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Abstract. By a diagonal embedding of U(1) in SUq(m), we prolongate the diagonal circle action
on the Vaksman–Soibelman quantum sphere S2n+1

q to the SUq(m)-action on the prolongated
bundle. Then we prove that the noncommutative vector bundles associated via the fundamental
representation of SUq(m), for m ∈ {2, . . . , n}, yield generators of the even K-theory group of
the C*-algebra of the Vaksman–Soibelman quantum complex projective space CPn

q .

1. Introduction. The K-theory of complex projective spaces was unraveled by Atiyah
and Todd in [6, Propositions 2.3, 3.1 and 3.3] (cf. [1, Theorem 7.2] and [20, Corollary
IV.2.8]). Denoting by Ln1 the dual tautological line bundle over CPn and setting

t := [CPn×C]− [Ln1 ] ∈ K0(CPn),

one obtains
K0(CPn) = Z[t]/tn+1. (1.1)
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Recently, this result was extended to the Vaksman–Soibelman quantum complex projec-
tive spaces [2, Propositions 3.3 and 3.4]:

K0(C(CPnq )) = Z[t]/tn+1 ∼= Zn+1. (1.2)

Here 0 < q < 1,

tk :=
k∑

m=0
(−1)m

(
k

m

)[
(Ln1 )⊗

m
C(CPn

q )
]
, 0 ≤ k ≤ n+ 1, (Ln1 )⊗

0
C(CPn

q ) := C(CPnq ), (1.3)

and Ln1 is the section bimodule of the noncommutative dual tautological line bundle
over CPnq .

The K-theory of both the Vaksman–Soibelman and the multipullback quantum com-
plex projective planes [13, 23, 17] was thoroughly analysed in [11]. In this special n = 2
case, the elements

[1], [L2
1]− [1], [L2

−1 ⊕ L2
1]− 2[1] (1.4)

form a basis of K0(C(CP2
q)). Here L2

−1 is the section module of the noncommutative
tautological line bundle over CP2

q.
A particular feature of the module L2

−1 ⊕ L2
1 established in [11] is that it can be

obtained as a Milnor module [21, Theorem 2.1] constructed from the fundamental repre-
sentation of SUq(2). This was achieved by taking U(1) as a subgroup of SUq(2), and then
realising L2

−1⊕L2
1 as the section module of the noncommutative vector bundle associated

to the prolongation S5
q ×U(1) SUq(2) via the fundamental representation of SUq(2). The

upshot of having [L2
−1 ⊕ L2

1] − 2[1] as the image of a C*-algebraic Milnor connecting
homomorphism [16, Section 0.4] is that it allows one to prove, without using the index
pairing over CP2

q, that the set (1.4) is a basis of K0(C(CP2
q)).

The goal of this paper is to show that the above construction works in any dimension.
More precisely, except for the classes [1] and [Ln1 ]− [1], we prove that all other generators
of K0(C(CPnq )) come from section modules of noncommutative vector bundles associated
to prolongations S2n+1

q ×U(1) SUq(m) via the fundamental representations of SUq(m),
respectively, where m ∈ {2, . . . , n}.

We complement this way the Milnor vantage point on bases of K0(C(CPnq )) coming
from the exact sequence [3]

0 −→ K1(C(S2n−1
q )) ∂10−→ K0(C(CPnq )) −→ K0(C(CPn−1

q )) −→ 0.

Note that a generator of K0(C(CPnq )) that does not come from CPn−1
q can always be con-

structed via the Milnor connecting homomorphism ∂10 from a generator ofK1(C(S2n−1
q )).

Therefore, by iteration, we can obtain a basis of K0(C(CPnq )) from the Milnor connecting
homomorphisms.

Finally, as S2n−1
q is a homogeneous space of SUq(n), we arrive at the following:

Question. Can a generator of K1(C(S2n−1
q )) ∼= Z be always expressed in terms of

representations of SUq(n)?

This question has positive answer for q = 1 by the work of Harris [18] based on the work
of Hodgkin and Atiyah [19, 5]. For 0 < q < 1 and n = 2, we just take the fundamental
representation of SUq(2).
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2. Preliminaries. The Vaksman–Soibelman odd quantum spheres [26] are defined as
quantum homogeneous spaces for Woronowicz’s quantum special unitary groups [27]:

C(S2n+1
q ) := C(SUq(n+ 1))SUq(n).

Here 0 < q ≤ 1, and we use the notation AG for the fixed-point subalgebra of a C*-algebra
A under an action of a compact quantum group G. (Note that the q = 1 case recovers
the classical situation.) One can show that C(S2n+1

q ) is the universal C*-algebra given
by the following generators and relations:

zizj = qzjzi for i < j, ziz
∗
j = qz∗j zi for i 6= j,

ziz
∗
i = z∗i zi + (q−2 − 1)

n∑
m=i+1

zmz
∗
m,

n∑
m=0

zmz
∗
m = 1.

Much like in the classical case, the Vaksman–Soibelman quantum odd spheres enjoy
the diagonal circle action given on generators by

(z0, z1, . . . , zn) 7→ (λz0, λz1, . . . , λzn), λ ∈ U(1).

