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Abstract
We evaluate the β-decay rates within the gross theory of beta decay (GTBD) and compare the results for different values of
the axial-vector coupling constant, gA = 0.76, gA = 0.88, gA = 1, gA = 1.13, and gA = 1.26, and also different energy
distribution functions like Gaussian, exponential, Lorentzian, and modified Lorentzian ones. We use new sets of parameters
as well as updated experimental mass defects and also an improved approximation for the Fermi function. We compare our
calculated results for a set of 94 nuclei of interest in pre-supernova phase, with experimental data in terrestrial conditions
and also with other theoretical models like the QRPA, the shell model (SM), and different versions of the GTBD. We show
that best results are obtained with gA = 1 using Gaussian and Lorentzian distributions, being the rates for the 74 and 80% of
our sample, respectively, of the same order of magnitude that of experimental data. Finally, we show that the present results
within the GTBD are better than those within the QRPA model and also older versions of the GTBD for the isotopes of
cobalt and iron families, and comparable with SM for some elements.
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1 Introduction

The gross theory of beta decay (GTBD) is a nuclear model
proposed initially by Takahashi and Yamada in the end
of the 1960s [1]. The GTBD is a parametrical model
for nuclear disintegration rates, which combines arguments
of independent particle associated with the Fermi gas
model. Thus, it is a microscopic model which includes
statistical arguments in a phenomenological way, through
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a convolution between the independent particle model β-
amplitude and the density levels of the Fermi gas model
corrected to take into account shell effects [2]. Within
this formalism, the contributions of the Gamow-Teller
resonance are included in a parametrical way.

The original version of the GTBD was not able to
reproduce the experimental data with the same efficiency
of that more sophisticated microscopical models like the
QRPA or the shell model (SM). However, recent works [3,
4] indicate that improved versions of the GTBD provide
models which allow to reproduce the experimental β-decay
rates of the species available in the Letter of Nuclide as
satisfactorily as the other models. The most remarkable
feature of the GTBD is that it allows to perform systematic
calculations very simple from the computational point of
view, at difference of the other models. By these reasons,
the GTBD version from ref. Ferreira and Dimarco [4] was
applied to astrophysical studies on β and electron capture
decay rates in massive stars in presupernova stage [5]. This
motivates us to seek new improvements in the GTBD.

The dependence of the decay rates with the weak axial-
vector coupling constant, gA, has been analyzed in several
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works in the literature in the context of different models.
In ref. Niu et al. [6], a value gA < 1 is required for the
evaluation of the rates within the continuum quasiparticle
random phase approximation (CQRPA); in ref. Suhonen et
al. [7], a great efficiency to reproduce the experimental data
is obtained with gA = 0.88 for the double β-decay using
the CQRPA; in ref. Samana et al. [8], the value gA = 1.13
is the most adequate to reproduce experimental data within
the relativistic quasiparticle random phase approximation
(RQRPA). This motivates us to ask what is the most
appropriate value for gA to reproduce the data within our
GTBD. For this reason, we will compare here the results
obtained within the GTBD for the values gA = 0.76, gA =
0.88, gA = 1, gA = 1.13, and gA = 1.26.

Otherwise, within the GTBD, the parametrization of
the nuclear matrix elements (NME) M�(E) needed for
the evaluation of the decay rates requires the use of
an independent particle probability distribution function,
D�(E, ε). This is normalized as

� +∞
−∞ D�(E, ε)dE = 1,

being E the transition energy measured from the parent
ground state, and ε the single-particle energy of the
nucleon that undergoes a β-transition. The authors of the
original version of the GTBD [1] have calculated the decay
rates for different energy distribution functions: Gaussian,
exponential, Lorentzian, and modified Lorentzian. With
respect to those calculations, we must point out that (i)
they were performed for nucleus in the mass region 12 <

A < 250, leading to different parameters from the fits;
(ii) the experimental error bars have not been considered
in the calculation; (iii) not updated mass defect were used,
which would lead to different Q values; (iv) a rough
approximation was used for the Fermi function; (v) only the
value gA = 1.26 was adopted. Based on these arguments,
we propose to compare here the β-decay rates calculated
within the GTBD with Gaussian, exponential, Lorentzian,
and modified Lorentzian distribution functions. We use in
all cases updated parameters including the error bars in the
fitting procedure, considering updated experimental mass
defects in the calculation of the Q values, and using a better
approximation discussed in ref. Ferreira and Dimarco [4] for
the Fermi function, which is most efficient to represent the
coulombian interaction between the electron and the parent
nucleus.

