

Universidad Nacional Mayor de San Marcos

Universidad del Perú. Decana de América Facultad de Ciencias Físicas Escuela Profesional de Ingeniería Mecánica de Fluidos

Dimensionamiento hidráulico para la ampliación del gasoducto Ayacucho de acuerdo a la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín

MONOGRAFÍA TÉCNICA

Para optar el Título Profesional de Ingeniero Mecánico de Fluidos

AUTOR

Raúl Angel CAYO CHAMANA

Lima, Perú

2022

Reconocimiento - No Comercial - Compartir Igual - Sin restricciones adicionales

https://creativecommons.org/licenses/by-nc-sa/4.0/

Usted puede distribuir, remezclar, retocar, y crear a partir del documento original de modo no comercial, siempre y cuando se dé crédito al autor del documento y se licencien las nuevas creaciones bajo las mismas condiciones. No se permite aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita esta licencia.

Referencia bibliográfica

Cayo, R. (2022). Dimensionamiento hidráulico para la ampliación del gasoducto Ayacucho de acuerdo a la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín. [Monografía técnica de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Escuela Profesional de Ingeniería Mecánica de Fluidos]. Repositorio institucional Cybertesis UNMSM.

Metadatos complementarios

Datos de autor							
Nombres y apellidos	Raúl Angel Cayo Chamana						
Tipo de documento de identidad	DNI						
Número de documento de identidad	71495673						
URL de ORCID	https://orcid.org/0000-0002-9066-8877						
Datos de asesor							
Nombres y apellidos	Sin Asesor						
Tipo de documento de identidad	-						
Número de documento de identidad	-						
URL de ORCID	-						
Datos del jurado							
Presidente del jurado							
Nombres y apellidos	EUSEBIO MELCHOR VEGA BUEZA						
Tipo de documento	DNI						
Número de documento de identidad	08566064						
Miemb	oro del jurado 1						
Nombres y apellidos HENRY MANUEL PALA REYES							
Tipo de documento	DNI						
Número de documento de identidad	15860791						
Miemb	oro del jurado 2						
Nombres y apellidos	ELISEO PAEZ APOLINARIO						
Tipo de documento	DNI						
Número de documento de identidad	19948335						
Miembro del jurado 3							
Nombres y apellidos							
Tipo de documento	DNI						

Número de documento de identidad						
Datos de investigación						
Línea de investigación	A.2.5.1. Energética					
Grupo de investigación						
Agencia de financiamiento	PROPIA					
Ubicación geográfica de la investigación	País: Perú Departamentos: Ayacucho, Huancavelica y Junín					
Año o rango de años en que se realizó la investigación	2022					
URL de disciplinas OCDE	Ingeniería mecánica https://purl.org/pe-repo/ocde/ford#2.03.01					

Universidad Nacional Mayor de San Marcos (Universidad del PERÚ, Decana de América) FACULTAD DE CIENCIAS FÍSICAS

XIII CAP DE LA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA DE FLUIDOS

ACTA DE SUSTENTACIÓN VIRTUAL DE LA MONOGRAFÍA TÉCNICA PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO MECANICO DE FLUIDOS, MODALIDAD DE TITULACIÓN M-3 – POR SUFICIENCIA PROFESIONAL

Siendo las 11:19 a.m. del día sábado 5 de noviembre de 2022, en la Sala de Sesión Virtual de la Facultad de Ciencias Físicas, bajo la presidencia del Dr. Ing. EUSEBIO MELCHOR VEGA BUEZA y con la asistencia de los miembros Mg. Ing. HENRY MANUEL PALA REYES y el Mg. Ing. ELISEO PAEZ APOLINARIO, se dio inicio a la Sesión Pública Virtual de Sustentación de la Monografía Técnica para optar el Título Profesional de Ingeniero Mecánico de Fluidos, mediante la Modalidad de Titulación M-3 Por Suficiencia Profesional, del Bachiller:

RAÚL ANGEL CAYO CHAMANA

El Presidente del Jurado Examinador dio lectura del Resumen del Expediente, e invitó al Bachiller RAÚL ANGEL CAYO CHAMANA, a realizar la Exposición del trabajo de la Monografía Técnica titulada "DIMENSIONAMIENTO HIDRÁULICO PARA LA AMPLIACIÓN DEL GASODUCTO AYACUCHO DE ACUERDO A LA DEMANDA DE GAS NATURAL DE LAS REGIONES DE AYACUCHO, HUANCAVELICA Y JUNÍN".

Concluida la exposición del candidato y luego de las preguntas de rigor por parte del Jurado Examinador, el Presidente invitó al Bachiller a abandonar momentáneamente la sala de sesión para dar paso a la deliberación y calificación por parte del Jurado. Se procedió a promediar la nota final del curso de actualización y la nota de la sustentación para obtener la calificación final.

Al término de la deliberación del Jurado, se invitó al candidato a regresar a la sala de sesión para dar lectura a la calificación final obtenida por el Bachiller, la misma que fue:

DIECISEIS (16)

El Presidente del Jurado Dr. Ing. EUSEBIO MELCHOR VEGA BUEZA, a nombre de la Nación y de la Universidad Nacional Mayor de San Marcos, declaró al Bachiller RAÚL ANGEL CAYO CHAMANA Ingeniero Mecánico de Fluidos.

Siendo las 12:00 horas del mismo día, se levantó la sesión.

Dr. Ing. EUSEBIO MELCHOR VEGA BUEZA

PRESIDENTE DEL JURADO

Mg. Ing. HENRY MANUEL PALA REYES
MIEMBRO DEL JURADO

Mg. Ing. ELISEO PAEZ APOLINARIO MIEMBRO DEL JURADO

UNMSM B

Firmado digitalmente por LOZANO BARTRA Whualkuer Enrique FAU 20148092282 soft Motivo: Soy el autor del documento

DR. WHUALKUER ENRIQUE LOZANO BARTRA
VICEDECANO ACADÉMICO FCF

Datos de la plataforma virtual institucional del acto de sustentación:

https://us06web.zoom.us/j/83054274444?pwd=T1NBdWhrZTZ2ckl3SmNRZmpHczEyZz09

ID de reunión: 830 5427 4444 Código de acceso: 888183

Grabación archivada en el siguiente enlace:

Anexo 1

Informe de evaluación de Originalidad

- 1. Facultad de Ciencias Físicas
- 2. Escuela/Unidad de Posgrado

Escuela Profesional de Ingeniería Mecánica de Fluidos

- 3. Autoridad Académica que emite el informe deoriginalidad
 - El Director de la EPIMF
- 4. Apellidos y nombres de la autoridadacadémica Sarango Julca Douglas Donal
- 5. Operador del programa Informático desimilitudes
 - Dr. Ing. Douglas Sarango Julca
- 6. Documento evaluado (1)

"DIMENSIONAMIENTO HIDRÁULICO PARA LA AMPLIACIÓN DEL GASODUCTO AYACUCHO DE ACUERDO A LA DEMANDA DEL GAS NATURAL DE LAS REGIONES DE AYACUCHO, HUANCAVELICA Y JUNÍN"

- 7. Autor del documento (2)
 - RAÚL ANGEL CAYO CHAMANA
- 8. Fecha de recepción del documento 10/10/22
- Fecha de aplicación del programa informático de similitudes 11/10/22
- 10. Software utilizado
 - Turnitin (X)
 - Ithenticate
 - Otro (especificar)
- 11. Configuración del programa detector de similitudes
 - Excluye textos entrecomillados
 - Incluye Bibliografía
 - Excluye cadenas menores a 40 palabras
- Porcentaje de similitudes según programa detector de similitudes³
 8%
- 13. Fuentes originales de las similitudes encontradas⁴
- 14. Observaciones
 - Ninguna
- 15. Calificación de originalidad
 - Documento cumple criterios de originalidad, sin observaciones (X)
 - Documento cumple criterios de originalidad, con observaciones
 - Documento no cumple criterios de originalidad
- 16. Fecha del Informe 15 /11 /22

DR. ING. Douglas Sarango Julca

DIRECTOR (e) DE LA EPIMF

1 Otro (especificar) Monografía Técnica Modalidad de Titulación M-3

Suficiencia Profesional

- 2 Apellidos y Nombres completos
- 3 En letras y números
- 4 Indicarlas en orden decreciente y su respectivo porcentaje

DEDICATORIA

Dedico el presente trabajo a mis padres Isabel Nona Chamana Chipana y Angel Cayo Huamaní, así como a mi hijo Emir Sebastián Cayo Villanueva por ser ellos mi motivo de seguir creciendo profesionalmente y ser mi apoyo emocional.

AGRADECIMIENTO

Agradezco a mi entorno laboral y a mi alma mater Universidad Nacional Mayor de San Marcos por formarme en mi vida profesional.

RESUMEN

El presente trabajo trata sobre el dimensionamiento hidráulico de una posible infraestructura de transporte de gas natural que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de Oroya de la región de Junín, con la finalidad de atender la demanda de consumo del gas natural creciente de las mencionadas regiones y así llegar hacia los futuros mercados de consumo del país.

Para ello se estudió las diferentes variables que permitan el correcto diseño del gasoducto, como es la demanda de consumo que puede presentar las regiones de Ayacucho, Huancavelica y Junín, la presión de salida del inicio de la ampliación del gasoducto y el trazo del gasoducto con las mejores facilidades del terreno.

Con dichas variables, se dimensionó el gasoducto en función del diámetro, procediéndose a realizar los cálculos hidráulicos como capacidad de transporte, velocidad del gas y presión de llegada al final del gasoducto. Conocido estos cálculos técnicos se pudo definir el mejor dimensionamiento hidráulico del gasoducto para atender la proyección de la demanda de las regiones de Ayacucho, Huancavelica y Junín.

Finalmente, los resultados obtenidos permiten contribuir con la política energética que viene impulsando el Estado respecto al desarrollo de infraestructura de gas natural a nivel nacional para su masificación.

ABSTRACT

The present work deals with the hydraulic dimensioning of a possible natural gas transportation infrastructure that starts from the city of Ayacucho, passes through the Huancavelica region and ends in the city of Oroya in the Junín region, with the purpose of attending the growing demand for natural gas consumption in the aforementioned regions and thus reach the country's future consumer markets.

For this, the different variables that allow the correct design of the gas pipeline were studied, such as the consumption demand that the regions of Ayacucho, Huancavelica and Junín may present, the outlet pressure at the beginning of the expansion of the gas pipeline and the layout of the gas pipeline with the best facilities on the ground.

With these variables, the gas pipeline was sized according to its diameter, proceeding to carry out hydraulic calculations such as transport capacity, gas velocity and arrival pressure at the end of the gas pipeline. Knowing these technical calculations, it was possible to define the best hydraulic sizing of the gas pipeline to meet the demand projection of the Ayacucho, Huancavelica and Junín regions.

Finally, the results obtained allow us to contribute to the energy policy that the State has been promoting regarding the development of natural gas infrastructure at the national level for its mass use.

ÍNDICE GENERAL

DEDICATORI	A		I
AGRADECIM	IENTO.		ii
RESUMEN			.iii
ABSTRACT			. iv
ÍNDICE GENE	ERAL		V
LISTA DE FIG	SURAS.		vii
LISTA DE TA	BLAS		viii
CAPÍTULO I.	INT	RODUCCIÓN	1
1.1	Motiva	ción	. 1
1.2	Justific	ación	. 1
1.3	Descrip	oción del Problema de Investigación	. 2
	1.3.1	Problema General	. 2
	1.3.2	Problemas Específicos	. 3
1.4	Objetiv	os del Estudio	. 4
	1.4.1	Objetivo General	. 4
	1.4.2	Objetivos Específicos	. 4
1.5	Antece	dentes Investigativos	. 4
	1.5.1	Antecedentes nacionales	. 4
	1.5.2	Antecedentes internacionales	. 5
CAPÍTULO II.	MA	RCO TEÓRICO	5
2.1	Marco	Teórico	. 5
	2.1.1	Propiedades de los Gases	. 5
	2.1.2	Volumen	. 6
	2.1.3	Densidad, peso específico y volumen especifico	. 6
	2.1.4	Gravedad especifica	. 7
	2.1.5	Viscosidad	. 7
	2.1.6	Gases Ideales	12
	2.1.7	Gases Reales	
	2.1.8	Factor de Compresibilidad	15
	2.1.9	Ecuaciones para el diseño de Gasoductos	
		ón de Weymouth	
		ón de Panhandle	
	Ecuaci	ón del Instituto de Tecnología del gas (IGT)	18

	Ecuaci	ón de Flujo General con Colebrook-White	18
	Compa	ración de las ecuaciones de Flujo	20
	2.1.10	Efecto de las elevaciones en gasoductos	22
	2.1.11	Presión de segmento de tubería media	24
	2.1.12	Velocidad del Gas en una Tubería	24
	2.1.13	Número de flujo de Reynolds	26
	2.1.14	Factor de Fricción	27
	2.1.15	Ecuación de Colebrook - White	29
	2.1.16	Factor de Transmisión	29
CAPÍTULO III	. ME	TODOLOGÍA Y DESARROLLO	30
3.1	Determ	ninación del trazo del Gasoducto	31
3.2	Determ	ninación de la demanda de gas natural en el recorrido del Gasoducto	35
	3.2.1	Demanda de gas natural del sector Residencial y Comercial	35
	3.2.2	Demanda de gas natural del sector Vehicular	40
	3.2.3	Demanda del sector Industrial	42
	3.2.4	Demanda de la Generación Eléctrica	43
	3.2.5 Huanca	Demanda consolidada de gas natural de las regiones de Ayacavelica y Junín	
3.3 en tod		ión del Diámetro del Gasoducto y determinación de las propiedades d untos múltiples	
	3.3.1	Determinación del Diámetro teórico	46
	3.3.2	Cálculos Hidráulicos de la ampliación del Gasoducto	53
CAPÍTULO IV	/. RE	SULTADOS	72
4.1	Resulta	ados esperados	72
CAPÍTULO V	. co	NCLUSIONES	73
CAPÍTULO V	l. RE	COMENDACIONES	74
CAPÍTULO V	II. RE	FERENCIAS BIBLIOGRÁFICAS	75
CAPÍTULO V	III. AI	NEXOS	78

LISTA DE FIGURAS

Figura 1	Ubicación del City Gate Ayacucho	2
_	Variación de viscosidad	
Figura 3	Tabla de factores de compresibilidad para gases naturales. (De los proveedore	s de
procesad	ores de gas Asociación, Ing. Libro de datos, vol. II. Con permiso.)	14
Figura 4	Flujo constante en gasoducto	19
Figura 5	Comparación de ecuaciones de Flujo	21
Figura 6	Presiones aguas arriba para varias ecuaciones de flujo	21
Figura 7	Diagrama de Moody	28
Figura 8	Ubicación Geográfica del Trazo del Gasoducto	32
Figura 9	Esquema del trazo enfocado en los puntos donde se entregara el Gas Natural	33
Figura 10	D Esquema asumido para la determinación del Diámetro Teórico	46
Figura 1	Sistema Hidráulico del Gasoducto con diámetro Nominal 18"	62
_	2 Sistema Hidráulico del Gasoducto con diámetro Nominal 16"	

LISTA DE TABLAS

Tabla 1 Propiedades de los gases de hidrocarburos	10
Tabla 2 Viscosidad de gases comunes	11
Tabla 3 Puntos de trazo del Gasoducto	33
Tabla 4 Hogares potenciales dela región Ayacucho	36
Tabla 5 Hogares potenciales dela región Huancavelica	37
Tabla 6 Hogares potenciales dela región Junín	37
Tabla 7 Demanda potencial del sector residencial de las regiones de Ay	/acucho,
Huancavelica y Junín	38
Tabla 8 Número de Comercios y demanda potencial del sector comercial de las	regiones
de Ayacucho, Huancavelica y Junín	39
Tabla 9 Número de potencial de vehículos a convertir en las regiones de Ay	/acucho,
Huancavelica y Junín	
Tabla 10 Demanda de gas natural del sector vehicular en las regiones de Ay	
Huancavelica y Junín	
Tabla 11 Demanda de gas natural del sector Industrial de la región de Junín	42
Tabla 12 Parámetros de la Generación Eléctrica en la región de Junín	43
Tabla 13 Demanda de gas natural de la Generación Eléctrica de la región de J	unín . 44
Tabla 14 Demanda consolidada de gas natural de las regiones de Ay	
Huancavelica y Junín	
Tabla 15 Demanda consolidada de gas natural separada de las regiones de Ay	
Huancavelica y Junín al año 2043	
Tabla 16 Parámetros iniciales de presión y temperatura	
Tabla 17 Parámetros finales de presión y temperatura	
Tabla 18 Caudal de diseño	
Tabla 19 Parámetros de la gravedad especifica del gas natural	
Tabla 20 Parámetro del factor de compresibilidad	
Tabla 21 Parámetros iniciales para terminar la longitud equivalente	
Tabla 22 Dato de la longitud equivalente	50
Tabla 23 Parámetros de la temperatura y presión base	
Tabla 24 Parámetros de la viscosidad del gas natural	
Tabla 25 Parámetros de la rugosidad	
Tabla 26 Parámetros supuestos para determinar el diámetro teórico	
Tabla 27 Iteración para hallar el factor de fricción	
Tabla 28 Parámetros del Diámetro Comercial de 16"	
Tabla 29 Parámetros del Diámetro Comercial de 18"	
Tabla 30 Cálculo Hidráulico del Gasoducto de diámetro Nominal de 18"	
Tabla 31 Cálculo Hidráulico del Gasoducto de diámetro Nominal 16"	63

CAPÍTULO I.INTRODUCCIÓN

1.1 Motivación

En el Perú se está presentando una política energética que incentiva el uso masivo del gas natural a nivel nacional en diferentes sectores económicos, tales como el sector residencial, comercial, industrial, vehicular y generación eléctrica.

Asimismo, el Ministerio de Energía y Minas promueve proyectos de inversión y establece normativas que permitan fructificar el mercado del gas natural, debido a las ventajas que este tiene frente a los combustibles derivados del petróleo, por ser menos contaminante, de menor costo y considerándose que dentro del país se cuenta con reservas muy importantes en los yacimientos de Camisea (Cusco).

En ese contexto, la motivación del presente trabajo consiste en desarrollar el dimensionamiento hidráulico para el desarrollo inicial de una posible ampliación de infraestructura de transporte de gas natural que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de Oroya de la región de Junín con la finalidad de atender la demanda de consumo del gas natural creciente de las mencionadas regiones y así llegar hacia los futuros mercados de consumo del país.

1.2 Justificación

El desarrollo que comprende este estudio se enfocara en el dimensionamiento hidráulico para la ampliación del gasoducto Ayacucho de acuerdo a la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín, permitiendo así que el presente trabajo pueda ser tomado como referencia para un futuro proyecto de ampliación de infraestructura de transporte de gas natural y así contribuir con la política energética que viene impulsando el Estado respecto al desarrollo de infraestructura de gas natural a nivel nacional.

Asimismo, es preciso indicar que las regiones de Ayacucho, Huancavelica y Junín por donde se proyecta el trazo de la ampliación de gasoducto son regiones que demandan el uso del gas natural en sus diferentes sectores de consumo, en ese aspecto conocer el dimensionamiento hidráulico que pueda presentar la posible ampliación de gasoducto Ayacucho permita conocer si

es posible atender la demanda de gas natural que puedan presentar las regiones de Ayacucho, Huancavelica y Junín.

Finalmente, se debe considerar la importancia que representa incentivar el desarrollo de infraestructura de gas natural para el avance de proyectos de masificación de gas natural que en la actualidad viene promocionando el Estado del Perú mediante el Ministerio de Energía y Minas.

1.3 Descripción del Problema de Investigación

1.3.1 Problema General

El gasoducto derivación principal Ayacucho comienza en el distrito de Chiara, provincia Huamanga, región Ayacucho, y finaliza en los límites de la ciudad de Ayacucho. En el punto final de dicho gasoducto se encuentra un City Gate tal como se puede apreciar en la figura 1; dicho gasoducto consta de una longitud de 18.33 km aproximadamente y de un diámetro de 14" pulgadas (ver Anexo B).

Figura 1

Ubicación del City Gate Ayacucho

Nota 1. Fuente: Google Earth (2020) – Elaboración Propia Nota 2. La ubicación del lugar se encuentra en el siguiente link: https://www.google.com/maps/@-13.1843262,-74.1821138,233m/data=!3m1!1e3

En tal sentido, un problema identificado es que el gasoducto derivación principal Ayacucho de la empresa Transportadora de Gas del Perú S.A., no viene siendo utilizado desde la terminación de su construcción en el año 2016.

Asimismo, el Estado tiene la prioridad de promover proyectos para la masificación de gas natural en las regiones de Ayacucho, Junín y Huancavelica tal como ya se comprometió en el Anexo I del Programa Anual de Promociones 2022, (Ministerio de Energía y Minas, 2022).

Por ello, la presente monografía técnica hallara el dimensionamiento hidráulico para la ampliación del gasoducto Ayacucho que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región de Junín con el fin de atender las necesidades de consumo de gas natural que se vienen demandando en las mencionadas regiones y así llegar hacia los futuros mercados de consumo del país.

En tal sentido, el problema principal de la investigación es:

¿Cuál es el dimensionamiento hidráulico para la ampliación de un gasoducto que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región de Junín con la mejor condición que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín?

1.3.2 Problemas Específicos

- ¿Cuál es el trazo indicado de la ampliación del gasoducto que pase por las regiones de Ayacucho, Huancavelica y Junín?
- ¿Cuál es la demanda proyectada de gas natural de los diferentes sectores de consumo que presenta las regiones de Ayacucho, Huancavelica y Junín?
- ¿Cuáles son las especificaciones técnicas de la ampliación del gasoducto que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín?
- ¿Cuáles son los variables hidráulicas de la ampliación del gasoducto?

1.4 Objetivos del Estudio

1.4.1 Objetivo General

Determinar el dimensionamiento hidráulico para la ampliación de un gasoducto que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región de Junín con la mejor condición que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín

1.4.2 Objetivos Específicos

- Proponer el trazo indicado de la ampliación del gasoducto que pase por las regiones de Ayacucho, Huancavelica y Junín
- Determinar la demanda proyectada de gas natural de los diferentes sectores de consumo que presenta las regiones de Ayacucho, Huancavelica y Junín
- Seleccionar las especificaciones técnicas de la ampliación del gasoducto que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín
- Determinar las variables hidráulicas de la ampliación del gasoducto que pase por las regiones de Ayacucho, Huancavelica y Junín

1.5 Antecedentes Investigativos

1.5.1 Antecedentes nacionales

(Energy Sector Management Assistance Program, 2006). "Extensión de Ramales de Gas Natural al Interior del Perú".

El objetivo fue ofrecer consideraciones sobre la estrategia y la estructuración de las futuras concesiones que brinden el servicio de provisión del gas natural en las regiones de Ayacucho, Junín, Ica y Cusco con la extensión de ramales de gas natural. El resultado fue una estimación de proyecciones en diferentes sectores de consumo de gas natural hasta el año 2025, ingeniería básica y estimaciones económicas (tarifas, ingresos, costos de implementación, costos en operación y mantenimiento, VAN) en el desarrollo de gasoductos en el interior del Perú.

