
Numerical Algorithms
https://doi.org/10.1007/s11075-022-01405-9

ORIGINAL PAPER

A primal-dual splitting algorithm for composite
monotone inclusions with minimal lifting

Francisco J. Aragón-Artacho1 ·Radu I. Boţ2 ·David Torregrosa-Belén1

Received: 23 February 2022 / Accepted: 23 August 2022
© The Author(s) 2022

Abstract
In this work, we study resolvent splitting algorithms for solving composite mono-
tone inclusion problems. The objective of these general problems is finding a zero
in the sum of maximally monotone operators composed with linear operators. Our
main contribution is establishing the first primal-dual splitting algorithm for com-
posite monotone inclusions with minimal lifting. Specifically, the proposed scheme
reduces the dimension of the product space where the underlying fixed point operator
is defined, in comparison to other algorithms, without requiring additional evalua-
tions of the resolvent operators. We prove the convergence of this new algorithm and
analyze its performance in a problem arising in image deblurring and denoising. This
work also contributes to the theory of resolvent splitting algorithms by extending
the minimal lifting theorem recently proved by Malitsky and Tam to schemes with
resolvent parameters.

Keywords Monotone operator · Monotone inclusion · Splitting algorithm ·
Primal-dual algorithm · Minimal lifting

Mathematics Subject Classification (2010) 47H05 · 65K10 · 90C30

� David Torregrosa-Belén
david.torregrosa@ua.es

Francisco J. Aragón-Artacho
francisco.aragon@ua.es

Radu I. Boţ
radu.bot@univie.ac.at

1 Department of Mathematics, University of Alicante, San Vicente del Raspeig, 03690,
Alicante, Spain

2 Faculty of Mathematics, University of Vienna, Vienna, 1090, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01405-9&domain=pdf
http://orcid.org/0000-0003-2361-2037
mailto: david.torregrosa@ua.es
mailto: francisco.aragon@ua.es
mailto: radu.bot@univie.ac.at

Numerical Algorithms

1 Introduction

In the last decades, monotone inclusion problems have become an attractive topic
of research in operator theory and numerical optimization. The wide variety of sit-
uations in applied mathematics that can be modeled as finding a zero of the sum of
mixtures of maximally monotone operators is one of the reasons for its increasing
popularity. Among the methods that are usually employed for tackling these prob-
lems, splitting algorithms (see, e.g., [2, Chapter 26]) are the ones that have received
more attention. Using simple operations, these methods define an iterative sequence
which separately handles the operators defining the problem and is convergent to a
solution to the inclusion problem. Furthermore, as these methods only use first-order
information, they are well suited for large-scale optimization problems.

In this work, we focus on the study of primal-dual splitting algorithms for
composite monotone inclusion problems in real Hilbert spaces of the following form.

Problem 1 Let H and (Gj)1≤j≤m be real Hilbert spaces. Let A1, . . . , An : H ⇒ H
be maximally monotone operators, let Bj : Gj ⇒ Gj be maximally monotone and
Lj : H → Gj be a bounded linear operator whose adjoint is denoted by L∗

j , for all
j ∈ {1, . . . , m} . The problem consists in solving the primal inclusion

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x) +
m∑

j=1

L∗
jBj (Ljx), (1)

together with its associated dual inclusion

find (u1, . . . , um)∈ G1×· · ·×Gm such that (∃ x ∈H)

⎧
⎪⎨

⎪⎩
−

m∑

j=1

L∗
j uj ∈

n∑

i=1

Ai(x),

uj ∈ Bj (Ljx) j = 1, . . . ,m.
(2)

Problem 1 encompasses numerous important problems in mathematical optimiza-
tion and real-world applications (see, e.g., [10, 11, 20]). In these settings, it is highly
desirable to devise algorithms that simultaneously obtain solutions to both problems
(1) and (2) –namely, a primal-dual solution– and which only make use of resolvents
of the maximally monotone operators, forward evaluations of the linear operators and
their adjoints, scalar multiplication, and vector addition. Many splitting methods can
be found in the literature satisfying these conditions (see, e.g., [3–5, 12, 22]). One
of the best-known primal-dual algorithm is the one proposed by Briceño-Arias and
Combettes in [7], which was further studied in [6]. To derive this scheme, let us con-
sider first the particular instance of Problem 1 in which n = m = 1 and let us define
the pair of operators M and N given by

{
M : H × G ⇒ H × G : (x, u) → A(x) × B−1(u),

N : H × G → H × G : (x, u) → (L∗u, −Lx).

The operator M is maximally monotone and N is a skew symmetric bounded linear
operator. Furthermore, the set of zeros of the sum M + N consists of primal-dual

Numerical Algorithms

solutions to Problem 1. Applying the forward-backward-forward algorithm to the
problem of finding the zeros of M + N results in the fixed point iteration given by

xk+1 = (
JγM (Id − γN) + γN

(
Id − JγM (Id − γN)

))
(xk) ∀k ≥ 0, (3)

where γ > 0, Id denotes the identity operator and JγA stands for the resolvent of A

with parameter γ (see Definition 3). Thus, since the resolvent of a cartesian product
is the cartesian product of the resolvents, it can be seen that (3) is a full splitting
algorithm, as it only requires evaluations of the resolvents JγA and JγB−1 , and of the
linear operator and its adjoint.

The general problem involving more than two operators can be addressed by
setting

A := A1, B := A2 × · · · × An × B1 × · · · × Bm

and L := Id× (n)· · · ×Id × L1 × · · · × Lm.
In this case, according to (3), the resulting algorithm is generated by a fixed point
iteration of an operator defined in the ambient space Hn × G1 × · · · × Gm. The
dimension of the underlying space is directly related to the memory requirements
of the resulting algorithm. In general, a smaller dimension of the space translates
into less consumption of computational resources. For this reason, the development
of algorithms with reduced dimension for solving monotone inclusion problems has
recently become an active topic of research [8, 14, 16, 19].

Lifted splitting algorithms The notion of lifted splitting, first introduced in [19],
relates a fixed point algorithm with the dimension of its underlying ambient space.
Consider the simplest case of the classical monotone inclusion problem obtained by
setting m = 0 in (1):

Problem 2 Let A1, . . . , An : H ⇒ H be maximally monotone operators and
consider the problem

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x).

A fixed point algorithm for finding a solution to Problem 2 employs a d-fold lifting
if its underlying fixed point operator can be defined on the d-fold Cartesian product
Hd . For example, if n = 2, the famous Douglas–Rachford algorithm [15] makes use
of a 1-fold lifting, since it can be written as the fixed point iteration

xk+1 = xk + λ
(
JA2

(
2JA1 − Id

)− JA1

)
(xk) ∀k ≥ 0,

with λ ∈]0, 2[. Until very recently, the only way to tackle the problem when n > 2
was using Pierra’s product space reformulation [18], which implies an n-fold lifting.
Nowadays, various algorithms have been proposed allowing to solve the problem by
only resorting to an (n − 1)-lifting (see, e.g., [8, 13, 14]). This reduction from n to
n − 1 has been proven to be minimal [16] when the algorithms are required to be
frugal resolvent splittings [19], which means that each of the resolvents JA1 , . . . , JAn

is evaluated only once per iteration.

Numerical Algorithms

To the best of the authors’ knowledge, the notion of lifting has not been developed
in the setting of primal-dual inclusions given by Problem 1. We will say that a primal-
dual splitting has (d, f)-lifting if the underlying fixed point operator can be written
in the product space

Hd × Gf1
1 × · · · × Gfm

m ,

with f = ∑m
j=1 fj . Thus, the Briceño–Arias–Combettes primal-dual splitting

algorithm makes use of an (n, m)-fold lifting. This is also the case for the other
primal-dual algorithms existing in the literature. In this work, we propose the first
(n−1, m)-lifted splitting method for solving primal-dual inclusions and demonstrate
the minimality of the algorithm. In order to do this, it is important to note that the def-
inition of frugal resolvent splitting does not allow the use of parametrized resolvents.
The inclusion of these resolvent parameters is of crucial importance for controlling
the Lipschitz constants of the linear operators in Problem 1, as can be seen in all
the existent primal-dual schemes. This motivates the introduction of the concept of
frugal parametrized resolvent splitting, whose definition coincides with the one of
frugal resolvent splitting except that it permits the inclusion of resolvent parameters.
Our contribution to the theory of minimal lifting splitting methods is double: (i) we
extend the results of Malitsky–Tam in [16, Section 3] to frugal parametrized resol-
vent splitting algorithms, (ii) we prove that for a frugal primal-dual parametrized
resolvent splitting (see Section 3 for a precise definition) with (d, m)-fold lifting to
solve Problem 1, one necessarily has d ≥ n − 1. Our proposed algorithm is the first
algorithm in the literature being minimal according to this relation.

