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A B S T R A C T   

A feasibility study of an innovative design is presented of a metamaterial inspired antenna array for millimeter- 
wave band applications where non-mechanical beam-steering is required such as in 5G and 6G communications, 
automotive and radar systems. In communication systems beam-steering antennas can significantly improve 
signal-to-noise ratio, spatial directivity, and the efficiency of data transmission. However, in tightly packed ar-
rays the effects of mutual coupling between the radiating elements can severely limit the array’s performance. 
The proposed antenna array consists of a 3 × 3 matrix of patch radiators that are tightly packed and inter-
connected to each other. Rows of radiators are demarcated by a horizontal microstrip transmission-line whose 
ends are short-circuited to the ground-plane. This technique reduces unwanted surface waves that contribute to 
undesired coupling. Embedded in the square patch radiators is a rhombus shaped slot that increases the effective 
aperture of the antenna with no impact on the antenna’s size. As the antenna is excited via a single feedline the 
edge-to-edge spacing between the radiators and the interconnected feedlines are made such that there is phase 
coherency at the radiating elements. Measured results show that the effectiveness of the proposed array in 
simultaneously improving its impedance bandwidth and radiation characteristics. The measured peak gain and 
radiation efficiency are 13.6 dBi and 89.54 %, respectively.   

1. Introduction 

The International Telecommunication Union (ITU) has allocated 
millimeter-wave spectrum across 26 GHz and 40 GHz bands for use of 
mobile technology, including 5G and beyond systems [1]. This decision 
will pave the way for governments and regulators around the world to 
make these bands available for ultra-fast services. In fact, millimeter 
wave boosted networks will enable the delivery of multi-gigabit speeds, 
capacity, and exceptionally mobile broadband speeds in suburban areas 
and rural communities. Because millimeter-waves cannot penetrate 
buildings, they can only be used for short distance applications in 
densely populated areas where data congestion might be a problem, e.g., 
in sports stadiums, malls, and convention centers. 

Beam-steering antenna arrays are fundamental components of 
massive multiple input multiple output (MIMO) systems of 5G that make 
possible expansion in system capacity and extension in coverage. In fact, 
antenna arrays are used in other systems including automotive and ra-
dars. This technology is essential to increase the resiliency (signal-to- 
noise ratio) of a transmitted signal and the channel capacity, without 
increasing spectrum usage, a common frequency can be steered simul-
taneously in multiple directions [2–8]. 

The continuing demand to reduce the size of the wireless systems is a 
challenging requirement for antenna designers. This is because the an-
tenna size is related to the operating wavelength. In the case of antenna 
arrays, this entails reducing the spacing between adjacent radiating el-
ements [910]. The consequence of tightly packing antennas in an array 
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will inevitably increase the electromagnetic coupling between the ra-
diators. This will adversely affect the antenna parameters such as ter-
minal impedances, impedance bandwidth and therefore the array’s 
performance in terms of radiation characteristics, output signal-to- 
interference noise ratio, and radar cross section. In the case of radars 
this can undermine the system’s steady state and transient response, the 
resolution, interference rejection, and direction-of-arrival estimation 
[11]. 

Therefore, the challenge is to shrink the footprint of antenna arrays 
and simultaneously suppress the mutual coupling between the neigh-
boring radiation elements [12]. Various methods have been investigated 
and reported recently in literature in minimizing unwanted coupling in 
antenna arrays[13]. Some of these methods include using (i) frequency 
selective surfaces [14], hybrid feeding [15], metasurface slabs [16], 
electromagnetic bandgap (EBG) [17], parasitic structures [18], and 
metamaterials [19–21]. These prior approaches are challenging to 
implement especially in relatively small antenna array structures and 
require multiple excitation ports. 

In this paper an innovative technique is proposed for the first time 
that can effectively mitigate mutual coupling between radiating ele-
ments in an antenna array. The proposed technique excludes incorpo-
ration of separate decoupling structures within the arrays. The proposed 
technique is applied to a millimeter-wave antenna array of small foot-
print that is constructed from 3 × 3 matrix of interconnected square 
patches. The patches are loaded with a rhombus shaped slot, and the 
rows of radiating patches are partitioned from each other with hori-
zontal short circuited microstrip transmission-line. The resulting meta-
material inspired structure effectively mitigates mutual coupling 
between the radiators. The array only requires excitation using a single 
feed port. In the structure the gap between the radiator elements and 
lengths of the interconnected feedlines is made such that there is phase 
coherency at the radiators. The measured results confirm that compared 
to other recent mutual coupling mitigation techniques the proposed 
design approach provide improvement in the array’s performance in 
terms of gain (13.6 dBi) and radiation efficiency (89.54 %) across 33 
GHz to 37 GHz. In addition, the design and manufacture of the antenna 
is straightforward. 