Thus, we calculated the β-decay rates for a set of 94
nuclear species of the families of cobalt, copper, iron,
manganese, chrome, scandium, and titanium that are of
astrophysical interest in presupernova stage. We compared
the results for different energy distribution functions and
axial-vector constant gA. Additionally, when available, we
compared our results with the best choice of gA and the
energy distribution function, with other more sophisticated
models like the QRPA, the SM [9], and some combinations
like the extended Thomas-Fermi plus Strutinsky integral

method plus GTBD generation 2 (ETFSI + GT2) [10],
CQRPA + ETFSI [11], and also with the results of our
GTBD with the parameters used in refs. Ferreira et al. [3, 4].

The paper is organized as follows. We summarize the
formalism for the GTBD model of β-decay in Section 2,
where we show the different energy distribution functions
used in this work together with a description of the fitting
method. In Section 3, we present and discuss our results.
Final remarks are drawn in Section 4.

2 Formalism

2.1 Gross Theory of Beta Decay

The total decay rate for the nuclear β process (Z, A) →
(Z + 1, A) + e− + ν̄ can be calculated within the GTBD as
(in natural units me = c = � = 1) [3]

λβ = G2
F

2π3

� 0

−Q

|M(E)|2f (−E)dE, (1)

where GF = (3.034545 ± 0.00006) × 10−12 is the Fermi
weak coupling constant and M(E) is the NME being E the
transition energy measured from the parent ground state,
related to the true β-decay transition energy through the
equation Eβ = Ee + Eν = −E > 0 with Ee and Eν being
the electron and antineutrino energies, respectively. f (−E)

is the usual integrated dimensionless Fermi function defined
as

f (−E) =
� −E+1

1
(−E + 1 − Ee)

2Ee

�
E2

e − 1

×F(Z,Ee)dEe, (2)

where F(Z,Ee) is the Fermi function that takes into
account the coulombian interaction between the electron
and the daughter nucleus. It is important to remark that for
this Fermi function, we adopt here the proposal recipe from
ref. [12] which, as discussed by ref. Ferreira and Dimarco
[4], provides better results for the decay rates. Finally, the
Q value represents the difference between neutral atomic
masses of parent and daughter nuclei which, according to
ref. [13], can be written as

Q = mP − mD − 1, (3)

with mP and mD the parent and daughter masses,
respectively, which will be taken from the Letter of
Nuclide [14]. Note that we use here updated values of the
experimental mass defects, at difference of the previous
version of the GTBD from ref. Ferreira et al. [3], where
values taken from an old version of the Letter of Nuclide
were used.
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These β-decay rates receive contribution of different
types of transitions like the allowed Fermi (F) and Gamow-
Teller (GT) ones, the first forbidden transitions, the second
forbidden ones, etc [15]. Neglecting the contribution of
forbidden transitions, the total decay rate within the GTBD
can be written as

λβ = G2
F

2π3

� 0

−Q

�
g2

V |MF (E)|2 + 3g2
A|MGT (E)|2

�

×f (−E)dE. (4)

Here, gV = 1 and gA are, respectively, the vector and axial-
vector effective coupling constants.1 The value of gA will
be modified along this manuscript.

The NME can be evaluated by using the sum rule
as described in ref. Ferreira et al. [3]. Thus, the NME
reads |M�(E)|2 = |�ψf |�|ψi�|2ρ(E), where ψi and ψf

represent the wave functions of the initial and final states,
respectively, � ≡ 1 and � ≡ σ are the F and GT nuclear
operators, respectively, and ρ(E) is the final level energy
density. Within the sum rule, the β-decay operator is a
sum of independent particle operators [1]. Assuming the
nucleons as independent particles, the energy E can be
considered as the difference between the energies of the
independent nucleon decay in daughter and parent nucleus.
Therefore, the NME can be expressed as

|M�(E)|2 =
� 
1


0(E)