(Sánchez, 2014). "Gasoducto Perú Centro"

El objetivo fue proponer una línea de abastecimiento de gas natural a la zona centro del Perú mediante gasoductos, que tendría como punto de origen el yacimiento de gas natural de Camisea – Cusco con dos puntos intermedios de entrega que son las provincias de Junín y Pasco. El resultado fue la determinación de la sensibilidad económica que permita desarrollar la línea de abastecimiento de gas natural en la zona centro de nuestro pais.

1.5.2 Antecedentes internacionales

(R. Lopez, 2015) "Redes de Transporte de Gas Natural - Optimización de la logística de abastecimiento (2014-2030)"

El objetivo fue proponer un rediseño de las redes que transportan el gas natural en el país de Argentina 2014-2030 y definir un modelo que permita evaluar la necesidad de ampliaciones de dichas redes. El resultado de acuerdo a la proyección de la oferta y la demanda identificada, es que los gasoductos de Argentina al momento del estudio se encuentran saturados para lo cual concluyó que se requieren ampliaciones y construcciones de nuevos gasoductos que reciban gradualmente la oferta de gas natural futura.

CAPÍTULO II.MARCO TEÓRICO

2.1 Marco Teórico

Representa las indagaciones, concepciones, destrezas aplicadas, las cuales se usaran de insumo para la presente monografía técnica, además cuenta con la explicación de las bases teóricas.

Para ello se requirió a información como Google Académico y libros que se enfocan en la mecánica de fluidos las cuales se irán mencionando en las referencias de cada contenido.

2.1.1 Propiedades de los Gases

Según (Menon, 2005). Las propiedades de los gases, como densidad, viscosidad y compresibilidad pueden cambiar con la temperatura y la presión.

En ese aspecto, es importante tener en cuenta que conocer las propiedades de los gases es un primer paso importante hacia el análisis de un gasoducto en la parte hidráulica.

2.1.2 Volumen

Según (Menon, 2005). El volumen de un gas, es el espacio que ocupa una determinada masa de gas a una determinada temperatura y presión.

2.1.3 Densidad, peso específico y volumen específico

Según (Menon, 2005). La densidad representa la cantidad de gas como masa que se puede empaquetar en un volumen dado.

Por lo tanto, la densidad queda expresado de la siguiente manera:

$$\rho = \frac{m}{V} \tag{1}$$

Dónde:

 $\rho = Densidad del gas$

m = Masa del gas

V = Volumen del gas

Según (Menon, 2005). La densidad se expresa en slug/ft³ o libras/pies³ en unidades USCS y kg/m³ en unidades SI. Un término completamente llamado peso específico también se utiliza cuando se hace referencia a la densidad de gas. El peso específico, es representado por el símbolo γ , este viene a ser el peso del gas por unidad de volumen medido en lb/ft en unidades USCS y, por lo tanto, se contrasta con la densidad que se mide en slug/ft³. En unidades del SI, el peso específico se expresa en Newton/m³.

Según (Menon, 2005). El reciproco del peso específico se conoce como volumen específico. Por definición, el volumen específico representa el volumen ocupado por unidad de peso de gas, se mide en pies³/lb en unidades del USCS y m³/N en unidades del SI.

2.1.4 Gravedad especifica

Según (Menon, 2005). La Gravedad específica de un gas, a veces llamado gravedad, es una medición de cuán pesado es el gas en colación con el aire a una temperatura determinada. Podría llamarse densidad relativa, expresado como la relación entre la densidad del gas y la densidad del aire. Por lo tanto, la gravedad específica es una relación, lo que lo convierte en una cantidad adimensional.

$$G = \frac{\rho_{Gas}}{\rho_{aire}} \tag{2}$$

Dónde:

G = Gravedad específica, adimensional

 $\rho_{Gas} = \text{Densidad del gas}$

 ρ_{Gas} = Densidad del aire

La tabla 1 enumera los pesos moleculares y otras propiedades de varios gases de hidrocarburos.

2.1.5 Viscosidad

Según (Menon, 2005). La viscosidad de un fluido representa su resistencia a fluir. Cuanto mayor sea la viscosidad, le es más difícil fluir.

Según (Menon, 2005). La viscosidad tiene un rol importante en la determinación del tipo de flujo que se tengan en las tuberías. El número de Reynolds es un parámetro adimensional que utiliza para clasificar el tipo de fluido en tuberías. De la viscosidad del gas dependen, el caudal, el diámetro de la tubería, temperatura y la presión.

Según (Menon, 2005). Otro término relacionado es la viscosidad cinemática, esta es simplemente la viscosidad absoluta divida por la densidad. Las dos viscosidades se relacionan de la siguiente manera:

$$v = \frac{\mu}{\rho} \tag{3}$$

Dónde, en unidades USCS:

 $v = viscosidad cinemática, ft^2/s$

 $\mu = \text{viscosidad dinámica, lb/ft-s}$

 $\rho = \text{densidad}, \text{lb/ft}^3$

y, en unidades del SI:

v = viscosidad cinemática, St

 $\mu = \text{viscosidad dinámica, P}$

 $\rho = \text{densidad, kg/m}^3$

Según (Menon, 2005). La viscosidad de un gas se encuentra en función de su presión y temperatura. A diferencia de los líquidos, la viscosidad de un gas aumenta con el incremento de la temperatura. En tal sentido, a medida que aumenta la temperatura del gas, la cantidad de gas que fluye a través una tubería disminuye; por lo tanto, es posible un mayor rendimiento en un gasoducto que trabajen a menores temperaturas.

Según (Menon, 2005). Cabe señalar que, en discrepancia con los líquidos, la presión si afecta la viscosidad de un gas. La figura 2 muestra el cambio de la viscosidad del gas con variaciones en su temperatura. La tabla 2 enumera las viscosidades de los gases comunes.

Según (Menon, 2005). Dado que el gas natural es una mezcolanza de gases puros como el metano y el etano, la fórmula siguiente se utiliza para calcular la viscosidad a partir de las viscosidades de los gases componentes:

$$\mu = \frac{\sum (\mu_i y_i \sqrt{M_i})}{\sum (y_i \sqrt{M_i})} \tag{4}$$

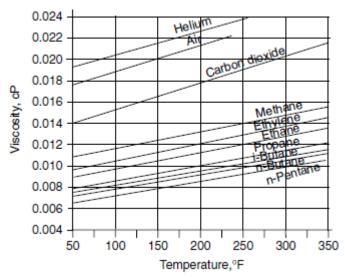
Dónde:

 $\mu=\,$ viscosidad dinámica de la mezcla de gases

 $\mu_i = \,$ viscosidad dinámica del componente gaseoso i

 $y_i = \,$ fracción molar o porcentaje del componente gaseoso i

 $M_i = {
m peso} {
m molecular} {
m del} {
m componente} {
m gaseoso} {
m i}$


Tabla 1Propiedades de los gases de hidrocarburos

			Vapor Pressure	Critical Constants			Ideal Gas 14.696 psia, 60°F		Specific Heat, Btu/lb/°F
Gas	Formula	Molecular Weight	psia at 100°F	Pressure psia	Temperature °F	Volume ft³/lb	Spgr (air=1.00)	ft³/lb-gas	14.696 psia, 60°F Ideal Gas
Methane	CH₄	16.0430	5000	666.0	-116.66	0.0988	0.5539	23.654	0.52676
Ethane	C ₂ H ₆	30.0700	800	707.0	90.07	0.0783	1.0382	12.620	0.40789
Propane	C ₃ H ₈	44.0970	188.65	617.0	205.93	0.0727	1.5226	8.6059	0.38847
Isobutane	C ₄ H ₁₀	58.1230	72.581	527.9	274.4	0.0714	2.0068	6.5291	0.38669
n-butane	C ₄ H ₁₀	58.1230	51.706	548.8	305.52	0.0703	2.0068	6.5291	0.39500
Iso-pentane	C ₅ H ₁₂	72.1500	20.443	490.4	368.96	0.0684	2.4912	5.2596	0.38448
n-pentane	C ₅ H ₁₂	72.1500	15.575	488.1	385.7	0.0695	2.4912	5.2596	0.38831
Neo-pentane	C ₅ H ₁₂	72.1500	36.72	464.0	321.01	0.0673	2.4912	5.2596	0.39038
n-hexane	C ₆ H ₁₄	86.1770	4.9596	436.9	453.8	0.0688	2.9755	4.4035	0.38631
2-methyl pentane	C ₆ H ₁₄	86.1770	6.769	436.6	435.76	0.0682	2.9755	4.4035	0.38526
3-methyl pentane Neo hexane	C ₆ H ₁₄	86.1770 86.1770	6.103 9.859	452.5 446.7	448.2 419.92	0.0682 0.0667	2.9755 2.9755	4.4035 4.4035	0.37902 0.38231
2,3-dimethylbutane	C ₆ H ₁₄ C ₆ H ₁₄	86.1770	7.406	454.0	440.08	0.0665	2.9755	4.4035	0.37762
n-Heptane	C ₇ H ₁₆	100.2040	1.621	396.8	512.8	0.0682	3.4598	3.7872	0.38449
2-Methylhexane	C ₇ H ₁₆	100.2040	2.273	396.0	494.44	0.0673	3.4598	3.7872	0.38170
3-Methylhexane	C ₇ H ₁₆	100.2040	2.13	407.6	503.62	0.0646	3.4598	3.7872	0.37882
3-Ethylpentane	C ₇ H ₁₆	100.2040	2.012	419.2	513.16	0.0665	3.4598	3.7872	0.38646
2,2-Dimethylpentane	C ₇ H ₁₆	100.2040	3.494	401.8	476.98	0.0665	3.4598	3.7872	0.38651
2,4-Dimethylpentane	C ₇ H ₁₆	100.2040	3.294	397.4	475.72	0.0667	3.4598	3.7872	0.39627
3,3-Dimethylpentane	C ₇ H ₁₆	100.2040	2.775	427.9	505.6	0.0662	3.4598	3.7872	0.38306
Triptane	C ₇ H ₁₆	100.2040	3.376	427.9	496.24	0.0636	3.4598	3.7872	0.37724
n-octane	C ₈ H ₁₈	114.2310	0.5371	360.7	564.15	0.0673	3.9441	3.322	0.38334
Di Isobutyl	C ₈ H ₁₈	114.2310	1.1020	361.1	530.26	0.0676	3.9441	3.322	0.37571
Isooctane	C ₈ H ₁₈	114.2310	1.7090	372.7	519.28	0.0657	3.9441	3.322	0.38222
n-Nonane	C ₉ H ₂₀	128.2580	0.17155	330.7	610.72	0.0693	4.4284	2.9588	0.38248
n-Decane	C ₁₀ H ₂₂	142.2850	0.06088	304.6	652.1	0.0702	4.9127	2.6671	0.38181
Cyclopentane	C ₅ H ₁₀	70.1340	9.917	653.8	461.1	0.0594	2.4215	5.411	0.27122
Methylcyclopentane Cyclohexane	C ₆ H ₁₂ C ₆ H ₁₂	84.1610 84.1610	4.491 3.267	548.8 590.7	499.28 536.6	0.0607 0.0586	2.9059 2.9059	4.509 4.509	0.30027 0.29012
Methylcyclohexane	C ₇ H ₁₄	98.1880	1.609	503.4	570.2	0.0600	3.3902	3.8649	0.31902
Ethylene	C ₂ H ₄	28.0540	1400	731.0	48.54	0.0746	0.9686	13.527	0.35789
Propylene	C ₃ H ₆	42.0810	232.8	676.6	198.31	0.0717	1.4529	9.0179	0.35683
Butylene	C ₄ H ₈	56.1080	62.55	586.4	296.18	0.0683	1.9373	6.7636	0.35535
Cis-2-butene	C ₄ H ₈	56.1080	45.97	615.4	324.31	0.0667	1.9373	6.7636	0.33275
Trans-2-butene	C ₄ H ₈	56.1080	49.88	574.9	311.8	0.0679	1.9373	6.7636	0.35574
Isobutene	C ₄ H ₈	56.1080	64.95	580.2	292.49	0.0681	1.9373	6.7636	0.36636
1-Pentene	C ₅ H ₁₀	70.1340	19.12	509.5	376.86	0.0674	2.4215	5.411	0.35944
1,2-Butadene	C ₄ H ₆	54.0920	36.53	656.0	354	0.0700	1.8677	7.0156	0.34347
1,3-Butadene	C ₄ H ₆	54.0920	59.46	620.3	306	0.0653	1.8677	7.0156	0.34223
Isoprene	C ₅ H ₈	68.1190	16.68	582.0	403	0.0660	2.3520	5.571	0.35072
Acetylene	C ₂ H ₂	26.0380		890.4	95.29	0.0693	0.8990	14.574	0.39754
Benzene	C ₆ H ₆	78.1140	3.225	710.4	552.15	0.0531	2.6971	4.8581	0.24295
Toluene	C ₇ H ₈	92.1410	1.033	595.5	605.5	0.0549	3.1814	4.1184	0.26005
Ethyl-benzene	C _g H ₁₀	106.1670	0.3716	523	651.22	0.0564	3.6657	3.5744	0.27768
o-Xylene	C ₈ H ₁₀	106.1670	0.2643	541.6	674.85	0.0557	3.6657	3.5744	0.28964
m-Xylene	C ₈ H ₁₀	106.1670	0.3265	512.9	650.95	0.0567	3.6657	3.5744	0.27427
p-Xylene		106.1670	0.3424	509.2	649.47	0.0572	3.6657	3.5744	0.27470
Styrene	C ₈ H ₁₀ C ₈ H ₈	104.1520	0.2582	587.8	703	0.0572	3.5961	3.6435	0.26682
•		120.1940	0.188	465.4	676.2	0.0569	4.1500	3.1573	0.30704
Isopropylbenzene	C ₉ H ₁₂								
Methyl alcohol	CH₄O	32.0420	4.631	1174	463.01	0.0590	1.1063	11.843	0.32429
Ethyl alcohol	C ₂ H ₆ O	46.0690	2.313	891.7	465.31	0.0581	1.5906	8.2372	0.33074
Carbon monoxide	CO	28.0100		506.8	-220.51	0.0527	0.9671	13.548	0.24847
Carbon dioxide	CO ₂	44.0100	004.50	1071	87.73	0.0342	1.5196	8.6229	0.19909
Hydrogen sulfide	H₂S	34.0820	394.59	1306	212.4	0.0461	1.1768	11.134	0.23838
Sulfur dioxide	SO ₂	64.0650	85.46	1143	315.7	0.0305	2.2120	5.9235	0.14802
Ammonia	NH ₃	17.0305	211.9	1647	270.2	0.0681	0.5880	22.283	0.49678
Air	$N_2 + O_2$	28.9625		546.9	-221.29	0.0517	1.0000	13.103	0.2398
Hydrogen	H_2	2.0159		187.5	-400.3	0.5101	0.06960	188.25	3.4066
Oxygen	O_2	31.9988		731.4	-181.4	0.0367	1.1048	11.859	0.21897
Nitrogen	N_2	28.0134		493	-232.48	0.0510	0.9672	13.546	0.24833
Chlorine	Cl ₂	70.9054	157.3	1157	290.69	0.0280	2.4482	5.3519	0.11375
Water	H ₂ O	18.0153	0.95	3200.1	705.1	0.04975	0.62202	21.065	0.44469
Helium	He	4.0026		32.99	-450.31	0.2300	0.1382	94.814	1.24040
	HCI	36.4606	906.71	1205	124.75	0.0356	1.2589	10.408	0.19086

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis Group (https://doi.org/10.1201/9781420038224)

Figura 2

Variación de viscosidad

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis (Group https://doi.org/10.1201/9781420038224)

Tabla 2
Viscosidad de gases comunes

Gas	Viscosity (cP)
Methane	0.0107
Ethane	0.0089
Propane	0.0075
i-Butane	0.0071
n-Butane	0.0073
i-Pentane	0.0066
n-Pentane	0.0066
Hexane	0.0063
Heptane	0.0059
Octane	0.0050
Nonane	0.0048
Decane	0.0045
Ethylene	0.0098
Carbon Monoxide	0.0184
Carbon Dioxide	0.0147
Hydrogen Sulphide	0.0122
Air	0.0178
Nitrogen	0.0173
Helium	0.0193

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis (Group https://doi.org/10.1201/9781420038224)

2.1.6 Gases Ideales

Según (Menon, 2005). Si M simboliza el peso molecular de un gas y la masa de cierta suma de gas es m, el número de moles viene representado por:

$$n = \frac{m}{M} \tag{5}$$

Donde n representa el número de moles en una determinada masa. La ley de gases ideales a veces denominada ecuación de los gases perfectos, estrictamente establece que la presión, el volumen y la temperatura del gas están relacionados con el número de moles de acuerdo a la siguiente ecuación en USCS:

$$PV = nRT (6)$$

Donde:

P =Presión absoluta del gas, psia

 $V = \text{volumen del gas, ft}^3$

n = numero de lb moles como se define en la ecuación 5

 $R = \text{constante universal de los gases, psia ft}^3$ / lb mole °R

T = temperatura absoluta del gas, °R (°F+460)

2.1.7 Gases Reales

Según (Menon, 2005). En el caso de gases reales, se puede aplicar la ecuación del gas ideal mencionada en el presente trabajo y conseguir resultados sensatamente precisos, esto solo se da cuando las presiones se encuentran cercana a la presión atmosférica. En el caso de que las presiones sean más altas, la aplicación de la ecuación del gas ideal no dará resultados adecuados para la mayoría de los gases reales. Los resultados que se obtengan al aplicar la ecuación de los gases ideales a altas presiones pueden llegar a errores de hasta el 500% en algunos casos. Esto en comparación con los errores del 2 a 3% a por la aplicación de la formula a presiones menores.

Según (Menon, 2005). Es necesario definir dos parámetros nombrados presión crítica y temperatura crítica. La temperatura crítica de un gas puro se conoce como la temperatura máxima donde un gas no se puede comprimir para formar un líquido, independientemente de la presión. La presión crítica se conoce como la presión mínima que se necesita comprimir para llegar a la temperatura crítica de un gas para formar un líquido.

Según (Menon, 2005). Se puede considerar que los gases reales tienen una forma rectificada de la ley de los gases ideales. El factor de modificación se encuentra incluida en la propiedad del gas denominada el factor de compresibilidad Z. A esto también se le conoce como factor de desviación del gas. Este factor es definido como la proporción entre el volumen de gas a una temperatura y presión dada y la del volumen que albergaría el gas si fuera un gas ideal a la misma presión y temperatura. El factor Z es un número adimensional menor que 1.0 que cambia con la composición del gas, presión y temperatura.

Según (Menon, 2005). Usando el componente de compresibilidad denominado Z, la ecuación del gas ideal se modifica para valores reales del gas de la siguiente manera, en unidades USCS:

$$PV = ZnRT (7)$$

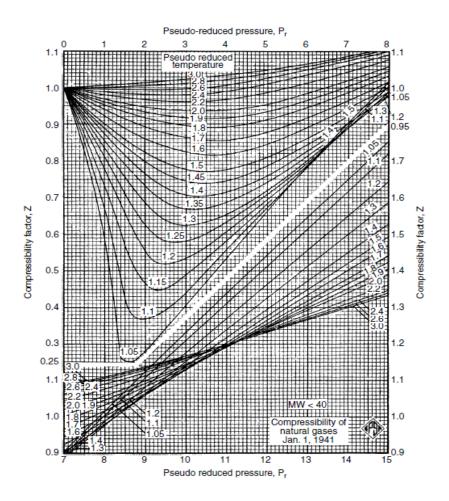
Donde:

P =Presión absoluta del gas, psia

 $V = \text{volumen del gas, ft}^3$

Z = Factor de compresibilidad del gas, adimensional

n = numero de lb moles como se define en la ecuación 5


 $R = \text{constante universal de los gases, psia ft}^3$ / lb mole °R

T = temperatura absoluta del gas, °R (°F+460)

Si la temperatura y la presión son reducidas, entonces sus elementos de desviación del gas (Z) serán iguales. En tal sentido, los gráficos generalizados que exponen la variación de Z por la reducción de la presión y la temperatura se pueden utilizar para un mayor conjunto de gases donde se requieran calcular el factor de compresibilidad. Dicho gráfico se muestra en la figura 3.

Figura 3

Tabla de factores de compresibilidad para gases naturales. (De los proveedores de procesadores de gas Asociación, Ing. Libro de datos, vol. II. Con permiso.)

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis Group (https://doi.org/10.1201/9781420038224)

2.1.8 Factor de Compresibilidad

Según (Menon, 2005). El factor de compresibilidad, o factor de desviación del gas, es una medida que te permite conocer qué tan aproximado está un gas real de un gas ideal. El factor de compresibilidad se conoce como la relación entre el volumen de gas a una presión y temperatura dadas y el volumen que habitaría el gas si fuera un gas ideal a la misma presión y temperatura. El factor de compresibilidad es un número adimensional próximo a 1,00 y se encuentra en función de la gravedad del gas, la temperatura del gas, la presión del gas y los parámetros críticos del gas.

Según (Menon, 2005). Se tiene elaborado gráficos que representan la desviación de Z con la presión y la temperatura. Asimismo, se tiene otro término denominado el "factor de supercompresibilidad", F_{pv} , que está relacionado con el factor de compresibilidad Z, y se define de la siguiente manera:

$$F_{pv} = \frac{1}{\sqrt{Z}} \tag{8}$$

$$Z = \frac{1}{F_{pv}^2} \tag{9}$$

Según (Menon, 2005). De acuerdo, con el método de la Asociación de Gas Natural de California (CNGA), existe una ecuación bastante simple para calcular el factor de compresibilidad cuando se conocen la gravedad, la presión y la temperatura del gas. La siguiente ecuación se utiliza para calcular el factor de compresibilidad Z:

$$Z = \left(\frac{1}{1 + (\frac{P_{avg} \cdot 344,400 \cdot 10^{1.785G}}{T_f^{3.825}})}\right)$$
(10)

Según (Menon, 2005). Esta fórmula para el factor de compresibilidad es válida cuando la presión media del gas, P_{avg} , es más de 100 psig. Para presiones inferiores a 100 psig, Z es aproximadamente igual a 1,00.