2. Modelling mutual coupling effect 

Consider an antenna array comprising a single row of radiating el-
ements, as illustrated in Fig. 1, where N radiating elements are uni-
formly spaced by a distance d, and an incoming signal of wavelength λ 
arrives at an azimuth and elevation angles of θ and ϕ, respectively. In 
this theoretical model, it is assumed that individual radiating elements 

in the array is a point source. In-reality this is not the case as each 
element will have a physical presence, and the mutual coupling effect is 
therefore inevitable. Mutual coupling will modify the current distribu-
tion of each radiating element thereby adversely impacting on the ar-
ray’s parameters, i.e., realized gain, efficiency, beamwidth, and 
radiation pattern. Moreover, mutual coupling will also have an impact 
on the amplitude and phase of the transmitted signal and received signal 
by the array. 

If the signal voltage received at each of the array’s antenna is V1, V2, 
…, VN in which Ṽ1, Ṽ2, …, ṼN are the voltages attributed to the mutual 
coupling effect, and ZL is the load with a known impedance connected to 
each port. If Zij (i = 1, 2, …, N; j = 1, 2, …, N) represents the mutual 
impedance caused by mutual coupling between the ith element and the 
jth element, and Zii is the impedance of the ith antenna element. The 
array can then be represented by the matrix 
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This matrix is represented hereon as 

V = ZoṼ 

where V is the signal voltage vector received at the array element 
with no coupling effect, Ṽ is the resulting output voltage vector at the 
array terminal, and Zo is the normalized impedance matrix. If Zo is 
known, the mutual coupling matrix Co can be determined, and Co = Z− 1

o . 
In our case the array element will use the voltage vector Vk of equal 
amplitude and equal phase difference as excitation, the specific 
expression of Vk is given by 

Vk =
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If the mutual coupling is not considered, the pattern of the N-element 
array can be expressed as [22] 

f (θ,ϕ) = VH
k A(θ,ϕ)Fk(θ)

where Fk(θ) is the array element pattern, and A(θ,ϕ) is the array 
manifold given by 
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If the mutual coupling effect is considered, the actual excitation 

Fig. 1. Linear antenna array model.  
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voltage vector of the array element is 

Ṽk = CoVk 

Therefore, the array’s radiation pattern under the mutual coupling 
effect can be given as 

f̃ (θ,ϕ) = VH
k CH

o A(θ,ϕ)Fk(θ)

Due to the inverse relationship between the mutual coupling 
impedance and the element spacing, when the element spacing is small, 
the mutual coupling effect between the elements is strong, and the 
mutual coupling impedance is large. A detailed theoretical study on the 
influence of mutual coupling on the array’s parameters is given in [22]. 

3. Design of the proposed antenna array 

The initial antenna array proposed here will henceforth be referred 
to as the basic antenna array, which is shown in Fig. 2. Each array row 
accommodates three patch elements. The radiating elements are inter-
connected to each other, as shown in Fig. 2, where each row is inter-
leaved with a horizontal microstrip-line whose ends are left open- 
circuited. The proposed structure mitigated unwanted electromagnetic 
interactions between the radiating elements that can undermine the 
radiation characteristics of arrays. Unlike in conventional arrays, the 
proposed structure is excited using a single feedline. The space between 
the radiating elements is designed such that there is phase coherency at 
the input of the radiators to mitigate undesirable sidelobes and ensure 
effective beam-steering is achieved over a wide angle. The patches are 
designed using established theory. The array is constructed from a ma-
trix of 3 × 3 square patches on 0.8 mm thick Rogers RT5880 substrate 

with dielectric constant of 2.2 and loss tangent of 0.0009. The di-
mensions of the array structure were optimized using CST Microwave 
Studio, which is a 3D full-wave solver based on the finite element 
method (FEM). The dimension of each patch is 3 × 3 mm2 and the row of 
patches are separated by 3 mm. The length and width of (i) the 

Fig. 2. Proposed antenna array #1 referred to here as the basic antenna array.  

Fig. 3. Reflection coefficient response of the proposed array antenna #1.  

Fig. 4. Surface current density distribution over the proposed array at its 
resonance frequency of 35 GHz. 
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microstrip feedline are 4 mm & 2.4 mm, respectively; (ii) the horizontal 
connecting lines are 20 mm & 0.8 mm, respectively; and (iii) the vertical 
lines at each radiating element are 1 mm & 0.4 mm, respectively. The 

overall dimensions of the array are 24 × 24 × 0.8 mm3. The back side of 
array board is a ground-plane. Unlike prior techniques the proposed 
technique avoids the use of decoupling structures and multiple feeding 

Fig. 5. Simulated gain and radiation efficiency of the proposed antenna array over 33.5 GHz to 35.9 GHz.  