D�(E, 
)
dN1

d

W(E, 
)d
 (5)

where 
1 is the energy of the highest occupied state and

0(E) = max(
min, 
1 − Q − E) with 
min being the
lowest single-particle energy of the parent nucleus. Pauli’s
principle is considered in the lower limit of the integral
and in the term W(E, 
), which measures the probability of
occupation of the final states (vacancy level). Equation (5) is
valid for the special case of a step surface, where W(E, 
) =
1, because 
 +E > 1−Q. In other cases, the term W(E, 
)

vanishes because 
+E ≤ 1−Q. Within this approximation,
the NME reads

|M�(E)|2 =
� 
1


0(E)

D�(E, 
)
dN1

d

d
. (6)

Following the original version of the GTBD [1], the Fermi
gas model was used to estimate the density of independent
nucleon levels, dN1

d

, as

dN1

d

= N1

�

1 −
�

1 − Q + E


F

	 3
2



, (7)

1Finite nuclear size effects are incorporated via the dipole form factor

g → g
�

�2

�2+k2

�
where k is the momentum transfer and � = 850 MeV

the cutoff energy.

where N1 is the number of neutrons of the parent nuclei and

F is the nucleon Fermi energy given by


F = 76.52
M∗

n

Mn

1

r2
0

�
N1

A

	 2
3

MeV, (8)

being M∗
n and Mn the effective and bare nucleon masses,

respectively, and r0 the nuclear radius. We used the relations

r0 = 1.25(1 + 0.65A−2/3), and for M∗
n

Mn
= 0.6 + 0.4A−1/3.

Finally, within the GTBD, the β-decay rate reads

λβ = G2
F

2π3

� 0

−Q

�
g2

V DF (E, 
) + 3g2
ADGT (E, 
)

�

×N1

�

1 −
�

1 − Q + E


F

	 3
2



f (−E)dE. (9)

The energy distribution functions D�(E, 
) will be
discussed in the next subsection.

2.2 Energy Distribution Function

The energy distribution function, D�(E, 
), measures the
probability that a nucleon with single-particle energy 


undergoes a β-transition. As in Takanahashi et al. [1],
we neglect the 
-dependence, i.e., it is assumed that all
nucleons have the same decay probability, independent
of their energies 
, D�(E, 
) ≡ D�(E). The GTBD
characterizes this D�(E) through their energy weight
moments. Successive improvements of the GTBD have used
Gaussian, exponential, and Lorentzian type functions for
D�(E). They are:

1. Gaussian function
The Gaussian function is given by Takanahashi et al.

[1]

D�(E) = 1√
2πσ�

e

−(E−E�)2

2σ2
� , (10)

where E� is the resonance energy and σ� the
standard deviation. Following the original work from
ref. Takanahashi et al. [1], we assume the nuclei as a
uniform charged sphere with radius 1.2×A

1
3 fm, which

allows to consider the Coulombian (c) displacement of
independent particle such as

EF = Ec = ±(1.44Z1A
− 1

3 − 0.7825)MeV, (11)

σF = σc = 0.157Z1A
− 1

3 , (12)

where Z1 is the proton number of the daughter (parent)
nuclei for β+ and electron capture (β−) decay. For the
GT resonance, we use the approximation [2, 16]

EGT = EF + δ, (13)
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with

δ = 26A− 1
3 − 18.5(N − Z)

A
MeV, (14)

and

σGT =
�

σ 2
F + σ 2

N, (15)

with σN being a setting parameter which comes from
the energy propagation produced by the forces depen-
dent of the nuclear spin. The adjustment procedure of
this parameter will be described below.

2. Exponential function
The exponential distribution function proposed in

ref. Takanahashi et al. [1] is

D�(E) = 1√
2σ�

e
−√

2|E−E�|
σ� . (16)

The values of EF , EGT , σF , and σGT are estimated as
described previously in (11)–(15).

3. Lorentzian function
The Lorentzian probability distribution function

proposed in ref. Takanahashi et al. [1] is

D�(E) = ��

2π

�
1

(E − E�)2
+ 1

(��

2 )2




. (17)

For the F transition, we use

�F = 2(0.157ZA− 1
3 )2

γ0
, (18)

with γ0 = 220 MeV being an adjusted parameter which
we adopted from ref. Takanahashi et al. [1]. Similarly,
�GT was calculated by the expression

�GT =
�

�2
F + �2

N (19)

with �N = σN . The values of EF and EGT were
estimated from (11) and (13), respectively.

