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Abstract: In the eastern North Atlantic, declines in the volume of Atlantic Puffin (Fratercula 31 

arctica Linnaeus, 1758) eggs have been associated with shifts in the marine ecosystem, such as 32 

changes in the abundance of forage fishes and increasing sea-surface temperatures. In the 33 

western North Atlantic, where similar shifts in oceanographic conditions and changes in the 34 

abundance of forage fishes have presumably occurred, trends in the volume of Atlantic Puffin 35 

eggs remain unknown. In this study, we investigate Atlantic Puffin egg volume in the western 36 

North Atlantic. We compiled 140 years (1877–2016) of egg volume measurements (n = 1,805) 37 

and used general additive mixed-effects models to investigate temporal trends and regional 38 

variation. Our findings indicate that Atlantic Puffin egg volume differs regionally but has 39 

remained unchanged temporally in the western North Atlantic since at least the 1980s. 40 

 41 
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Introduction 44 

Identifying climate change-related shifts to an ecosystem’s structure is fundamental to 45 

ecosystem management, particularly in the face of a rapidly changing climate. Seabirds can be 46 

useful indicators of change in marine ecosystems as environmental fluctuations are often 47 

expressed in their demographics (e.g., Cairns 1987; Croxall et al. 2002; Descamps et al. 2013). 48 

Owing to their high energetic requirements, many seabirds optimize the timing of energetically 49 

demanding events (e.g., reproduction, migration) with periods of favorable environmental 50 

conditions and resource availability (Stenseth and Mysterud 2002). Thus, one might expect 51 

phenological shifts to match shifts in the timing of favorable environmental conditions. 52 

However, the phenological mismatch between seabird energy requirements and resource 53 

availability is common and is seemingly becoming more common in a changing climate (e.g., 54 

Durant et al. 2007; Hipfner 2008; Gaston et al. 2009; Keogan et al. 2018). To compensate for 55 

this mismatch, seabirds may regulate the energy invested into eggs in response to fluctuating 56 

resource availability, either by adjusting clutch size or, in the case of single-egg-laying species, 57 

egg size (Nisbet 1973; Drent and Daan 1980; Barrett et al. 2012; Bond et al. 2020; but see 58 

Christians 2002). 59 

The Atlantic Puffin (Fratercula arctica Linnaeus, 1758) is a colony-nesting, single-egg-60 

laying seabird whose distribution spans the North Atlantic Ocean (Lowther et al. 2020). Climate 61 

change has triggered shifts in the distribution and abundance of many marine species (Hoegh-62 

Guldberg and Bruno 2010), presumably including the energy-rich forage fishes on which these 63 

seabirds rely during egg production. In the eastern North Atlantic, Barrett et al. (2012) 64 

documented declines in the volume of Atlantic Puffin eggs at two colonies driven by changes in 65 

the abundance of forage fishes and shifting climatic conditions, including rising sea-surface 66 
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temperatures. Barrett et al. (2012) suggested that these changes to the ecosystem’s structure 67 

imposed energetic constraints on egg-laying females through a mismatch between the energetic 68 

demands of egg production and pre-laying food availability. In this study, we compiled 140 years 69 

(1877–2016) of Atlantic Puffin egg volume measurements to investigate temporal trends and 70 

regional variation in the western North Atlantic where similar climate change-related shifts in the 71 

distribution and abundance of forage fishes have presumably occurred (Hoegh-Guldberg and 72 

Bruno 2010; e.g., Scopel et al. 2019). For example, Atlantic Puffins nesting at this study’s 73 

southernmost colony (Machias Seal Island, Bay of Fundy, Canada) are in an area of 74 

unprecedented ocean warming (Pershing et al. 2015). Given the observed ocean warming and the 75 

link between climatic conditions, pre-laying food availability, and egg volume in the eastern 76 

North Atlantic (Barrett et al. 2012), we predicted declines in the volume of Atlantic Puffin eggs 77 

in the western North Atlantic. 78 

 79 

Materials and methods 80 

Study area and egg measurements 81 

We obtained Atlantic Puffin egg measurements (n = 1,805) from nine western North 82 