The rest of this work is structured as follows. In Section 2, we recall some pre-
liminary notions and results. In particular, in Section 2.1, we present the extension
of the results by Malitsky–Tam [16] to parametrized resolvent splitting algorithms.
In Section 3, we introduce the first primal-dual algorithm with reduced lifting for
composite monotone inclusion problems and prove its convergence. The concept of
parametrized resolvent splitting is adapted to primal-dual schemes in Section 3. We
prove a minimality theorem under the hypothesis of frugality and show that our pro-
posed algorithm verifies it. In Section 4, we include a numerical experiment on image
deblurring and compare the performance of the new algorithm with the best perform-
ing primal-dual algorithm for this problem. The paper ends with some conclusions
and possible future work directions in Section 5. Finally, in Appendix A, a detailed
proof of the results in Section 2.1 is presented.

2 Preliminaries

Throughout this paper, H, G, and (Gj)1≤j≤m are real Hilbert spaces. Otherwise
stated, to simplify the notation we will employ 〈·, ·〉 and ‖ · ‖ to denote the inner
product and the induced norm, respectively, of any space. We use → to denote

Numerical Algorithms

norm convergence of a sequence. We denote by Hn the product Hilbert space

Hn = H× (n)· · · ×H with inner product defined as

〈(x1, . . . , xn), (x̄1, . . . , x̄n)〉 :=
n∑

i=1

〈xi, x̄i〉 ∀(x1, . . . , xn), (x̄1, . . . , x̄n) ∈ Hn.

Sequences and sets in product spaces are marked with bold, e.g., x = (x1, . . . , xn) ∈
Hn.

For a set-valued operator, we write A : H ⇒ H, in opposite to A : H → H which
denotes a single-valued operator. The notation dom, Fix, zer and gra is used for the
domain, the set of fixed points, the zeros and the graph of A, respectively, i.e.,

domA : = {x ∈ H : A(x) �= ∅} , FixA := {x ∈ H : x ∈ A(x)} ,

zerA := {x ∈ H : 0 ∈ A(x)} , graA := {(x, u) ∈ H × H : u ∈ A(x)} .
The inverse operator of A, denoted by A−1, is the operator whose graph is given
by graA−1 = {(u, x) ∈ H × H : u ∈ A(x)}. The identity operator is denoted by Id.
When L : H → G is a bounded linear operator, we use L∗ : G → H to denote its
adjoint, which is the unique bounded linear operator such that 〈Lx, y〉 = 〈x, L∗y〉,
for all x ∈ H and y ∈ G.

To simplify the notation, we will use �k, l� to denote the set of integers between
k, l ∈ N, i.e.,

�k, l� :=
{ {k, k + 1, . . . , l} if k ≤ l,

∅ otherwise.

Definition 1 An operator T : H → H is said to be

(i) κ-Lipschitz continuous for κ > 0 if

‖T (x) − T (y)‖ ≤ κ‖x − y‖ ∀x, y ∈ H;
(ii) nonexpansive if it is 1-Lipschitz continuous, i.e.,

‖T (x) − T (y)‖ ≤ ‖x − y‖ ∀x, y ∈ H;
(iii) α-averaged nonexpansive for α ∈]0, 1[if

‖T (x)−T (y)‖2+ 1 − α

α
‖(Id−T)(x)−(Id−T)(y)‖2 ≤ ‖x−y‖2 ∀x, y ∈ H.

Definition 2 A set-valued operator A : H ⇒ H is monotone if

〈x − y, u − v〉 ≥ 0 ∀(x, u), (y, v) ∈ graA.

Furthermore, A is said to be maximally monotone if there exists no monotone
operator B : H ⇒ H such that graB properly contains graA.

Definition 3 Given an operatorA : H ⇒ H, the resolvent ofAwith parameter γ > 0
is the operator JγA : H ⇒ H defined by JγA := (Id + γA)−1.

The next result contains Minty’s theorem [17].

Numerical Algorithms

Proposition 1 ([2, Proposition 23.10]) Let A : H ⇒ H be monotone and let γ > 0.
Then,

(i) JγA is single-valued,
(ii) dom JγA = H if and only if A is maximally monotone.

2.1 Parametrized resolvent splitting

Besides developing lifted splitting algorithms with reduced dimension, different
works have been devoted to determine the minimal dimension reduction that can be
achieved under some conditions. This is the case of [16, 19], where a minimality
result is obtained for the classical monotone inclusion Problem 2. In what follows,
we employ T for denoting a fixed point operator and S for a solution operator, both
depending on the maximally monotone operators appearing in the problem.

Definition 4 (Fixed point encoding [19]) A pair of operators (T , S) is a fixed point
encoding for Problem 2 if, for all particular instance of the problem,

Fix T �= ∅ ⇐⇒ zer

(
n∑

i=1

Ai

)
�= ∅ and z ∈ Fix T =⇒ S(z) ∈ zer

(
n∑

i=1

Ai

)
.

Previous works on minimality are based on the concept of resolvent splitting,
which does not allow employing parametrized resolvents (i.e., it only permits com-
putation of the resolvents JA1 , . . . , JAn). In this work, we introduce the notion of
parametrized resolvent splitting and adapt the minimality result in [16, Section 3] to
the more general parametrized setting. Since the reasoning is very similar to the one
in the mentioned reference, we only present the results here and refer the interested
reader to Appendix A for a detailed demonstration.

Definition 5 (Parametrized resolvent splitting) A fixed point encoding (T , S) for
Problem 2 is a parametrized resolvent splitting if, for all particular instances of the
problem, there is a finite procedure that evaluates T and S at a given point which
only uses vector addition, scalar multiplication, and the parametrized resolvents of
A1, . . . , An.

Definition 6 (Frugality) A parametrized resolvent splitting (T , S) for Problem 2
is frugal if, in addition, each of the parametrized resolvents of A1, . . . , An is used
exactly once.

Definition 7 (Lifting [19]) Let d ∈ N. A fixed point encoding (T , S) is a d-fold
lifting for Problem 2 if T : Hd → Hd and S : Hd → H.

Example 1 In [8], a product space reformulation with reduced dimension is pro-
posed, which applied to Problem 2 yields the following lifted splitting. Given any

Numerical Algorithms

γ > 0 and λ ∈]0, 2], the algorithm in [8, Theorem 5.1] can be defined by the
operator R : Hn−1 → Hn−1 given by

R(z) := z + λ

⎛

⎜⎜⎜⎝

x1 − x0
x2 − x0

...
xn−1 − x0

⎞

⎟⎟⎟⎠ ,

where z = (z0, z1, . . . , zn−1) and x = (x0, x1, . . . , xn−1) ∈ Hn is the vector defined
as ⎧

⎪⎨

⎪⎩
x0 = J γ

n−1An

(
1

n−1

n−1∑
i=1

zi

)
,

xi = JγAi
(2x0 − zi) ∀i ∈ �1, n − 1�.

Moreover, if we let S : Hn−1 → H be the operator given by

S(z) := J γ
n−1An

(
1

n − 1

n−1∑

i=1

zi

)
,

then the pair (R, S) is a frugal parametrized resolvent splitting with (n − 1)-fold
lifting which is not a resolvent splitting, since it makes use of resolvent parameters.

Malitsky and Tam prove in [16, Theorem 3.3] that the minimal lifting that one
can achieve for Problem 2 with frugal resolvent splittings is n − 1. From their proof,
it cannot be directly determined whether the same result holds when the resolvents
are allowed to have different parameters. The next theorem provides an affirmative
answer to this question.

Theorem 2 (Minimal lifting for frugal parametrized splittings) Let n ≥ 2 and let
(T , S) be a frugal parametrized resolvent splitting with d-fold lifting for Problem 2.
Then, d ≥ n − 1.

Proof See Theorem 6 in Appendix A.

3 A primal-dual splitting withminimal lifting

In this section, we devise a primal-dual splitting algorithm for Problem 1 with min-
imal lifting. We base our analysis in the case in which the primal problem involves
only one linear composition, i.e., m = 1, and later extend to an arbitrary finite num-
ber of linearly composed maximally monotone operators by appealing to a product
space reformulation. Lastly, we prove minimality of the algorithm by adapting the
concept of lifted splitting to primal-dual algorithms.

Numerical Algorithms

The case with one linear composition Let n ≥ 2. We start by considering the primal-
dual problem given by

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x) + L∗B(Lx), (4)

and

find u ∈ G such that 0 ∈ −L

(
n∑

i=1

Ai

)−1 (−L∗u
)+ B−1(u), (5)

where A1, . . . , An : H ⇒ H and B : G ⇒ G are maximally monotone operators and
L : H → G is a bounded linear operator. Note that in this case, (5) corresponds to
the Attouch–Théra dual problem of (4) (see [1]). In the following, we denote the set
of solutions of (4) and (5) by P andD, respectively, and consider the set Z defined as

Z :=
{

(x, u) ∈ H × G : −L∗u ∈
n∑

i=1

Ai(x) and u ∈ B(Lx)

}
,

which is useful for tackling primal-dual inclusion problems. It is well-known that Z
is a subset of P × D and that

P �= ∅ ⇐⇒ Z �= ∅ ⇐⇒ D �= ∅.
Indeed, we have

∃ x ∈ P ⇐⇒ (∃ x ∈ H) 0 ∈
n∑

i=1

Ai(x) + L∗B(Lx)

⇐⇒ (∃ (x, u) ∈ H × G)

⎧
⎨

⎩
−L∗(u) ∈

n∑
i=1

Ai(x),

u ∈ B(Lx),

⇐⇒ (∃ (x, u) ∈ H × G)

⎧
⎪⎨

⎪⎩
x ∈

(
n∑

i=1

Ai

)−1 (−L∗u
)
,

Lx ∈ B−1(u),

⇐⇒ (∃ u ∈ G) 0 ∈ −L

(
n∑

i=1

Ai

)−1 (−L∗u
)+ B−1(u) ⇐⇒ ∃ u ∈ D.