One uses this action to define the quantum complex projective spaces [26]

C(CPnq ) := C(S2n+1
q )U(1).

Recall that freeness of circle actions can be characterised in terms of their spectral
subspaces (e.g., see [22]). Given an action α : U(1)→ Aut(A) on a unital C*-algebra, for
each character m ∈ Z, one defines the m-th spectral subspace Am as

Am :=
{
a ∈ A |αλ(a) = λma for all λ ∈ U(1)

}
.

The subspace A0 agrees with the fixed-point subalgebra AU(1), and the inclusions
AmAn ⊆ Am+n, m,n ∈ Z, turn A into a Z-graded algebra. Now, one can say that the
action α is free if and only if the Z-grading is strong [25], i.e. AmAn = Am+n for all
m,n ∈ Z. It is straightforward to check that the bimodules Am are finitely generated
projective both as left and right AU(1)-modules. Furthermore, they are invertible and
they can be interpreted as modules of sections of associated noncommutative line bundles
(e.g., see [4]).

Note that, using the spatial tensor product, the action α can be dualised to the
coaction

δ : A −→ A ⊗
min

C(U(1)) = C(U(1), A), δ(a)(λ) := αλ(a).

Denote by O(U(1)) the dense Hopf subalgebra of C(U(1)) consisting of Laurent polyno-
mials in one variable. The Peter–Weyl O(U(1))-comodule algebra PU(1)(A), defined as
the set of all a ∈ A such that δ(a) ∈ A⊗O(U(1)) (see [7]), is the purely algebraic direct
sum of spectral subspaces:

PU(1)(A) =
⊕
m∈Z

Am. (2.1)

The PU(1)(A) comodule algebra is principal in the sense of [14].
A centrepiece concept for our paper is the notion of a prolongation of a principal

comodule algebra. To define it, first we need to recall the definition of the cotensor
product. For a coalgebra C, the cotensor product of a right C-comoduleM with a coaction
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ρR : M →M ⊗ C and a left C-comodule N with a coaction ρL : N → C ⊗N is defined
as the difference kernel

M
C
� N := ker

(
ρR ⊗ id− id⊗ ρL : M ⊗N −→M ⊗ C ⊗N

)
.

Given a surjection of Hopf algebras π : H → H̄, we can treat H as a left H̄-comodule via
the coaction (π⊗ id)◦∆. For any right H̄-comodule algebra P, we define its prolongation
as the cotensor product P�H̄H. It is easy to check that this cotensor product is a right
H-comodule algebra for the coaction id ⊗∆. It is also straightforward to verify that, if
P is principal, then so is its prolongation.

Let P be a principal H-comodule algebra with a coaction ∆R and let V be a left
H-comodule. Much as in the classical case, we can form the associated left module P�HV
over the coaction-invariant subalgebra PcoH := {a ∈ P |∆R(a) = a ⊗ 1}. We think of
this module as the section module of the associated noncommutative vector bundle. If P
is principal and V is finite dimensional, then it is known that the associated module is
finitely generated projective (e.g., see [8, Theorem 3.1]).

3. Line bundles. As explained in the introduction, the K-theory of the Vaksman–
Soibelman quantum complex projective spaces is determined by section modules of asso-
ciated noncommutative line bundles. Therefore, we begin our considerations by putting
together some facts involving these noncommutative line bundles.

For the Vaksman–Soibelman quantum sphere S2n+1
q , the Peter–Weyl subalgebra (2.1)

becomes
PU(1)(C(S2n+1

q )) =
⊕
m∈Z

Lnm,

where

Lnm :=
{
a ∈ C(S2n+1

q ) |αλ(a) = λma for all λ ∈ U(1)
} ∼=


(Ln1 )⊗

m
C(CPn

q ) for m > 0
C(CPnq ) for m = 0

(Ln−1)
⊗|m|

C(CPn
q ) for m < 0.

The U(1)-action on C(S2n+1
q ) is free by [24, Corollary 3], so we can think of Lnm as modules

of sections of associated noncommutative line bundles. Note that our sign convention is
opposite to that used in [2], i.e. Lnm = L−m.

Recall that there exists a U(1)-equivariant ∗-homomorphism ϕ : C(S2n+1
q ) → C(S3

q )
given on standard generators by

ϕ(zi) =


z0 if i = 0
z1 if i = 1
0 if i ≥ 2.

Therefore, by [15, Theorem 0.1], the induced map(
ϕ|C(CPn

q )
)
∗ : K0(C(CPnq )) −→ K0(C(CP1

q))

satisfies (
ϕ|C(CPn

q )
)
∗

(
[Lnm]

)
= [L1

m]
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for any m ∈ Z. Since the index pairing computation of [12, Theorem 2.1] proves that
[L1
m] = [L1

k] implies m = k for 0 < q < 1, and the q = 1 case is well known, we thus
arrive at the following:

Theorem 3.1. The spectral subspaces Lnm are pairwise stably non-isomorphic as finitely
generated projective left modules over C(CPnq ), 0 < q ≤ 1. That is, for all n ∈ N \ {0}
and any m, k ∈ Z, we have

[Lnm] = [Lnk ] if and only if m = k.