Atlantic colonies between 1877 and 2016 (Fig. 1), ~85% of which (n = 1,536) were obtained 83 

between 1980 and 2016 (see Supplemental Material Table S1). These eggs were either measured 84 

at breeding colonies and returned to nesting burrows or collected and measured off-site. We 85 

assumed selection for measurement or collection was haphazard, and all eggs were viable when 86 

measured or collected. For statistical analyses, we grouped measurements from the nine colonies 87 

into four geographic regions: Bay of Fundy, Gulf of St Lawrence, Newfoundland, and Labrador. 88 

Colonies were grouped in this way because several colonies had small sample sizes or 89 
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measurements recorded during only a single year. In all cases, the maximum length and breadth 90 

of individual eggs were recorded to the nearest 0.1 mm using calipers. Egg volume was 91 

estimated using the equation: 92 

 93 

Volume = 𝐾𝐾 ×  𝐿𝐿 ×  𝐵𝐵2 (Hoyt 1979) 94 

 95 

where the constant K = 0.507 (egg shape typical of Charadriiformes species; Hoyt 1979), L is 96 

egg length (mm), and B is maximum egg breadth (mm). 97 

 98 

Statistical analyses 99 

We tested the normality of the data using Shapiro-Wilk’s test. Owing to the potential for 100 

non-linear relationships, we used general additive mixed-effects models (GAMMs; Wood 2011) 101 

to quantify trends in egg volume using the R package mgcv (Wood 2019). We tested region as a 102 

fixed factor, colony as a random effect, and a cubic spline for collection year using generalized 103 

cross-validation to set the number of knots (k = 10; Wood 2017). We completed one analysis 104 

using the entire dataset (1877–2016) and a second excluding pre-1980 data, the latter 105 

representing a range similar to the eastern North Atlantic study (Barrett et al. 2012). In the 106 

second analysis, each region was represented by eggs from a single colony (Supplemental 107 

Material Table S1); thus, we used a general additive model with colony as a fixed factor and a 108 

cubic spline as described above. 109 

 110 

Ethical approvals 111 
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We received permits from the Canadian Wildlife Service, followed relevant provincial 112 

and federal guidelines, and received approval from the institutional animal care and use 113 

committees at the University of New Brunswick, the University of Saskatchewan, Memorial 114 

University of Newfoundland, and Environment and Climate Change Canada for all egg 115 

measurements and collections. 116 

 117 

Results 118 

We achieved data normality following the removal of a single outlying measurement. 119 

Mean ± standard deviation egg volume across all regions was 63.3 ± 4.7 cm3 (range: 44.0–80.0 120 

cm3). Egg volume differed among regions: eggs were smallest in the Bay of Fundy (mean ± 121 

standard deviation: 61.5 ± 4.4 cm3), followed by Newfoundland (62.7 ± 4.4 cm3), the Gulf of St 122 

Lawrence (63.2 ± 4.4 cm3; although not different from Newfoundland or Labrador), and largest 123 

in Labrador (64.0 ± 4.8 cm3; all F > 2.90, all p < 0.01; Table 1). Egg volume was not related to 124 

year of collection across the entire dataset (F = 0.62, effective df = 1, p = 0.43; Fig. 2), nor was it 125 

across the 1980–2016 dataset (F = 0.02, effective df = 1, p = 0.90). 126 

 127 

Discussion 128 

Contrary to Barrett et al.’s (2012) findings in the eastern North Atlantic (1980–2011), 129 

Atlantic Puffin egg volume in the western North Atlantic has remained unchanged since at least 130 

the 1980s (the scarcity of pre-1980s data limits discussion of longer-term trends). Bond et al. 131 

(2020) described similar stability in the eggs of Atlantic Yellow-nosed Albatrosses 132 

(Thalassarche chlororhynchos) in the South Atlantic Ocean. In the eastern North Atlantic, 133 

Barrett et al. (2012) showed that declines in the volume of Atlantic Puffin eggs were driven by 134 
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climatic conditions and changes in the abundance of forage fishes. Despite changing climatic 135 

conditions in the western North Atlantic (e.g., rising sea-surface temperatures), egg volume 136 

stability suggests that conditions during the pre-laying period did not exceed thresholds above 137 

which prey (more specifically, energy) availability was influenced (but see discussion on 138 

phenological shifts below). However, continued oceanographic change may influence the 139 

availability of forage fishes and trigger similar egg volume declines. If this is the case, Machias 140 

