-
ments in different combinations. 

In the first experiment, ED-LSTM models were trained and tested on 
individual catchments without using data from other catchments. In 
total, 35 local models were set up. Only the dynamic variables were 
applied as input data and no static variables were involved in this setup. 
Preliminary tests were conducted on the catchment with the longest 
training samples to select the optimal ED-LSTM model hyperparameters. 

In the second experiment, we set up a regional model, namely-one 
model for all catchments. This ED-LSTM model was trained and tested 
using an ensemble of events from all catchments together. The regional 
model was applied with both the dynamic and static variables as inputs. 
Kratzert et al. (2018) demonstrated that the LSTM model can perform 
better with a regional model setting than with a setup for individual 
catchments (as in the first experiment) as more data is available for 
model training (i.e. additional rainfall-runoff interactions are available 
for the LSTM to learn from). This experiment aims to find out how much 
can the flood warning prediction ability benefit from a large training 
dataset. 

In the last experiment, the regional ED-LSTM setup was applied for 
prediction in the context of ungauged catchments (PUB models). We 
conducted two tests here, first to explore the ED-LSTM generalization 
ability to the number of gauged catchments used in the training, and 
second to the characteristics of the catchment. To explore the first 
question, we followed a similar setup as for the regional model. How-
ever, we trained the model with fewer catchments using the k-fold 
validation strategy, which enables us to test the model performance on 
unseen catchments in the training process. The k-fold validation is 
commonly used for model parameter selection (e.g. Chang et al., 2015) 

Fig. 3. Input composition and prediction process of the ED-LSTM structure for one event. Two encoder layers incorporated previous 24-hour data in the observation 
phase and 6-hour pseudo forecasting meteorological data as driving forces (all of these data were observations). The decoder layer outputs the predicted 6-hour 
runoff corresponding to a 6-hour driving force in the prediction phase. The dense layer functions as an embedding layer for feeding the catchment static vari-
ables. For one event, the two phases consist of a moving window and each step moves them forward in 6-hour increments. 
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but here we used it as a tool for an ‘out-of-sample prediction’: The 35 
catchments were split randomly into k groups (namely ‘folds’) of 
approximately equal size; catchments from k-1 groups were used to train 
the model, and then the model was tested on the remaining single group 
of catchments as ungauged catchments. This procedure is repeated k 
times so that out-of-sample predictions are made available to all 
catchments (Kratzert et al., 2019). As the catchments are heterogeneous, 
the number of valid training samples varies. At first, 10-fold validation 
was adopted to train 10 models with the same model structure and each 
model was applied for the prediction in three ungauged catchments. 
This means that the training process was repeated 10 times with 
different 32 catchments to cover all catchments (Pub1, Table S4). 

To evaluate the generalization ability of the PUB modeling to the 
catchment characteristics such as climate and topography, k-means 
clustering methods were applied for classifying and grouping the 
catchments based on the 27 catchment static variables listed in Table S2 
including climatic, topographic, vegetation and catchment drainage 
properties. Based on the silhouette scores (Fig. S1), we found that five 
clusters are required to group the catchments by their attributes. We 
averaged the model performance based on each cluster. 

Fang et al. (2022) hypothesized that DL-based models will have a 
better prediction skill in the context of PUB if a regional model is not 
trained on a relatively small and hydrologically homogenous dataset (e. 
g. few catchments but sharing similar hydrological characteristics) but 
rather on a larger and heterogeneous sample (e.g. multiple catchments 
with varying characteristics). To test this effect, additional experiments 
were conducted: the ‘PUB’ model was applied to each of the 5 clusters to 
create a new ‘PUB’ model for the smaller sub-regions represented by the 
clusters. The leave-one-out scheme was used so each sub-regional PUB 
model was trained on N-1 catchments and tested on a specific catch-
ment; the ‘PUB’ model was then applied to either the north (17 catch-
ments in “dry and cold” climate) or the south (18, “wet and warm”) 
catchments. To examine the effects of regionalization performance on 
the sample size (e.g. Gong et al., 2021), the PUB experiment was iterated 
for a different number of catchments in training ranging from 18 to 30 
based on fold numbers from 2 to 10 (Pub2 to Pub6, Table S4). As a 
reference for the quality of the ED-LSTM model predictions in the PUB 
mode, we used simulations for the 35 catchments by the PRMS hydro-
logical model presented in Ragettli et al. (2017). Note that Ragettli et al. 
(2017) used two CART methods to emulate parameter regionalization in 
ungauged catchments. However, we used only the results of their clas-
sification tree as our reference, as the other CART method resulted in a 
very similar model performance. 