4. Modified Lorentzian function
The Lorentzian modified probability function pro-

posed in Takanahashi et al. [1] is

D�(E) = σ 2
� + γ 2

π

σ 2
�

γ

(E − EF )2 + γ 2

×

⎡

⎢
⎢
⎢
⎣

1

(E − E�)2
+ 1

�
σ 2

�

γ

	2

⎤

⎥
⎥
⎥
⎦

, (20)

with γ = 100 MeV being an adjusted parameter taken
from Takanahashi et al. [1], and EF , EGT , σF , and σGT

were defined previously in (11)–(15).
To set the value of the parameter σN , we need

to choose the χ2 function to minimize. In the

original work from Takahashi and Yamada, they use
Takanahashi et al. [1]

χ2 =
N0�

n=1

�
log(τ cal

1/2(n))/(τ
exp

1/2 (n))
�2

, (21)

where N0 is the number of nuclides used in the
calculation, and the superindexes cal and exp refer to
“calculated” and “experimental” half lives, respectively.
Instead of this expression, in the present work, we use
Samana et al. [2]

χ2 =
N0�

n=1

�
log(τ cal

1/2(n))/(τ
exp

1/2 (n))

�log(τ
exp

1/2 (n))


2

, (22)

where

�log(τ
exp

1/2 (n)) ≡ |log[τ exp

1/2 (n) + δτ
exp

1/2 (n)] − log[τ exp

1/2 (n)]|,
(23)

and δτ
exp
1
2

(n) is the experimental error. Thus, this χ2

function has the advantage of reinforcing the contri-
bution of experimental data with small experimental
errors.

3 Results and Discussions

3.1 Comparison for Different Distribution Functions

Firstly, we show the results for the adjusted parameter σN

in Table 1. They have been obtained by fixing a value of
gA for each energy distribution function as described in
the previous section, for a set of 94 nuclei belonging to
the cobalt, copper, iron, manganese, chrome, scandium, and
titanium families, of interest in astrophysics, in the region
mass 46 ≤ A ≤ 70. To minimize the χ2 function given in
(22), we have separated the nuclei according to its parity:
even-even (N0 = 17), even-odd (N0 = 20), odd-even
(N0 = 29), odd-odd (N0 = 28). We present the adjusted
values for the four distribution functions using gA = 1.26
and, for reasons explained below, only for the Gaussian and
Lorentzian functions when we take gA = 1.13, 1.00, 0.88,
and 0.76.

We show in Fig. 1 our results for the logarithm of the
ratio between the calculated and the experimental β-decay
half lives, for the different energy distribution functions.
As usually, we have added two horizontal lines to more
easily visualize the nuclei whose half lives differ by less
than an order of magnitude from the experimental results,
which means those closer to the data. These results show
that, for the Gaussian function, the 77.7% (88.3%) of
our calculated half lives are in good agreement with the
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Table 1 Adjusted parameter σN (in units of MeV) for different values of gA and energy distribution functions

Distribution Z − N σN σN σN σN σN

function (parity) (gA = 1.26) (gA = 1.13) (gA = 1.00) (gA = 0.88) (gA = 0.76)

Even-even 7.92 7.70 7.70 7.48 7.26

Gaussian Even-odd 6.82 6.82 6.60 6.38 6.16

Odd-even 7.70 7.70 7.48 7.26 7.04

Odd-odd 8.36 8.14 8.14 7.92 7.70

Even-even 5.52

Exponential Even-odd 6.30

Odd-even 8.42

Odd-odd 5.20

Even-even 3.52 3.52 3.30 3.08 2.86

Lorentzian Even-odd 3.30 3.08 3.08 2.86 2.64

Odd-even 1.98 1.98 1.76 1.54 1.32

Odd-odd 2.42 2.42 2.20 1.98 1.76

Even-even 5.94

Modified Even-odd 5.72

Lorentzian Odd-even 7.70

Odd-odd 7.48

experimental data, because they differ by less than one
(two) order of magnitude. Similarly, for the exponential
function, we observed that 76.6% (91.5%) of our results
agree with experimental ones up to one (two) order of
magnitude. When the Lorentzian distribution is used, we
obtain 79.8% (89.4%) of the nuclei that fall inside the
bars corresponding to one (two) order of magnitude. The
plot for the modified Lorentzian function exhibits the worst
results with only the 6.4% (56.4%) of the nuclei differing
by less than one (two) order of magnitude when compared
with data. Thus, the better results are obtained with the
Lorentzian distribution, which are comparable with those
obtained using the Gaussian one. It is also interesting to
mention here that, if we compare theoretical results with
data up to the second order of magnitude, the exponential
function is the more efficient distribution. On the contrary,
the modified Lorentzian function describes the data with
much less precision than the other energy distribution
functions.