Donde:

 P_{avg} = Presión de gas promedio, psig

 $T_f = \text{Temperatura media del gas, } ^\circ \text{R}$

G = Gravedad del gas, (aire = 1.00)

2.1.9 Ecuaciones para el diseño de Gasoductos

Para el diseño de gasoductos existen diferentes fórmulas a usar, las mismas que se detallan a continuación:

Ecuación de Weymouth

Según (Menon, 2005). La ecuación de Weymouth se usa para alta presión, alta tasa de flujo y grandes sistemas de captación de gas de diámetro. Esta ecuación estima claramente el caudal a través una tubería para valores dados de gravedad del gas, compresibilidad, presiones de ingreso y salida, diámetro y longitud de la tubería. En unidades USCS, la ecuación de Weymouth se establece de la siguiente manera:

$$Q = 433.5E \left(\frac{T_b}{P_b}\right) \left(\frac{{P_1}^2 - e^s {P_2}^2}{GT_f L_e Z}\right)^{0.5} D^{2.667}$$
(11)

Dónde:

Q =Caudal del gas, medido en condiciones estándar, (SCFD)

E = Eficiencia de gasoducto, un valor decimal menor o igual a 1.0

 P_b = Presión base, psia

 $T_b = \text{Temperatura base}, R (460 + {}^{\circ}F)$

 P_1 = Presión agua arriba, psia

 P_2 = Presión aguas abajo, psia

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, R (460 + °F)

 L_e = Longitud equivalente del segmento de tubería, millas

e = Base de logaritmos naturales, (e = 2.718)

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, in

Ecuación de Panhandle

Según (Menon, 2005). La Ecuación Panhandle fue desarrollada para su uso en gasoductos de gas natural, añadiendo un factor de eficiencia para los números de Reynolds en el rango de 5 a 11 millones. En la ecuación de Panhandle, la rugosidad de la tubería no se utiliza. La forma general del Panhandle se expresa en unidades USCS de la siguiente manera:

$$Q = 435.87E \left(\frac{T_b}{P_b}\right)^{1.0788} \left(\frac{P_1^2 - e^s P_2^2}{G^{0.8539} T_f L_e Z}\right)^{0.5394} D^{2.6182}$$
(12)

Dónde:

Q =Caudal del gas, medido en condiciones estándar, (SCFD)

E = Eficiencia de gasoducto, un valor decimal menor o igual a 1.0

 P_b = Presión base, psia

 $T_b = \text{Temperatura base}, R (460 + {}^{\circ}F)$

 P_1 = Presión agua arriba, psia

 P_2 = Presión aguas abajo, psia

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, R (460 + °F)

 L_e = Longitud equivalente del segmento de tubería, millas

e = Base de logaritmos naturales, (e = 2.718)

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, in

Ecuación del Instituto de Tecnología del gas (IGT)

Según (Menon, 2005). La ecuación IGT propuesta por el Instituto de Tecnología del Gas también se conoce como Ecuación de distribución IGT y se establece de la siguiente manera para unidades USCS:

$$Q = 136.9E\left(\frac{T_b}{P_b}\right) \left(\frac{P_1^2 - e^s P_2^2}{G^{0.8} T_f L_e \mu^{0.2}}\right)^{0.555} D^{2.667}$$
(13)

Dónde:

Q =Caudal del gas, medido en condiciones estándar, (SCFD)

E = Eficiencia de gasoducto, un valor decimal menor o igual a 1.0

 P_b = Presión base, psia

 $T_b = \text{Temperatura base}, R (460 + {}^{\circ}F)$

 P_1 = Presión agua arriba, psia

 P_2 = Presión aguas abajo, psia

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, R (460 + °F)

 L_e = Longitud equivalente del segmento de tubería, millas

e = Base de logaritmos naturales, (e = 2.718)

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, in

 $\mu = \text{Viscosidad del gas}, lb/ft - s$

Ecuación de Flujo General con Colebrook-White

Según (Menon, 2005). La ecuación de flujo general, también llamada la ecuación del flujo fundamental, para el flujo isotérmico en estado estacionario en un gasoducto es la ecuación primordial para concernir la caída de presión con caudal. La representación más común de esta ecuación en unidades del USCS se da en términos de diámetro de tubería, propiedades del gas, temperaturas, presiones y caudal. Ver figura 4 para apreciar los símbolos utilizados en la ecuación en unidades USCS:

$$Q = 77.54 \left(\frac{T_b}{P_b}\right) \left(\frac{{P_1}^2 - {P_2}^2}{GT_f LZf}\right)^{0.5} D^{2.5}$$
(14)

Dónde:

 $Q = \text{Caudal del gas, medido en condiciones estándar, } ft^3/dia (SCFD)$

f = Factor de Fricción, adimensional

 $P_b =$ Presión base, psia

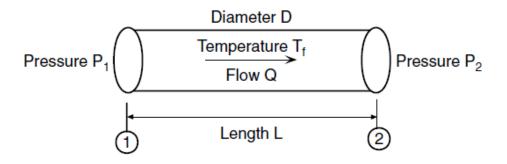
 $T_b = \text{Temperatura base, } ^{\circ}R (460 + ^{\circ}F)$

 P_1 = Presión agua arriba, psia

 P_2 = Presión aguas abajo, psia

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, °R (460 + °F)


L = Longitud del segmento de tubería, millas

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, in

Debe tenerse en cuenta que para el segmento de tubería de la sección 1 a la sección 2, la temperatura T_f se supone que es constante (flujo isotérmico).

Flujo constante en gasoducto

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis (Group https://doi.org/10.1201/9781420038224)

En unidades SI, la ecuación de Flujo General se expresa de la siguiente manera:

$$Q = 1.1494 \times 10^{-3} \left(\frac{T_b}{P_b}\right) \left(\frac{{P_1}^2 - {P_2}^2}{GT_f LZf}\right)^{0.5} D^{2.5}$$
(15)

Dónde:

 $Q = \text{Caudal del gas, medido en condiciones estándar, } m^3/dia$

f = Factor de Fricción, adimensional

 $P_b = \text{Presión base}, kPa$

 $T_b = \text{Temperatura base}, K (273 + {}^{\circ}C)$

 P_1 = Presión agua arriba, kPa

 P_2 = Presión aguas abajo, kPa

G = Gravedad del gas, (air = 1.00)

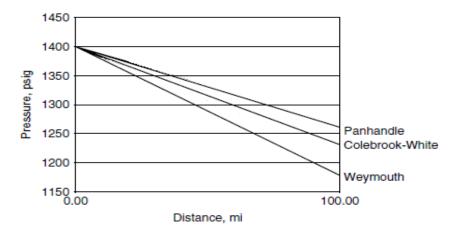
 T_f = Temperatura media del flujo del Gas, K (273 + ° \mathcal{C})

L = Longitud del segmento de tubería, km

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, <math>mm

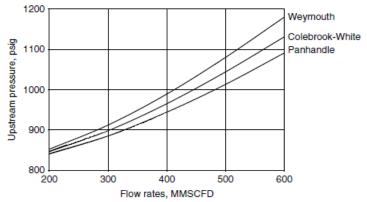
Según (Menon, 2005). Debido a la naturaleza de la Ecuación 15 las presiones también pueden ser en Mpa o Bar. Siempre y cuando se utilice la misma unidad uniforme.


Comparación de las ecuaciones de Flujo

Según (Menon, 2005). Cada ecuación es ligeramente diferente de la otra, y algunas ecuaciones consideran la eficiencia de la tubería mientras que otras usan una tubería interna valor de rugosidad. Obviamente, algunas ecuaciones predecirán tasas de flujo más altas para las mismas presiones que otros.

La Figura 4 y 5 muestran algunas de estas comparaciones cuando se utiliza la Ecuación de flujo con Colebrook-White, Ecuación de Panhandle y Ecuación de Weymouth.

Figura 5


Comparación de ecuaciones de Flujo

Nota 1. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis (Group https://doi.org/10.1201/9781420038224) Nota 2. Considera una tubería de 100 millas de largo, NPS 16" con una pared de 0.250 in de espesor, operando a un caudal de 100 MMSCFD. La temperatura de flujo del gas es 80°F. Con la presión aguas arriba fijada en 1400 psig, la presión aguas abajo fue calculado utilizando las diferentes ecuaciones de flujo

Figura 6

Presiones aguas arriba para varias ecuaciones de flujo

Nota 1. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis (Group https://doi.org/10.1201/9781420038224)

Nota 2. Considera una tubería de 100 millas de largo, NPS 16" con una pared de 0.250 in de espesor, operando a un caudal de 100 MMSCFD. La temperatura de flujo del gas es 80°F. Con la presión aguas arriba fijada en 1400 psig, la presión aguas abajo fue calculado utilizando las diferentes ecuaciones de flujo

En tal sentido, se consideró que en el presente trabajo se utilice la Ecuación general de flujo con Colebrook-White ya que se encuentra con resultados más conservadores sin irse hacia los extremos.

2.1.10 Efecto de las elevaciones en gasoductos

Según (Menon, 2005). Cuando se considera el efecto de la elevación entre los extremos de un segmento de tubería, la ecuación de flujo general cambia como sigue en unidades SI.

$$Q = 38.77F \left(\frac{T_b}{P_b}\right) \left(\frac{{P_1}^2 - e^s {P_2}^2}{GT_f L_e Z}\right)^{0.5} D^{2.5}$$
(16)

Dónde:

 $Q = \text{Caudal del gas, medido en condiciones estándar, } m^3/dia$

 $F = \text{Factor de Transmisión, adimensional } (2/\sqrt{f})$

 P_b = Presión base, kPa

 $T_b = \text{Temperatura base}, K (273 + {}^{\circ}C)$

 P_1 = Presión agua arriba, kPa

 P_2 = Presión aguas abajo, kPa

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, K (273 + $^{\circ}C$)

 L_e = Longitud equivalente del segmento de tubería, km

e = Base de logaritmos naturales, (e = 2.718)

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, <math>mm

Y en unidades del USCS:

$$Q = 5.4747 \times 10^{-4} F\left(\frac{T_b}{P_b}\right) \left(\frac{{P_1}^2 - e^s {P_2}^2}{G T_f L_e Z}\right)^{0.5} D^{2.5}$$
(17)

Dónde:

Q =Caudal del gas, medido en condiciones estándar, (SCFD)

 $F = \text{Factor de Transmisión, adimensional } (2 / \sqrt{f})$

 $P_b =$ Presión base, psia

 $T_b = \text{Temperatura base}, R (460 + {}^{\circ}F)$

 P_1 = Presión agua arriba, psia

 P_2 = Presión aguas abajo, psia

G = Gravedad del gas, (air = 1.00)

 T_f = Temperatura media del flujo del Gas, R (460 + °F)

 $L_e =$ Longitud equivalente del segmento de tubería, millas

e = Base de logaritmos naturales, (e = 2.718...)

Z = Factor de compresibilidad de gas a la temperatura de flujo, adimensional

D = Diámetro interior de la tubería, in

La ecuación de la longitud equivalente es:

$$L_e = \frac{L(e^s - 1)}{s} \tag{18}$$

Según (Menon, 2005). La longitud equivalente L_e y el término e^s deben tener en consideración la altura entre las extremadas aguas arriba y aguas abajo del recorrido de la tubería. El parámetro s depende de la gravedad del gas, el factor de compresibilidad del gas, la temperatura de flujo, y la diferencia de elevación. La ecuación en unidades USCS es:

$$s = 0.037G \left(\frac{H_2 - H_1}{T_f Z} \right) \tag{19}$$

Donde:

s =Parámetro de ajuste de elevación, adimensional

 H_1 = Elevación aguas arriba, ft

 H_2 = Elevación aguas abajo, ft

Otros símbolos son como se definió anteriormente. En unidades SI, la medida de ajuste de elevación s, se precisa como sigue en unidades SI:

$$s = 0.0684G \left(\frac{H_2 - H_1}{T_f Z} \right) \tag{20}$$

Donde:

 H_1 = Elevación aguas arriba, m

 H_2 = Elevación aguas abajo, m

2.1.11 Presión de segmento de tubería media

Según (Menon, 2005). En la ecuación de flujo general, se usa el factor de compresibilidad Z. Ello, debido a que se calcula con la temperatura del flujo de gas a la presión media en el segmento del gasoducto. Para ello se considera un segmento de gasoducto con la presión aguas arriba P_1 y la presión aguas abajo P_2 . Como principal aproximación se puede usar una media aritmética de $(P_1+P_2)/2$. Sin embargo, se ha encontrado que un valor más preciso de la presión de gas promedio en un segmento de gasoducto es:

$$P_{avg} = \frac{2}{3} \left(P_1 + P_2 - \frac{P_1 P_2}{P_1 + P_2} \right) \tag{21}$$

Otra manera de calcular la presión promedio en un segmento de gasoducto es:

$$P_{avg} = \frac{2}{3} \left(\frac{P_1^3 - P_2^3}{P_1^2 - P_2^2} \right) \tag{22}$$

2.1.12 Velocidad del Gas en una Tubería

Según (Menon, 2005). La velocidad del flujo de gas en un gasoducto representa la velocidad a la que las moléculas de gas pueden moverse de un lugar a otro. A diferencia de una tubería con líquidos, debido a la compresibilidad. La menor velocidad estará en el extremo aguas arriba, donde la presión es mayor.

En ese aspecto, la velocidad del gas en gasoductos en unidades USCS es:

$$u_1 = 0.002122 \left(\frac{Q_b}{D^2}\right) \left(\frac{P_b}{T_b}\right) \left(\frac{Z_1 T_1}{P_1}\right) \tag{23}$$

Donde:

 u_1 = Velocidad del gas aguas arriba, ft/s

 Q_b = Caudal de gas, medido en condiciones estándar, SCFD

D = Diámetro interior del ducto, in

 P_b = Presión base, psia

 $T_b = \text{Temperatura base}, \, ^{\circ}\text{R} (460 + ^{\circ}\text{F})$

 P_1 = Presión aguas arriba, psia

 T_1 = Temperatura aguas arriba, °R (460 + °F)

 Z_1 = Factor de compresibilidad del gas aguas arriba, adimensional

La velocidad del gas en gasoductos en unidades SI es:

$$u_1 = 14.7349 \left(\frac{Q_b}{D^2}\right) \left(\frac{P_b}{T_b}\right) \left(\frac{Z_1 T_1}{P_1}\right) \tag{24}$$

Donde:

 u_1 = Velocidad del gas aguas arriba, m/s

 Q_b = Caudal de gas, medido en condiciones estándar, m^3/d ía

D = Diámetro interior del ducto, mm

 P_b = Presión base, kPa

 $T_b = \text{Temperatura base}, \text{ °K } (273 + \text{ °C})$

 P_1 = Presión aguas arriba, psia

 $T_1 = \text{Temperatura aguas arriba}, \, ^{\circ}\text{R} (460 + ^{\circ}\text{F})$

 Z_1 = Factor de compresibilidad del gas aguas arriba, adimensional

2.1.13 Número de flujo de Reynolds

Según (Menon, 2005). Es una medida importante en el flujo de fluidos en una tubería es un termino adimensional. El número de Reynolds se usa para determinar el tipo de flujo en una tubería, como flujo laminar, turbulento o crítico. También se utiliza para calcular el factor de fricción en Flujo de tubería. Primero describiremos el cálculo del número de Reynolds basado en las propiedades del gas y el diámetro de la tubería, para poder colocarlo en un rango y así clasificarlo en diferentes tipos de flujo.

Según (Menon, 2005). El número de Reynolds es una función del caudal de gas, del diámetro interior de la tubería, densidad y viscosidad del gas, se calcula a partir de la siguiente formula en unidades SI:

$$Re = \frac{uD\rho}{\mu} \tag{25}$$

Donde:

Re = Número de Reynolds, adimensional

u = Velocidad del Gas en la Tubería, <math>m/s

D = Diámetro interior de la Tubería, m

 ρ = Densidad del gas, kg/m^3

 $\mu = \text{Viscosidad del gas}, kg/m - s$

Según (Menon, 2005). En hidráulica de gasoductos, utilizando unidades habituales, una ecuación más adecuada para el número de Reynolds es el siguiente:

$$Re = 0.5134 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right) \tag{26}$$

Donde

 P_b = Presión base, kPa

 $T_b = \text{Temperatura base, } \circ K (273 + \circ C)$

G = Gravedad especifica del gas, (aire = 1.0)

 $Q = \text{Caudal del gas}, \ m^3/día \ \text{a condiciones estándar}$

D = Diámetro interno del gasoducto, mm

 $\mu = Viscosidad del gas, Poise$

2.1.14 Factor de Fricción

Según (Menon, 2005). La expresión factor de fricción es una medida adimensional que depende del número de flujo de Reynolds. En la aplicación de la ingeniería, encontramos dos factores de fricción diferentes mencionados. El factor de fricción de Darcy y el otro factor de fricción conocido como el factor de fricción de Fanning.

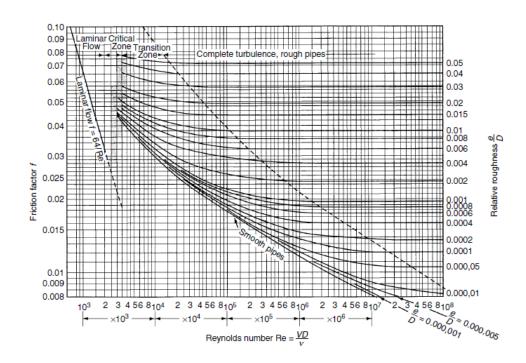
$$f_f = \frac{f_d}{4} \tag{27}$$

Donde

 f_f = Factor de fricción de Fanning

 f_d = Factor de fricción de Darcy

Para el caso de la presente monografía técnica, se utilizara el factor de fricción de Darcy y se representará con el símbolo f.


Según (Menon, 2005). En flujo laminar, el factor de fricción es inversamente proporcional al número de Reynolds, como se indica a continuación:

$$f = \frac{64}{Re} \tag{28}$$

Según (Menon, 2005). En el caso del flujo turbulento, el factor de fricción es una función del número de Reynolds, diámetro interior y rugosidad interna de la tubería. Para flujo turbulento en tuberías lisas, el factor de fricción f depende solo del número de Reynolds. Para tuberías completamente rugosas, f depende más del interior de la tubería y su rugosidad. En la zona de transición entre suave flujo de tubería y flujo en tuberías completamente rugosas, f depende de la rugosidad de la tubería, tubería interior diámetro y el número de Reynolds. Los diversos regímenes de flujo se representan en la Diagrama de Moody, que se muestra en la figura 7.

Figura 7

Diagrama de Moody

Nota. Fue recopilado de la fuente Menon, E. S. (2005), Gas pipeline hydraulics, In Taylor & Francis Group (https://doi.org/10.1201/9781420038224)

Según (Menon, 2005). El diagrama de Moody es un representativo de la variación del factor de fricción en función del número de Reynolds con varios valores de rugosidad relativa de la tubería. El último término es simplemente un parámetro adimensional obtenido al fraccionar el valor absoluto (o interno) rugosidad de la tubería por el diámetro interior de la tubería de la siguiente forma:

$$Rugasidad\ relativa = \frac{e}{D} \tag{29}$$

Donde

e = Rugosidad absoluta o interna de la tubería, <math>in

D = Diámetro interior de la Tubería, in

2.1.15 Ecuación de Colebrook - White

Según (Menon, 2005). La ecuación de Colebrook-White, a veces denominada simplemente ecuación de Colebrook, es una correspondencia entre el factor de fricción y el número de Reynolds. La siguiente forma de la ecuación de Colebrook se usa para calcular el factor de fricción en tuberías de gas en flujo turbulento.

$$\frac{1}{\sqrt{f}} = -2Log_{10} \left(\frac{e}{3.7D} + \frac{2.51}{Re\sqrt{f}} \right) \qquad para \, Re > 4000 \tag{30}$$

Donde:

f = Factor de fricción, adimensional

D = Diámetro interno del gasoducto, in

e = Rugosidad absoluta o interna de la tubería, <math>in

Re = Numero de Reynolds, *adimensional*

Según (Menon, 2005). Dado que Re y f son adimensionales, siempre que se usen unidades consistentes para ambos e y D, la ecuación de Colebrook es la misma independientemente de las unidades empleadas. Por lo tanto, en unidades SI, se usa la Ecuación 27 con e y D expresadas en mm.

Según (Menon, 2005). Es preciso indicar que la aplicación de la ecuación 30 para calcular el factor de fricción f, debe utilizar un enfoque de prueba y error, ya que f aparece en ambos lados de la ecuación. Por lo que primero debe asumirse un valor de f como 0.01 y empezar a sustituir en el lado derecho de la ecuación. Esto producirá una segunda aproximación para f, que luego se puede usar para calcular un mejor valor de f, y así sucesivamente. Generalmente luego de 3 a 4 iteraciones son suficientes para converger en un valor razonablemente bueno del factor de fricción.

2.1.16 Factor de Transmisión

Según (Menon, 2005). El factor de transmisión F se considera disímil al factor de fricción f. Mientras que el factor de fricción muestra qué tan dificultoso es mover una cierta cantidad de gas a través de una tubería, el factor de transmisión es una medida inmediata de cuánto gas

puede ser transportado a través de la tubería. A medida que aumenta el factor de fricción, el factor de transmisión disminuye y, por lo tanto, también disminuye el caudal de gas. Por el contrario, en cuanto mayor sea el factor de transmisión, menor será el factor de fricción y, por lo tanto, mayor el caudal será.

El factor de transmisión F está relacionado con el factor de fricción de la siguiente forma:

$$F = \frac{2}{\sqrt{f}} \tag{31}$$

Donde:

f = Factor de fricción, adimensional

F = Factor de Transmisión, adimensional

CAPÍTULO III.METODOLOGÍA Y DESARROLLO

La metodología del presente trabajo consistió en los siguientes pasos que se describen a continuación:

Primero, se consideró que para tener un correcto desarrollo del dimensionamiento hidráulico de la ampliación del gasoducto que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región Junín se tenía que identificar una traza donde se visualice el recorrido que tendrá el mencionado gasoducto con apreciaciones de relieves que permita determinar las cotas y los puntos donde se realizaran los cálculos.

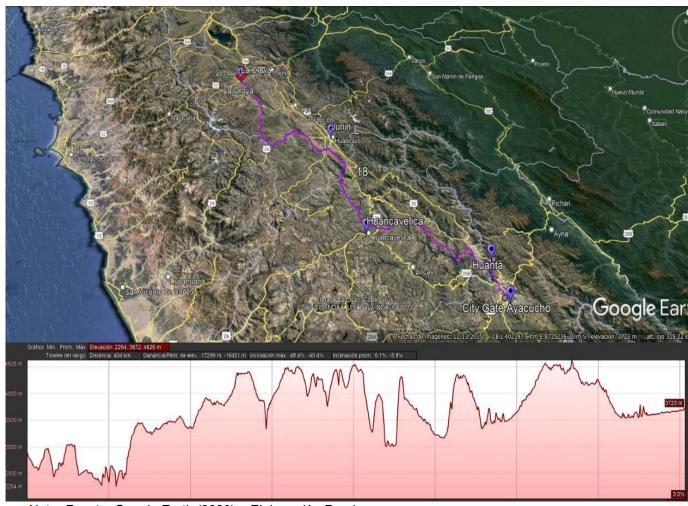
Segundo, se determinó la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín que abastecerá el gasoducto, con la finalidad de poder conocer el caudal máximo de dicha infraestructura.