The training strategy of the ED-LSTM model was as follows. In the 
first step, we determined the hyperparameters (e.g. learning rate, batch 
size, cell numbers) based on a grid search. The hydrometeorological 
dataset was divided into training, validation, and testing sets (50 %, 25 
%, and 25 %, respectively) using the local model. Afterward, the dataset 
was split into training and testing sets for training the local and regional 
experiments (75 % and 25 %, respectively). For the PUB models, all data 
in ‘gauged’ catchments were used for training while the events in 
‘ungauged’ catchments were used for testing. All ED-LSTM models had 
256 memory cells in both the encoder and decoder layer, with a dropout 
rate of 0.4 based on the results of the hyperparameter grid search. There 
were 128, 64, 32, 16, and 1 cells in the five dense layers after the LSTM 
layer, and the optimal batch size was 32. 

3.3. Evaluation metrics 

The evaluation of the model performance aimed to (i) assess the 
capacity of the model to reproduce an overall streamflow fit at the event 
scale; and (ii) evaluate its ability to correctly identify streamflow ex-
tremes, i.e. the peak flow which is important for flood warning. The 
Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe 1970) metric was used 
to assess the overall streamflow fit: 

NSE = 1 −
∑

(simt − obst)
2

∑
(obst − obsm)

2 (7)  

where sim and obs are the predicted and observed streamflow, t indicates 
a given time step and m refers to the mean. NSE ranges from -infinity to 
1, with 1 being a perfect match. NSE values larger than 0.5 can be 
considered as a satisfying prediction capacity while the value of 0 sig-
nifies that the prediction is as good as the mean of the observations 
(Moriasi et al., 2007). 

Flood frequency analysis was used for the quantification of flood 
warning performance. The cumulative distribution function of the 
Generalized Extreme Value distribution was applied to estimate the 
return periods of the observed and simulated hourly streamflow peaks 
(see Ragettli et al. 2017, for example). For each storm event, we deter-
mined if the maximum hourly streamflow exceeded a reference flood 
quantile of a given return period. We consider the 2-year return period 
to represent common high streamflow and the 10-year return period to 
represent a severe flood. 

We identified three cases for flood prediction performance 
(following Javelle et al., 2016): (i) ‘hit’ (H) – when both simulated and 
observed streamflow exceeded the flow threshold corresponding to a 
certain return period indicating high flow; (ii) ‘miss’ (M) – when the 
simulated streamflow was below the threshold and failed to agree with 
the high flow detected by observations; and (iii) ‘false alert’ (FA) – when 
the simulated streamflow indicated a high flow but the observed 
streamflow did not (see the contingency table in Table S5). Moreover, to 
assess the temporal accuracy of reproducing the peak flow, a 2-hour 
condition was added to the evaluation, which means that if the simu-
lated peak flow had a 2-hour shift compared to the observed peak, the 
prediction was also identified as a miss. Three contingency scores were 
computed for evaluating the flood warning ability: (i) the Probability of 
Detection (POD, Eq. (8)) which is the fraction of correct event pre-
dictions (hits) in all observed high flow events; (ii) the Success Rate (SR, 
Eq. (9)) which is the fraction of hits in the total number of all high flow 
event predictions; (iii) and the Critical Success Index (CSI, Eq. (10)) 
which is the fraction of hits in the total number of event predictions plus 
the number of missed observations. 