Fig. 6. Simulated radiation patterns of the proposed antenna array #1 in the yz-plane and xz-plane at 33.5 GHz, 35.0 GHz, and 35.9 GHz for excitation phase angle of 
0 degree and 25 degrees. 
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ports. 
The simulated reflection coefficient response of the proposed basic 

antenna array is shown in Fig. 3. The proposed antenna array was 
modelled and simulated using CST Microwave Studio. The array oper-
ates over a frequency range of 33.5 GHz to 35.9 GHz for S11 ≤ -10 dB, 
which corresponds to a fractional bandwidth of 6.91 %. The array res-
onates at 35 GHz with an impedance matching performance of − 18.6 
dB. Fig. 4 shows the surface current density distribution over the array at 
the resonant frequency of 35 GHz. As expected, the concentration of the 
current distribution is strongest on the array structure nearest the 
feedline. In fact, the radiating element immediately next to the feedline 
has the strongest accumulation of current over it, and therefore is the 
dominant radiator in the array. 

The simulated gain and radiation efficiency of the proposed basic 
antenna array across 33.5 GHz to 36 GHz is shown in Fig. 5. The average 
gain and efficiency across the given frequency span are 8.7 dBi and 78.6 
%, respectively. The maximum gain and efficiency are obtained at 33.5 
GHz, which are 9.15 dBi and 81.6 %, respectively. These results show an 
identical correlation between the gain and efficiency performance of the 
array. The simulated radiation patterns of the array in the yz- and xz- 
planes at the spot frequencies of 33.5 GHz, 35 GHz, and 35.9 GHz are 
shown in Fig. 6. In the yz-plane the array radiates energy in the 
broadside with a 3 dB beamwidth of 60 degrees at 33.5 GHz and 35 GHz. 

However, at 35.9 GHz it radiates over beamwidth angle of 150 degrees. 
In the xz-plane at 33.5 GHz it radiates bidirectionally with a 3 dB 
beamwidth of 50 degrees, however at 35 GHz and 35.9 GHz it radiates 
unidirectionally with beamwidths of 120 degrees and 75 degrees, 
respectively. 

Fig. 6 shows how the beam steering is accomplished by changing the 
phase of the excitation signal. Although the beamwidth is relatively 
large compared to conventional arrays however beam steering observed 
is distinct. In Fig. 6 the phase of the excitation signal is changed from 
0 degree to 25 degrees and there is a corresponding change in the di-
rection of the main beam as predicted by the general array theory in 
Section III. This feasibility study confirms proof-of-concept by the pro-
posed technique. 

It is now shown how the array’s performance can be improved 
without affecting its dimensions. This is achieved by employing inno-
vative approach that is metamaterial inspired. The top side of the array 
is connected to its ground-plane through by short-circuiting the open- 
ends of the horizontal lines partitioning the rows of radiating elements 
using metal via-pins of 0.8 mm diameter, as shown in Fig. 7. This pro-
cedure suppresses undesired surface coupling between the radiating 
elements. In addition, each patch is loaded with a rhombus shaped slot 
with length and width of each side of 1.5 mm and 0.3 mm, respectively, 
that enlarges the effective aperture of the radiators. The slots in 

Fig. 7. Proposed antenna array including metamaterial inspired modifications, (a) modelled top-view layout, (b) fabricated array, and (c) modelled side-view.  

Fig. 8. Simulated and measured reflection coefficient response of the proposed basic array and the proposed metamaterial inspired antenna array.  
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combination with the short-circuited lines created composite right/left- 
handed or metamaterial structure as explained in [23]. 

The measured and simulated reflection coefficient response of the 
proposed basic antenna array and the modified array are shown in Fig. 8. 
There is excellent agreement between the CST Microwave Studio 
simulated response and the measured results. Compared to the proposed 
basic array, the measured results show that the proposed metamaterial 
inspired array exhibits impedance bandwidth extension of 4.2 GHz from 
32.8 GHz to 37.0 GHz for S11 ≤ -10 dB, which corresponds to a fractional 
bandwidth of 12.03 %. At the measured resonance frequency of 35.2 
GHz, the impedance match of the metamaterial inspired array is − 30.5 
dB, which an improvement of 11.5 dB. This reveals the effectiveness of 

the proposed design technique. The surface current density distribution 
at the resonant frequency of 35.02 GHz is shown in Fig. 9. Although the 
surface current is concentrated in the region of the array structure 
connected to the feedline however it can be discerned by comparing 
with Fig. 4 that the shorted circuited horizonal lines have significantly 
reduced surface currents. 