We refer to an element of Z as a primal-dual solution of (4) and (5).
Now, we introduce a fixed point algorithm for solving the primal-dual problem

given by (4) and (5). Let λ, γ > 0 and let T : Hn−1×G → Hn−1×G be the operator
given by

T

(
z
v

)
:=

(
z
v

)
+ λ

⎛

⎜⎜⎜⎜⎜⎝

x2 − x1
x3 − x2

...
xn − xn−1

γ (y − Lxn),

⎞

⎟⎟⎟⎟⎟⎠
(6)

Numerical Algorithms

where (x, y) = (x1, . . . , xn, y) ∈ Hn × G depends on (z, v) = (z1, . . . , zn−1, v) ∈
Hn−1 × G in the following way

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = JA1(z1),

xi = JAi
(zi + xi−1 − zi−1), ∀i ∈ �2, n − 1�,

xn = JAn(x1 + xn−1 − zn−1 − L∗(γLx1 − v)),

y = JB/γ

(
L(x1 + xn) − v

γ

)
.

(7)

In the next lemma, we characterize the set of fixed points of the operator T by means
of the set of primal-dual solutions to (4) and (5).

Lemma 1 Let n ≥ 2 and λ, γ > 0. The following assertions hold.

(i) If (x̄, ū) ∈ Z, then there exists z̄ ∈ Hn−1 such that (z̄, γLx̄ − ū) ∈ Fix T .
(ii) If (z̄1, . . . , z̄n−1, v̄) ∈ Fix T , then (JA1(z̄1), γLx̄ − v̄) ∈ Z.

As a result,

Fix T �= ∅ ⇐⇒ Z �= ∅.

Proof (i) Let (x̄, ū) ∈ Z. Then, ū ∈ B(Lx̄) and there exists (a1, . . . , an) ∈ Hn such
that ai ∈ Ai(x̄) and −L∗ū = ∑n

i=1 ai . Consider the vectors (z̄1, . . . , z̄n−1, v̄) ∈
Hn−1 × G defined as

⎧
⎨

⎩

z̄1 := x̄ + a1 ∈ (Id + A1)(x̄),

z̄i := ai + z̄i−1 = (Id + Ai)(x̄) − x̄ + z̄i−1, ∀i ∈ �2, n − 1�,
v̄ := γLx̄ − ū ∈ (γ Id − B) (Lx̄).

Then, we deduce that x̄ = JA1(z̄1) and x̄ = JAi
(z̄i + x̄ − z̄i−1) for all i ∈ �2, n − 1�.

Moreover, we have

2x̄ − z̄n−1 − L∗(γLx̄ − v̄) = 2x̄ − z̄n−1 − L∗(ū)

= x̄ + an + x̄ − z̄n−1 +
n−1∑

i=1

ai

= x̄ + an + x̄ − z̄n−1 +
n−1∑

i=2

(z̄i − z̄i−1) + z̄1 − x̄

= (Id + An)(x̄).

Altogether, we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̄ = JA1(z̄1),

x̄ = JAi
(z̄i + x̄ − z̄i−1), ∀i ∈ �2, n − 1�,

x̄ = JAn(2x̄ − z̄n−1 − L∗(γLx̄ − v̄)),

Lx̄ = JB/γ

(
2Lx̄ − v̄

γ

)
,

which implies that (z̄1, . . . , z̄n−1, v̄) ∈ Fix T .

Numerical Algorithms

(ii) Let (z̄1, . . . , z̄n−1, v̄) ∈ Fix T and set x̄ := JA(z̄1). By (6), y = Lx̄ and x̄i = x̄

for all i = 1, . . . , n. Consequently, from (7), we derive
⎧
⎪⎪⎨

⎪⎪⎩

z̄1 − x̄ ∈ A1(x̄),

z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ �2, n − 1�,
x̄ − z̄n−1 − L∗(γLx̄ − v̄) ∈ An(x̄),

γLx̄ − v̄ ∈ B(Lx̄).

Summing together the first n inclusions above and setting ū := γLx̄ − v̄, we deduce
⎧
⎨

⎩
−L∗ū ∈

n∑
i=1

Ai(x̄),

ū ∈ B(Lx̄),

which implies (x̄, ū) ∈ Z, as claimed.

The following technical lemma provides nonexpansive properties of the operator
T in the Hilbert space Hn−1 × G with scalar product given by

〈(z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄)〉γ :=
n−1∑

i=1

〈zi, z̄i〉H + 1

γ
〈v, v̄〉G, (8)

for (z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄) ∈ Hn−1 × G and γ > 0.

Lemma 2 For all (z, v)=(z1, . . . , zn−1, v)∈Hn−1×G and (z̄, v̄)=(z̄1, . . . , z̄n−1, v̄)

∈ Hn−1 × G,

‖T (z, v) − T (z̄, v̄)‖2γ + 1 − λ

λ
‖ (Id − T) (z, v) − (Id − T) (z̄, v̄)‖2γ

+ 1 − γ ‖L‖2
λ

∥∥∥∥∥

n−1∑

i=1

(Id − T) (z, v)i −
n−1∑

i=1

(Id − T) (z̄, v̄)i

∥∥∥∥∥

2

γ

≤ ‖(z, v) − (z̄, v̄)‖2γ , (9)

where ‖ · ‖γ denotes the norm induced by the scalar product (8). In particular, if

λ ∈]0, 1[and γ ∈
]
0, 1

‖L‖2
]
, the operator T is λ-averaged nonexpansive.

Proof Let (x1, . . . , xn, y) ∈ Hn × G and (x̄1, . . . , x̄n, ȳ) ∈ Hn × G be given by (7)
from (z, v) and (z̄, v̄), respectively. For simplicity, we denote (z+, v+) = T (z, v) and
(z̄+, v̄+) = T (z̄, v̄). Since z1 − x1 ∈ A1(x1) and z̄1 − x̄1 ∈ A1(x̄1), by monotonicity
of A1

0 ≤ 〈(z1 − x1) − (z̄1 − x̄1), x1 − x̄1〉
= 〈(z1 − x1) − (z̄1 − x̄1), x1 − x2〉 + 〈(z1 − x1) − (z̄1 − x̄1), x2 − x̄1〉. (10)

Numerical Algorithms

For every i ∈ �2, n − 1�, we have zi + xi−1 − zi−1 − xi ∈ Ai(xi) and z̄i + x̄i−1 −
z̄i−1 − x̄i ∈ Ai(x̄i) and thus, by monotonicity of Ai

0 ≤ 〈(zi + xi−1 − zi−1 − xi) − (z̄i + x̄i−1 − z̄i−1 − x̄i), xi − x̄i〉
= 〈(zi − xi) − (z̄i − x̄i), xi − x̄i〉 − 〈(zi−1 − xi−1) − (z̄i−1 − x̄i−1), xi − x̄i〉
= 〈(zi − xi) − (z̄i − x̄i), xi − xi+1〉 + 〈(zi − xi) − (z̄i − x̄i), xi+1 − x̄i〉

−〈(zi−1 − xi−1) − (z̄i−1 − x̄i−1), xi − x̄i−1〉
−〈(zi−1 − xi−1) − (z̄i−1 − x̄i−1), x̄i−1 − x̄i〉. (11)

Now, since x1+xn−1−zn−1−xn−L∗ (γLx1 − v) ∈ An(xn) and x̄1+ x̄n−1− z̄n−1−
x̄n − L∗ (γLx̄1 − v̄) ∈ An(x̄n), again monotonicity of An results in the inequality

0 ≤ 〈
x1 + xn−1 − zn−1 − xn − L∗ (γLx1 − v) , xn − x̄n

〉

− 〈
x̄1 + x̄n−1 − z̄n−1 − x̄n − L∗ (γLx̄1 − v̄) , xn − x̄n

〉

= 〈(xn−1 − zn−1) − (x̄n−1 − z̄n−1), xn − x̄n〉 + 〈(x1−x̄1)− (xn− x̄n), xn−x̄n〉
−〈γ (Lx1 − Lx̄1) − (v − v̄), Lxn − Lx̄n〉

= 〈(xn−1 − zn−1) − (x̄n−1 − z̄n−1), xn − x̄n−1〉
+〈(x1 − x̄1) − (xn − x̄n), xn − x̄n〉
+〈(xn−1 − zn−1) − (x̄n−1 − z̄n−1), x̄n−1 − x̄n〉
−〈γ (Lx1 − Lx̄1) − (v − v̄), Lxn − Lx̄n〉.