3.2 Comparison for Different Values of gA

Next, using Gaussian and Lorentzian probability distribu-
tion functions, we calculate the β-decay rates for different
values of the axial-vector coupling constant gA: 0.76, 0.88,
1.00, 1.13, and 1.26. The results are shown in Figs. 2 and 3,
respectively. For the Gaussian function, the best value is
gA = 1.00, with the 78.7% of the data being inside the
band corresponding to differences of one order of magni-
tude compared with the experimental results. Otherwise, we
obtain 72.3, 73.4, 75.5, and 77.7% of the nuclei inside that

band when we use gA = 0.76, 0.88, 1.13, and 1.26, respec-
tively. Similarly, when the Lorentzian function is used, the
best value is gA = 1.00, which leads to 80.8% of the nuclear
species well described with a difference less than one order
of magnitude compared with experimental results, and 78.7,
78.7, 78.7, and 79.8% for gA = 0.76, 0.88, 1.13, and 1.26,
respectively.

Thus, we conclude that three of the four probability
distribution functions tested here exhibit a good agreement
with experimental data for nuclei in the mass region 46 ≤
A ≤ 70. Because the Gaussian function gives results close
to zero when compared with the Lorentzian one, as shown
in Figs. 2 and 3, from now on, we choose the first one
to evaluate the β-decay rates within the GTBD described
here, with a value of the axial-vector coupling constant
gA = 1.00, since we have shown that it is the more suitable
to reproduce the data.

3.3 Comparison with Other Models

In Figs. 4, 5, 6, 7, 8, 9, and 10, we present our results for
the β-decay rates within the GTBD described previously,
which will be called GTBD1 from now on, for cobalt,
copper, iron, manganese, chrome, scandium, and titanium
families. We remark that within this GTBD1, we adopt a
Gaussian distribution function and gA = 1, an improved
approximation for the Fermi function, and we use updated
experimental mass defects and decay rates which lead to
the values of the parameter σN given in Table 1. Our
results are compared with experimental data and also with
results obtained within other models like SM, QRPA, ETFSI
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Fig. 1 Comparison of the β-decay rates for different energy distribution functions, using gA = 1.26. Experimental data from Letter of Nuclide [14]

+ GT2, ETFSI + CQRPA, and the GTBD described in
Ferreira and Dimarco [4] (GTBD2) which is essentially the
same as GTBD1, but with gA = 1.26, a different Fermi
function and outdated experimental data for both the decay
rates and the mass defects, which also means different
values of the parameter σN .

From Figs. 4 and 6, we observe that for cobalt and iron
families, respectively, the GTBD1 gives better results than
GTBD2 and QRPA for most employed isotopes. Besides,
they are similar for some isotopes and still better for others

than those obtained within the SM, which was not the case
with the GTBD2. From Fig. 5, we observe that GTBD1
does not show better results than GTBD2 for copper, being
the theoretical results obtained with the microscopic SM
the more closer to the experimental data. For the isotopes
of manganese, we can observe in Fig. 7 that the results
obtained with the GTBD1 are closer to the experimental
data than those calculated with GTBD2 and ETFSI + GT2.
On the other hand, the half-lives evaluated within the ETFSI
+ CQRPA for the isotopes of manganese only with 63 ≤
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Fig. 2 β-decay rates calculated using the Gaussian distribution function for different values of gA. Experimental data from Letter of Nuclide [14]

A ≤ 69 are better than those obtained with our current
GTBD1. For the isotopes of chrome, we note from Fig. 8
that GTBD1 is better than GTBD2 because all the results
calculated in that case differ with the data in less than one
order of magnitude. From the results exhibited in Fig. 10,
similar comments can be performed for titanium family
where most of the results calculated within the GTBD1 are
closer to the data than those obtained within the GTBD2
model. Finally, the results for the scandium family, shown
in Fig. 9, indicate that GTBD1 and GTBD2 do not show
significative differences in this case.