The simulated and measured gain and efficiency of the proposed 
metamaterial inspired antenna array is shown in Fig. 10. There is 
excellent correlation between the measured and simulation results. The 
gain and radiation efficiency decrease in an almost linear fashion from 
33 GHz to 37 GHz. At the measured gain is 13.45 dBi and at 37 GHz it 
reduces to 8.3 dBi. At the array’s resonance frequency of 35.2 GHz the 
gain and efficiency are 10.2 dBi and 82.41 %, respectively. Compared to 
the proposed basic antenna array the metamaterial inspired array pro-
vides improvement in gain and efficiency of 1.6 dBi and 5.64 %, 
respectively. 

The simulated and measured radiation patterns of the metamaterial 
inspired array in the yz- and xz-planes at 33.0 GHz, 35.2 GHz, and 37.0 
GHz are shown in Fig. 11. The array radiates in energy in unidirec-
tionally at all three spot frequencies. The radiation in the yz-plane is 
focused and more symmetrical at the array’s resonance frequency of 
35.2 GHz. The measured 3 dB beamwidth at 33 GHz is 32 degrees, at 
35.2 GHz is 29 degrees, and at 37 GHz is 50 degrees. Similarly, in the xz- 
plane the array radiates unidirectionally. In the xz-plane the measured 3 
dB beamwidth at 33 GHz is 40 degrees, at 35.2 GHz is 37 degrees, and at 
37 GHz is 44 degrees. Fig. 6 also shows how the radiation beam is 
steered with change in the excitation signal from 0 degree to 25 degrees. 
This feasibility study confirms proof-of-concept by the proposed 
technique. 

The above results demonstrate that the proposed technique can be 
implemented on a tightly packed antenna array designed to operate in 
the millimeter band of the electromagnetic spectrum. Moreover, the 
radiation characteristics of the array is stable over its operating fre-
quency range. These properties make the antenna suitable for various 
millimeter-wave applications including 5G and future communications 
and radar systems. 

Fig. 9. Surface current density distribution over the proposed metamaterial 
inspired antenna array at its resonance frequency of 35.2 GHz. 

Fig. 10. Simulated and measured gain and radiation efficiency of the proposed metamaterial inspired antenna array.  
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4. State-of-the-Art Comparison 

The characteristics of the proposed metamaterial inspired antenna 
array is compared in Table 1 with other recently reported mutual 
coupling reduction techniques. As is evident in Table 1, one of the main 
advantages of the proposed technique is that the array is excited using a 
single port and therefore port isolation is not an issue. Moreover, 
compared to the cited prior techniques in Table 1 the dimensions of the 
proposed antenna array are much smaller because the radiating ele-
ments can be squeezed closer to each other, and the array is less complex 
to fabricate. 

5. Conclusion 

Verified here is the design of a novel millimeter-wave antenna array 

with advantage of not requiring a separate decoupling structure, can be 
applied in a densely packed array, and is excited using a single feedline. 
The metamaterial inspired array comprises 3 × 3 matrix of inter-
connected square patches that are embedded with a rhombus shaped 
slot to enlarge the effective aperture of the antenna without comprising 
the antenna size. The rows of radiating elements are partitioned from 
each other with horizontal short-circuited microstrip-line. This tech-
nique effectively stops surface waves interacting with the radiating el-
ements. The space between the radiator elements and interconnected 
feedlines is made to ensure the phase coherency at the radiators. The 
radiation patterns of the proposed array are stable over its operating 
band. The array can be employed in various millimeter wave devices and 
systems including 5G and 6G communications, automotive and radar 
systems. 

Fig. 11. Simulated and measured radiation patterns in the yz-plane and xz-plane at 33.0 GHz, 35.2 GHz, and 37.0 GHz for excitation phase angle of 0 degree and 
25 degrees. 

Table 1 
Comparison with prior works.  

Ref. Technique Dimensions 
(λ0

2) 
Frequency band 
(GHz) 

Edge-to-edge 
space (λ 0) 

No of 
ports 

Port isolation 
(dB) 

Max. 
gain 
(dBi) 

Max. 
efficiency 
(%) 

Design 
complexity 

[24] Metamaterial 4.42 × 1.95 24.0 – 29.9  0.36 2 24 13.4 98 Moderate 
[25] Via 1.98 × 5.82 25.2 – 27.1  0.11 2 30 6.6 – High 
[26] Metasurface – 24.2 – 27.8 

36.9 – 42.8  
– 2 24 11 83 Moderate 

[27] Slot 3.89 × 1.47 22.5 – 50.0  5.25 2 20 15 84 Moderate 
[28] Dielectric resonator 4.82 × 2.10 29.7 – 31.5  0.28 2 25 7 80 High 
[29] EBG & DGS 3.87 × 3.6 27.5 – 28.35  0.54 2 32.7 9 81.9 High 
This 

work 
Metamaterial 
inspired 

2.64 £ 2.64 33.0 – 37.0  0.32 1 N/A 13.6 89.54 Low  
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