(12)

Finally, we have γL(x1 + xn) − v − γy ∈ B(y) and γL(x̄1 + x̄n) − v̄ − γ ȳ ∈ B(ȳ),
so by monotonicity of B we get

0 ≤ 〈(γL(x1 + xn) − v − γ y) − (γL(x̄1 + x̄n) − v̄ − γ ȳ), y − ȳ〉. (13)

Summing together (10)–(13) and rearranging, yields

0 ≤
n−1∑

i=1

〈(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i〉

+
n−1∑

i=1

〈(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi〉

+〈(x1 − x̄1) − (xn − x̄n), xn − x̄n〉 + 〈(Lxn − Lx̄n) − (y − ȳ), v − v̄〉
+γ 〈(L(x1 + xn) − L(x̄1 + x̄n)

)− (y − ȳ), y − ȳ〉
−γ 〈Lx1 − Lx̄1, Lxn − Lx̄n〉. (14)

Numerical Algorithms

The sums in (14) can be written, respectively, as

n−1∑

i=1

〈(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i〉

= 1

λ

n−1∑

i=1

〈(zi − z+
i) − (z̄i − z̄+

i), zi − z̄i〉

= 1

λ
〈(z − z+) − (z̄ − z̄+), z − z̄〉

= 1

2λ

(
‖(z − z+) − (z̄ − z̄+)‖2 − ‖z+ − z̄+‖2 + ‖z − z̄‖2

)
, (15)

and

n−1∑

i=1

〈(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi〉

= 1

2

n−1∑

i=1

(
‖xi+1 − x̄i+1‖2 − ‖xi − x̄i‖2 − ‖(xi − xi+1) − (x̄i − x̄i+1)‖2

)

= 1

2

(
‖xn − x̄n‖2 − ‖x1 − x̄1‖2 − 1

λ2

n−1∑

i=1

‖(zi − z+
i) − (z̄i − z̄+

i)‖2
)

= 1

2

(
‖xn − x̄n‖2 − ‖x1 − x̄1‖2 − 1

λ2
‖(z − z+) − (z̄ − z̄+)‖2

)
. (16)

The third term in (14), becomes

〈(x1 − x̄1) − (xn − x̄n), xn − x̄n〉
= 1

2

(
‖x1 − x̄1‖2 − ‖xn − x̄n‖2 − ‖(x1 − x̄1) − (xn − x̄n)‖2

)
, (17)

while the fourth term yields

〈(Lxn−Lx̄n) − (y − ȳ), v − v̄〉
= 1

γ λ
〈(v − v+) − (v̄ − v̄+), v − v̄〉

= 1

2γ λ

(
‖(v − v+) − (v̄ − v̄+)‖2 − ‖v+ − v̄+‖2 + ‖v − v̄‖2

)
.

(18)

Numerical Algorithms

Lastly, making use of the Cauchy–Schwarz and Young’s inequalities, the second last
term of (14) gives

γ 〈(L(x1 + xn) − L(x̄1 + x̄n)
)− (y − ȳ), y − ȳ

〉

= γ (〈Lx1 − Lx̄1, y − ȳ〉 + 〈(Lxn − Lx̄n) − (y − ȳ), y − ȳ〉)
= γ

2

(
‖Lxn − Lx̄n‖2 − ‖ (Lxn − Lx̄n) − (y − ȳ)‖2 − ‖y − ȳ‖2

)

+ γ 〈Lx1 − Lx̄1, y − ȳ〉
≤ γ

2

(
‖Lxn − Lx̄n‖2 − 1

γ 2λ2
‖(v − v+) − (v̄ − v̄+)‖2 − ‖y − ȳ‖2

)

+ γ

2
‖Lx1 − Lx̄1‖2 + γ

2
‖y − ȳ‖2

= γ

2
‖Lx1 − Lx̄1‖2 + γ

2
‖Lxn − Lx̄n‖2 − 1

2γ λ2
‖(v − v+) − (v̄ − v̄+)‖2,

(19)
while the last term can be rearranged as follows

−γ 〈Lx1 − Lx̄1, Lxn − Lx̄n〉
= γ

2

(
‖L(x1 − xn) − L(x̄1 − x̄n)‖2 − ‖Lx1 − Lx̄1‖2 − ‖Lxn − Lx̄n‖2

)
.

(20)
Summing together (19) and (20) and using the Lipschitz continuity of L, we get

γ 〈(L(x1 + xn) − L(x̄1 + x̄n)
)− (y − ȳ), y − ȳ〉 − γ 〈Lx1 − Lx̄1, Lxn − Lx̄n〉

= γ

2
‖L(x1 − xn) − L(x̄1 − x̄n)‖2 − 1

2γ λ2
‖(v − v+) − (v̄ − v̄+)‖2

≤ γ ‖L‖2
2

‖(x1 − xn) − (x̄1 − x̄n)‖2 − 1

2γ λ2
‖(v − v+) − (v̄ − v̄+)‖2.

(21)
Multiplying (14) by 2λ and substituting (15)–(21), we obtain the final inequality

‖z+ − z̄+‖2 +
(
1

λ
− 1

)(
‖(z − z+) − (z̄ − z̄+)‖2 + 1

γ
‖(v − v+) − (v̄ − v̄+)‖2

)

+ 1

γ
‖v+ − v̄+‖2 + λ

(
1 − γ ‖L‖2

)
‖(x1 − xn) − (x̄1 − x̄n)‖2

≤ ‖z − z̄‖2 + 1

γ
‖v − v̄‖2.

To complete the proof, just note that

λ(x1 − xn) − λ(x̄1 − x̄n) = λ

n−1∑

i=1

(xi − xi+1) − λ

n−1∑

i=1

(x̄i − x̄i+1)

=
n−1∑

i=1

(zi − z+
i) −

n−1∑

i=1

(z̄i − z̄+
i),

from where (9) finally follows.

Numerical Algorithms

Next, we state our main result, which establishes the convergence of the iterative
algorithm defined by the operator T in (6) and (7).

Theorem 3 Let n ≥ 2, let L : H → G be a bounded linear operator and let
A1, . . . , An : H ⇒ H and B : G ⇒ G be maximally monotone operators with

zer
(∑n

i=1 Ai + L∗BL
) �= ∅. Furthermore, let λ ∈]0, 1[and γ ∈

]
0, 1

‖L‖2
]
. Given

an initial point (z0, v0) = (z01, . . . , z
0
n−1, v

0) ∈ Hn−1 × G, consider the sequences
given by

(
zk+1

vk+1

)
=
(
zk

vk

)
+ λ

⎛

⎜⎜⎜⎜⎜⎝

xk
2 − xk

1
xk
3 − xk

2
...

xk
n − xk

n−1
γ (yk − Lxk

n)

⎞

⎟⎟⎟⎟⎟⎠
∀k ≥ 0, (22)

with ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk
1 = JA1(z

k
1),

xk
i = JAi

(zk
i + xk

i−1 − zk
i−1), ∀i ∈ �2, n − 1�,

xk
n = JAn(x

k
1 + xk

n−1 − zk
n−1 − L∗(γLxk

1 − vk)),

yk = JB/γ

(
L(xk

1 + xk
n) − vk

γ

)
.

(23)

Then, the following statements hold.

(i) The sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Fix T .
(ii) The sequence (xk

1 , . . . , x
k
n, yk)k∈N converges weakly to (x̄, . . . , x̄, Lx̄) with

x̄ ∈ P .
(iii) The sequence

(
γLxk

i − vk
)
k∈N converges weakly to γLx̄ − v̄ ∈ D, for all

i ∈ �1, n�.

Proof (i) The sequence in (22) is the fixed point iteration generated as
(
zk+1

vk+1

)
= T

(
zk

vk

)
∀k ≥ 0.

Since λ ∈]0, 1[and γ ∈]
0, ‖L‖−2

]
, T is averaged nonexpansive by Lemma 2

and, moreover, Fix T = ∅, due to Z �= ∅ and Lemma 1(i). Then, by [2, Theo-
rem 5.15] the sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Fix T and
limk→∞ ‖(zk+1, vk+1) − (zk, vk)‖γ = 0.

(ii) From (i), the sequence (zk, vk)k∈N is bounded. Then, nonexpansivity of
the resolvents and boundedness of the linear operator L imply that the sequence
(xk, yk)k∈N = (xk

1 , . . . , x
k
n, yk)k∈N is also bounded. Furthermore, the fact that

(zk+1, vk+1)k∈N − (zk, vk)k∈N → 0, as k → ∞, implies by (22) that

yk − Lxk
n → 0 and xk

i+1 − xk
i → 0, for all i ∈ �1, n − 2�. (24)

Numerical Algorithms

Next, by making use of the definition of resolvents and (23), we can write

C

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

zk
1 − xk

1
(zk

2 − xk
2) − (zk

1 − xk
1)

...
(zk

n−1 − xk
n−1) − (zk

n−2 − xk
n−2)

xk
n

γ
(
L(xk

1 + xk
n) − yk

)− vk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

xk
1 − xk

n

xk
2 − xk

n
...

xk
n−1 − xk

n

xk
1 − xk

n + γL∗ (Lxk
n − yk

)

yk − Lxk
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where the operator C : Hn × G ⇒ Hn × G is given by

C :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A−1
1

A−1
2
...