POD =
H

H + M
(8)  

SR =
H

H + FA
(9)  

CSI =
H

H + M + FA
(10)  

4. Results 

4.1. Evaluation of the model performance 

First, we compared the NSE values between the observed and pre-
dicted streamflow in the three experiments (Fig. 4). We qualitatively 
divided the NSE values into three performance groups: poor (NSE ≤ 0), 
average (0 < NSE < 0.5), and above average (NSE ≥ 0.5). The training of 
local models resulted in 14 catchments with above average NSE values 
and 12 catchments with poor NSE values, while in the regional model, 
most catchments resulted in an above average performance and only 
three catchments had poor performance (Fig. 4a). Evaluating the per-
formance of the PUB models in the north and south areas separately 
(Fig. 4b and c), it becomes apparent that the models have better pre-
diction ability in southern catchments, with a considerably higher 
number of models with good performance (4 on average in the northern 
catchments in comparison to 12 on average in the southern ones). 
Compared to Ragettli et al. 2017′s results, the PUB model performed 
better than the CART-based method in the northern catchments, as 2 (1) 
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catchments resulted in above average performance and 5 (9) catchments 
in poor performance for the PUB (CART-based) model (Fig. 4a and b). In 
southern catchments, the performance distribution of the two methods 
is nearly identical (Fig. 4c). 

The results of the contingency scores, evaluating the flood warning 
performance, are presented in Table 1. For the 2-year return period 
events, the regional and the PUB models had the best performances 
(equally) for detecting streamflow peaks (POD values of 0.85, SR values 
of 0.82, and CSI values of 0.72, considering all catchments). For pre-
diction in ungauged catchments, PUB models outperform the CART- 
based regionalization methods by 12 % on the probability of detection 
considering all catchments. Similarly, PUB models have a better success 
rate and critical success index in comparison to the CART-based 
regionalization. For the 10-year return period events, all models’ con-
tingency scores decreased by at least 10 %. In line with the 2-year return 
period predictions, the regional and PUB models showed the best per-
formance (POD of 0.7, considering all catchments). Again, the perfor-
mance of the PUB models was 10 % higher than CART-based methods. 
The PUB model achieved the best performance for SR and CSI scores 
instead of being equal to the regional model. Results indicate that the 
model detection performances were affected by the climate, as in wetter 
climate (i.e. the southern catchments) better prediction abilities were 
observed than in the drier regions (i.e. the northern catchments). The 
generalization ability increases with the prediction of higher streamflow 
from an order of 8 % difference between the southern and northern 
catchments for the 2-year return period to ~30 % for the 10-year return 
period (exception is PUB, 10-year return period). 

4.2. Generalization ability to different training dataset 

Fig. 5 shows the overall performance of PUB models that were 
trained on different sub-regions. The homogeneous (similar climate) 
dataset did not improve but rather impair the PUB model performance 

(Fig. 5a): while the median NSE value of the model trained on southern 
catchments was similar to the result trained on the global dataset 
(around 0.5), for the northern sub-region the model performance was 
significantly worse than the result when trained on all catchments. This 
is even more evident when the models are trained based on the climate 
clusters (Fig. 5b), where the overall performance has decreased signif-
icantly compared to the median NSE when the models are trained on the 
entire dataset. For clusters 1 and 3, the median has dropped significantly 
from around 0.35 to − 0.1 and − 0.7 (respectively). In addition, the 
variation of the models’ NSE skill (i.e. the box plots) increases in all 
models trained on the cluster-based (homogenous) datasets in compar-
ison to the training with the entire region datasets, with negative lower 
quartile and lower whisker NSE values reaching − 1 for clusters 1, 3, and 
4. 

The model generalization ability to the number of catchments used 
for training is presented in Fig. S4. The median NSE of PUB models did 
not vary notably for models trained on 32 to 24 catchments but when the 
number of catchments used in the training dataset was below 18, the 
median NSE declined from 0.3 to only 0.15 (Fig. Sa) and this decline 
trend is consistent for even smaller number of catchments. In contrast to 
the NSE results, the POD scores of the PUB models do not degrade with 
the decreasing number of training catchments and all PUB models 
demonstrate good flood warning capability with median POD scores 
higher than 0.8 (Fig. S4b). 

However, model performance at an individual catchment may not 
always be improved when trained on a large dataset. As shown in Fig. 6, 
four performance categories can be distinguished: (i) performance is 
similar for all models (e.g. Yimen catchment); (ii) poor performance in 
the local model but satisfactory in others (e.g. Shangliu catchment); (iii) 
poor performance in the PUB model but satisfactory in others (e.g. Pei 
River); and (iv) random performance variation with model setup (e.g. 
Qigu catchment). Most of the catchments (12) fall into category (ii) 
performance, followed by 10 catchments with category (i) performance. 