Tercero, con la información hallada, se realizó el cálculo hidráulico en múltiples secciones para determinar la caída de presión y velocidad del gas natural que tendrá el gasoducto a la llegada de la ciudad de la Oroya de la región de Junín. Esto permitió conocer el dimensionamiento hidráulico favorable que permita abastecer la demanda de gas natural identificada anteriormente

de forma permanente. Asimismo, es preciso indicar que se realizó los cálculos hidráulicos con información de las propiedades del gas natural y otras condiciones conocidas, para tener información de las múltiples secciones que se tenga en el trazo del gasoducto.

La metodología explicada anteriormente se explica a mayor detalle a continuación:

3.1 Determinación del trazo del Gasoducto


A nivel de gabinete se identificó el recorrido del gasoducto desde el punto inicial, City Gate de la empresa Transportadora de Gas del Perú S.A., ubicado en el distrito de Tambillo, Provincia de Huamanga de la región Ayacucho hasta el punto final, Complejo Metalúrgico La Oroya, ubicado a 3,750 m.s.n.m. en la vertiente oriental de la Cordillera de los Andes, distrito La Oroya, provincia de Yauli de la región Junín.

Es preciso indicar que el trazo establecido del gasoducto tiene las siguientes consideraciones:

- Se seleccionó el menor recorrido entre el punto de inicial y final dentro de los parámetros técnicos de construcción y seguridad y operación y mantenimiento.
- La ruta considera los puntos de entrega para la atención de la demanda de gas natural de las ciudades de Ayacucho, Huanta, Huancavelica, Huancayo y la Oroya tal como se aprecia en la figura 8 y 9.
- Se estableció la ruta con la mejor estabilidad geotécnica que se pudo identificar.
- Se evitó las zonas de alta concentración de población
- Se evitó zonas de alto impacto ambiental (bosques, lagos, ríos, bofedales, emplazamientos y sitios arqueológicos)
- Se optimizó la cantidad y longitud de los cruces especiales de corrientes de agua

Figura 8

Ubicación Geográfica del Trazo del Gasoducto

Nota. Fuente: Google Earth (2020) – Elaboración Propia

Figura 9

Esquema del trazo enfocado en los puntos donde se entregara el Gas Natural

Nota 2. La propuesta del trazo plantea pasar por las principales ciudades de la región de Ayacucho, Huancavelica y Junín

Asimismo, corresponde mencionar que la propuesta de ruta del trazado del gasoducto, es de carácter preliminar considerando que se realizó en gabinete, no obstante, nos brinda la suficiente información para desarrollar el dimensionamiento hidráulico necesarios para la ampliación del gasoducto objetivo del presente trabajo. El relieve obtenido del trazo del recorrido del gasoducto desde el punto inicial hasta el punto final permite establecer las cotas y los puntos necesarios para desarrollar los cálculos necesarios de la presente monografía técnica.

 Tabla 3

 Puntos de trazo del Gasoducto

Cota	Ubicación	Longitud Real (m)	Elevación (m)
1	Ayacucho	0	2893
2	Ayacucho	6700	2550
3	Ayacucho	12300	2973
4	Ayacucho	16600	2446
5	Ayacucho	24400	3045
6	Ayacucho	28900	2036
7	Ayacucho	31900	2452
8	Ayacucho	36100	2575
9	Ayacucho	45100	2305
10	Huancavelica	48100	2605
11	Huancavelica	50000	2327

II P	50000	00.47
		2647
		2241
		2590
		2396
		3464
		3450
		3252
		3363
		3456
Huancavelica	93000	3585
Huancavelica	97200	3366
Huancavelica	101000	3372
Huancavelica	109000	3925
Huancavelica	113000	3769
Huancavelica	120000	3770
Huancavelica	128000	4387
Huancavelica	135000	4421
Huancavelica	141000	3877
Huancavelica	144000	3878
Huancavelica	146000	3387
Huancavelica	147000	3729
Huancavelica	157000	4483
Huancavelica		4366
Huancavelica		4505
Huancavelica		3941
Huancavelica		4368
		4115
		4317
		4280
		3789
		4443
		4165
		4458
		4105
		4549
		4418
		4468
		3292
		3986
		3015
		3020
		4322
		3933
Junin	∠၁၁∪∪∪	3203
	Huancavelica	Huancavelica 54200 Huancavelica 57800 Huancavelica 58700 Huancavelica 67700 Huancavelica 70100 Huancavelica 76100 Huancavelica 78500 Huancavelica 89700 Huancavelica 93000 Huancavelica 97200 Huancavelica 101000 Huancavelica 109000 Huancavelica 113000 Huancavelica 128000 Huancavelica 128000 Huancavelica 141000 Huancavelica 144000 Huancavelica 144000 Huancavelica 157000 Huancavelica 165000 Huancavelica 175000 Huancavelica 175000 Huancavelica 177000 Huancavelica 177000 Huancavelica 177000 Huancavelica 180000 Huancavelica 180000 Huancavelica 180000 Huancavelica 180000 Huancavelica 190000 Huancavelica 194000 Huancavelica 202000 Huancavelica 203000 Huancavelica 214000 Huancavelica 214000 Huancavelica 219000 Junín 225000 Junín 225000 Junín 225000 Junín 225000 Junín 225000 Junín 225000

55	Junín	262000	4358
56	Junín	266000	4354
57	Junín	277000	3350
58	Junín	282000	3744
59	Junín	283000	3441
60	Junín	286000	3650
61	Junín	289000	3467
62	Junín	290000	3647
63	Junín	291000	3467
64	Junín	294000	3776
65	Junín	300000	3778
66	Junín	305000	4263
67	Junín	306000	4166
68	Junín	311000	4433
69	Junín	315000	4058
70	Junín	318000	4266
71	Junín	323000	4145
72	Junín	329000	3566
73	Junín	333000	3559
74	Junín	335000	3746
75	Junín	337000	3560
76	Junín	369244	3720
M-4- F		EL L	

Nota. Fuente: Google Earth (2020) - Elaboración Propia

3.2 Determinación de la demanda de gas natural en el recorrido del Gasoducto

Este apartado muestra la metodología para determinar la demanda de gas natural de los sectores residencial, comercial, vehicular, industrial y generación eléctrica la zona directa por donde se trazó el gasoducto desde el punto inicial ubicado en la región Ayacucho hasta el punto final ubicado en la región de Junín con proyecciones para los próximos 20 años con la finalidad de tener el caudal máximo de diseño del gasoducto.

3.2.1 Demanda de gas natural del sector Residencial y Comercial

a) Se tomó información proyectada para el período 2009-2018 del número de hogares de las regiones de Ayacucho, Huancavelica y Junín, elaborada por el Ministerio de Vivienda, Construcción y Saneamiento respecto al número de hogares, por año según dominio geográfico y departamento (Ministerio de Vivienda Construcción y Saneamiento, 2022).

- b) Se proyectó dicha información para los años 2023-2043 con la tasa promedio de crecimiento de viviendas que presento cada departamento dentro del período 2009-2018; la proyección calculada es de 3.83% para el departamento de Ayacucho, 3.54% para el departamento de Huancavelica y 3.30% para el departamento de Junín.
- c) Posteriormente, se usó como supuesto que todas las viviendas halladas en el literal b) cuentan con acceso a energía eléctrica. Por tal motivo, se multiplicó dicho valor por 70% tomando como referencia experiencias observadas en distintos sistemas de distribución de gas por red, donde se plantea la hipótesis que el número de Usuarios Potenciales del servicio de gas es numéricamente igual al 70% de los clientes del servicio eléctrico (Regulación, 2014)
- d) Con la información anterior, se proyectó cuántos serían los usuarios potenciales por región:

Tabla 4Hogares potenciales dela región Ayacucho

Año	Hogares
2023	189,700
2024	196,700
2025	204,400
2026	212,100
2027	220,500
2028	228,900
2029	237,300
2030	246,400
2031	256,200
2032	266,000
2033	276,500
2034	287,000
2035	297,500
2036	309,400
2037	321,300
2038	333,200
2039	346,500
2040	359,800
2041	373,100
2042	387,800
2043	402,500

Tabla 5Hogares potenciales dela región Huancavelica

Año Hogares	
2023	131,600
2024	136,500
2025	141,400
2026	146,300
2027	151,200
2028	156,800
2029	162,400
2030	168,000
2031	174,300
2032	179,900
2033	186,900
2034	193,200
2035	200,200
2036	207,200
2037	214,200
2038	221,900
2039	230,300
2040	238,000
2041	246,400
2042	255,500
2043	264,600

Tabla 6

Hogares potenciales dela región Junín

—

2032	464,100
2033	479,500
2034	495,600
2035	511,700
2036	528,500
2037	546,000
2038	564,200
2039	583,100
2040	602,000
2041	622,300
2042	642,600
2043	663,600

e) Seguidamente, se procedió a establecer el consumo que presentaría un residencial, el cual en base al consumo actual que se tienen en las Concesiones de Distribución de Gas Natural (Ministerio de Energía y Minas, 2021) se determinó que dicho consumo en promedio es de 13 Sm³/mes de gas natural. Por lo que la demanda del sector residencial sería el siguiente:

Tabla 7

Demanda potencial del sector residencial de las regiones de Ayacucho, Huancavelica y Junín

Año	Sm³/día	MMPCD
2023	289,380.00	10.22
2024	299,390.00	10.57
2025	310,006.67	10.95
2026	320,926.67	11.33
2027	332,150.00	11.73
2028	343,676.67	12.14
2029	355,810.00	12.57
2030	367,943.33	12.99
2031	381,290.00	13.47
2032	394,333.33	13.93
2033	408,590.00	14.43
2034	422,846.67	14.93
2035	437,406.67	15.45
2036	452,876.67	15.99
2037	468,650.00	16.55

2038	485,030.00	17.13
2039	502,623.33	17.75
2040	519,913.33	18.36
2041	538,113.33	19.00
2042	557,223.33	19.68
2043	576,636.67	20.36

f) Finalmente, para determinar la demanda del sector comercial, se procedió a determinar la cantidad de comercios que se tendrían al año, el cual de acuerdo con la experiencia de las Concesiones que existe en el Perú estas representan el 0.25% de los usuarios residenciales. En el caso de consumo unitario de los Comercios se consideró para fines de cálculo un estimado de 1,200 Sm³/mes de gas natural.

Tabla 8Número de Comercios y demanda potencial del sector comercial de las regiones de Ayacucho, Huancavelica y Junín

Año	Hogares Potenciales	Comercios Potenciales	Demanda (Sm³/día)	Demanda (MMPCD)
2023	667,800	1,670	66,800	2.36
2024	690,900	1,728	69,120	2.44
2025	715,400	1,789	71,560	2.53
2026	740,600	1,852	74,080	2.62
2027	766,500	1,917	76,680	2.71
2028	793,100	1,983	79,320	2.80
2029	821,100	2,053	82,120	2.90
2030	849,100	2,123	84,920	3.00
2031	879,900	2,200	88,000	3.11
2032	910,000	2,275	91,000	3.21
2033	942,900	2,358	94,320	3.33
2034	975,800	2,440	97,600	3.45
2035	1,009,400	2,524	100,960	3.57
2036	1,045,100	2,613	104,520	3.69
2037	1,081,500	2,704	108,160	3.82
2038	1,119,300	2,799	111,960	3.95
2039	1,159,900	2,900	116,000	4.10
2040	1,199,800	3,000	120,000	4.24
2041	1,241,800	3,105	124,200	4.39

2042	1,285,900	3,215	128,600	4.54
2043	1,330,700	3,327	133,080	4.70

3.2.2 Demanda de gas natural del sector Vehicular

Con el fin de determinar la demanda vehicular potencial de los distritos seleccionados, se siguieron los siguientes pasos:

- a) Se tomó información del parque vehicular estimado automotor, según departamento o región del período 2007-2018 elaborada por la Superintendencia Nacional de Registros Públicos – SUNARP y la Oficina General de Presupuesto y Planificación del Ministerio de Transportes y Comunicaciones (Ministerio de Transporte y Comunicaciones, 2022).
- b) Se proyectó dicha información para el periodo 2023-2043 con la tasa promedio anual de crecimiento del parque automotor del período 2009-2018; equivalente al 0.92% para el departamento de Ayacucho, 4.22% para Junín y 0.18% para Huancavelica.
- c) Con los valores determinados en el literal anterior, se procedió a determinar el número potencial de vehículos que se pueden convertir en las regiones de Ayacucho, Huancavelica y Junín; para ello, se multiplicó dicho valor por 81.05%, porcentaje que representan los automóviles y los vehículos station wagon, asumiendo que la conversión a GNV iniciará con este tipo de vehículos (Ministerio de Transporte y Comunicaciones, 2022).

Tabla 9Número de potencial de vehículos a convertir en las regiones de Ayacucho, Huancavelica y Junín

Año	Vehículos
2023	78,151
2024	81,254
2025	84,486
2026	87,854
2027	91,363
2028	95,019
2029	98,828
2030	102,797
2031	106,932

2032	111,241
2033	115,731
2034	120,409
2035	125,284
2036	130,364
2037	135,656
2038	141,171
2039	146,918
2040	152,907
2041	159,147
2042	165,650
2043	172,427

d) Con la información anterior, se determinó el consumo potencial promedio de GNV en las regiones de Ayacucho, Huancavelica y Junín por donde pasa el trazo del gasoducto, considerando que el promedio de consumo de cada vehículo es de 10 m³ por día (Infogas, 2021).

Tabla 10Demanda de gas natural del sector vehicular en las regiones de Ayacucho, Huancavelica y Junín

Año	Sm³/día	MMPCD
2023	781,510	27.60
2024	812,540	28.69
2025	844,860	29.84
2026	878,540	31.03
2027	913,630	32.26
2028	950,190	33.56
2029	988,280	34.90
2030	1,027,970	36.30
2031	1,069,320	37.76
2032	1,112,410	39.28
2033	1,157,310	40.87
2034	1,204,090	42.52
2035	1,252,840	44.24
2036	1,303,640	46.04
2037	1,356,560	47.91
2038	1,411,710	49.85

2039	1,469,180	51.88
2040	1,529,070	54.00
2041	1,591,470	56.20
2042	1,656,500	58.50
2043	1,724,270	60.89

3.2.3 Demanda del sector Industrial

Es necesario indicar que de la búsqueda de información literaria se identificó dos posibles industrias como demanda ancla dentro del trazo del gasoducto.

- De acuerdo a (Zorrilla Pariachi, 2014) el desarrollo de un Balance General de un Complejo de Producción de Fertilizantes de Origen Fosfatado en el Valle Mantaro en la región Junín requiere de una demanda de gas natural de 24.79 MMPCD.
- De acuerdo al (Energy Sector Management Assistance Program, 2006) la proyección de la demanda de gas natural de La Oroya al año 2025 en el escenario Conservador es de 28.9 MMPCD.

Tabla 11Demanda de gas natural del sector Industrial de la región de Junín

Año	Sm³/día	MMPCD
2023	1,520,331.35	53.69
2024	1,520,331.35	53.69
2025	1,520,331.35	53.69
2026	1,520,331.35	53.69
2027	1,520,331.35	53.69
2028	1,520,331.35	53.69
2029	1,520,331.35	53.69
2030	1,520,331.35	53.69
2031	1,520,331.35	53.69
2032	1,520,331.35	53.69
2033	1,520,331.35	53.69
2034	1,520,331.35	53.69
2035	1,520,331.35	53.69
2036	1,520,331.35	53.69
2037	1,520,331.35	53.69
2038	1,520,331.35	53.69

2039	1,520,331.35	53.69
2040	1,520,331.35	53.69
2041	1,520,331.35	53.69
2042	1,520,331.35	53.69
2043	1,520,331.35	53.69

3.2.4 Demanda de la Generación Eléctrica

Es necesario indicar que la generación eléctrica dentro de proyectos de gasoductos son considerados consumos ancla, ya que presentan volúmenes importantes que permiten alcanzar competitividad para viabilizar este tipo de proyectos.

No obstante, dentro de la investigación realizada con información que proporciona el Mapa Minero Energético del (Organismo Supervisor de la Inversión en Energía y Minería, 2022) no se identificó proyectos a futuro que obtén por la generación de electricidad a base de gas natural en las regiones de Ayacucho, Huancavelica y Junín.

En ese aspecto, considerando que la vida de un proyecto de gasoductos incentiva el desarrollo de centrales termoeléctricas y son respaldadas por una política energética nacional para fines del presente cálculo se tendrá el siguiente supuesto:

- Desarrollo de un proyecto de una "Central Térmica en la región de Junín", que consista en la construcción y operación de una planta termoeléctrica de 200 MW de capacidad, ubicada aledaña a la región de Junín.
- Los parámetros de generación de la Central Termoeléctrica son los siguientes:

 Tabla 12

 Parámetros de la Generación Eléctrica en la región de Junín

Parámetro	Requerimiento
Generación	200 MW
Tipo de Central	Ciclo Simple
Operación	Inicia junto con la operación del gasoducto
Despacho	5 horas diarias
Demanda de gas Natural	10 MMPCD

En ese sentido, considerando dichos parámetros se procedió a estimar la demanda de gas natural requerida por Central Termoeléctrica en la región de Junín:

Tabla 13Demanda de gas natural de la Generación Eléctrica de la región de Junín

A ~	0 . 3/.1/	MADOD
Año	Sm³/día	MMPCD
2023	283,168.44	10
2024	283,168.44	10
2025	283,168.44	10
2026	283,168.44	10
2027	283,168.44	10
2028	283,168.44	10
2029	283,168.44	10
2030	283,168.44	10
2031	283,168.44	10
2032	283,168.44	10
2033	283,168.44	10
2034	283,168.44	10
2035	283,168.44	10
2036	283,168.44	10
2037	283,168.44	10
2038	283,168.44	10
2039	283,168.44	10
2040	283,168.44	10
2041	283,168.44	10
2042	283,168.44	10
2043	283,168.44	10

Nota. Fuente: Elaboración Propia

3.2.5 Demanda consolidada de gas natural de las regiones de Ayacucho, Huancavelica y Junín

Finalmente, considerando la demanda de gas natural de todos los sectores se procedió a estimar la demanda de gas natural total requerida para conocer el caudal de diseño del gasoducto.

Tabla 14

Demanda consolidada de gas natural de las regiones de Ayacucho, Huancavelica y Junín

Año	Sm³/día	MMPCD
2023	2,941,167.94	103.87
2024	2,984,428.83	105.39
2025	3,029,949.23	107.00
2026	3,076,909.63	108.66
2027	3,125,926.37	110.39
2028	3,176,736.28	112.19
2029	3,229,802.52	114.06
2030	3,284,185.60	115.98
2031	3,342,207.68	118.03
2032	3,401,363.43	120.12
2033	3,463,701.85	122.12
2034	3,527,920.27	122.32
2035	3,594,755.03	124.59
2036	3,664,406.13	126.95
2037	3,736,823.56	129.41
2038	3,812,197.33	131.96
2039	3,891,263.77	134.36
2040	3,972,427.05	137.42
2041	4,057,149.83	140.28
2042	4,145,835.28	146.41
2043	4,237,340.74	149.64

Tabla 15Demanda consolidada de gas natural separada de las regiones de Ayacucho, Huancavelica y Junín al año 2043

Región	Sm³/día	MMPCD
Ayacucho	274,959.28	9.71
Huancavelica	151,497.86	5.35
Junín	3,810,883.60	134.58

Nota. Fuente: Elaboración Propia

3.3 Selección del Diámetro del Gasoducto y determinación de las propiedades del gas en todos los puntos múltiples

Considerando que el presente trabajo es el dimensionamiento hidráulico en la ampliación del gasoducto Ayacucho para la atención de la demanda de gas natural de la región Ayacucho, Huancavelica y Junín, se analizara dos diámetros para su diseño de acuerdo a los requerimientos de demanda identificados anteriormente y con dicha información se realizará el cálculo en múltiples secciones para determinar la caída de presión que tendrá el gasoducto a la llegada de la región de Junín en ambas alternativas desde el punto inicial ubicado en el gasoducto derivación Ayacucho de la empresa Transportadora de Gas del Perú S.A. hasta un futuro City Gate ubicado en la ciudad de la Oroya de la región de Junín.

Lo dicho anteriormente consiste en los siguientes pasos:

3.3.1 Determinación del Diámetro teórico

Para la determinación del diámetro teórico se asumió el un esquema hidráulico considerando solo dos puntos donde se entregará el Gas Natural (inicio del gasoducto en la ciudad de Ayacucho y finalización del gasoducto en la ciudad de la Oroya) tal como se aprecia en la figura 10, asimismo se consideró más variables para la determinación del mencionado diámetro:

Figura 10

Esquema asumido para la determinación del Diámetro Teórico

Nota 1. Fuente: Elaboración Propia

Nota 2. El esquema toma en consideración que en el punto final del Gasoducto pueda llegar toda la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín.

a. Punto de recepción - City Gate Ayacucho

 Tabla 16

 Parámetros iniciales de presión y temperatura

Parámetro	Dato	USCC	SI
Presión (P ₁)	100.00 Barg	1,465.10 psia	10,101.51
1 1031011 (1 1)	100.00 Daig	1,400.10 psia	Kpa
Temperatura (T₁)	14.08 ° C	517.01 °R	287.23 °K

Nota 1: De acuerdo al reporte operativo de (Transportadora de Gas del Perú S.A., 2022) la presión de entrega actual del gasoducto sin usar es de 62.09 Barg, no obstante se espera que cuando se encuentre operativo la ampliación del gasoducto de la derivación Ayacucho este pueda llegar a una presión normal de operación de 100 Barg, lo cual se considerara para el presente análisis.

Nota 2: Se tomó la temperatura promedio de la región de Ayacucho, con información proporcionada de (Weather Spark, 2022).

b. Punto de entrega – City Gate Oroya

Tabla 17

Parámetros finales de presión y temperatura

Parámetro	Dato	USCC	SI
Presión (P ₂)	36 (Bar_C)	536.84 psia	3,701.41 Kpa
Temperatura (T ₂)	10.25 ° C	510.12 °R	283.40 °K

Nota: Es preciso mencionar que la presión del punto de entrega se basa en la presión mínima necesaria técnicamente para entregar el gas natural en un City Gate requerido en la ciudad de la Oroya de la región de Junín.