A−1
n−1
An

B−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −Id 0
0 0 . . . 0 −Id 0
...

...
. . .

...
...

...
0 0 . . . 0 −Id 0
Id Id . . . Id 0 L∗
0 0 . . . 0 −L 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The operatorC is maximally monotone as the sum of a maximally monotone operator
and a skew symmetric linear operator (see, e.g., [2, Corollary 25.5 (i) & Exam-
ple 20.35]). Thus, the graph of C is sequentially closed in the weak-strong topology,
by demiclosedness of maximally monotone operators [2, Corollary 20.38].

Now, let (x̄, ȳ) be a weak sequential cluster point of (xk, yk)k∈N. Due to (24), x̄ is
of the form x̄ = (x̄, . . . , x̄) ∈ Hn and ȳ = Lx̄. Taking the limit along a subsequence
of (xk, yk)k∈N which converges weakly to (x̄, ȳ) and using demiclosedness ofC, (25)
and (26) yield the expression

⎧
⎪⎪⎨

⎪⎪⎩

z̄1 − x̄ ∈ A1(x̄),

z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ �2, n − 1�,
x̄ − z̄n−1 − L∗(γLx̄ − v̄) ∈ An(x̄),

γLx̄ − v̄ ∈ B(Lx̄),

which, by summing the first n equations, implies that (x̄, γLx̄ − v̄) ∈ Z with
x̄ = JA1(z̄1). In particular, we have shown that (x̄, ȳ) is directly obtained from z̄,
implying that it is the unique weak sequential cluster point of the bounded sequence
(xk, yk)k∈N. Thus, the full sequence converges weakly to this point.

(iii) From (i)-(ii), for all i ∈ �1, n�, we deduce that the sequence (γLxk
i − vk)k∈N

weakly converges to γLx̄ − v̄, which belongs to D since (x̄, γLx̄ − v̄) ∈ Z.

Remark 1 (Malitsky–Tam resolvent splitting [16] as a special case) Consider
Problems (4) and (5) in the particular case in which L = Id. Then, B : H ⇒ H
and (4) becomes the classical monotone inclusion problem with (n + 1)-operators.
Furthermore, by setting γ = 1 in Theorem 3, it is straightforward to see that the
sequences in (22) and (23) yield the Malitsky–Tam resolvent splitting with minimal
lifting for (n + 1)-operators.

Numerical Algorithms

Remark 2 (On the parameter γ in the definition of the norm ‖ · ‖γ) In Lemma 2,
we proved that the operator T is λ-averaged nonexpansive with respect to the norm
‖ · ‖γ induced by the scalar product defined in (8). Although the use of this norm
did not require detours from the usual procedure to prove convergence of the fixed
point algorithm in Theorem 3, it may numerically affect the performance of the algo-
rithm. To give an intuition about this, consider the norm of the sequence of residuals(‖(zk+1, vk+1) − (zk, vk)‖γ

)
k∈N, which converges to 0 as the algorithm reaches a

fixed point, and note that we have
∥∥∥(zk+1, vk+1) − (zk, vk)

∥∥∥
2

γ
= ‖zk+1 − zk‖2 + 1

γ
‖vk+1 − vk‖2 ∀k ≥ 0.

Lemma 2 implies that this sequence is monotone decreasing, but if γ is very small,
the weight of the sequence of dual variables (vk+1 − vk)k∈N in the norm would be
much larger than the one of the sequence of primal variables (zk+1 − zk)k∈N, so a
small decrease in the value of ‖vk+1 − vk‖ will readily imply a decrease of the norm
of the sequence of residuals even if ‖zk+1 − zk‖ does not diminish much. Because
of that, a larger number of iterations might be needed to achieve convergence of the
primal sequence, which can slow down the overall convergence of the algorithm.
Nonetheless, it is possible to perform some sort of pre-conditioning to prevent from
having a large constant in the definition of the norm. We will further comment on
this in the numerical experiments in Section 4.

The case with multiple linear compositions A standard product space reformulation
permits to extend our method to the more general inclusion Problem 1, which has
finitely many linearly composed maximally monotone operators. We detail this in
the following corollary, while the resulting scheme is displayed in Algorithm 1.

Corollary 1 Let n ≥ 2 and assume that Problem 1 has a solution. Let λ ∈]0, 1[
and γ ∈

]
0, 1/

∑m
j=1‖Lj‖2

]
. Given some initial points z0 = (z1, . . . , zn−1) ∈ Hn−1

and v0 = (v01, . . . , v
0
m) ∈ G1 × · · · × Gm, consider the sequences (zk, vk)k∈N and

(xk, yk)k∈N generated by Algorithm 1. Then, the following assertions hold:

(i) The sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Hn−1 × G1 ×
· · · × Gm.

(ii) The sequence (xk
1 , . . . , x

k
n, yk

1 , . . . , y
k
m)k∈N converges weakly to (x̄, . . . , x̄,

L1x̄, . . . , Lmx̄) with x̄ ∈ H solving the primal inclusion (1).
(iii) For all i ∈ �1, n�, the sequence (γL1x

k
i −vk

1, . . . , γLmxk
i −vk

m)k∈N converges
weakly to (γL1x̄ − v̄1, . . . , γLmx̄ − v̄m), which solves the dual inclusion (2).

Proof Just note that Problem 1 can be reformulated as an instance of Problems (4)
and (5) by replacing B by the operator B : G1×· · ·×Gm ⇒ G1×· · ·×Gm defined as
the cartesian product and L by the linear operator . In

particular, ‖L‖2 = ∑n
j=1 ‖Lj‖2 and its adjoint operator is L∗ : G1×· · ·×Gm → H :

(v1, . . . , vm) → ∑m
j=1 L∗

j vj . Hence, the result follows by considering the averaged
nonexpansive operator T in (6) for this choice of operators and applying Theorem 3.

Numerical Algorithms

Algorithm 1 Primal-dual splitting for Problem 1 with (n − 1,m)-lifting, with n ≥ 2.

Minimality for primal-dual parametrized resolvent splitting We begin by extend-
ing the definition of fixed point encoding to englobe primal-dual problems. As in
Section 2.1, we denote by T a fixed point operator and by S a solution operator, both
parametrized by the maximally monotone operators as well as the linear and adjoint
operators appearing in Problem 1.

Definition 8 (Fixed point encoding) A pair of operators (T , S) is a fixed point
encoding for Problem 1 if, for all particular instance of the problem,

Fix T �= ∅ ⇐⇒ zer

⎛

⎝
n∑

i=1

Ai +
m∑

j=1

L∗
jBjLj

⎞

⎠ �= ∅ and w ∈ Fix T =⇒ S(w) ∈ Z,

where we recall that Z denotes the set of primal-dual solutions of the problem.

When talking about lifting for primal-dual problems, the need to distinguish
between variables in the space of primal solutions and dual solutions arises. This
motivates the following definition.

Numerical Algorithms

Definition 9 (Primal-dual lifting) Let d, f ∈ Z+. A fixed point encoding (T , S) is a
(d, f)-fold lifting for Problem 1 if

T : Hd × Gf1
1 × · · · × Gfm

m → Hd × Gf1
1 × · · · × Gfm

m

and

S : Hd × Gf1
1 × · · · × Gfm

m → H × G1 × · · · × Gm,

where fj ≥ 0 for all j ∈ �1, m� and f = ∑m
j=1 fj . We adopt the convention that the

space Gj vanishes from the equation when fj = 0.

The need to control the Lipschitz constants of the linear operators requires the
introduction of parameters in the resolvents of the maximally monotone opera-
tors. This motivates the definition of parametrized resolvent splitting introduced in
Section 2.1 and which we now adapt to primal-dual splitting algorithms.

Definition 10 (Primal-dual parametrized resolvent splitting) A fixed point encoding
(T , S) for Problem 1 is a primal-dual parametrized resolvent splitting if, for all par-
ticular instance of the problem, there is a finite procedure that evaluates T and S at a
given point which only uses vector addition, scalar multiplication, the parametrized
resolvents ofA1, . . . An and B1, . . . , Bm, and forward evaluations of L1, . . . , Lm and
their adjoints.

Definition 11 (Frugality) A primal-dual parametrized resolvent splitting (T , S) for
Problem 1 is frugal if, in addition, each of the parametrized resolvents of A1, . . . , An

and B1, . . . , Bm is used exactly once.

Remark 3 (On the absence of restrictions on the evaluation of the linear operators)
Since in the finite case, a forward evaluation of a linear operator is computationally
equivalent to performing vector addition and scalar multiplication, this suggests that
for practical applications there is no computational need to control the number of
evaluations of the linear operators in the definition of frugality.