Fig. 4. Summary of the model performance classified by NSE values (poor, NSE < 0; average, 0 < NSE < 0.5; and above average, NSE greater than 0.5). The NSE 
values for the classification tree method (‘CART’) are from the hydrological model in Ragettli et al. (2017). 

Table 1 
Contingency scores (POD –probability of detection; SR – success rate; CSI – critical success index) evaluating high streamflow predictability (A – all catchments; S – 
southern catchments; N – northern catchments). Bold numbers represent the highest contingency score for each area.   

POD SR CSI 

A S N A S N A S N 

2-year flood events 
Local  0.73  0.74  0.72  0.80  0.87  0.73  0.62  0.66  0.57 
Regional  0.86  0.89  0.82  0.83  0.84  0.82  0.73  0.76  0.69 
PUB  0.85  0.88  0.80  0.81  0.83  0.79  0.71  0.75  0.66 
CART  0.73  0.76  0.70  0.73  0.80  0.66  0.58  0.64  0.51  

10-year flood events 
Local  0.50  0.67  0.36  0.48  0.50  0.46  0.33  0.40  0.25 
Regional  0.69  0.67  0.71  0.64  0.62  0.67  0.50  0.47  0.53 
PUB  0.71  0.65  0.78  0.73  0.72  0.73  0.56  0.52  0.61 
CART  0.62  0.74  0.45  0.56  0.65  0.44  0.42  0.54  0.29  

Y. Zhang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 614 (2022) 128577

7

But still, 8 catchments fall into category (iii) while 5 resulted in category 
(iv), with a poorer performance even though they were trained using a 
larger dataset. 

4.3. Generalization ability to catchment characteristics 

The classification of the 35 catchments into five classes based on the 
k-means clustering method is presented in Fig. 7a. Of the northern 
catchments, 11 (81 %) were grouped into cluster 5. The southern 
catchments were classified into clusters 2 to 4; catchments from the 
southwest were mostly clustered in cluster 2, while catchments from the 
southeast region were grouped in cluster 4. The catchments in cluster 1 

and cluster 3 are mainly located in central China in Henan province. 
The five clusters represent different climatological and hydrological 

conditions (Table 2). Cluster 5 climate is arid to semi-arid, with a ratio of 
annual potential evapotranspiration to precipitation (PET/P) lower than 
1. Moreover, the catchments in cluster 5 are mainly located in high 
mountain areas in northern latitudes (Fig. 7a), and, thus, are also colder 
on average compared to catchments in other clusters. The catchments in 
cluster 3 are located in lower, flatter, and warmer areas. The topography 
attributes of cluster 4 are similar to cluster 3. However, the latter is more 
humid. The catchments in cluster 2 are located in high elevation warm 
and humid areas and are located in southwest China (Fig. 7a). The cli-
matic and topographical characteristics of the catchments in cluster 1 

Fig. 5. Boxplot of NSE for PUB models, comparing the models trained on sub-regional areas: (a) north and south regions; (b) hydroclimatic clusters. The line inside 
the box shows the median and the box includes the lower and upper quartile values (the 25th-75th percentile range). The circles represent the outliers. The number of 
flood events (samples) that are valid for modeling training for each sub-region is listed below each label. For better visualization, NSE values lower than − 1 are set to 
be − 1. 

Fig. 6. Radar plot for showing median NSE at 35 catchments for all events of local, regional, and PUB experiments.  
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are intermediate of the clusters and the three catchments associated 
with this cluster are found in central China (Fig. 7a). 

The models are sensitive to the catchment characteristics as the 
model performances vary between clusters. The NSE scores of the 
clustered catchments in the PUB model in clusters 2 and 4 (both above 
0.5) are the highest among the five clusters, while cluster 5 has the 
lowest median NSE with 0.23 (Table 2 and Fig. 7b). A declining trend in 
NSE values is also observed from south to north (Fig. 7b). The POD 
scores, however, show no remarkable differences in flood warning 
capability between clusters, with the highest value of 0.91 in cluster 4 
and the lowest values of 0.76 in clusters 2 and 5 (Table 2). 