Nota 2: Se tomó la temperatura promedio de la región de Junín, con información proporcionada de (Weather Spark, 2022).

c. Caudal del gas natural

Tabla 18

Caudal de diseño

Parámetro	Dato	USCC	SI
Caudal (Q)	149.64 (MMPCD)	149,640 SCFD	4,237,340.74 Sm³/día

Nota: Se utiliza el Caudal del Gas Natural determinado para el año 2043 de acuerdo a la tabla del numeral 3.2.5 de la presente monografía.

d. Gravedad especifica del gas natural

 Tabla 19

 Parámetros de la gravedad especifica del gas natural

Parámetro	Dato
Gravedad Especifica del Gas	0.6119 (Adimonoional)
Natural (G)	0.6118 (Adimensional)

Nota: La información se consiguió de reporte mensual estadístico de la empresa Transportadora de Gas Natural del Perú S.A. presentada al Ministerio de Energía y Minas.

e. Presión media

Para la determinación de la presión media se tiene que aplicar la fórmula 22 establecida en la presente monografía:

$$P_{avg} = \frac{2}{3} \left(\frac{P_1^3 - P_2^3}{P_1^2 - P_2^2} \right) = \frac{2}{3} \left(\frac{1465.10^3 - 536.84^3}{1465.10^2 - 536.84^2} \right)$$

$$P_{avg} = 1,072.70 \ psia$$

f. Temperatura media

Se trata simplemente del promedio estadístico de la temperatura en el punto de entrega y el punto de recepción tal como se muestra a continuación

$$T_f = \left(\frac{T_1 + T_2}{2}\right) = \left(\frac{14.08 + 10.25}{2}\right) = 12.165 \,^{\circ}C$$

g. Factor de compresibilidad de gas natural a la temperatura del flujo

Para la determinación del factor de compresibilidad se aplica la fórmula 10 establecida en la presente monografía usando para ello la presión barométrica:

$$Z = \left(\frac{1}{1 + \left(\frac{P_{avg} \cdot 344,400 \cdot 10^{1.785G}}{T_f^{3.825}}\right)}\right)$$

$$Z = \left(\frac{1}{1 + \left(\frac{(1,072.70 \cdot 344,400 \cdot 10^{1.785 \times 0.6118}}{513.57^{3.825}}\right)}\right) = 0.836$$

Tabla 20Parámetro del factor de compresibilidad

Parámetro	Dato
Factor de Compresibilidad (Z)	0.836 (Adimensional)

h. Longitud equivalente del segmento de tubería

 Tabla 21

 Parámetros iniciales para terminar la longitud equivalente

Parámetro	Dato	USCC	SI
Longitud Real (L)	379 244 (m)	235.6508 (millas)	379.244 (km)
Cota superior (H₁)	2893 (m)	9,491.47 (ft)	2,893 (m)
Cota inferior (H ₂)	3720 (m)	12,204.72 (ft)	3,720 (m)

Nota: Fuente: Elaboración Propia

Primeramente, se procede encontrar *s* aplicando la fórmula 20 establecida en la presente monografía:

$$s = 0.0684G \left(\frac{H_2 - H_1}{T_f Z}\right) = 0.0684 \times 0.6118 \times \left(\frac{3,720 - 2,893}{285.32 \times 0.836}\right)$$
$$s = 0.145032675$$

Finalmente, se aplica la fórmula 18 establecida en la presente monografía:

$$L_e = \frac{L(e^s - 1)}{s} = \frac{235.6508 \times (e^{0.145032675} - 1)}{0.145032675} = 253.5964 \, Millas$$

Tabla 22

Dato de la longitud equivalente

Parámetro	Dato	
Longitud equivalente (L _e)	253.5964 (Millas)	

i. Presión y Temperatura base

Tabla 23Parámetros de la temperatura y presión base

Parámetro	Dato	USCC	SI
Temperatura base (T _b)	60 (°F)	519.67 °R	288 °K
Presión Base (P _b)	14.70 (psia)	14.70 psia	101.35 KPa

Nota: Fuente: Elaboración Propia

j. Viscosidad del gas natural

Tabla 24

Parámetros de la viscosidad del gas natural

Parámetro	Dato
Viscosidad	0.0155 (cp)

Nota: Fuente: Elaboración Propia

k. Rugosidad absoluta de la tubería

Tabla 25Parámetros de la rugosidad

Parámetro	Dato	Dato

Rugosidad absoluta (e)	0.045 (mm)	0.00177 (in)

Nota 1. Considera la rugosidad absoluta del acero comercial

Nota 2. Fuente: Tomado de (Generadores de Conocimientos, 2022)

I. Factor de transmisión

Para determinar el valor del factor de transmisión, se aplica la fórmula 31 establecida en la presente monografía, no obstante es necesario calcular *f* aplicando para ello la fórmula 30 lo cual nos lleva a tener que conocer el número de *Re* de acuerdo a la fórmula 26.

Para el presente cálculo se asumirá un diámetro de 14" pulgadas, considerando que es el diámetro establecido en el punto de entrega del gasoducto derivación Ayacucho de la empresa Transportadora de Gas Natural S.A.; para ello se considera los siguientes datos:

 Tabla 26

 Parámetros supuestos para determinar el diámetro teórico

Diámetro Nominal		Diámetro Exterior		Espesor	de Pared
Pulgadas	Milímetros	Pulgadas	Milímetros	Pulgadas	Milímetros
(in)	(mm)	(in)	(mm)	(in)	(mm)
14	350	14.0	355.6	0.438	11.13

Nota: Considera el diámetro del gasoducto de la derivación Ayacucho Fuente: Tomado de (Grupo Vemacero C.A., 2022)

Hallando el Número de Reynolds

$$Re = 0.5134 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$

$$Re = 0.5134 \times \frac{101.35 \times 0.6118 \times 4,237,332.53}{288 \times 0.0155 \times 10^{-2} \times (355.6 - 11.13)}$$

$$Re = 8,772,406.01$$

Hallando el factor de Darcy

$$\frac{1}{\sqrt{f}} = -2Log_{10} \left(\frac{e}{3.7D} + \frac{2.51}{Re\sqrt{f}} \right)$$

$$\frac{1}{\sqrt{f}} = -2Log_{10} \left(\frac{0.00177}{3.7(14 - 0.438)} + \frac{2.51}{8,772,406.01\sqrt{f}} \right)$$

Iterando con un f asumido de 0.001

Tabla 27

Iteración para hallar el factor de fricción

N°	fi	Х	g(x)	g'(x)	Xi+1	fi+1
0	0.00100	31.62278	8.70612	-0.00560	8.83380	0.01281
1	0.01281	8.83380	8.84423	-0.00657	8.84416	0.01278
2	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
3	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
4	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
5	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
6	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
7	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
8	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
9	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
10	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
11	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
12	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
13	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278
14	0.01278	8.84416	8.84416	-0.00657	8.84416	0.01278

Nota: Fuente: Elaboración Propia

$$f = 0.01278$$

Hallando F:

$$F = \frac{2}{\sqrt{f}} = \frac{2}{\sqrt{0.01278}} = 17.6915$$

En tal sentido, el diámetro teórico se calculará en base a la siguiente forma:

$$D_{t} = 2.5 \sqrt{\frac{Q}{38.77F\left(\frac{T_{b}}{P_{b}}\right)\left(\frac{{P_{1}}^{2} - e^{s}{P_{2}}^{2}}{GT_{f}L_{e}Z}\right)^{0.5}}}$$

$$D_t = \sqrt[2.5]{\frac{149,640}{38.77 \times 17.6915 \times \left(\frac{519.67}{14.70}\right) \left(\frac{1465.10^2 - e^{0.145032675}536.84^2}{0.6118 \times 513.57 \times 252.5108 \times 0.836}\right)^{0.5}}$$

$$D_t = 16.87 \ pulg$$

3.3.2 Cálculos Hidráulicos de la ampliación del Gasoducto

Obtenido el diámetro teórico, se procede a realizar los cálculos hidráulicos con dos diámetros comerciales, considerando para ello la cota establecida en la Tabla 03 y demás parámetros iniciales identificadas en la presente monografía, con la finalidad de definir la mejor opción del desarrollo del gasoducto que inicie en la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la región de Junín:

Tabla 28

Parámetros del Diámetro Comercial de 16"

Diámetro Nominal 1		Diámetro Exterior 1		Espesor	de Pared 1
Pulgadas	Milímetros	Pulgadas	Milímetros	Pulgadas	Milímetros
(in)	(mm)	(in)	(mm)	(in)	(mm)
16	400	16.0	406.4	0.50	12.70

Nota. Fuente: Tomado de Fiorella Representaciones S.A.C.(2022)

Tabla 29

Parámetros del Diámetro Comercial de 18"

Diámetro Nominal 2		Diámetro Exterior 2		Espesor o	de Pared 2
Pulgadas	Milímetros	Pulgadas	Milímetros	Pulgadas	Milímetros
(in)	(mm)	(in)	(mm)	(in)	(mm)
18	450	18.0	457.2	0.50	12.70

Nota. Fuente: Tomado de Fiorella Representaciones S.A.C.(2022)

Es preciso indicar que las siguientes tablas utilizan la ecuación general de los gases con efectos de la elevación y la ecuación de Colebrook, asimismo aplica la mayoría de las formulas establecidas dentro del marco teórico:

Tabla 30

Cálculo Hidráulico del Gasoducto de diámetro Nominal de 18"

Tramo	Progresiva (m)	Longitud Real (m)	Longitud de Tubería (m)	Temperatura (°C)	Elevación (m)	
	Ayacucho	-	-	14.1	2,893	
1	Ayacucho	6,700	6,700	14.1	2,550	
2	Ayacucho	12,300	5,600	14.1	2,973	
3	Ayacucho	16,600	4,300	14.1	2,446	
4	Ayacucho	24,400	7,800	14.1	3,045	
5	Ayacucho	28,900	4,500	14.1	2,036	
6	Ayacucho	31,900	3,000	14.1	2,452	
7	Ayacucho	36,100	4,200	14.1	2,575	
8	Ayacucho	45,100	9,000	14.1	2,305	
9	Huancavelica	48,100	3,000	12.5	2,605	
10	Huancavelica	50,000	1,900	12.5	2,327	
11	Huancavelica	50,900	900	12.5	2,647	
12	Huancavelica	54,200	3,300	12.5	2,241	
13	Huancavelica	57,800	3,600	12.5	2,590	
14	Huancavelica	58,700	900	12.5	2,396	
15	Huancavelica	67,700	9,000	12.5	3,464	
16	Huancavelica	70,100	2,400	12.5	3,450	
17	Huancavelica	76,100	6,000	12.5	3,252	
18	Huancavelica	78,500	2,400	12.5	3,363	
19	Huancavelica	89,700	11,200	12.5	3,456	
20	Huancavelica	93,000	3,300	12.5	3,585	
21	Huancavelica	97,200	4,200	12.5	3,366	
22	Huancavelica	101,000	3,800	12.5	3,372	
23	Huancavelica	109,000	8,000	12.5	3,925	
24	Huancavelica	113,000	4,000	12.5	3,769	
25	Huancavelica	120,000	7,000	12.5	3,770	
26	Huancavelica	128,000	8,000	12.5	4,387.0	
27	Huancavelica	135,000	7,000	12.5	4,421.0	
28	Huancavelica	141,000	6,000	12.5	3,877.0	
29	Huancavelica	144,000	3,000	12.5	3,878.0	
30	Huancavelica	146,000	2,000	12.5	3,387.0	
31	Huancavelica	147,000	1,000	12.5	3,729	
32	Huancavelica	157,000	10,000	12.5	4,483	
33	Huancavelica	163,000	6,000	12.5	4,366	
34	Huancavelica	165,000	2,000	12.5	4,505	
35	Huancavelica	171,000	6,000	12.5	3,941	

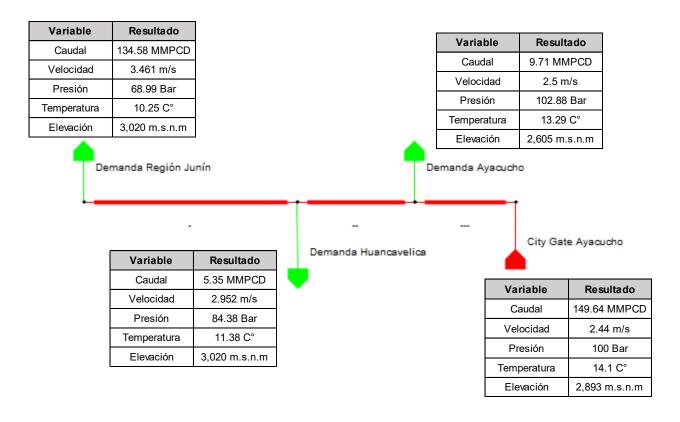
36 Huancavelica 175,000 4,000 12.5 4,368 37 Huancavelica 176,000 1,000 12.5 4,317 38 Huancavelica 180,000 3,000 12.5 4,280 40 Huancavelica 188,000 3,000 12.5 3,789 41 Huancavelica 189,000 5,000 12.5 4,443 42 Huancavelica 199,000 2,000 12.5 4,465 43 Huancavelica 191,000 1,000 12.5 4,458 44 Huancavelica 200,000 6,000 12.5 4,549 45 Huancavelica 200,000 2,000 12.5 4,418 47 Huancavelica 202,000 2,000 12.5 3,488 48 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 214,000 4,000 10.3 3,020 51 Junín 225,000 6,000						
38 Huancavelica 177,000 1,000 12.5 4,317 39 Huancavelica 180,000 3,000 12.5 4,280 40 Huancavelica 183,000 3,000 12.5 3,789 41 Huancavelica 190,000 2,000 12.5 4,443 42 Huancavelica 191,000 1,000 12.5 4,458 44 Huancavelica 194,000 3,000 12.5 4,549 45 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 202,000 2,000 12.5 4,488 48 Huancavelica 210,000 7,000 12.5 4,488 48 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,986 51 Junín 225,000 6,000 10.3 3,020 52 Junín 225,000 3,000	36		175,000	4,000	12.5	4,368
39 Huancavelica 180,000 3,000 12.5 4,280 40 Huancavelica 183,000 3,000 12.5 3,789 41 Huancavelica 190,000 2,000 12.5 4,443 42 Huancavelica 190,000 2,000 12.5 4,165 43 Huancavelica 194,000 3,000 12.5 4,458 44 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 203,000 1,000 12.5 4,418 47 Huancavelica 210,000 7,000 12.5 4,448 48 Huancavelica 210,000 7,000 12.5 3,986 50 Huancavelica 214,000 4,000 12.5 3,986 51 Junín 225,000 6,000 10.3 3,020 51 Junín 225,000 6,000 10.3 3,020 52 Junín 226,000 3,000 10	37	Huancavelica	176,000	1,000	12.5	4,115
40 Huancavelica 183,000 3,000 12.5 3,789 41 Huancavelica 188,000 5,000 12.5 4,443 42 Huancavelica 190,000 2,000 12.5 4,165 43 Huancavelica 194,000 3,000 12.5 4,105 44 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 202,000 2,000 12.5 4,418 47 Huancavelica 201,000 7,000 12.5 3,292 49 Huancavelica 210,000 7,000 12.5 3,986 50 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 228,000 3,000 10.3 3,222 53 Junín 228,000 3,000 10.3 3,232 53 Junín 260,000 7,000 10	38	Huancavelica	177,000	1,000	12.5	4,317
41 Huancavelica 188,000 5,000 12.5 4,443 42 Huancavelica 190,000 2,000 12.5 4,165 43 Huancavelica 191,000 1,000 12.5 4,458 44 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 202,000 2,000 12.5 4,418 47 Huancavelica 203,000 1,000 12.5 4,488 48 Huancavelica 210,000 7,000 12.5 3,292 49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,986 51 Junin 225,000 6,000 10.3 3,020 52 Junin 225,000 6,000 10.3 3,322 53 Junin 230,000 2,000 10.3 3,333 54 Junin 266,000 7,000 10.3	39	Huancavelica	180,000	3,000	12.5	4,280
42 Huancavelica 190,000 2,000 12.5 4,165 43 Huancavelica 191,000 1,000 12.5 4,458 44 Huancavelica 194,000 3,000 12.5 4,105 45 Huancavelica 202,000 2,000 12.5 4,549 46 Huancavelica 202,000 1,000 12.5 4,418 47 Huancavelica 210,000 7,000 12.5 4,468 48 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,986 51 Junín 225,000 6,000 10.3 3,020 51 Junín 228,000 3,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,933 54 Junín 266,000 7,000 10.3 3,358 55 Junín 266,000 4,000 10.3	40	Huancavelica	183,000	3,000	12.5	3,789
43 Huancavelica 191,000 1,000 12.5 4,458 44 Huancavelica 194,000 3,000 12.5 4,105 45 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 203,000 1,000 12.5 4,418 47 Huancavelica 210,000 7,000 12.5 3,292 48 Huancavelica 210,000 7,000 12.5 3,292 49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junin 225,000 6,000 10.3 3,020 52 Junin 225,000 6,000 10.3 3,333 54 Junin 255,000 25,000 10.3 3,203 55 Junin 262,000 7,000 10.3 3,358 56 Junin 270,000 10.3 3,344 <	41	Huancavelica	188,000	5,000	12.5	4,443
44 Huancavelica 194,000 3,000 12.5 4,105 45 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 202,000 2,000 12.5 4,418 47 Huancavelica 210,000 7,000 12.5 3,468 48 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 3,933 54 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 10.3 3,353 55 Junín 262,000 7,000 10.3 3,358 56 Junín 266,000 4,000 10.3 3,350 58 Junín 283,000 1,000 10.3 3,441	42	Huancavelica	190,000	2,000	12.5	4,165
45 Huancavelica 200,000 6,000 12.5 4,549 46 Huancavelica 202,000 2,000 12.5 4,418 47 Huancavelica 203,000 1,000 12.5 4,468 48 Huancavelica 214,000 4,000 12.5 3,292 49 Huancavelica 219,000 5,000 12.5 3,015 50 Huancavelica 219,000 5,000 10.3 3,020 51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,353 56 Junín 266,000 7,000 10.3 3,354 57 Junín 266,000 7,000 10.3 3,344 59 Junín 283,000 1,000 10.3 3,441<	43	Huancavelica	191,000	1,000	12.5	4,458
46 Huancavelica 202,000 2,000 12.5 4,418 47 Huancavelica 203,000 1,000 12.5 4,468 48 Huancavelica 210,000 7,000 12.5 3,292 49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 262,000 7,000 10.3 3,350 57 Junín 282,000 5,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,650	44	Huancavelica	194,000	3,000	12.5	4,105
47 Huancavelica 203,000 1,000 12.5 4,468 48 Huancavelica 210,000 7,000 12.5 3,292 49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 3,322 53 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,441 60 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467	45	Huancavelica	200,000	6,000	12.5	4,549
48 Huancavelica 210,000 7,000 12.5 3,292 49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,441 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 299,000 1,000 10.3 3,467 <t< td=""><td>46</td><td>Huancavelica</td><td>202,000</td><td>2,000</td><td>12.5</td><td>4,418</td></t<>	46	Huancavelica	202,000	2,000	12.5	4,418
49 Huancavelica 214,000 4,000 12.5 3,986 50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 260,000 4,000 10.3 4,354 57 Junín 260,000 4,000 10.3 3,350 58 Junín 277,000 11,000 10.3 3,344 59 Junín 282,000 5,000 10.3 3,441 60 Junín 288,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 291,000 1,000 10.3 3,776	47	Huancavelica	203,000	1,000	12.5	4,468
50 Huancavelica 219,000 5,000 12.5 3,015 51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 4,322 53 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 3,350 58 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 299,000 1,000 10.3 3,776 <td< td=""><td>48</td><td>Huancavelica</td><td>210,000</td><td>7,000</td><td>12.5</td><td>3,292</td></td<>	48	Huancavelica	210,000	7,000	12.5	3,292
51 Junín 225,000 6,000 10.3 3,020 52 Junín 228,000 3,000 10.3 4,322 53 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,744 59 Junín 282,000 5,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 289,000 3,000 10.3 3,467 63 Junín 290,000 1,000 10.3 3,776 64 Junín 290,000 1,000 10.3 3,778 66 <td>49</td> <td>Huancavelica</td> <td>214,000</td> <td>4,000</td> <td>12.5</td> <td>3,986</td>	49	Huancavelica	214,000	4,000	12.5	3,986
52 Junín 228,000 3,000 10.3 4,322 53 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,467 63 Junín 291,000 1,000 10.3 3,776 65 Junín 300,000 10.3 3,778 66 Junín <td>50</td> <td>Huancavelica</td> <td>219,000</td> <td>5,000</td> <td>12.5</td> <td>3,015</td>	50	Huancavelica	219,000	5,000	12.5	3,015
53 Junín 230,000 2,000 10.3 3,933 54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,467 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,166 68 <td>51</td> <td>Junín</td> <td>225,000</td> <td>6,000</td> <td>10.3</td> <td>3,020</td>	51	Junín	225,000	6,000	10.3	3,020
54 Junín 255,000 25,000 10.3 3,203 55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,467 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,467 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,778 66 Junín 300,000 6,000 10.3 4,263 67 Junín 305,000 5,000 10.3 4,433 69 <td>52</td> <td>Junín</td> <td>228,000</td> <td>3,000</td> <td>10.3</td> <td>4,322</td>	52	Junín	228,000	3,000	10.3	4,322
55 Junín 262,000 7,000 10.3 4,358 56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,650 61 Junín 290,000 1,000 10.3 3,647 62 Junín 290,000 1,000 10.3 3,467 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,778 65 Junín 300,000 6,000 10.3 4,263 67 Junín 305,000 5,000 10.3 4,166 68	53	Junín	230,000	2,000	10.3	3,933
56 Junín 266,000 4,000 10.3 4,354 57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 71	54	Junín	255,000	25,000	10.3	3,203
57 Junín 277,000 11,000 10.3 3,350 58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,467 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 315,000 4,000 10.3 4,266 71 Junín 318,000 3,000 10.3 4,266 71	55	Junín	262,000	7,000	10.3	4,358
58 Junín 282,000 5,000 10.3 3,744 59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,776 64 Junín 294,000 3,000 10.3 3,778 65 Junín 300,000 6,000 10.3 4,263 67 Junín 305,000 5,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73	56	Junín	266,000	4,000	10.3	4,354
59 Junín 283,000 1,000 10.3 3,441 60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,467 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,266 71 Junín 329,000 6,000 10.3 3,566 73	57	Junín	277,000	11,000	10.3	3,350
60 Junín 286,000 3,000 10.3 3,650 61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,467 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74	58	Junín	282,000	5,000	10.3	3,744
61 Junín 289,000 3,000 10.3 3,467 62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,467 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	59	Junín	283,000	1,000	10.3	3,441
62 Junín 290,000 1,000 10.3 3,647 63 Junín 291,000 1,000 10.3 3,467 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	60	Junín	286,000	3,000	10.3	3,650
63 Junín 291,000 1,000 10.3 3,467 64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	61	Junín	289,000	3,000	10.3	3,467
64 Junín 294,000 3,000 10.3 3,776 65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	62	Junín	290,000	1,000	10.3	3,647
65 Junín 300,000 6,000 10.3 3,778 66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,266 70 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	63	Junín	291,000	1,000	10.3	3,467
66 Junín 305,000 5,000 10.3 4,263 67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,058 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560		Junín	· ·	•	10.3	
67 Junín 306,000 1,000 10.3 4,166 68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,058 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	65	Junín	300,000	6,000	10.3	3,778
68 Junín 311,000 5,000 10.3 4,433 69 Junín 315,000 4,000 10.3 4,058 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560		Junín				
69 Junín 315,000 4,000 10.3 4,058 70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560						
70 Junín 318,000 3,000 10.3 4,266 71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	68	Junín				4,433
71 Junín 323,000 5,000 10.3 4,145 72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	69	Junín	315,000	4,000	10.3	4,058
72 Junín 329,000 6,000 10.3 3,566 73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	70					4,266
73 Junín 333,000 4,000 10.3 3,559 74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560		Junín	•	•		4,145
74 Junín 335,000 2,000 10.3 3,746 75 Junín 337,000 2,000 10.3 3,560	72	Junín	329,000	6,000	10.3	3,566
75 Junín 337,000 2,000 10.3 3,560	73	Junín	333,000	4,000	10.3	3,559
	74	Junín	335,000	2,000	10.3	3,746
76 Junín 369,000 32,000 10.3 3,720	75	Junín	337,000	2,000		3,560
	76	Junín	369,000	32,000	10.3	3,720