Example 4 Let n ≥ 2 and consider Problem 1. Let T : Hn−1 × G1 × · · · × Gm →
Hn−1 × G1 × · · · × Gm be the operator defined in (6) by setting and

. Let S : Hn−1 × G1 × · · · × Gm → H × G1 × · · · × Gm be defined as

S

(
z
v

)
:=

⎛

⎜⎜⎜⎝

JA1(z1)

γL1JA1(z1) − v1
...

γLmJA1(z1) − vm

⎞

⎟⎟⎟⎠ .

Then, by Lemma 1 and Corollary 1, the pair (T , S) is a frugal parametrized resolvent
splitting with (n − 1, m)-fold lifting.

The following result shows that the lifting of Algorithm 1 is minimal among frugal
primal-dual parametrized resolvent splitting algorithms with m dual variables.

Numerical Algorithms

Theorem 5 (Minimality theorem for frugal parametrized splitting) Let (T , S) be a
frugal primal-dual parametrized resolvent splitting for Problem 1 with (d, m)-fold
lifting. Then, if n ≥ 2, necessarily d ≥ n − 1.

Proof By way of contradiction, let (T , S) be a frugal primal-dual parametrized resol-
vent splitting for Problem 1 with (d, m) fold lifting and d < n − 1. Consider the
instance of the problem in which Lj = Id : H → H for all j ∈ �1, m�. Then,
Problem 1 becomes the classical monotone inclusion problem with n + m operators
and (T , S) is a frugal resolvent splitting with (d + m)-fold lifting for such problem
with d + m < n + m − 1, which contradicts Theorem 2.

Finally, we conclude this section by highlighting that Algorithm 1 can be applied
with n < 2, by setting Ai = 0 if required. However, a reduction in the lifting is not
obtained in this case.

Remark 4 (Algorithm 1 when n ≤ 1) Consider Algorithm 1 applied to Problem 1
with n ≤ 1. We distinguish the two cases:

(i) If n = 1, then Algorithm 1 has (1, m)-lifting. Indeed, (27) and (28) become

(
zk+1

vk+1

)
=
(

zk

vk

)
+ λ

⎛

⎜⎜⎜⎝

xk − zk

γ (yk
1 − L1x

k)
...

γ (yk
m − Lmxk)

⎞

⎟⎟⎟⎠ ∀k ≥ 0, (29)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk = JA1

(
zk −

m∑
j=1

L∗
j (γLjz

k − vk
j)

)
,

yk
j = JBj /γ

(
Lj (z

k + xk) − vk
j

γ

)
, ∀j ∈ �1, m�,

(30)

respectively. This means that, in contrast with what happens when n ≥ 2, there
is no reduction in the lifting with respect to the number of operators involved.

(ii) If n = 0, the scheme also has (1, m)-lifting. In fact, the scheme is the same as
in the previous case but substituting JA1 by Id in (30). Note that this is also the
lifting obtained by the already known algorithms in the literature applied to this
case.

4 Numerical experiments

In this section, we test our algorithm for solving an ill-conditioned linear inverse
problem which arises in image deblurring and denoising. Let b ∈ R

n be an observed
blurred and noisy image of size M × N , with n = MN for grayscale and n = 3MN

for color images, and denote by A ∈ R
n×n the blur operator. The problem can be

tackled by means of the regularized convex non-differentiable problem

inf
s∈Rn

{‖As − b‖1 + α1‖Ws‖1 + α2T V (s) + δ[0,1]n(s)
}
, (31)

Numerical Algorithms

where α1, α2 > 0 are regularization parameters, δ[0,1]n denotes the indicator function
of the set [0, 1]n, T V : Rn → R is the discrete isotropic total variation function and
W is the linear operator given by the normalized nonstandard Haar transform [21].

Recalling Remark 2, it is of interest to consider a mechanism which allows tuning
the parameter γ appearing in the definition of the norm given by the inner product in
(8) to an appropriate value. To this aim, we perform in (31) a change of variable of
the form s = μx, with μ > 0, and instead handle the problem

inf
x∈Rn

{
μ

∥∥∥∥Ax − b

μ

∥∥∥∥
1
+ α1μ‖Wx‖1 + α2T V (μx) + δ[0,1/μ]n(x)

}
. (32)

Below, we will see the way in which the choice of μ can help setting a suitable
parameter γ .

The minimization problem in (32) can be modeled as a composite monotone inclu-
sion problem. For this, define the operator L : Rn → R

n × R
n : x → (L1x, L2x)

where L1 and L2 are defined component-wise as

(L1x)i,j =
{

xi+1,j −xi,j

μ
, if i < M,

0, otherwise,
and (L2x)i,j =

{
xi,j+1−xi,j

μ
, if j < N,

0, otherwise.
(33)

Then, the parametrized total variation function can be written as T V (μ ·) =
‖L(·)‖×, with ‖(p, q)‖× := ∑m

i=1
∑n

j=1

√
p2

i,j + q2
i,j . Furthermore, an upper bound

of the Lipschitz constant of L is given by ‖L‖2 ≤ 8μ2 (see [9] for details).
By [2, Proposition 27.5], obtaining a solution to the following problem is

equivalent to solving (32)

find x ∈ zer
(
N[0,1/μ]n + W ∗ ◦ ∂g1 ◦ W + A∗ ◦ ∂g2 ◦ A + L∗ ◦ ∂g3 ◦ L

)
, (34)

with g1 : R
n → R, g1(y) = α1μ‖y‖1, g2 : R

n → R, g2(y) = μ‖y − b/μ‖1,
g3 : Rn × R

n → R, g3(p, q) = α2‖(p, q)‖×, and N[0,1/μ]n the normal cone opera-
tor to the set [0, 1/μ]n. In order to implement Algorithm 1 for solving (34), we need
the expression of the following resolvents and proximity operators. By [2, Proposi-
tion 23.25 (iii)], the second term in (34) is a maximally monotone operator and its
resolvent can be expressed as

JW ∗◦∂g1◦W = Id − W ∗ ◦ (Id − proxg1

) ◦ W = Id − W ∗ ◦ proxg∗
1
◦ W,

where proxg = J∂g denotes the proximity operator of a function g, and g∗
1 is the

conjugate function to g1, which is equal to the indicator function δ[−α1μ,α1μ]n , and
thus proxg∗

1
= P[−α1μ,α1μ]n . Given σ > 0, the proximity operators of g2 and g3 are,

respectively,

proxσg2
(x) = b

μ
+proxσμ‖·‖1

(
x − b

μ

)
= b

μ
+sign

(
x − b

μ

)
�
[∣∣∣∣x − b

μ

∣∣∣∣− σμ

]

+
,

where � denotes element-wise product and [·]+ and | · | are applied element-wise,
and

proxσg3
= Id − σprox 1

σ
g∗
3
◦ 1

σ
Id = Id − σPS ◦ 1

σ
Id,

Numerical Algorithms

since the conjugate function of g3 is g∗
3 : Rn × R

n → R
n, g∗

3 = δS , with the set S

defined as

S :=
{
(p, q) ∈ R

n × R
n : max

1≤i≤M,1≤j≤N

√
p2

i,j + q2
i,j ≤ α2

}
,

and the projection operator PS : Rn × R
n → S is given component-wise by

(pi,j , qi,j) �→ α2
(pi,j , qi,j)

max {α2,
√

p2
i,j + q2

i,j }
, 1 ≤ i ≤ M, 1 ≤ j ≤ N .

Hence, when choosing z0 ∈ R
n, v01 ∈ R

n and v02 ∈ R
n × R

n as starting values, and
letting λ ∈]0, 1[and γ ∈]

0, 1/(‖A‖2 + ‖L‖2)], the iterative scheme in Algorithm 1
becomes

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk
1 = P[0,1/μ]n(zk),

xk
2 = (

Id − W ∗ ◦ P[−α1μ,α1μ]n ◦ W
)

(
2xk

1 − zk − A∗(γAxk
1 − vk

1) − L∗(γLxk
1 − vk

2)
)
,

yk
1 = b

μ
+ proxμ

γ
‖·‖1

(
A(xk

1 + xk
2) − vk

1
γ

− b
μ

)
,

yk
2 =

(
Id − 1

γ
PS

) (
γL(xk

1 + xk
2) − vk

2

)
,

zk+1 = zk + λ(xk
2 − xk

1),

vk+1
1 = vk

1 + λγ (yk
1 − Axk

2),

vk+1
2 = vk

2 + λγ (yk
2 − Lxk

2).

In our experiment, we replicate the problem in [5, Section 4.2], where an extensive
comparison between different primal-dual algorithms is presented. Since the best
performing algorithm is the Douglas–Rachford type primal-dual method in [5, Algo-
rithm 3.1], we limit our comparison to this algorithm, whose detailed implementation
is given in the cited work. We ran our experiments in MATLAB, making use of the
inbuilt functions fspecial and imfilter to define an operator A which is a
Gaussian blur operator of size 9×9 with standard deviation 4 and reflexive boundary
conditions. In particular, A verifies ‖A‖ = 1 and A∗ = A. We employed as observed
image b a picture taken at the Schönbrunn Palace Gardens (Vienna) subjected to the
already specified blur followed by the addition of a zero-mean Gaussian noise with
standard deviation 10−3 (see Fig. 2). To test the influence on the performance of the
picture size, we resized the original picture to different pixel resolutions (see Table 1).