4 Concluding Remarks

We have calculated the β-decay half lives within the GTBD
model for a set of 94 nuclear species of astrophysical
interest in presupernova stage, in terrestrial conditions. In
order to improve previous results obtained in ref. Ferreira et
al. [3], we have explored different options as changing the
energy distribution function, D�(E), variation of the value
of the axial-vector coupling constant, gA, using updated
experimental mass defects in the calculation of the Q values,
and using for the Fermi function appearing in (2) the
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Fig. 3 β-Decay rates calculated using the Lorentzian distribution function for different values of gA. Experimental data from Letter of Nuclide
[14]

approximation proposed in ref. [12] which, as discussed in
ref. Ferreira and Dimarco [4], gives better results.

We have compared the results obtained with the
Gaussian, exponential, Lorentzian, and modified Lorentzian
probability distribution functions, for different values of
the axial-vector coupling constant: gA = 0.76, 0.88,
1.00, 1.13, and 1.26. We have shown that Gaussian
and Lorentzian functions with gA = 1.00 allow to
reproduce adequately the experimental results, being the
78.7 and 80.1%, respectively, of the nuclei inside the band

corresponding to differences of one order of magnitude
compared with the data. It is interesting to mention here
that this value of the axial-vector coupling constant agrees
with the effective one usually adopted in calculations of
double β-decay observables [19, 20]. Additionally, if we
look for the number of nuclear species, which differs by
less than two orders of magnitude when compared with
data, we have observed that the exponential function gives
the better results, in spite they are so disperse around the
experimental values. On the other hand, we have concluded
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Fig. 4 Comparison of β-decay half lives for the cobalt family: GTBD1 from (9), GTBD2 from Ferreira et al. [3], and QRPA and SM from ref.
Kar et al. [17]

that the modified Lorentzian function is not a good choice
for studies related to β-decay half lives within the GTBD
because it leads to the worst results.

We have also compared our results within the present
GTBD1 with those obtained within more sophisticated
microscopical models, and with a previous version of
GTBD2 which employs different parameters σN , mass
defects, and another approximation for the Fermi function.

This comparison was performed for the cobalt, copper, iron,
manganese, chrome, scandium, and titanium families. We
have concluded that GTBD1 gives better results than all the
other models for most of the isotopes of iron and cobalt
families. For the manganese family, the agreement with data
obtained within the GTBD1 is better than that with the
GTBD2 and ETFSI + GT2, in spite that the model which
leads the results more closer to the data is the ETFSI +

Fig. 5 Comparison of β-decay half lives for the copper family: GTBD1 from (9), GTBD2 from Ferreira et al. [3], and QRPA and SM from ref.
Kar et al. [17]
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Fig. 6 Comparison of β-decay half lives for the iron family: GTBD1 from (9), GTBD2 from Ferreira et al. [3], and QRPA from Marketin et al.
[18] and SM from ref. Kar et al. [17]

CQRPA, only for those isotopes available in the literature.
For the copper family, the GTBD1 is not so efficient as
GTBD2 and the SM, anyway is still giving satisfactory
results. For the chrome, scandium, and titanium families
the GTBD1 improves the results of GTBD2, but without
significative differences.

In summary, we have shown that the present version
of the GTBD, using the Gaussian or Lorentzian function
and gA = 1.00, the Fermi function as proposed by
[12] and proved by Ferreira and Dimarco [4], with
updated experimental mass defects and the σN fitting
parameter, provides a model adequate to perform systematic

Fig. 7 Comparison of β-decay half lives for the manganese family: GTBD1 from (9), GTBD2 from Ferreira et al. [3], ETFSI + GT2 from
Takahashi et al. [10], and ETFSI + CQRPA from Borzov et al. [11]



Braz J Phys (2018) 48:485–496 495

Fig. 8 Comparison of β-decay half lives for the chrome family: GTBD1 from (9), GTBD2 from Ferreira et al. [3]

Fig. 9 Comparison of β-decay half lives for the scandium family: GTBD1 from (9) and GTBD2 from Ferreira et al. [3]
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Fig. 10 Comparison of β-decay half lives for the titanium family: GTBD1 from (9) and GTBD2 from Ferreira et al. [3]

calculations very simple from the computational point of
view, recommended for applications in future researches in
astrophysical environment in presupernova stage.
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