Seal Island, located near the southern edge of the species’ range and in an area of rapid ocean 141 

warming (Pershing et al. 2015), may be among the first colonies to exhibit egg volume declines. 142 

Nevertheless, any climate change-related shift in oceanographic conditions (rising sea-surface 143 

temperatures or otherwise), which reduces the availability of forage fishes during the pre-laying 144 

period, will reduce the energy available for egg production and could consequently cause egg 145 

volume declines. However, we acknowledge the complex relationship between climate change 146 

and the distribution and abundance of marine fishes (Hoegh-Guldberg and Bruno 2010). 147 

Seabirds that lay single-egg clutches have few mechanisms by which they can adjust their 148 

parental investment in the early stages of the breeding season; egg volume is one of the more 149 

plastic of these traits (but see Christians 2002) along with shifting the timing of breeding (e.g., 150 

Schroeder et al. 2009) and skipping breeding altogether (e.g., Reed et al. 2015). In Atlantic 151 

Puffins, the adjustment of parental investment through shifting egg-laying dates has been 152 

observed on Machias Seal Island where egg-laying is occurring later (Fana 2019; 1995–2018). In 153 

general, however, seabirds are poor at buffering climate change through phenological shifts 154 

(Keogan et al. 2018). On Machias Seal Island, the adjustment of parental investment through 155 

skipping breeding altogether is uncommon, although it has occurred more frequently in recent 156 

years (A.W. Diamond, unpublished data). Thus, phenological shifts (e.g., Fana 2019) may have 157 
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been partially responsible for compensating for climate change in the western North Atlantic 158 

ecosystem. 159 

We suggest the continued monitoring of North American Atlantic Puffin populations 160 

with a focus on improving our understanding of the relationships between resource availability 161 

and egg volume, constituent egg components, adult body mass, breeding success, and offspring 162 

fitness (Krist 2011). Furthermore, an improved understanding of wintering areas and migratory 163 

routes (see Guilford et al. 2011; Jessopp et al. 2013; Fayet et al. 2017; Baran 2019) is required to 164 

explore the relationship between egg volume and resource availability during the pre-laying 165 

period. 166 

  167 
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Figure 1. Atlantic Puffin (Fratercula arctica Linnaeus, 1758) colonies in the western North 290 

Atlantic from which eggs were measured in the Bay of Fundy (Machias Seal Island [MSI]), the 291 

Gulf of St Lawrence (Bird Rocks [BR], Île Brion [IB], Île de Mingan [IM], Île Sainte-Marie 292 

[ISM]), Newfoundland (Baccalieu Island [BA], Wolf Island [WI], Witless Bay [WB]), and 293 

Labrador (Gannet Islands [GI]). Map created in R version 4.0.2 (R Core Team 2020). Map data: 294 

Natural Earth (available from https://www.naturalearthdata.com/). 295 

 296 

Figure 2. Atlantic Puffin (Fratercula arctica Linnaeus, 1758) egg volume in the Bay of Fundy, 297 

the Gulf of St Lawrence, Newfoundland, and Labrador (1877–2016). Solid blue lines are cubic 298 

splines from general additive mixed-effects models with 95% confidence intervals in light blue. 299 

Figure created in R version 4.0.2 (R Core Team 2020). 300 
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Table 1. Mean ± standard deviation, median, and range of Atlantic Puffin (Fratercula arctica 302 

Linnaeus, 1758) egg volume (cm3) in the Bay of Fundy, the Gulf of St Lawrence, 303 

Newfoundland, and Labrador (1877–2016). 304 

Region n Mean ± sd Median Range 
Bay of Fundy 157 61.5 ± 4.4 62.1 50.9–73.1 
Gulf of St Lawrence 143 63.2 ± 4.4 63.2 50.3–76.8 
Newfoundland 653 62.7 ± 4.4 63.0 44.0–80.0 
Labrador 851 64.0 ± 4.8 63.8 45.0–77.9 
All Regions 1804 63.3 ± 4.7 63.2 44.0–80.0 

305 
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