When measuring the quality of the restored images, we use the improvement in
signal-to-noise-ratio (ISNR), which is given by

ISNRk = 10 log10

(‖x − b‖2
‖x − xk‖2

)
,

where x and xk are the original and the reconstructed image at iteration k, respec-
tively.We tuned the regularization parameters in order to guarantee an adequate ISNR
value for the restored images, setting α1 := 0.005 and α2 := 0.009.

We recall that the stepsize parameter γ of Algorithm 1must be taken in the interval
γ ∈]

0, 1/(‖A‖2 + ‖L‖2)] =]
0, 1/(1 + 8μ2)

]
. When μ = 1 (i.e., we solve (31)),

this interval is]0, 0.111]. In our numerical experiments, we empirically observed that

Numerical Algorithms

0 100 200 300 400 500 600 700 800 900 1000
CPU time in seconds

104

105
O

bj
ec

tiv
e

fu
nc

tio
n

0 100 200 300 400 500 600 700 800 900 1000
CPU time in seconds

-25

-20

-15

-10

-5

0

5

10

15

20

IS
N

R

Fig. 1 The evolution of the values of the objective function and of the ISNR in CPU time for 400 iterations
of Algorithm 1 with μ = 1 and μ = 1

√
8 and DR1, using the 640 × 768 pixels image displayed in Fig. 2

a very small stepsize negatively affects the performance of the algorithm, as men-
tioned in Remark 2. After testing different options, the most convenient one seems to
be μ = 1/

√
8, which implies making the Lipschitz constant of both linear operators

in the problem equal to 1.
The initialization of each of the methods was the following:

• DR1([5, Algorithm 3.1]): starting points x0 = b and (v1,0, v2,0, v3,0) = (0, 0, 0),
σ1 = 1, σ2 = 0.05, σ3 = 0.05, τ = 1(σ1 + σ2 + 8σ3)−1 − 0.01, λn = 1.5 for al
n ∈ N.

• Algorithm 1 with μ = 1: starting points z0 = b and (v01, v
0
2) = (0, 0), λ = 0.99

and γ = 1/9;
• Algorithm 1 with μ = 1/

√
8: starting points z0 = b/μ and (v01, v

0
2) = (0, 0),

λ = 0.99 and γ = 1/2.

We performed 400 iterations of each of the algorithms and compared the values
of the objective function in (32) and the ISNR with respect to the CPU time, which
provides a more realistic comparison than iteration count, since DR1 has a higher
computational cost per iteration than Algorithm 1. The tests were ran on a desktop of
Intel Core i7-4770 CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit). The
algorithms were ran 3 times, once for each of the RGB components of the picture.
The evolution in CPU time of adding these 3 values of the objective function and
those of the ISNR for the 640 × 768-sized picture are represented in Fig. 1, where
we observe that Algorithm 1 with μ = 1/

√
8 obtains slightly better values than those

returned by DR1, but in significantly less time.
The restored images are presented in Fig. 2. There is no much difference between

the ones corresponding to Algorithm 1 with μ = 1/
√
8 (bottom-middle) and DR1

(bottom-right), but a close look at the image obtained with Algorithm 1 with μ = 1
permits to observe its worse quality. To show that this trend in the performance of
the algorithms is not affected by the image size, we present in Table 1 the results
from running the algorithms on the same picture for five different pixel resolutions.

Numerical Algorithms

Fig. 2 On the top, the original 640×768 pixels image and the blurred and noisy image. On the bottom the
images restored after computing 400 iterations of Algorithm 1 with μ = 1 (left) and μ = 1/

√
8 (middle),

and DR1 (right)

Overall, we notice that the CPU time required for computing the 400 iterations is sig-
nificantly lower for Algorithm 1, as expected. On average, DR1 required 45% more
time than Algorithm 1 to compute the 400 iterations, independently of the size of the
image. Regarding the parameter μ, Algorithm 1 with μ = 1 is notably outperformed
by the other two methods, making thus clear the influence that this parameter has on
it. The function values obtained were slightly lower for DR1, while the ISNR was
slightly lower for Algorithm 1 with μ = 1/

√
8, which implies that both algorithms

performed similarly with respect to the restored image quality.

Interpretation of the results of the experiments The experimental results show that,
after performing the same number of iterations, Algorithm 1 with μ = 1/

√
8 obtains

similar results in the function values and the measurement in the quality of the image
recovery than those obtained by DR1, but in considerably less time. This decrease
in the running time can be attributed to the reduction in the lifting of the operator.
Although in the first iterations DR1 achieves a larger reduction of the objective func-
tion, the quality of the restored image is not sufficient, as assessed by the low ISNR
values. On the other hand, Algorithm 1 with μ = 1 can be discarded, as it obtains
higher objective and lower ISNR values. Consequently, Algorithm 1 with μ = 1/

√
8

is the preferable choice to address problem (31).

Numerical Algorithms

Table 1 Results from running on the picture displayed in Fig. 2 (for various pixel resolutions) 400
iterations of Algorithm 1 with μ = 1 and μ = 1/

√
8, and DR1

Resolution 80 × 96 160 × 192 320 × 384 640 × 768 1280 × 1536

Function μ = 1 55.0 225.5 920.3 3630.3 13084.0

Values μ = 1/
√
8 43.2 174.3 711.2 2825.2 10360.0

DR1 42.8 173.4 706.0 2804.5 10327.0

ISNR μ = 1 9.7 8.4 8.7 9.8 12.8

μ = 1
√
8 15.8 14.3 14.9 16.5 21.0

DR1 15.8 14.2 14.8 16.4 21.0

CPU μ = 1 5.9 16.0 54.7 294.4 1654.2

Time μ = 1
√
8 5.8 16.2 51.5 293.1 1638.5

DR1 8.7 21.1 74.0 465.4 2349.6

5 Conclusions and open questions

In this work, we have considered the composite monotone inclusion problem together
with its dual counterpart given by Problem 1. We have extended the definition of
resolvent splitting given in [19] to encompass primal-dual algorithms and the inclu-
sion of parameters in the resolvent and presented a definition of minimal lifting
for frugal schemes of this form. We have proposed the first primal-dual algorithm
which presents minimal lifting in this sense, and show its good performance with a
numerical example.

To conclude, we outline possible directions for further research.

Establishing an optimal criterion for tuning the stepsize γ We pointed out in Remark
2 the influence that the parameter γ can have in the performance of the algorithm. In
Section 4 we presented a possibility for controlling this parameter, by making use of
a change of variable which modifies the Lipschitz constants of the linear operators,
and we empirically showed that it significantly affects the speed of performance of
the algorithm. However, there is no guarantee that this strategy is optimal. It would
be interesting to further investigate which is the best way for tuning the value of γ .

Achieving lifting reduction in the dual variables The reduction in the lifting with
respect to the number of operators achieved in the algorithm here presented only
affects the primal variables. It remains open the question of whether it is possible
to reduce the dimension of the underlying space associated to the linearly composed
operators. More precisely, if we consider the problem given by

find x ∈ H such that 0 ∈
m∑

j=1

L∗
jBj (Ljx),

Numerical Algorithms

is it possible to obtain an algorithm for solving this problem with (0, m − 1)-fold
lifting (according to Definition 9)? Or even with (1, m−1) or (0, m)-fold lifting? All
these questions remain open.

Appendix A: Proof of theminimality theorem for parametrized
resolvent splitting

Throughout this section, we assume that n ≥ 2 and we denote by An the set of all n-
tuples of maximally monotone operators on H. Hence, an element A ∈ An is of the
form A = (A1, . . . , An), where Ai : H ⇒ H are maximally monotone operators for
all i ∈ �1, n�. Every instance of Problem 2 is determined by the choice of A ∈ An. In
particular, when considering a fixed point encoding for this problem, the fixed point
operator and the solution operator are both parametrized in terms of A ∈ An. To
emphasize this idea and to facilitate the exposition, we denote these operators by TA

and SA in the following.
Let (TA, SA) be a d-fold lifted frugal parametrized resolvent splitting for Problem

2. By definition, there exists a finite procedure for evaluating TA and SA using only
vector addition, scalar multiplication and the resolvents Jδ1A1 , . . . , JδnAn precisely
once, where δ = (δ1, . . . , δn)

T is a vector of positive parameters. Following the same
reasoning than in [16, Section 3], we can completely describe the evaluation of a
point z = (z1, . . . , zd) ∈ Hd by TA with a series of equations. We directly present
them here.