Tramo	Q (MMPCD)	Velocidad	Variación de Altura	L (Km)	s	Le (Km)	Le (Millas)
1	149.64	2.440	-343	6.70	-0.06295	6.493	4.035
2	149.64	2.544	423	5.60	0.07752	5.823	3.618
3	149.64	2.431	-527	4.30	-0.09661	4.099	2.547
4	149.64	2.579	599	7.80	0.10966	8.244	5.122
5	149.64	2.357	-1,009	4.50	-0.18535	4.108	2.552
6	149.64	2.453	416	3.00	0.07680	3.118	1.938
7	149.64	2.487	123	4.20	0.02258	4.248	2.639
8	149.64	2.439	-270	9.00	-0.04960	8.780	5.456
9	139.93	2.504	300	3.00	0.05532	3.085	1.917
10	139.93	2.436	-278	1.90	-0.05150	1.852	1.151
11	139.93	2.510	320	0.90	0.05925	0.927	0.576
12	139.93	2.422	-406	3.30	-0.07522	3.179	1.975
13	139.93	2.506	349	3.60	0.06467	3.719	2.311
14	139.93	2.462	-194	0.90	-0.03588	0.884	0.549
15	139.93	2.729	1,068	9.00	0.19589	9.942	6.178
16	139.93	2.730	-14	2.40	-0.00254	2.397	1.489
17	139.93	2.691	-198	6.00	-0.03598	5.893	3.662
18	139.93	2.722	111	2.40	0.02017	2.424	1.506
19	139.93	2.765	93	11.20	0.01686	11.295	7.018
20	139.93	2.803	129	3.30	0.02332	3.339	2.075
21	139.93	2.756	-219	4.20	-0.03960	4.118	2.559
22	139.93	2.764	6	3.80	0.00109	3.802	2.362
23	139.93	2.921	553	8.00	0.09958	8.412	5.227
24	139.93	2.889	-156	4.00	-0.02797	3.945	2.451
25	139.93	2.903	1	7.00	0.00018	7.001	4.350
26	139.93	3.086	617	8.00	0.11004	8.457	5.255
27	139.93	3.114	34	7.00	0.00603	7.021	4.363
28	139.93	2.981	-544	6.00	-0.09671	5.719	3.554
29	139.93	2.988	1	3.00	0.00018	3.000	1.864
30	139.93	2.863	-491	2.00	-0.08794	1.915	1.190
31	139.93	2.955	342	1.00	0.06131	1.031	0.641
32	139.93	3.185	754	10.00	0.13389	10.700	6.649
33	139.93	3.169	-117	6.00	-0.02065	5.938	3.690
34	139.93	3.213	139	2.00	0.02451	2.025	1.258
35	139.93	3.073	-564	6.00	-0.09972	5.711	3.548
36	139.93	3.202	427	4.00	0.07552	4.155	2.582
37	139.93	3.134	-253	1.00	-0.04467	0.978	0.608
38	139.93	3.193	202	1.00	0.03567	1.018	0.633
39	139.93	3.191	-37	3.00	-0.00652	2.990	1.858
40	139.93	3.063	-491	3.00	-0.08689	2.873	1.785

41	139.93	3.259	654	5.00	0.11553	5.300	3.293
42	139.93	3.186	-278	2.00	-0.04894	1.952	1.213
43	139.93	3.272	293	1.00	0.05156	1.026	0.638
44	139.93	3.181	-353	3.00	-0.06213	2.909	1.807
45	139.93	3.325	444	6.00	0.07804	6.240	3.878
46	139.93	3.294	-131	2.00	-0.02296	1.977	1.229
47	139.93	3.311	50	1.00	0.00876	1.004	0.624
48	139.93	3.002	-1,176	7.00	-0.20786	6.320	3.927
49	139.93	3.203	694	4.00	0.12300	4.256	2.645
50	139.93	2.951	-971	5.00	-0.17237	4.593	2.854
51	134.58	2.952	5	6.00	0.00090	6.003	3.730
52	134.58	3.312	1,302	3.00	0.23331	3.379	2.100
53	134.58	3.205	-389	2.00	-0.06915	1.932	1.201
54	134.58	3.062	-730	25.00	-0.13067	23.436	14.562
55	134.58	3.414	1,155	7.00	0.20567	7.772	4.829
56	134.58	3.425	-4	4.00	-0.00071	3.999	2.485
57	134.58	3.164	-1,004	11.00	-0.17819	10.076	6.261
58	134.58	3.290	394	5.00	0.07016	5.180	3.218
59	134.58	3.206	-303	1.00	-0.05389	0.974	0.605
60	134.58	3.274	209	3.00	0.03719	3.056	1.899
61	134.58	3.229	-183	3.00	-0.03254	2.952	1.834
62	134.58	3.284	180	1.00	0.03200	1.016	0.631
63	134.58	3.235	-180	1.00	-0.03199	0.984	0.612
64	134.58	3.333	309	3.00	0.05485	3.084	1.916
65	134.58	3.352	2	6.00	0.00035	6.001	3.729
66	134.58	3.515	485	5.00	0.08546	5.220	3.243
67	134.58	3.489	-97	1.00	-0.01704	0.992	0.616
68	134.58	3.590	267	5.00	0.04681	5.119	3.181
69	134.58	3.488	-375	4.00	-0.06575	3.871	2.406
70	134.58	3.563	208	3.00	0.03649	3.055	1.899
71	134.58	3.543	-121	5.00	-0.02120	4.947	3.074
72	134.58	3.387	-579	6.00	-0.10187	5.705	3.545
73	134.58	3.398	-7	4.00	-0.00124	3.998	2.484
74	134.58	3.461	187	2.00	0.03295	2.033	1.263
75	134.58	3.411	-186	2.00	-0.03277	1.968	1.223
76	134.58	3.571	160	32.00	0.02812	32.45	20.166

Tramo	Re	F	Z	Tmedia (°C)	Tmedia (°K)	Tmedia (°R)
1	6789027.025	21.2053	0.793	14.08	287.23	517.01
2	6789012.894	21.2053	0.794	14.08	287.23	517.01

3	6789028.976	21.2053	0.794	14.08	287.23	517.01
4	6789026.619	21.2053	0.795	14.08	287.23	517.01
5	6789041.635	21.2053	0.792	14.08	287.23	517.01
6	6789026.399	21.2053	0.788	14.08	287.23	517.01
7	6789026.771	21.2053	0.793	14.08	287.23	517.01
8	6789030.459	21.2053	0.792	14.08	287.23	517.01
9	6348490.594	21.2053	0.791	13.29	286.44	515.59
10	6348493.087	21.2053	0.790	12.50	285.65	514.17
11	6348493.119	21.2053	0.790	12.50	285.65	514.17
12	6348476.144	21.2053	0.790	12.50	285.65	514.17
13	6348467.709	21.2053	0.790	12.50	285.65	514.17
14	6348493.956	21.2053	0.791	12.50	285.65	514.17
15	6348493.238	21.2053	0.798	12.50	285.65	514.17
16	6348474.657	21.2053	0.807	12.50	285.65	514.17
17	6348483.125	21.2053	0.805	12.50	285.65	514.17
18	6348491.873	21.2053	0.805	12.50	285.65	514.17
19	6348519.414	21.2053	0.807	12.50	285.65	514.17
20	6348493.206	21.2053	0.810	12.50	285.65	514.17
21	6348493.498	21.2053	0.809	12.50	285.65	514.17
22	6348452.893	21.2053	0.808	12.50	285.65	514.17
23	6348493.24	21.2053	0.813	12.50	285.65	514.17
24	6348457.858	21.2053	0.816	12.50	285.65	514.17
25	6348481.19	21.2053	0.816	12.50	285.65	514.17
26	6348493.565	21.2053	0.821	12.50	285.65	514.17
27	6348504.947	21.2053	0.826	12.50	285.65	514.17
28	6348493.155	21.2053	0.823	12.50	285.65	514.17
29	6348492.407	21.2053	0.820	12.50	285.65	514.17
30	6348507.662	21.2053	0.817	12.50	285.65	514.17
31	6348493.299	21.2053	0.816	12.50	285.65	514.17
32	6348493.125	21.2053	0.824	12.50	285.65	514.17
33	6348493.224	21.2053	0.829	12.50	285.65	514.17
34	6348492.917	21.2053	0.830	12.50	285.65	514.17
35	6348493.22	21.2053	0.828	12.50	285.65	514.17
36	6348492.573	21.2053	0.827	12.50	285.65	514.17
37	6348493.231	21.2053	0.829	12.50	285.65	514.17
38	6348493.633	21.2053	0.829	12.50	285.65	514.17
39	6348493.144	21.2053	0.830	12.50	285.65	514.17
40	6348495.691	21.2053	0.827	12.50	285.65	514.17
41	6348493.205	21.2053	0.828	12.50	285.65	514.17
42	6348493.273	21.2053	0.831	12.50	285.65	514.17
43	6348490.573	21.2053	0.832	12.50	285.65	514.17
44	6348494.653	21.2053	0.832	12.50	285.65	514.17
45	6348500.033	21.2053	0.833	12.50	285.65	514.17


47 6348486.418 21.2053 0.835 12.50 285.65 514.17 48 6348496.186 21.2053 0.828 12.50 285.65 514.17 49 6348493.21 21.2053 0.826 12.50 285.65 514.17 50 6348493.21 21.2053 0.824 12.50 285.65 514.17 51 6105768.749 21.2053 0.817 11.38 284.53 512.15 52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.824 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.837 10.25 283.40 510.12	46	6348493.594	21.2053	0.835	12.50	285.65	514.17
48 6348496.186 21.2053 0.828 12.50 285.65 514.17 49 6348486.418 21.2053 0.826 12.50 285.65 514.17 50 6348493.21 21.2053 0.824 12.50 285.65 514.17 51 6105768.749 21.2053 0.817 11.38 284.53 512.15 52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105767.209 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105767.228 21.2053 0.831 10.25 283.40 510.12 59 6105767.228 21.2053 0.828 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
49 6348486.418 21.2053 0.826 12.50 285.65 514.17 50 6348493.21 21.2053 0.824 12.50 285.65 514.17 51 6105768.749 21.2053 0.817 11.38 284.53 512.15 52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.828 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12							
50 6348493.21 21.2053 0.824 12.50 285.65 514.17 51 6105768.749 21.2053 0.817 11.38 284.53 512.15 52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105767.955 21.2053 0.830 10.25 283.40 510.12							
51 6105768.749 21.2053 0.817 11.38 284.53 512.15 52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105767.955 21.2053 0.830 10.25 283.40 510.12 61 6105761.702 21.2053 0.830 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
52 6105757.822 21.2053 0.823 10.25 283.40 510.12 53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105762.925 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
53 6105766.175 21.2053 0.830 10.25 283.40 510.12 54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105762.3426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.829 10.25 283.40 510.12 61 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105769.888 21.2053 0.830 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
54 6105768.71 21.2053 0.824 10.25 283.40 510.12 55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.821 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105767.955 21.2053 0.829 10.25 283.40 510.12 61 6105761.702 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105769.888 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
55 6105767.209 21.2053 0.828 10.25 283.40 510.12 56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105723.426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.837 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
56 6105768.644 21.2053 0.837 10.25 283.40 510.12 57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105763.426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
57 6105748.789 21.2053 0.831 10.25 283.40 510.12 58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105723.426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.837 10.25 283.40 510.12 66 6105768.784 21.2053 0.837 10.25 283.40 510.12 67 6105768.806 21.2053 0.841 10.25 283.40 510.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
58 6105767.228 21.2053 0.828 10.25 283.40 510.12 59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105723.426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105769.888 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105768.784 21.2053 0.837 10.25 283.40 510.12 67 6105768.819 21.2053 0.840 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 <td></td> <td>6105748.789</td> <td>21.2053</td> <td>0.831</td> <td></td> <td></td> <td></td>		6105748.789	21.2053	0.831			
59 6105772.391 21.2053 0.829 10.25 283.40 510.12 60 6105723.426 21.2053 0.829 10.25 283.40 510.12 61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 69 6105768.819 21.2053 0.841 10.25 283.40 510.12 70 6105768.806 21.2053 0.841 10.25 283.40 510.12 <td>58</td> <td>6105767.228</td> <td>21.2053</td> <td>0.828</td> <td></td> <td></td> <td>510.12</td>	58	6105767.228	21.2053	0.828			510.12
61 6105767.955 21.2053 0.830 10.25 283.40 510.12 62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105768.667 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.	59	6105772.391	21.2053	0.829		283.40	510.12
62 6105761.702 21.2053 0.830 10.25 283.40 510.12 63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105769.057 21.2053 0.838 10.25 283.40 510.12 72 6105769.057 21.2053 0.836 10.25 283.40 510.12 74 61057768.72 21.2053 0.837 10.25 283	60	6105723.426	21.2053	0.829	10.25	283.40	510.12
63 6105773.902 21.2053 0.830 10.25 283.40 510.12 64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.847 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105768.67 21.2053 0.841 10.25 283.40 510.12 71 6105769.057 21.2053 0.838 10.25 283.40 510.12 72 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.4	61	6105767.955	21.2053	0.830	10.25	283.40	510.12
64 6105769.888 21.2053 0.831 10.25 283.40 510.12 65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105768.726 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.4	62	6105761.702	21.2053	0.830	10.25	283.40	510.12
65 6105769.234 21.2053 0.833 10.25 283.40 510.12 66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	63	6105773.902	21.2053	0.830	10.25	283.40	510.12
66 6105754.49 21.2053 0.837 10.25 283.40 510.12 67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	64	6105769.888	21.2053	0.831	10.25	283.40	510.12
67 6105768.784 21.2053 0.840 10.25 283.40 510.12 68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	65	6105769.234	21.2053	0.833	10.25	283.40	510.12
68 6105768.819 21.2053 0.841 10.25 283.40 510.12 69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	66	6105754.49	21.2053	0.837	10.25	283.40	510.12
69 6105768.806 21.2053 0.841 10.25 283.40 510.12 70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	67	6105768.784	21.2053	0.840	10.25	283.40	510.12
70 6105780.492 21.2053 0.841 10.25 283.40 510.12 71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	68	6105768.819	21.2053	0.841	10.25	283.40	510.12
71 6105768.67 21.2053 0.842 10.25 283.40 510.12 72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	69	6105768.806	21.2053	0.841	10.25	283.40	510.12
72 6105769.057 21.2053 0.838 10.25 283.40 510.12 73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	70	6105780.492	21.2053	0.841	10.25	283.40	510.12
73 6105768.72 21.2053 0.836 10.25 283.40 510.12 74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	71	6105768.67	21.2053	0.842	10.25	283.40	510.12
74 6105771.917 21.2053 0.837 10.25 283.40 510.12 75 6105768.726 21.2053 0.837 10.25 283.40 510.12	72	6105769.057	21.2053	0.838	10.25	283.40	510.12
75 6105768.726 21.2053 0.837 10.25 283.40 510.12	73	6105768.72	21.2053	0.836	10.25	283.40	510.12
	74	6105771.917	21.2053	0.837	10.25	283.40	510.12
76 6105807.629 21.2053 0.839 10.25 283.40 510.12	75	6105768.726	21.2053	0.837	10.25	283.40	510.12
	76	6105807.629	21.2053	0.839	10.25	283.40	510.12

Tramo	P1 (bar_g)	P1 (KPa)	P1 (psig)	P2 (bar_g)	P2 (KPa)	P2 (psig)
1	100.00	10,101.35	1,450.40	102.83	10,384.4	1,491.4
2	102.83	10384.37	1491.45	98.56	9,957.1	1,429.5
3	98.56	9,957.07	1,429.47	103.22	10,423.8	1,497.2
4	103.22	10,423.84	1,497.17	97.21	9,822.5	1,409.9
5	97.21	9,822.45	1,409.95	106.47	10,748.7	1,544.3
6	106.47	10,748.70	1,544.29	102.26	10,327.1	1,483.1
7	102.26	10,327.06	1,483.14	100.85	10,186.7	1,462.8
8	100.85	10,186.66	1,462.77	102.88	10,389.2	1,492.2
9	102.88	10,389.22	1,492.15	99.89	10,090.6	1,448.8
10	99.89	10,090.65	1,448.85	102.43	10,344.0	1,485.6
11	102.43	10,344.04	1,485.60	99.36	10,037.6	1,441.2
12	99.36	10,037.57	1,441.15	103.04	10,405.1	1,494.5
13	103.04	10,405.13	1,494.46	99.55	10,056.0	1,443.8
14	99.55	10,056.03	1,443.83	101.32	10,233.4	1,469.6
15	101.32	10,233.41	1,469.55	91.31	9,232.2	1,324.3
16	91.31	9,232.18	1,324.34	91.29	9,230.1	1,324.0
17	91.29	9,230.09	1,324.03	92.62	9,363.1	1,343.3
18	92.62	9,363.05	1,343.32	91.54	9,255.5	1,327.7
19	91.54	9,255.47	1,327.71	90.12	9,113.2	1,307.1
20	90.12	9,113.15	1,307.07	88.87	8,988.2	1,288.9
21	88.87	8,988.17	1,288.95	90.42	9,142.9	1,311.4
22	90.42	9,142.95	1,311.39	90.14	9,115.8	1,307.5
23	90.14	9,115.81	1,307.46	85.25	8,625.9	1,236.4
24	85.25	8,625.88	1,236.40	86.21	8,722.4	1,250.4
25	86.21	8,722.39	1,250.40	85.77	8,678.3	1,244.0
26	85.77	8,678.35	1,244.01	80.62	8,163.7	1,169.4
27	80.62	8,163.72	1,169.37	79.91	8,092.4	1,159.0
28	79.91	8,092.35	1,159.02	83.52	8,452.9	1,211.3
29	83.52	8,452.93	1,211.31	83.32	8,433.0	1,208.4
30	83.32	8,432.96	1,208.42	86.98	8,799.2	1,261.5
31	86.98	8,799.22	1,261.54	84.26	8,527.5	1,222.1
32	84.26	8,527.45	1,222.12	78.10	7,911.2	1,132.7
33	78.10	7,911.24	1,132.75	78.50	7,951.8	1,138.6
34	78.50	7,951.76	1,138.63	77.40	7,841.1	1,122.6
35	77.40	7,841.14	1,122.58	80.99	8,200.1	1,174.6

36 80.99 8,200.13 1,174.65 77.68 7,869.6 1,126.7 37 77.68 7,869.62 1,126.71 79.39 8,040.4 1,151.5 38 79.39 8,040.40 1,151.48 77.90 7,891.5 1,129.8 39 77.90 7,891.47 1,129.88 77.95 7,896.4 1,130.6 40 77.95 7,896.43 1,130.60 81.25 8,226.3 1,178.4 41 81.25 8,226.29 1,178.44 76.30 7,731.3 1,106.6 42 76.30 7,731.29 1,106.65 78.07 7,908.6 1,132.4	5 9 6 4 6 4
38 79.39 8,040.40 1,151.48 77.90 7,891.5 1,129.8 39 77.90 7,891.47 1,129.88 77.95 7,896.4 1,130.6 40 77.95 7,896.43 1,130.60 81.25 8,226.3 1,178.4 41 81.25 8,226.29 1,178.44 76.30 7,731.3 1,106.6	9 6 4 6 4
39 77.90 7,891.47 1,129.88 77.95 7,896.4 1,130.6 40 77.95 7,896.43 1,130.60 81.25 8,226.3 1,178.4 41 81.25 8,226.29 1,178.44 76.30 7,731.3 1,106.6	6 4 6 4
40 77.95 7,896.43 1,130.60 81.25 8,226.3 1,178.4 41 81.25 8,226.29 1,178.44 76.30 7,731.3 1,106.6	4 6 4
41 81.25 8,226.29 1,178.44 76.30 7,731.3 1,106.6	6 4
	4
<i>1</i> 2 76 30 7 731 20 1 106 65 78 07 7 008 6 1 132 7	
	2
43 78.07 7,908.61 1,132.37 75.99 7,700.4 1,102.2	
44 75.99 7,700.39 1,102.17 78.21 7,922.0 1,134.3	3
45 78.21 7,921.96 1,134.30 74.76 7,577.1 1,084.3	3
46 74.76 7,577.11 1,084.29 75.49 7,650.0 1,094.9	9
47 75.49 7,650.04 1,094.86 75.08 7,609.4 1,089.0	0
48 75.08 7,609.39 1,088.97 82.91 8,392.3 1,202.5	5
49 82.91 8,392.33 1,202.52 77.64 7,865.8 1,126.2	2
50 77.64 7,865.76 1,126.15 84.38 8,539.1 1,223.8	8
51 84.38 8,539.08 1,223.81 83.99 8,500.3 1,218.2	2
52 83.99 8,500.33 1,218.19 74.45 7,546.7 1,079.9	9
53 74.45 7,546.73 1,079.88 76.98 7,798.9 1,116.5	5
54 76.98 7,798.90 1,116.45 80.63 8,164.0 1,169.4	4
55 80.63 8,163.96 1,169.40 72.22 7,323.0 1,047.4	4
56 72.22 7,322.98 1,047.43 71.97 7,297.9 1,043.8	8
57 71.97 7,297.86 1,043.78 78.00 7,901.7 1,131.4	4
58 78.00 7,901.67 1,131.36 74.96 7,597.5 1,087.2	2
59 74.96 7,597.51 1,087.24 76.97 7,798.4 1,116.4	4
60 76.97 7,798.41 1,116.38 75.34 7,635.4 1,092.7	7
61 75.34 7,635.42 1,092.74 76.40 7,740.9 1,108.0	0
62 76.40 7,740.93 1,108.05 75.10 7,611.6 1,089.3	3
63 75.10 7,611.58 1,089.28 76.26 7,727.7 1,106.	1
64 76.26 7,727.72 1,106.13 73.98 7,499.1 1,073.0	0
65 73.98 7,499.11 1,072.97 73.56 7,457.3 1,066.9	9
66 73.56 7,457.34 1,066.91 70.10 7,111.3 1,016.7	7
67 70.10 7,111.35 1,016.73 70.64 7,165.0 1,024.5	5
68 70.64 7,165.03 1,024.52 68.62 6,963.7 995.3	,
69 68.62 6,963.66 995.31 70.66 7,167.1 1,024.8	8
70 70.66 7,167.10 1,024.82 69.15 7,016.2 1,002.9	9
71 69.15 7,016.19 1,002.93 69.53 7,054.6 1,008.5	5
72 69.53 7,054.58 1,008.50 72.79 7,379.9 1,055.7	7
73 72.79 7,379.93 1,055.69 72.56 7,357.0 1,052.4	4
74 72.56 7,357.05 1,052.37 71.22 7,223.0 1,032.9	9
75 71.22 7,223.04 1,032.93 72.27 7,328.3 1,048.2	2
76 72.27 7,328.32 1,048.20 68.99 7,000.8 1,000.7	7