A negative correlation was found between PET/P (used as climate 
proxy) and NSE (Fig. 8a), indicating that the DL model is more likely to 
perform well in wetter areas. However, such a relationship cannot be 
observed between POD scores and PET/P (Fig. 8b). No correlations of 
either NSE or POD were found with topographic attributes. For example, 
neither NSE nor POD shows a clear correlation with the h-gradient (used 
as a proxy for topographic steepness, Fig. 8c and d). 

5. Discussion 

5.1. Use of the ED-LSTM in the PUB context 

The PUB model using the regional ED-LSTM structure showed a 
higher skill in predicting high streamflow than the conceptual hydro-
logical model (Fig. 4 and Table 1). Even in catchments with poor pre-
diction performance (i.e. NSE < 0.5), where the streamflow is not 

perfectly simulated by the ED-LSTM model, decent performances for 
flood warning were obtained (i.e. high POD values). It is further evident 
in the results that the PUB model is not sensitive to the number of 
training catchments and always keeps a good flood warning skill 
(Fig. S5). This implies that while the deep-learning models do not always 
learn the streamflow dynamic (i.e. the time series as a whole) well, they 
can still extrapolate the extreme streamflow events – this is further seen 
when plotting the correlation between NSE and POD (Fig. S2). It also 
implies that there is a high similarity in the intense observed rainfall 
between the catchments, which triggers flood peaks of similar magni-
tude. There may be a potential to use deep learning for flood prediction 
in ungauged catchments, even if the number of gauged catchments is 
small. In other words, the ED-LSTM appears to be a reliable flood 
warning model in ungauged catchments since it does not require suc-
cessfully capturing the entire event hydrograph and the timing of the 
peak but rather solely forecasting the magnitude of the peak. 

Given a similar size of training data, the prediction ability of an 
LSTM model is often much better than physics-based models (Kratzert 
et al., 2018; Frame et al., 2022). While the physically-based regionali-
zation method selects and transfers the optimal parameter set from a 
gauged catchment to an ungauged catchment (Yang et al., 2018), more 
flexibility is found with the ED-LSTM PUB approach as the model adapts 
to different dynamic patterns rather than be limited to a fixed set of 
parameters obtained from a donor catchment. These processes of the 
proposed approach are spontaneous and do not require the identifica-
tion of any criteria for selecting donor catchments, resulting in a 
potentially better performance of the ED-LSTM in PUB predictions. For 
example, here we obtained POD values of above 0.8 and 0.7 for the 
prediction of high streamflow at 2- and 10-year return periods (Table 1), 
while in previous studies (using various physically-based methods but 
for different locations, climates, and time scales) obtained values lower 
than 0.48 (2-year return period, France, Javelle et al., 2016), 0.61 (2- 
year return period, 6 catchments in France and Italy, Norbiato et al., 
2008), and 0.38 (10-year return period, Pakistan, Kim et al., 2018). We 
conclude that the proposed ED-LSTM PUB model can be considered an 
applicable tool for issuing fast and reasonably accurate flood warnings 
in ungauged catchments. 

5.2. Model sensitivity to the training dataset 

We found that the overall PUB model performance is better when 
training under a larger and more climate-heterogeneous dataset rather 
than using a smaller and regional-focused (i.e. climate-homogenous) 
dataset, as implied from the slight performance decrease comparing 
the south-north based PUB models (Fig. 5a) and the meaningful 

Fig. 7. (a) Classification of the 35 catchments into 5 clusters. (b) Mean NSE values of the PUB model.  

Table 2 
Statistics of main mean climatic and hydrological catchment characteristics and 
model performance (NSE and POD scores for 2-year return period flood) for the 
PUB model for each of the clusters presented in Fig. 7.   