(1) There exists x = (x1, . . . , xn) ∈ Hn and y = (y1, . . . , yn) ∈ Hn such that

x = JδA(y) ⇐⇒ 0 ∈ x − y + δA(x), (35)

where δA := (δ1A1, . . . , δnAn) ∈ An.
(ii) There exists Yz ∈ R

n×d and a lower-triangular matrix Yx ∈ R
n×n with zeros

in the diagonal such that1

y = Yzz + Yxx. (36)

(iii) By frugality, there exists Tz ∈ R
d×d and Tx ∈ R

d×n such that

TA(z) = Tzz + Txx. (37)

Similarly, also by frugality, the evaluation of z by the solution operator S can be
expressed as

SA(z) = Szz + Sxx, (38)

where Sz ∈ R
1×d and Sx ∈ R

1×n.
The proof of the next technical lemma can be obtained by following the same steps

than in [16, Lemma 3.1], so we do not replicate it here.

1Here, we make use of an abuse of notation. Indeed (36), should be written as y = (Yz ⊗ Id)z + (Yx⊗)x,
where ⊗ denotes the Kronecker product.

Numerical Algorithms

Lemma 3 Let (TA, SA) be a frugal parametrized resolvent splitting for Problem 2.
Let M denote the block matrix given by

M :=
⎡

⎣
0 Id −Id δT Id
Yz Yx −Id 0

Tz − Id Tx 0 0

⎤

⎦ .

If z ∈ Fix TA, then there exists v = [z, x, y, a]T ∈ kerM with a ∈ A(x). Conversely,
if v = [z, x, y, a]T ∈ kerM and a ∈ A(x), then z ∈ Fix TA, x = JδA(y) and
SA(z) = Szz + Sxx.

Proposition 5 (Solution operator) Let (TA, SA) be a frugal parametrized resolvent
splitting for Problem 2 . Then, for all z̄ ∈ Fix TA and x̄ = JδA(ȳ), we have

SA(z̄) = 1

n

n∑

i=1

(ȳi − δi āi) = x̄1 = · · · = x̄n, (39)

where ā = A(x̄).

Proof Consider a particular instance of Problem 2 given by some operators A ∈ An.
Let TA and SA be the fixed point and solution operators of this particular instance,
respectively. Let z̄ ∈ Fix TA and x∗ = SA(z̄). By Lemma 1, there exists v :=
[z̄, x̄, ȳ, ā]T ∈ kerM with ā ∈ A(x̄) and x∗ = SA(z̄) = Szz̄ + Szx̄.

Consider now the n+1 instances of Problem 2 given by the n-tuples of maximally
monotone operators A(0), A(1), . . . , A(n) ∈ An defined as

A(0)(x) := ā and A(j)(x) := ā +

⎡

⎢⎢⎢⎢⎢⎢⎣

0
...

xj − x̄j

...
0

⎤

⎥⎥⎥⎥⎥⎥⎦
∀j ∈ �1, n�.

Since v ∈ kerM and ā = A(j)(x̄), for all j ∈ �0, n�, Lemma 1 implies that z̄ ∈
Fix TA(j) , x̄ = JδA(j) (ȳ) and thus, SA(j) (z̄) = Szz̄ + Sx x̄ = x∗ is a solution to every
instance. Therefore, we have 0 = ∑n

i=1A
(0)
i (x∗) = ∑n

i=āi and hence

0 =
n∑

i=1

A
(j)
i (x∗) =

n∑

i=1

āi + x∗ − x̄j = x∗ − x̄j ∀j ∈ �1, n�,

from where it follows that x∗ = x̄1 = · · · = x̄n. Finally, since x̄ = JδA(0) (ȳ), we have
that ȳ−x̄ = δA(0)(x̄) = (δ1ā1, . . . , δnān). Consequently,

∑n
i=1ȳi−nx∗ = ∑n

i=1δi āi ,
which completes the proof.

Note that, although the expression for the solution operator given by (39) differs
from the one obtained in [16, Proposition 3.2], it still holds that the vector x̄ belongs
to the diagonal subspace of dimension n, which we denote by
n. This is what we
employ to prove the following theorem.

Numerical Algorithms

Theorem 6 Let (TA, SA) be a frugal parametrized resolvent splitting with d-fold
lifting for Problem 2. Then, d ≥ n − 1.

Proof Suppose, by contradiction, that (TA, SA) is a frugal parametrized resolvent
splitting for Problem 2 with d-fold lifting such that d ≤ n − 2. Consider a particular
instance of the problem given by A ∈ An such that zer

(∑n
i=1Ai

) �= ∅ and take
z ∈ Fix TA. By Lemma 1, there exists v := [z, x, y, a]T ∈ kerM with a ∈ A(x). The
last row of M implies that 0 = (Tz − Id)z + Txx. Since Tx ∈ R

d×n and d ≤ n − 2,
by the rank-nullity theorem, dim ker Tx = n − dim rankTx ≥ n − d ≥ 2. Since
n is
a subspace of dimension 1, there exists x̄ /∈
n such that Txx = Tx x̄.

Now, set z̄ := z, ȳ := Yzz̄ + Yx x̄ and ā := ((ȳ1 − x̄1)/δ1, . . . , (ȳn − x̄n)/δn)

and consider the instance of the problem given by Ā ∈ An defined as Ā(s) := ā
for all s ∈ Hn. Then, v̄ := [z̄, x̄, ȳ, ā]T ∈ kerM with ā = Ā(x̄). By Lemma 3
and Proposition 5, this implies that x̄ ∈
n, obtaining thus a contradiction which
completes the proof.

Funding FJAA and DTBwere partially supported by the Ministry of Science, Innovation and Universities
of Spain and the European Regional Development Fund (ERDF) of the European Commission, Grant
PGC2018-097960-B-C22. FJAA was partially supported by the Generalitat Valenciana (AICO/2021/165).
RIB was partially supported by FWF (Austrian Science Fund), project P 34922-N. DTB was supported
by MINECO and European Social Fund (PRE2019-090751) under the program “Ayudas para contratos
predoctorales para la formación de doctores” 2019.

Data availability The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3,
1–24 (1996)

2. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces,
2nd edn. Springer, Berlin (2017)

3. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of
maximally monotone operators. SIAM J. Optim. 23(4), 2011–2036 (2013)

4. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-
dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150(2), 251–279
(2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms

5. Boţ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with
mixtures of composite and parallel-sum type monotone operators. SIAM. J. Optim. 23(4), 2541–2565
(2013)

6. Boţ, R.I., Hendrich, C.: Solving monotone inclusions involving parallel sums of linearly composed
maximally monotone operators. Inverse Probl. Imaging 10(3), 617–640 (2016)

7. Briceño-Arias, L., Combettes, P.L.: A monotone + skew splitting model for composite monotone
inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)

8. Campoy, R.: A product space reformulation with reduced dimension for splitting algorithms. Comput.
Optim. Appl 83, 319–348 (2022)

9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.
20(1–2), 89–97 (2004)

10. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems.
Numer. Math. 76(2), 167–188 (1997)

11. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

12. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixture
of composite, Lipschtizian, and parallel-sum type monotone operators. Set-valued Var. Anal. 20(2),
307–330 (2012)

13. Condat, L., Kitahara, D., Contreras, A., Hirabayashi, A.: Proximal splitting algorithms for convex
optimization: a tour of recent advances, with new twists. To be published in SIAM Review (2022)

14. Dao, M.N., Dizon, N., Hogan, J.A., Tam, M.K.: Constraint reduction reformulations for projection
algorithms with applications to wavelet construction. J. Optim. Theory Appl. 190, 201–233 (2021)

15. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM. J. Numer.
Anal. 16(6), 964–979 (1979)

16. Malitsky, Y., Tam, M.K.: Resolvent splitting for sums of monotone operators with minimal lifting.
arXiv:2108.02897 (2021)

17. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke. Math. J. 29, 341–346 (1962)
18. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28, 96–115

(1984)
19. Ryu, E.K.: Uniqueness of DRS as the 2-operator resolvent-splitting and impossibility of 3-operator

resolvent-splitting. Math. Program. 182(1), 233–273 (2020)
20. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete �1-type functionals.

Commun. Math. Sci. 9(3), 797–827 (2011)
21. Stollnitz, E.J., DeRose, T.D., Salesim, H.D.: Wavelets for computer graphics: a primer, part 1. IEEE

Comput. Graph. Appl. 15(3), 76–84 (1995)
22. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.

Comput. Math. 38, 667–681 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/2108.02897

	A primal-dual splitting algorithm for composite monotone inclusions with minimal lifting
	Abstract
	Introduction
	Lifted splitting algorithms

	Preliminaries
	Parametrized resolvent splitting

	A primal-dual splitting with minimal lifting
	The case with one linear composition
	The case with multiple linear compositions
	Minimality for primal-dual parametrized resolvent splitting

	Numerical experiments
	Interpretation of the results of the experiments

	Conclusions and open questions
	Establishing an optimal criterion for tuning the stepsize
	Achieving lifting reduction in the dual variables

	Appendix A A: Proof of the minimality theorem for parametrized resolvent splitting
	Declarations
	References