Nota: Fuente: Elaboración Propia

Figura 11
Sistema Hidráulico del Gasoducto con diámetro Nominal 18"

Nota. Fuente: Elaboración Propia

Tabla 31

Cálculo Hidráulico del Gasoducto de diámetro Nominal 16"

Tramo	Progresiva (m)	Longitud Real (m)	Longitud de Tubería (m)	Temperatura (°C)	Elevación (m)
	Ayacucho	-	-	14.1	2,893
1	Ayacucho	6,700	6,700	14.1	2,550
2	Ayacucho	12,300	5,600	14.1	2,973
3	Ayacucho	16,600	4,300	14.1	2,446
4	Ayacucho	24,400	7,800	14.1	3,045
5	Ayacucho	28,900	4,500	14.1	2,036
6	Ayacucho	31,900	3,000	14.1	2,452
7	Ayacucho	36,100	4,200	14.1	2,575
8	Ayacucho	45,100	9,000	14.1	2,305
9	Huancavelica	48,100	3,000	12.5	2,605
10	Huancavelica	50,000	1,900	12.5	2,327
11	Huancavelica	50,900	900	12.5	2,647
12	Huancavelica	54,200	3,300	12.5	2,241
13	Huancavelica	57,800	3,600	12.5	2,590
14	Huancavelica	58,700	900	12.5	2,396
15	Huancavelica	67,700	9,000	12.5	3,464
16	Huancavelica	70,100	2,400	12.5	3,450
17	Huancavelica	76,100	6,000	12.5	3,252
18	Huancavelica	78,500	2,400	12.5	3,363
19	Huancavelica	89,700	11,200	12.5	3,456
20	Huancavelica	93,000	3,300	12.5	3,585
21	Huancavelica	97,200	4,200	12.5	3,366
22	Huancavelica	101,000	3,800	12.5	3,372
23	Huancavelica	109,000	8,000	12.5	3,925
24	Huancavelica	113,000	4,000	12.5	3,769
25	Huancavelica	120,000	7,000	12.5	3,770
26	Huancavelica	128,000	8,000	12.5	4,387.0
27	Huancavelica	135,000	7,000	12.5	4,421.0
28	Huancavelica	141,000	6,000	12.5	3,877.0
29	Huancavelica	144,000	3,000	12.5	3,878.0
30	Huancavelica	146,000	2,000	12.5	3,387.0
31	Huancavelica	147,000	1,000	12.5	3,729
32	Huancavelica	157,000	10,000	12.5	4,483
33	Huancavelica	163,000	6,000	12.5	4,366
34	Huancavelica	165,000	2,000	12.5	4,505

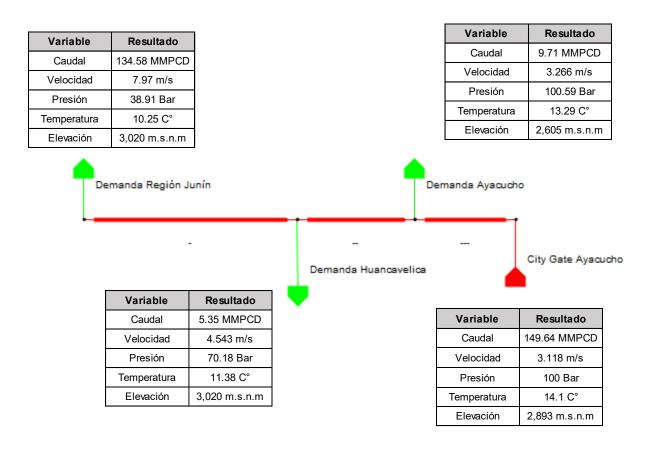
35	Huancavelica	171,000	6,000	12.5	3,941
36	Huancavelica	175,000	4,000	12.5	4,368
37	Huancavelica	176,000	1,000	12.5	4,115
38	Huancavelica	177,000	1,000	12.5	4,317
39	Huancavelica	180,000	3,000	12.5	4,280
40	Huancavelica	183,000	3,000	12.5	3,789
41	Huancavelica	188,000	5,000	12.5	4,443
42	Huancavelica	190,000	2,000	12.5	4,165
43	Huancavelica	191,000	1,000	12.5	4,458
44	Huancavelica	194,000	3,000	12.5	4,105
45	Huancavelica	200,000	6,000	12.5	4,549
46	Huancavelica	202,000	2,000	12.5	4,418
47	Huancavelica	203,000	1,000	12.5	4,468
48	Huancavelica	210,000	7,000	12.5	3,292
49	Huancavelica	214,000	4,000	12.5	3,986
50	Huancavelica	219,000	5,000	12.5	3,015
51	Junín	225,000	6,000	10.3	3,020
52	Junín	228,000	3,000	10.3	4,322
53	Junín	230,000	2,000	10.3	3,933
54	Junín	255,000	25,000	10.3	3,203
55	Junín	262,000	7,000	10.3	4,358
56	Junín	266,000	4,000	10.3	4,354
57	Junín	277,000	11,000	10.3	3,350
58	Junín	282,000	5,000	10.3	3,744
59	Junín	283,000	1,000	10.3	3,441
60	Junín	286,000	3,000	10.3	3,650
61	Junín	289,000	3,000	10.3	3,467
62	Junín	290,000	1,000	10.3	3,647
63	Junín	291,000	1,000	10.3	3,467
64	Junín	294,000	3,000	10.3	3,776
65	Junín	300,000	6,000	10.3	3,778
66	Junín	305,000	5,000	10.3	4,263
67	Junín	306,000	1,000	10.3	4,166
68	Junín	311,000	5,000	10.3	4,433
69	Junín	315,000	4,000	10.3	4,058
70	Junín	318,000	3,000	10.3	4,266
71	Junín	323,000	5,000	10.3	4,145
72	Junín	329,000	6,000	10.3	3,566
73	Junín	333,000	4,000	10.3	3,559
74	Junín	335,000	2,000	10.3	3,746
75	Junín	337,000	2,000	10.3	3,560
76	Junín	369,000	32,000	10.3	3,720

Tramo	Q (MMPCD)	Velocidad	Variación de Altura	L (Km)	s	Le (Km)	Le (Millas)
1	149.64	3.118	-343	6.70	-0.062925	6.494	4.035
2	149.64	3.261	423	5.60	0.077444	5.823	3.618
3	149.64	3.121	-527	4.30	-0.096473	4.099	2.547
4	149.64	3.325	599	7.80	0.109442	8.243	5.122
5	149.64	3.046	-1,009	4.50	-0.184848	4.109	2.553
6	149.64	3.175	416	3.00	0.076561	3.118	1.937
7	149.64	3.225	123	4.20	0.022501	4.248	2.639
8	149.64	3.177	-270	9.00	-0.049389	8.781	5.456
9	139.93	3.266	300	3.00	0.055061	3.084	1.916
10	139.93	3.180	-278	1.90	-0.051240	1.852	1.151
11	139.93	3.278	320	0.90	0.058942	0.927	0.576
12	139.93	3.168	-406	3.30	-0.074814	3.180	1.976
13	139.93	3.283	349	3.60	0.064302	3.718	2.310
14	139.93	3.227	-194	0.90	-0.035673	0.884	0.549
15	139.93	3.592	1,068	9.00	0.194692	9.936	6.174
16	139.93	3.598	-14	2.40	-0.002524	2.397	1.489
17	139.93	3.560	-198	6.00	-0.035728	5.894	3.662
18	139.93	3.606	111	2.40	0.020025	2.424	1.506
19	139.93	3.688	93	11.20	0.016722	11.294	7.018
20	139.93	3.747	129	3.30	0.023112	3.338	2.074
21	139.93	3.695	-219	4.20	-0.039230	4.119	2.559
22	139.93	3.715	6	3.80	0.001076	3.802	2.362
23	139.93	3.946	553	8.00	0.098555	8.407	5.224
24	139.93	3.915	-156	4.00	-0.027668	3.945	2.451
25	139.93	3.956	1	7.00	0.000177	7.001	4.350
26	139.93	4.232	617	8.00	0.108686	8.451	5.251
27	139.93	4.297	34	7.00	0.005947	7.021	4.363
28	139.93	4.140	-544	6.00	-0.095327	5.723	3.556
29	139.93	4.161	1	3.00	0.000176	3.000	1.864
30	139.93	3.997	-491	2.00	-0.086531	1.916	1.190
31	139.93	4.126	342	1.00	0.060314	1.031	0.640
32	139.93	4.487	754	10.00	0.131713	10.688	6.641
33	139.93	4.495	-117	6.00	-0.020293	5.940	3.691
34	139.93	4.568	139	2.00	0.024075	2.024	1.258
35	139.93	4.401	-564	6.00	-0.097852	5.716	3.552
36	139.93	4.603	427	4.00	0.074039	4.152	2.580
37	139.93	4.513	-253	1.00	-0.043779	0.978	0.608
38	139.93	4.602	202	1.00	0.034955	1.018	0.632
39	139.93	4.616	-37	3.00	-0.006391	2.990	1.858
40	139.93	4.451	-491	3.00	-0.085040	2.876	1.787

4.4	120.02	4.750	054	F 00	0.440044	E 202	2 200
41	139.93	4.759	654	5.00	0.113014	5.293	3.289
42	139.93	4.667	-278	2.00	-0.047859	1.953	1.213
43	139.93	4.796	293	1.00	0.050412	1.026	0.637
44	139.93	4.684	-353	3.00	-0.060717	2.911	1.809
45	139.93	4.933	444	6.00	0.076214	6.235	3.874
46	139.93	4.901	-131	2.00	-0.022409	1.978	1.229
47	139.93	4.934	50	1.00	0.008553	1.004	0.624
48	139.93	4.529	-1,176	7.00	-0.202402	6.337	3.938
49	139.93	4.850	694	4.00	0.119592	4.249	2.640
50	139.93	4.509	-971	5.00	-0.167386	4.604	2.861
51	134.58	4.543	5	6.00	0.000871	6.003	3.730
52	134.58	5.099	1,302	3.00	0.226118	3.366	2.092
53	134.58	4.954	-389	2.00	-0.067073	1.934	1.202
54	134.58	4.920	-730	25.00	-0.126199	23.487	14.594
55	134.58	5.530	1,155	7.00	0.198159	7.742	4.810
56	134.58	5.592	-4	4.00	-0.000680	3.999	2.485
57	134.58	5.292	-1,004	11.00	-0.171188	0.110	6.282
58	134.58	5.549	394	5.00	0.067214	5.172	3.214
59	134.58	5.423	-303	1.00	-0.051601	0.975	0.606
60	134.58	5.567	209	3.00	0.035585	3.054	1.898
61	134.58	5.529	-183	3.00	-0.031117	2.954	1.835
62	134.58	5.630	180	1.00	0.030584	1.015	0.631
63	134.58	5.561	-180	1.00	-0.030572	0.985	0.612
64	134.58	5.761	309	3.00	0.052403	3.080	1.914
65	134.58	5.873	2	6.00	0.000338	6.001	3.729
66	134.58	6.225	485	5.00	0.081558	5.210	3.237
67	134.58	6.197	-97	1.00	-0.016256	0.992	0.616
68	134.58	6.459	267	5.00	0.044648	5.113	3.177
69	134.58	6.359	-375	4.00	-0.062609	3.877	2.409
70	134.58	6.548	208	3.00	0.034700	3.053	1.897
71	134.58	6.618	-121	5.00	-0.020138	4.950	3.076
72	134.58	6.464	-579	6.00	-0.096438	5.720	3.554
73	134.58	6.566	-7	4.00	-0.001166	3.998	2.484
74	134.58	6.725	187	2.00	0.031089	2.031	1.262
75	134.58	6.680	-186	2.00	-0.030892	1.969	1.224
76	134.58	7.978	160	32.00	0.026344	32.425	20.148

Tramo	Re	F	Z	Tmedia (°C)	Tmedia (°K)	Tmedia (°R)
1	7,661,593.13	21.3095	0.793	14.08	287.23	517.01

2	7,661,582.04	21.3095	0.795	14.08	287.23	517.01
3	7,661,582.36	21.3095	0.795	14.08	287.23	517.01
4	7,661,592.78	21.3095	0.797	14.08	287.23	517.01
5	7,661,582.05	21.3095	0.794	14.08	287.23	517.01
6	7,661,556.65	21.3095	0.791	14.08	287.23	517.01
7	7,661,582.15	21.3095	0.796	14.08	287.23	517.01
8	7,661,628.51	21.3095	0.796	14.08	287.23	517.01
9	7,164,451.67	21.3095	0.795	13.29	286.44	515.59
10	7,164,418.55	21.3095	0.794	12.50	285.65	514.17
11	7,164,429.21	21.3095	0.795	12.50	285.65	514.17
12	7,164,465.39	21.3095	0.794	12.50	285.65	514.17
13	7,164,429.36	21.3095	0.794	12.50	285.65	514.17
14	7,164,443.51	21.3095	0.796	12.50	285.65	514.17
15	7,164,433.56	21.3095	0.803	12.50	285.65	514.17
16	7,164,429.26	21.3095	0.812	12.50	285.65	514.17
17	7,164,442.60	21.3095	0.811	12.50	285.65	514.17
18	7,164,429.62	21.3095	0.811	12.50	285.65	514.17
19	7,164,470.52	21.3095	0.814	12.50	285.65	514.17
20	7,164,432.43	21.3095	0.817	12.50	285.65	514.17
21	7,164,431.36	21.3095	0.817	12.50	285.65	514.17
22	7,164,430.58	21.3095	0.816	12.50	285.65	514.17
23	7,164,429.10	21.3095	0.821	12.50	285.65	514.17
24	7,164,429.20	21.3095	0.825	12.50	285.65	514.17
25	7,164,474.35	21.3095	0.825	12.50	285.65	514.17
26	7,164,466.79	21.3095	0.831	12.50	285.65	514.17
27	7,164,431.87	21.3095	0.837	12.50	285.65	514.17
28	7,164,402.59	21.3095	0.835	12.50	285.65	514.17
29	7,164,422.64	21.3095	0.833	12.50	285.65	514.17
30	7,164,409.06	21.3095	0.830	12.50	285.65	514.17
31	7,164,431.38	21.3095	0.830	12.50	285.65	514.17
32	7,164,423.09	21.3095	0.838	12.50	285.65	514.17
33	7,164,429.34	21.3095	0.844	12.50	285.65	514.17
34	7,164,429.49	21.3095	0.845	12.50	285.65	514.17
35	7,164,383.54	21.3095	0.844	12.50	285.65	514.17
36	7,164,418.66	21.3095	0.844	12.50	285.65	514.17
37	7,164,428.03	21.3095	0.846	12.50	285.65	514.17
38	7,164,429.23	21.3095	0.846	12.50	285.65	514.17
39	7,164,435.60	21.3095	0.847	12.50	285.65	514.17
40	7,164,429.22	21.3095	0.845	12.50	285.65	514.17
41	7,164,441.40	21.3095	0.847	12.50	285.65	514.17
42	7,164,431.38	21.3095	0.850	12.50	285.65	514.17
43	7,164,429.15	21.3095	0.851	12.50	285.65	514.17
44	7,164,429.40	21.3095	0.851	12.50	285.65	514.17
-						


45 7,164,445.91 21.3095 0.853 12.50 285.65 514.17 46 7,164,450.53 21.3095 0.856 12.50 285.65 514.17 47 7,164,429.21 21.3095 0.856 12.50 285.65 514.17 48 7,164,429.15 21.3095 0.850 12.50 285.65 514.17 49 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 50 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.843 11.38 284.53 512.15 52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,508.72 21.3095 0.866 10.25 283.40 510.12 54 6,890,508.86 21.3095 0.866 10.25 283.40 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
47 7,164,429.21 21.3095 0.856 12.50 285.65 514.17 48 7,164,408.74 21.3095 0.850 12.50 285.65 514.17 49 7,164,429.15 21.3095 0.849 12.50 285.65 514.17 50 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.849 10.25 283.40 510.12 52 6,890,508.83 21.3095 0.856 10.25 283.40 510.12 53 6,890,508.72 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 55 6,890,520.56 21.3095 0.866 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 <t< td=""><td>45</td><td>7,164,445.91</td><td>21.3095</td><td>0.853</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	45	7,164,445.91	21.3095	0.853	12.50	285.65	514.17
48 7,164,408.74 21.3095 0.850 12.50 285.65 514.17 49 7,164,429.15 21.3095 0.849 12.50 285.65 514.17 50 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.843 11.38 284.53 512.15 52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.853 10.25 283.40 510.12 55 6,890,508.66 21.3095 0.860 10.25 283.40 510.12 56 6,890,502.53 21.3095 0.866 10.25 283.40 510.12 57 6,890,501.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,504.93 21.3095 0.866 10.25 283.40 <t< td=""><td>46</td><td>7,164,450.53</td><td>21.3095</td><td>0.856</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	46	7,164,450.53	21.3095	0.856	12.50	285.65	514.17
49 7,164,429.15 21.3095 0.849 12.50 285.65 514.17 50 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.843 11.38 284.53 512.15 52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.860 10.25 283.40 510.12 55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 <t< td=""><td>47</td><td>7,164,429.21</td><td>21.3095</td><td>0.856</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	47	7,164,429.21	21.3095	0.856	12.50	285.65	514.17
50 7,164,429.48 21.3095 0.849 12.50 285.65 514.17 51 6,890,508.71 21.3095 0.843 11.38 284.53 512.15 52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.860 10.25 283.40 510.12 55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,501.63 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 <t< td=""><td>48</td><td>7,164,408.74</td><td>21.3095</td><td>0.850</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	48	7,164,408.74	21.3095	0.850	12.50	285.65	514.17
51 6,890,508.71 21.3095 0.843 11.38 284.53 512.15 52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.860 10.25 283.40 510.12 55 6,890,502.56 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,504.93 21.3095 0.868 10.25 283.40 <t< td=""><td>49</td><td>7,164,429.15</td><td>21.3095</td><td>0.849</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	49	7,164,429.15	21.3095	0.849	12.50	285.65	514.17
52 6,890,508.83 21.3095 0.849 10.25 283.40 510.12 53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.853 10.25 283.40 510.12 55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,501.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,508.95 21.3095 0.868 10.25 283.40 <t< td=""><td>50</td><td>7,164,429.48</td><td>21.3095</td><td>0.849</td><td>12.50</td><td>285.65</td><td>514.17</td></t<>	50	7,164,429.48	21.3095	0.849	12.50	285.65	514.17
53 6,890,511.45 21.3095 0.856 10.25 283.40 510.12 54 6,890,508.72 21.3095 0.853 10.25 283.40 510.12 55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,504.93 21.3095 0.868 10.25 283.40 510.12 61 6,890,504.93 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 <t< td=""><td>51</td><td>6,890,508.71</td><td>21.3095</td><td>0.843</td><td>11.38</td><td>284.53</td><td>512.15</td></t<>	51	6,890,508.71	21.3095	0.843	11.38	284.53	512.15
54 6,890,508.72 21.3095 0.853 10.25 283.40 510.12 55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,501.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 61 6,890,509.33 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,508.99 21.3095 0.870 10.25 283.40 <t< td=""><td>52</td><td>6,890,508.83</td><td>21.3095</td><td>0.849</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	52	6,890,508.83	21.3095	0.849	10.25	283.40	510.12
55 6,890,508.86 21.3095 0.860 10.25 283.40 510.12 56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.866 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.868 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 <t< td=""><td>53</td><td>6,890,511.45</td><td>21.3095</td><td>0.856</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	53	6,890,511.45	21.3095	0.856	10.25	283.40	510.12
56 6,890,520.56 21.3095 0.868 10.25 283.40 510.12 57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 <t< td=""><td>54</td><td>6,890,508.72</td><td>21.3095</td><td>0.853</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	54	6,890,508.72	21.3095	0.853	10.25	283.40	510.12
57 6,890,502.53 21.3095 0.865 10.25 283.40 510.12 58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.882 10.25 283.40 <t< td=""><td>55</td><td>6,890,508.86</td><td>21.3095</td><td>0.860</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	55	6,890,508.86	21.3095	0.860	10.25	283.40	510.12
58 6,890,511.76 21.3095 0.865 10.25 283.40 510.12 59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.887 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 69 6,890,508.76 21.3095 0.884 10.25 283.40 <t< td=""><td>56</td><td>6,890,520.56</td><td>21.3095</td><td>0.868</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	56	6,890,520.56	21.3095	0.868	10.25	283.40	510.12
59 6,890,509.02 21.3095 0.866 10.25 283.40 510.12 60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 <t< td=""><td>57</td><td>6,890,502.53</td><td>21.3095</td><td>0.865</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	57	6,890,502.53	21.3095	0.865	10.25	283.40	510.12
60 6,890,504.93 21.3095 0.866 10.25 283.40 510.12 61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 <t< td=""><td>58</td><td>6,890,511.76</td><td>21.3095</td><td>0.865</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	58	6,890,511.76	21.3095	0.865	10.25	283.40	510.12
61 6,890,507.45 21.3095 0.868 10.25 283.40 510.12 62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 71 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 <t< td=""><td>59</td><td>6,890,509.02</td><td>21.3095</td><td>0.866</td><td>10.25</td><td>283.40</td><td>510.12</td></t<>	59	6,890,509.02	21.3095	0.866	10.25	283.40	510.12
62 6,890,510.53 21.3095 0.868 10.25 283.40 510.12 63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,531.57 21.3095 0.885 10.25 283.40 510.12 74 6,890,508.60 21.3095 0.887 10.25	60	6,890,504.93	21.3095	0.866	10.25	283.40	510.12
63 6,890,509.89 21.3095 0.869 10.25 283.40 510.12 64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25	61	6,890,507.45	21.3095	0.868	10.25	283.40	510.12
64 6,890,508.95 21.3095 0.870 10.25 283.40 510.12 65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 74 6,890,508.60 21.3095 0.888 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25	62	6,890,510.53	21.3095	0.868	10.25	283.40	510.12
65 6,890,508.72 21.3095 0.873 10.25 283.40 510.12 66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	63	6,890,509.89	21.3095	0.869	10.25	283.40	510.12
66 6,890,507.60 21.3095 0.877 10.25 283.40 510.12 67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	64	6,890,508.95	21.3095	0.870	10.25	283.40	510.12
67 6,890,479.34 21.3095 0.880 10.25 283.40 510.12 68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	65	6,890,508.72	21.3095	0.873	10.25	283.40	510.12
68 6,890,508.76 21.3095 0.882 10.25 283.40 510.12 69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	66	6,890,507.60	21.3095	0.877	10.25	283.40	510.12
69 6,890,533.37 21.3095 0.884 10.25 283.40 510.12 70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	67	6,890,479.34	21.3095	0.880	10.25	283.40	510.12
70 6,890,473.05 21.3095 0.884 10.25 283.40 510.12 71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	68	6,890,508.76	21.3095	0.882	10.25	283.40	510.12
71 6,890,496.23 21.3095 0.886 10.25 283.40 510.12 72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	69	6,890,533.37	21.3095	0.884	10.25	283.40	510.12
72 6,890,508.70 21.3095 0.886 10.25 283.40 510.12 73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	70	6,890,473.05	21.3095	0.884	10.25	283.40	510.12
73 6,890,469.77 21.3095 0.885 10.25 283.40 510.12 74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	71	6,890,496.23	21.3095	0.886	10.25	283.40	510.12
74 6,890,531.57 21.3095 0.887 10.25 283.40 510.12 75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	72	6,890,508.70	21.3095	0.886	10.25	283.40	510.12
75 6,890,508.60 21.3095 0.888 10.25 283.40 510.12	73	6,890,469.77	21.3095	0.885	10.25	283.40	510.12
•	74	6,890,531.57	21.3095	0.887	10.25	283.40	510.12
76 6,890,507.84 21.3095 0.896 10.25 283.40 510.12	75	6,890,508.60	21.3095	0.888	10.25	283.40	510.12
	76	6,890,507.84	21.3095	0.896	10.25	283.40	510.12