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Number of 
catchments 

5 8 3 8 11 

Precipitation (mm/ 
yr) 

895 1144 883 1857 545 

T (℃) 9.9 10.4 16.1 14.3 7.1 
PET/P 1.27 0.91 1.33 0.58 1.74 
Area (m2) 339 229 253 103 271 
Elevation (m) 1080 1163 490 519 1482. 
h-gradient (%) 0.20 0.77 0.001 0.17 0.13 
NSE 0.45 0.57 0.36 0.64 0.22 
POD (2-yr) 0.80 0.76 0.82 0.91 0.76  
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performance decline of the cluster-based PUB models (Fig. 5b and 
Fig. S4). Since the characteristics of the catchments in the different 
clusters vary significantly, the models trained solely on the data from the 
catchments in each of the single clusters are not able to generalize well 
when applied to catchments from clusters with other characteristics. 
This behavior is expected and is in line with the hypothesis proposed by 
Fang et al. (2022) that in the context of PUB, the DL models can still 
benefit from the data synergy effect provided by the modest diversity in 
the training data. A more heterogeneous dataset may increase the 
probability of covering the relevant conditions for a new catchment to 
increase the representativeness of various rainfall-runoff processes. 

The sensitivity of the ED-LSTM model to simulate a time series of 
streamflow concerning the number of training events (or catchments) is 
non-linear but with a positive correlation for NSE scores as shown in 
Fig. 5 and Fig. S4. The decrease in the ED-LSTM NSE performance with 
decreasing number of catchments used for the training (Fig. S4) can be 
potentially explained by the fact that catchments that are not well rep-
resented by the training dataset are more sensitive to the change in 
training dataset size. This is evident in the results, as the upper quartile 
(the well-represented catchments) in PUB1, PUB2, and PUB3 remain the 
same, while the lower quartile drops significantly (Fig. S4). 

The results suggest that both quantity and diversity of the training 
dataset for DL models are equally important for improving PUB model 
performance. We stress that future applications of machine learning 
models in PUB context should ensure a representative dataset with a 
sufficiently large number of training samples and catchments to prop-
erly include the impacts emerging from catchment characteristics on 
overall PUB model performance. 

However, some of our results challenge the hypothesis that DL 

models’ performance is not compromised by additional information for 
streamflow simulation, even when they appear to have different 
hydroclimatic conditions (Fang et al., 2022). The performances of 
several catchments, especially for those with sufficiently representative 
training data, were also decreasing (Fig. 6) from local to the PUB model. 
A possible explanation is the lack of data on the pseudo-ungauged 
catchments when conducting out-of-sample prediction. It means that 
the hydrological responses in these catchments are unique and the 
enlarged dataset still fundamentally lacks critical inputs so, in the PUB 
context, the prediction results were much poorer than the performance 
of the local model. Meanwhile, the performance decrease also happens 
between local and regional models due to the addition of some poorly- 
performing catchments without sufficiently representative training 
data, which have irregular hydrological responses in comparison to the 
well-performing catchments, to the enlarged dataset. This even happens 
in a single catchment. For example, the flood hydrographs measured in 
the Xinghe catchment show strong non-stationaries, whereas for similar 
rainfall intensities the resulting flood waves are very different, which 
finally results in a very low prediction skill even for a local model. The 
diverse hydrological behaviors, in this case, can impair the learning. 
This drop in performance of some catchments in the regionalization of 
LSTM models is also reported and discussed by Kratzert et al. (2019) and 
Hashemi et al. (2021). However, we did not quantify to what extent the 
heterogeneity may harm the model performance in this study. Such 
analyses are left for further research. Nevertheless, when adding new 
data, the drop in performance of the well-performed catchments is 
minor compared to the benefits of increasing the performance of those 
poorly-represented catchments. 

Fig. 8. (a) Model performance (NSE) of the PUB model as a function of climate condition (PET/P); (b) the same but for POD of 2-year return period events instead of 
NSE; (c) and (d) are the same as (a) and (b) but model performance is plotted as a function of topography (h-gradient). Each dot represents a catchment, and the color 
shows the clustering group of the catchment as shown in Fig. 7. 
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5.3. Model sensitivity to the catchment characteristics 