Observe that, for 0 < q < 1, this fact was already proven in [10, Propositions 4 and 5]
using the index pairing between the K-homology group K0(C(CPnq )) and the K-theory
group K0(C(CPnq )).

To use the index pairing, for the rest of this section we assume 0 < q < 1. Denote by
[µ0], . . . , [µn] ∈ K0(C(CPnq )) the K-homology generators constructed in [10, Section 2].
In the same paper, the authors proved that〈

[µk], [Lnm]
〉

=
(
m

k

)
(3.1)

for all m ∈ N and for all 0 ≤ k ≤ n. Here we adopt the convention that
(
m
k

)
:= 0 when

k > m. In particular, 〈
[µ0], [Lnm]

〉
= 1 and

〈
[µ1], [Lnm]

〉
= m (3.2)

for all m ∈ Z (see [2, Proposition 3.2]). We view the pairing with [µ0] as computing the
rank, and the pairing with [µ1] as computing the noncommutative first Chern class. In
agreement with the classical setting, we call Ln−1 the section module of the noncommu-
tative tautological line bundle, and we refer to Ln1 as the section module of the noncom-
mutative dual tautological line bundle. The latter is also known as the noncommutative
Hopf line bundle.

As mentioned in the introduction, the K-theory groups of quantum projective spaces
have the same bases as their classical counterparts. This was proven in [2] by showing
that, for 0 ≤ j ≤ n and for 0 ≤ k ≤ n,〈

[µk], tj
〉

=
{

0 for j 6= k

(−1)j for j = k.
(3.3)

Recall that t := [1]− [Ln1 ] is the noncommutative Euler class of Ln1 (see (1.3)).
We conclude this section by computing the pairings of the K-homology generators

with the class of the section module of the noncommutative tautological line bundle Ln−1.

Proposition 3.2. For all positive integers n and for all 0 ≤ k ≤ n, we have〈
[µk], [Ln−1]

〉
= (−1)k.

Proof. The cases k = 0, 1 are covered by (3.2). For 2 ≤ k ≤ n, we infer from [9] the
identity

[Ln−1] = 1 + t+ . . .+ tn (3.4)

and combine it with the pairings in (3.3).
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4. Vector bundles. Although the K0-groups of the Vaksman–Soibelman quantum pro-
jective spaces are determined by associated noncommutative line bundles, expressing the
generators as associated noncommutative vector bundles has its merits, as explained in
the introduction.

For every 0 < q ≤ 1 and m = 2, . . . , n, consider the following surjection of Hopf
algebras

πm : O(SUq(m)) −→ O(U(1)), πm(Uij) :=
{
δiju

−1 for i < n

δiju
m−1 for i = n,

(4.1)

where Uij are the matrix coefficients of the fundamental representation of SUq(m). To
prove that πm is well defined, we have to verify that the determinant formulae (1.17) and
(1.18) in [27] are satisfied. This can be done by a direct computation taking advantage
of the fact that u is unitary and that πm assigns zero to off-diagonal entries. With the
help of πm, we define the prolongations of principal comodule algebras:

PU(1)(C(S2n+1
q ))

O(U(1))
� O(SUq(m)).

Next, taking the fundamental representation Vm of SUq(m), we construct the associated
finitely generated projective left C(CPnq )-modules

Fnm := PU(1)(C(S2n+1
q ))

O(U(1))
� O(SUq(m))

O(SUq(m))
� Vm. (4.2)

We are now ready to prove our main result:

Theorem 4.1. For any positive integer n and 0 < q ≤ 1, the classes
En0 := [1], En1 := [Ln1 ]− [1], Enm := [Fnm]−m[1], m = 2, . . . , n,

form a basis of K0(C(CPnq )).

Proof. To begin with, plugging in the explicit formula (4.1) into the definition (4.2), we
derive the decomposition

Fnm = (Ln−1)⊕(m−1) ⊕ Lnm−1.

Combining (1.1) and (1.2), we know that {1, t, . . . , tn} is a basis of K0(C(CPnq )). We now
use (3.4) to write Enm in the above basis

En0 = 1, En1 = −t, Enm =
n∑
k=2

(
(m− 1) + (−1)k

(
m− 1
k

))
tk, m ≥ 2. (4.3)

It remains to show that the matrix Mn implementing (4.3) is invertible over the integers.
Since Mn+1 always contains Mn as an n × n submatrix in the upper-left corner, it is
straightforward to verify the claim using elementary row operations and induction.

For n = 2, the above theorem yields
[1], [L2

1]− [1], [L2
−1 ⊕ L2

1]− 2[1]
as a basis of K0(C(CP2

q)). This agrees with the K-theory computations done in [11] for
the multipullback quantum complex projective plane. Note also that the matrix Mn used
in the above proof agrees up to a sign with the matrix of pairings

〈
[µk], Enj

〉
, which can

be computed using (3.1) and Proposition 3.2.
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