Nota: Fuente: Elaboración Propia

Tramo	P1 (bar_g)	P1 (KPa)	P1 (psig)	P2 (bar_g)	P2 (KPa)	P2 (psig)
1	100.00	10,101.35	1,450.40	102.50	10,351.66	1,486.70
2	102.50	10351.66	1486.70	97.98	9,899.21	1,421.08
3	97.98	9,899.21	1,421.08	102.39	10,340.84	1,485.14
4	102.39	10,340.84	1,485.14	96.06	9,707.24	1,393.24
5	96.06	9,707.24	1,393.24	104.95	10,596.40	1,522.20
6	104.95	10,596.40	1,522.20	100.66	10,167.61	1,460.01
7	100.66	10,167.61	1,460.01	99.07	10,008.61	1,436.95
8	99.07	10,008.61	1,436.95	100.59	10,160.06	1,458.92
9	100.59	10,160.06	1,458.92	97.55	9,855.99	1,414.81
10	97.55	9,855.99	1,414.81	99.92	10,093.45	1,449.26
11	99.92	10,093.45	1,449.26	96.91	9,791.86	1,405.51
12	96.91	9,791.86	1,405.51	100.32	10,133.04	1,455.00
13	100.32	10,133.04	1,455.00	96.77	9,778.66	1,403.60
14	96.77	9,778.66	1,403.60	98.45	9,945.89	1,427.85
15	98.45	9,945.89	1,427.85	88.35	8,935.98	1,281.38
16	88.35	8,935.98	1,281.38	88.20	8,921.18	1,279.23
17	88.20	8,921.18	1,279.23	89.15	9,016.57	1,293.06
18	89.15	9,016.57	1,293.06	88.00	8,900.90	1,276.29
19	88.00	8,900.90	1,276.29	86.02	8,703.57	1,247.67
20	86.02	8,703.57	1,247.67	84.65	8,566.49	1,227.78
21	84.65	8,566.49	1,227.78	85.87	8,688.19	1,245.44
22	85.87	8,688.19	1,245.44	85.39	8,640.75	1,238.56
23	85.39	8,640.75	1,238.56	80.33	8,133.90	1,165.04
24	80.33	8,133.90	1,165.04	80.97	8,198.58	1,174.42
25	80.97	8,198.58	1,174.42	80.12	8,113.23	1,162.04
26	80.12	8,113.23	1,162.04	74.84	7,585.54	1,085.51
27	74.84	7,585.54	1,085.51	73.69	7,470.20	1,068.78
28	73.69	7,470.20	1,068.78	76.53	7,754.29	1,109.98
29	76.53	7,754.29	1,109.98	76.14	7,715.01	1,104.29
30	76.14	7,715.01	1,104.29	79.29	8,030.36	1,150.02
31	79.29	8,030.36	1,150.02	76.78	7,779.45	1,113.63
32	76.78	7,779.45	1,113.63	70.52	7,153.71	1,022.88
33	70.52	7,153.71	1,022.88	70.40	7,141.61	1,021.12
34	70.40	7,141.61	1,021.12	69.26	7,027.83	1,004.62
35	69.26	7,027.83	1,004.62	71.92	7,293.64	1,043.17
36	71.92	7,293.64	1,043.17	68.72	6,973.04	996.67
37	68.72	6,973.04	996.67	70.12	7,112.85	1,016.95
38	70.12	7,112.85	1,016.95	68.74	6,975.39	997.01
39	68.74	6,975.39	997.01	68.53	6,954.05	993.92
40	68.53	6,954.05	993.92	71.11	7,212.42	1,031.39

41	71.11	7,212.42	1,031.39	66.44	6,745.62	963.69
42	66.44	6,745.62	963.69	67.77	6,878.80	983.00
43	67.77	6,878.80	983.00	65.91	6,692.79	956.02
44	65.91	6,692.79	956.02	67.52	6,853.37	979.31
45	67.52	6,853.37	979.31	64.06	6,507.31	929.12
46	64.06	6,507.31	929.12	64.48	6,549.14	935.19
47	64.48	6,549.14	935.19	64.04	6,505.57	928.87
48	64.04	6,505.57	928.87	69.87	7,088.06	1,013.35
49	69.87	7,088.06	1,013.35	65.18	6,619.10	945.34
50	65.18	6,619.10	945.34	70.18	7,119.79	1,017.96
51	70.18	7,119.79	1,017.96	69.37	7,038.05	1,006.10
52	69.37	7,038.05	1,006.10	61.44	6,245.76	891.19
53	61.44	6,245.76	891.19	63.27	6,428.66	917.71
54	63.27	6,428.66	917.71	63.72	6,473.08	924.16
55	63.72	6,473.08	924.16	56.58	5,759.47	820.65
56	56.58	5,759.47	820.65	55.94	5,694.96	811.30
57	55.94	5,694.96	811.30	59.16	6,017.65	858.10
58	59.16	6,017.65	858.10	56.38	5,739.45	817.75
59	56.38	5,739.45	817.75	57.72	5,872.88	837.10
60	57.72	5,872.88	837.10	56.19	5,720.58	815.02
61	56.19	5,720.58	815.02	56.59	5,760.18	820.76
62	56.59	5,760.18	820.76	55.55	5,656.22	805.68
63	55.55	5,656.22	805.68	56.25	5,726.48	815.87
64	56.25	5,726.48	815.87	54.27	5,528.19	787.11
65	54.27	5,528.19	787.11	53.21	5,422.38	771.76
66	53.21	5,422.38	771.76	50.15	5,116.23	727.36
67	50.15	5,116.23	727.36	50.38	5,139.09	730.68
68	50.38	5,139.09	730.68	48.29	4,930.63	700.44
69	48.29	4,930.63	700.44	49.07	5,008.20	711.69
70	49.07	5,008.20	711.69	47.62	4,863.64	690.72
71	47.62	4,863.64	690.72	47.11	4,811.92	683.22
72	47.11	4,811.92	683.22	48.26	4,927.01	699.92
73	48.26	4,927.01	699.92	47.49	4,850.45	688.81
74	47.49	4,850.45	688.81	46.34	4,735.35	672.12
75	46.34	4,735.35	672.12	46.66	4,767.76	676.82
76	46.66	4,767.76	676.82	38.91	3,991.97	564.30

Figura 12
Sistema Hidráulico del Gasoducto con diámetro Nominal 16"

Nota. Fuente: Elaboración Propia

Finalmente, para concluir y definir cuál es la mejor dimensionamiento hidráulico para la ampliación de un gasoducto que permita atender la demanda de gas natural de forma óptima a las regiones de Ayacucho, Junín y Huancavelica, se requiere tomar como criterio fundamental la presión final a la entrada del City Gate que se ubique en la ciudad de la Oroya de la región Junín, ya que este como factor de diseño fundamental debe aproximarse o igualarse a los 36 Bares de presión ya que esto permitirá transportar la demanda proyectada de gas natural hasta el año 2043 en las mejores condiciones sin que considerarse sobredimensionadas. Para ello como se apreció anteriormente se realizó el dimensionamiento hidráulico con dos posibles diámetros comerciales que permitan determinar dicha variable.

En ese sentido, de la revisión de ambos dimensionamientos la mejor condición hidráulica para atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín, es el gasoducto que tiene el diámetro comercial de 16" pulgadas, al cumplir con una presión en el final del tramo de 38.91 Bares de presión (02.91 Bares de presión más que la de diseño) y de representar un menor costo al ser de menor diámetro.

CAPÍTULO IV.RESULTADOS

4.1 Resultados esperados

Luego de haber realizado los cálculos hidráulicos de dos dimensionamientos de gasoductos en función de sus diámetros y aplicando la metodología antes expuesta, se pudo determinar lo siguiente:

Que el trazo propuesto para la ampliación del gasoducto Ayacucho pasa por las principales ciudades de la región Ayacucho, Huancavelica y Junín y se extiende por una longitud de 369.244 Km, el gasoducto inicia en la ciudad de Ayacucho (elevación a 2,893 m.s.n.m.), pasa por la región de Huancavelica y culmina en la ciudad de la Oroya de la región de Junín (elevación a 3,720 m.s.n.m.).

La demanda de gas natural identificada del sector residencial que puede atender el gasoducto tiene un potencial de entrega de un caudal de 20.36 MMPCD.

La demanda de gas natural identificada del sector comercial que puede atender el gasoducto tiene un potencial de entrega de caudal de 4.70 MMPCD.

La demanda de gas natural identificada del sector vehicular que puede atender el gasoducto tiene un potencial de entrega de caudal de 60.98 MMPCD.

La demanda de gas natural identificada del sector industrial que puede atender el gasoducto tiene un potencial de entrega de caudal de 53.69 MMPCD.

La demanda de gas natural identificada de la generación eléctrica que puede atender el gasoducto tiene un potencial de entrega de caudal de 10.00 MMPCD.

El mejor diámetro comercial del gasoducto que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de Oroya de la región Junín, con el mejor dimensionamiento hidráulico, en atención a los cálculos realizados en la presente monografía técnica es el de 16" pulgadas, lo cual permitirá atender la demanda de gas natural de las mencionadas regiones y llegar con una presión final de 38.91 Bares, siendo una presión cercana a los 36 Bares de presión final de diseño que se requiere.

Técnicamente las mejores condiciones hidráulicas para el transporte del gas natural serán cuando se desarrolle la ampliación del gasoducto con un diámetro comercial de 16" pulgadas, asimismo permitirá ofrecer menores costos por considerarse un menor diámetro a la del diseño.

Conocer y tener en cuenta la información del presente trabajo permitirá contribuir de cierta manera contar con los estudios iniciales requeridos para el desarrollo de infraestructura de gas natural a nivel nacional que viene impulsando el Estado.

CAPÍTULO V.CONCLUSIONES

- Se determinó que el mejor dimensionamiento hidráulico para la ampliación de un gasoducto que parta desde la ciudad de Ayacucho, que pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región de Junín es aquel que permite atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín sin sobredimensionamientos; el cual se logró cuando se seleccionó un diámetro comercial de 16 pulgadas, considerando que dicha selección de diámetro permite transportar el volumen requerido máximo de 149.64 MMPCD en todo su recorrido y llegar al punto final de consumo con una presión mínima de 38.91 Bares. La presión mínima de diseño requerida que es de 36 Bares (Ver figura 12).
- El trazo más adecuado por donde se desarrollará la ampliación del gasoducto, pasa por las ciudades más importantes de las regiones de Ayacucho, Huancavelica y Junín. La longitud real de la ampliación del gasoducto es de 369.244 Km, este inicia en la ciudad de Ayacucho a una elevación a 2,893 m.s.n.m., pasa por la región de Huancavelica a

- una elevación máxima de 4,505 m.s.n.m. y culmina en la ciudad de la Oroya de la región de Junín a una elevación de 3,720 m.s.n.m. (Ver Anexo C y D).
- La demanda proyectada de gas natural que atenderá la ampliación del gasoducto al año 2043 para la región de Ayacucho es de 9.71 MMPCD, para la región de Huancavelica es de 5.35 MMPCD y para la región de Junín es de 134.58 MMPCD. La demanda del gas natural de las 3 regiones para el año 2043 identificada para el sector residencial es de 20.36 MMPCD, para el sector comercial es de 4.70 MMPCD, para el sector vehicular es de 60.98 MMPCD, para el sector industrial es de 54.69 MMPCD y para el sector eléctrico es de 10 MMPCD.
- Se determinó como especificación técnica que el diámetro comercial del gasoducto sea de 16 pulgadas, cuenten con un espesor de 0.5 pulgadas y que la presión de cabeza que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín sea como mínimo de 100 Bares de presión.
- Las variables hidráulicas de la ampliación del gasoducto considerado como mejor alternativa que permita atender la demanda de gas natural de las regiones de Ayacucho, Huancavelica y Junín se encuentran cuando se escoge el diámetro del gasoducto de 16" pulgadas. Las variables hidráulicas son la longitud equivalente del gasoducto tramo por tramo, velocidad del gas natural por tramo, factor de transmisión, factor de compresibilidad del gas natural, numero de Reynolds y por ultimo las presiones en cada punto del tramo tal como se puede apreciar en las tablas 30 y 31 de la presente monografía.

CAPÍTULO VI.RECOMENDACIONES

- Determinar los costos de implementación, costos de operación y mantenimiento del gasoducto propuesto con una vida útil de 20 años.
- Realizar un estudio detallado y especializado de la proyección de la demanda del gas natural por diferentes sectores dentro del área de influencia del trazo del gasoducto propuesto.
- Conocer la viabilidad económica en la implementación del gasoducto que parta desde la ciudad de Ayacucho, pase por la región de Huancavelica y culmine en la ciudad de la Oroya de la región de Junín, y de resultar viable mandarlo a licitación.
- Definir la ubicación de los City Gates para realizar el diseño de sistemas de distribución de gas natural que permitirá llevar el gas natural a los principales puntos de consumo de las regiones de Ayacucho, Huancavelica y Junín.

CAPÍTULO VII.REFERENCIAS BIBLIOGRÁFICAS

- Energy Sector Management Assistance Program. (2006). Extensión de Ramales de Gas

 Natural al Interior del Perú.

 https://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/0F0BC063A188ECFE05257B

 05007161F1/\$FILE/1 pdfsam 368690PAPER0SP1E0ESM10310601PUBLIC1.pdf
- Fiorella Representaciones S.A.C. (2022). Tubos de Acero Inoxidable Soldables con Costura EFW ASTM A312 SCH 10S / 40S / 80S Presión de Trabajo para Tubos de Acero Inoxidable Soldables EFW. https://www.fiorellarepre.com.pe/FichaTecnica/806003.pdf
- Generadores de Conocimientos. (2022). *Rugosidades de Tuberías*.

 https://gecousb.com.ve/guias/GECO/Fenómenos De Transporte 1 (TF-1221)/Material
 Teórico (TF-1221)/TF-1221 Rugosidades Diámetros Tuberías.pdf
- Grupo Vemacero C.A. (2022). *Tubería de Acero al Carbono API 5L/ASTM A53/A106*. 2–7. https://ingemecanica.com/tutoriales/objetos/tuberias/Catalogo_Gasoductos_Acero.pdf
- Infogas. (2021). Infogas Estadísticas. http://infogas.com.pe/estadisticas/
- Menon, E. S. (2005). Gas pipeline hydraulics. In *Taylor & Francis Group*. https://doi.org/10.1201/9781420038224
- Ministerio de Energía y Minas. (2021). *Estadisticas Upstream y Downstrean hidrocarburos*. http://www.minem.gob.pe/_estadisticaSector.php?idSector=5
- Ministerio de Energía y Minas. (2022). *Resolución Ministerial N° 154-2022-MINEM_DM*. https://www.gob.pe/institucion/minem/normas-legales/2917579-154-2022-minem-dm
- Ministerio de Transporte y Comunicaciones. (2022). Estadística Servicios de Transporte

 Terrestre por Carretera Parque Automotor Perú.

 https://www.gob.pe/institucion/mtc/informes-publicaciones/344892-estadistica-servicios-de-

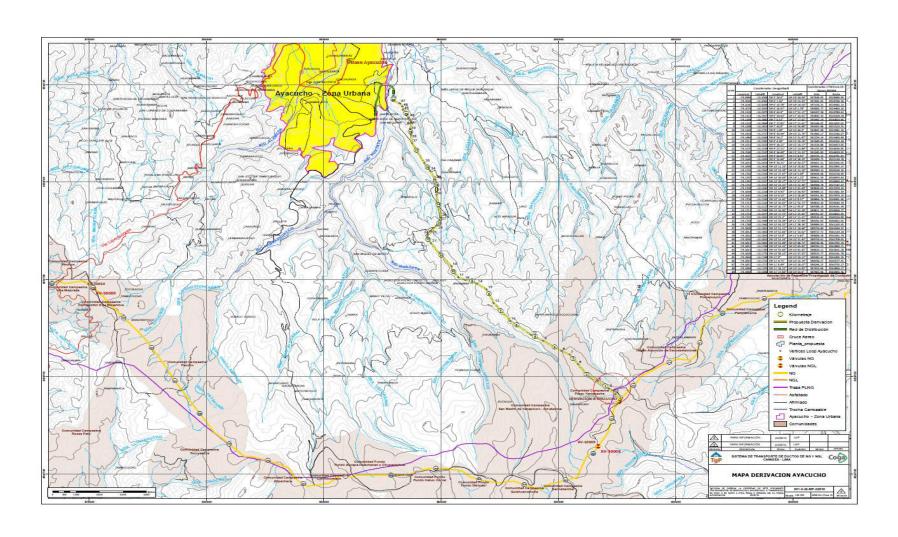
- transporte-terrestre-por-carretera-parque-automotor
- Ministerio de Vivienda Construcción y Saneamiento. (2022). *Compendio Estadistico de viviendas del Perú*.
 - https://ww3.vivienda.gob.pe/repositorioestadistico/CompendioEstadistico.aspx
- Organismo Supervisor de la Inversión en Energía y Minería. (2016). Reporte Proyecto Gasoducto Derivación Ayacucho.
 - https://www.osinergmin.gob.pe/seccion/centro_documental/gas_natural/Documentos/Trans porte/Reporte-Mensual/Proyecto Gasoducto de Derivación Principal a Ayacucho/Proyecto_Gasoducto_Derivación_Principal _Ayacucho(08).pdf
- Organismo Supervisor de la Inversión en Energía y Minería. (2022). *Mapa Energético Minero OSINERGMIN*. https://gisem.osinergmin.gob.pe/
- R. Lopez, M. (2015). Condiciones Operativas Diarias [Centro de Estudios de la Actividad Regulatoría Energetica - Maestría Interdisciplinaria en Energía]. https://www.ceare.org/tesis/2016/tes14.pdf
- Regulación, R. C. energía &. (2014). Estudio de Demanda en el Proceso de Pomoción del Proyecto de Distribución de Gas Natural por Red de Ductos. Ministerio de Energía y Minas.
- Sánchez, J. (2014). *Gasoducto Perú Centro*. 260. [Politecnica de Madrid Master Universitario en Ingeniería de la Mínería]. https://oa.upm.es/23428/1/TESIS_MASTER_JOHNNY_SANCHEZ_GALVEZ.pdf
- Transportadora de Gas del Perú S.A. (2022). *Reporte operativo*. http://extranet.tgp.com.pe:8083/
- Weather Spark. (2022). *El clima, el tiempo por mes, temperatura promedio (Ayacucho)*. https://es.weatherspark.com/y/20037/Clima-promedio-en-Cayambe-Ecuador-durante-todo-el-año

Zorrilla Pariachi, J. N. (2014). Evaluación de un Complejo de Producción de Fertilizantes de Origen Fosfatado en el Valle Mantaro - Región Junín [Universidad Nacional de Ingeniería - Facultad de Ingeniería de Petróleo, Gas Natural y Petroquímica]. https://alicia.concytec.gob.pe/vufind/Record/UUNI_4f80084cb253fa758a36704d79a74bd6

CAPÍTULO VIII.ANEXOS

A. Catálogo de Tubos de Acero Inoxidable Soldables con Costura EFW ASTM A312 SCH 10S/40S/80S

Tubos de Acero Inoxidable Soldables con Costura EFW ASTM A312 SCH 10S / 40S / 80S


La tubería A312 está destinada para aplicaciones sometidas a temperatura y agentes corrosivos en general. Longitud 6m. Acabado de extremos planos y roscados NPT ASME B1.20.1.

Test de Tensión								
Material	Carg Rotura		Límite Elástico, min.					
	psi	MPa	psi	MPa				
304L	70000	485	25000	170				
304	75000	515	30000	205				
316L	70000	485	25000	170				
316	75000	515	30000	205				

Diámetro	Dimen. Exterior	SCH-10S		SCH-40S		SCH-80S	
Nominal		Espesor Nominal	Peso	Espesor Nominal	Peso	Espesor Nominal	Peso
Pulgadas	mm	mm	kg/m	mm	kg/m	mm	kg/m
1/4	13.7	1.65	0.49	2.24	0.63	3.02	0.80
3/8	17.1	1.65	0.63	2.31	0.85	3.20	1.09
1/2	21.3	2.11	1.00	2.77	1.27	3.73	1.62
3/4	26.7	2.11	1.28	2.87	1.69	3.91	2.20
1	33.4	2.77	2.09	3.38	2.50	4.55	3.24
11/4	42.2	2.77	2.69	3.56	3.39	4.85	4.47
11/2	48.3	2.77	3.11	3.68	4.05	5.08	5.41
2	60.3	2.77	3.93	3.91	5.45	5.54	7.49
21/2	73.0	3.05	5.27	5.16	8.64	7.01	11.42
3	88.9	3.05	6.46	5.49	11.30	7.62	15.28
4	114.3	3.05	8.37	6.02	16.09	8.56	22.34
5	141.3	3.40	11.6	6.56	21.8	9.53	31.0
6	168.3	3.40	13.85	7.11	28.28	10.97	42.60
8	219.1	3.76	19.98	8.18	42.57	12.70	64.69
10	273.0	4.19	27.88	9.27	60.36	12.70	81.6
12	323.8	4.57	36.08	9.53	73.9	12.70	97.4
14	355.6	4.78	41.3	9.53	81.3	12.70	107.4
16	406.4	4.78	47.3	9.53	93.3	12.70	123.3
18	457.2	4.78	53.3	9.53	105.2	12.70	139.2
20	508	5.54	68.8	9.53	117.2	12.70	155.1
22	558.8	5.54	75.5	9.53	129.1	12.70	171.1
24	609.6	6.35	94.5	9.53	141.1	12.70	187.1

^{*} Fotos y datos referenciales. No aceptamos responsabilidad por usos incorrectos o mal interpretaciones de estos datos.

B. Plano del Trazo de la ampliación del Gasoducto

C. Plano del recorrido de la ampliación del gasoducto

D. Perfil de elevación del recorrido de la ampliación del gasoducto