Previous studies have found that the prediction of streamflow in 
ungauged catchments tends to be better in humid areas for either 
physics-based or data-driven models (Ragettli et al., 2017; Kratzert 
et al., 2018; Feng et al., 2020; Lees et al., 2021) and we confirm this 
finding with our results (e.g. the NSE – PET/P relation, Fig. 8 and 
Table 1). There is a physical explanation for this finding: in dry regions, 
runoff generation is more likely to occur due to infiltration excess. Soil 
infiltration capacity has large spatial variability in 35 catchments so 
different soil saturation states can result in different streamflow 
magnitude and timing for the same rainfall intensity. This can explain 
the variability in streamflow responses within one catchment, for 
example, the Xinghe catchment described in section 5.2. Hence, it is 
likely that streamflow simulation in dry PUB areas can be improved if 
the machine learning model is trained to learn the interaction between 
rainfall and streamflow with a larger sample of different rainfall- 
streamflow-soil moisture conditions. Alternatively, deep-learning 
models can be improved to simulate runoff infiltration excess by intro-
ducing physical laws, as discussed in the next section. 

We found that the model performance is only sensitive to climatic 
variables and not to topographic variables (Fig. 8) when considering 
NSE as model evaluation metrics. This is in agreement with the state-
ment of Addor et al. (2018) and Stein et al. (2021), who concluded that 
streamflow behavior across regions is most strongly influenced by 
climate attributes for flood prediction in ungauged catchments. Our 
findings, thus, support the need to incorporate more dynamic and static 
climatic variables that can increase the representativeness of the dataset 
when setting regional machine-learning models for flood warnings. 

5.4. Limitations and future development 

The analyses we conducted are limited by the small number of events 
that were available for the model training and evaluation. For example, 
we used the 10-year return period as the representative of a high 
streamflow event but in 11 of the catchments, the number of events is 
not sufficient to estimate the 10-year return period with high accuracy. 
Another limitation is that the models were trained by event-based data. 
If continuous streamflow data is available and used instead, the model 
can potentially learn better the hydrological patterns, such as the 
streamflow seasonality and event-antecedent soil moisture conditions 
(which has the potential to improve predictions in dry climates, see the 
previous section). A complete observation time series covering 5 to 10 
years would likely be sufficient to represent the non-stationary behind 
the hydrological dynamics (O et al., 2020) but it was not available to us 
for this study. Extending the data for the training of the models will 
result in a better prediction, but will not change the main conclusions of 
this work, namely, the outperformance of DL models in comparison to a 
physics-based hydrological model in predicting floods in general and in 
the context of ungauged catchments in particular. 

The results of our experiments imply that it is essential to focus on 
developing model structures that can be adaptable also in dry regions. 
This can be done by incorporating governing equations or physical 
constraints into “hydrological” machine learning models. An example is 
the development of the Mass-Conserved DL model that incorporates 
conservation law into the loss function (Hoedt et al., 2021). Another 
alternative is the development of physically-informed hybrid models 
that embed the hydrological dynamics into the recurrent neural network 
architecture (e.g. Jiang et al., 2020). These types of models can better 
capture the interaction between soil-rainfall-evaporation and stream-
flow, and be more readily generalized beyond the regimes covered with 
the training data (Khandelwal et al., 2020). Future applications of DL 
models in the field of hydrology should be combined with such hydro-
logical knowledge and physics. 

6. Conclusions 

We applied the Encoder-Decoder LSTM model to predict rainfall- 
runoff events and flood peaks in ungauged catchments. The model 
outperformed conventional hydrological-model regionalization 
methods. The most considerable improvement in the model predictive 
ability was observed in the poorly represented catchments. By evalu-
ating the generalization ability, i.e. the applicability of the model across 
many catchments and conditions, we found that the performance of the 
ED-LSTM model was not only sensitive to the number of samples used 
for the training of the model but also the representativeness (climate- 
heterogeneity level) of the dataset. Also, the DL regional model still 
suffers from issues of model adaptability – although the ED-LSTM model 
reliably predicts the occurrence of rare events also in arid regions, it is 
more likely to have a poor model performance for predicting streamflow 
in arid catchments than in humid catchments. Surprisingly, we discov-
ered that the catchment topographic attributes, such as elevation and 
gradient, did not improve the model performance when added as static 
variables in the model setup. We conclude that, compared to conven-
tional methods, the regional ED-LSTM model is a promising method for 
hydrological modeling in ungauged catchments, and our results could be 
an important reference for further studies of DL-based hydrological 
modeling with a rather limited amount of data to set a representative 
training dataset. 
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