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An SEIR epidemic model of fractional order to
analyze the evolution of the COVID-19 epidemic

in Argentina

Juan E. Santos, José M. Carcione, Gabriela B. Savioli, and Patricia M. Gauzellino

Abstract A pandemic caused by a new coronavirus (COVID-19) has spread world-

wide, inducing an epidemic still active in Argentina. In this chapter, we present a case

study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of

fractional order in time to analyze the evolution of the epidemic in Buenos Aires and

neighboring areas (Región Metropolitana de Buenos Aires, (RMBA)) comprising

about 15 million inhabitants. In the SEIR model, individuals are divided into four

classes, namely, susceptible (S), exposed (E), infected (I) and recovered (R). The

SEIR model of fractional order allows for the incorporation of memory, with hered-

itary properties of the system, being a generalization of the classic SEIR first-order

system, where such effects are ignored. Furthermore, the fractional model provides

one additional parameter to obtain a better fit of the data. The parameters of the

model are calibrated by using as data the number of casualties officially reported.

Since infinite solutions honour the data, we show a set of cases with different values

of the lockdown parameters, fatality rate, and incubation and infectious periods. The

different reproduction ratios '0 and infection fatality rates (IFR) so obtained indicate

the results may differ from recent reported values, constituting possible alternative
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solutions. A comparison with results obtained with the classic SEIR model is also in-

cluded. The analysis allows us to study how isolation and social distancing measures

affect the time evolution of the epidemic.

1 Introduction

We present an SEIR subdiffusion model of fractional order a, with 0 < a ≤ 1 to

analyze the time evolution of the COVID-19 epidemic in Buenos Aires and neigh-

boring areas (Region Metropolitana de Buenos Aires, (RMBA)) with a population

of about 15 million inhabitants. RMBA consists of Ciudad Autónoma de Buenos

Aires (CABA) plus forty municipalities covering an area of about thirteen thousand

square kilometers, where some of these municipalities have rural areas. Thus, RMBA

has an average population density of 1100 people/km2, but in CABA and many of

its neighboring cities this number increases significantly. For example, CABA has a

population density of about 14000 people/km2. In this work, we consider that RMBA

has a uniform population distribution.

The epidemic started officially on March 9th with the number of cases and deaths

still increasing at the day of writing (September 22th, 2020. The classical SEIR

model (a = 1) has been used by Carcione et al. [1] and Santos et al. [2] to model the

COVID-19 epidemic in Italy and Argentina, respectively.

Fractional calculus has been used to define diffusion and wave propagation models

in biological and viscoelastic materials [3, 4, 5, 6, 7, 8, 9, 10]. One important property

of the fractional-order SEIR model is that incorporates memory and hereditary

properties, a behavior exhibited by most biological systems. The use of fractional

order derivatives affects the duration of the epidemic, peaks of infected and dead

individuals per day and number of number casualties.

Among other authors that have applied fractional calculus to obtain solutions

of the SEIR model, we mention Scherer et al. [11], that used a Grünwald-Letnikov

time-discrete procedure, introduced by Ciesielski and Leszczynski [12] (CL method).

Besides, Zeb et al. [13] presented an analysis of several numerical methods to solve

the SEIR model of fractional order. For general works on fractional calculus including

numerical methods, we refer to Podlubny [14] and Li and Zeng [15].

We first formulate an initial-value problem (IVP) for the classical SEIR model

(a = 1) and the SEIR subdiffusion equations of fractional order a at the continuous

level using the Caputo definition of the fractional derivative [6]. Existence and

uniqueness of the solution of this IVP, with positive values, is demonstrated in [13].

The numerical solutions of the continuous IVP are computed by using the time-

explicit algorithm of Gorenflo-Mainardi-Moretti-Paradisi (GMMP method) [16, 17].

The conditional stability of the time-explicit GMMP method (and also of the CL

method) was demonstrated by Murillo et al. [19] [see their equation (19)]. The

validation of the GMMP method is performed by comparison of its results against

those of the classic SEIR model and those of the fractional Adams-Bashford-Moulton

method (ABM method) as defined in [15].
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The parameters of the SEIR model are the birth and death rates, infection and

incubation periods, probability of disease transmission per contact, fatality rate and

initial number of exposed individuals. These parameters, together with the order of

the fractional derivative, are obtained by fitting the number of fatalities officially

reported. This is an inverse problem with an infinite number of solutions (local

minima) honouring the data, which is solved by using a quasi-Newton technique

for nonlinear least squares problem with the formula of Broyden-Fletcher-Goldfarb-

Shanno [20]. The numerical simulations give an effective procedure to study the

spread of the evolution of virus, analyze the effects of the lockdown measures and

predict the peak of infected and dead individuals per day.

2 The Caputo derivative and initial value problems

For 0 < a ≤ 1, the time fractional Caputo derivative �a
2 (D(C) is defined as [3, 16,

17, 6]

�a
2 ( 5 (C) =

1

Γ(1 − a)

∫ C

0

[
m

m 5 (g)

]
3g

(C − g)a
, (1)

where Γ(·) denotes the Euler’s Gamma function.

Note that the Caputo derivatives of constant functions 5 (C) = 1 vanish and those

of powers of C, 5 (C) = C: are

Γ(: + 1)

Γ(: − a + 1)
C:−a .

The advantage of using the Caputo derivative in Caputo-type IVP’s is that the initial

conditions are the same as those of the classical ordinary differential equations.

For details on the Caputo derivative and its relation with the Riemann-Liouville

fractional derivative we refer to [6].

To approximate the time-fractional Caputo derivative, we use a backward

Grünwald-Letnikov approximation at time C= = =ΔC, = = 0, 1, , · · · , with 5= =

5 (=ΔC), ΔC being the time step, as follows [16, 17]:

�a
2 ( 5 (C) |C=+1

≈
1

(ΔC)a

=+1∑

9=0

(−1) 92a9

(
a

9

)
5=+1− 9 . (2)

The coefficients

2a9 = (−1) 9
(
a

9

)

can be obtained in terms of Euler’s Gamma function using the recurrence relation
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(
a

9

)
=

Γ(a + 1)

Γ( 9 + 1)Γ(a − 9 + 1)
=

a − 9 + 1

9

(
a

9 − 1

)
,

(
a

0

)
= 1. (3)

The work by Abdullah et al. [18] presents an analysis of the fractional-order SEIR

model formulated in terms of the Caputo derivative and its GMMP time discretiza-

tion.

3 The classical and fractional-order SEIR models

The IVP for the classic SEIR system of nonlinear ordinary differential equations is

¤( = 51((, �, �, ') (C) = Λ − `((C) − V((C)
� (C)

# (C)
, (4)

¤� = 52 ((, �, �, ') (C) = V((C)
� (C)

# (C)
− (` + n)� (C),

¤� = 53 ((, �, �, ') (C) = n� (C) − (W + ` + U)� (C),

¤' = 54((, �, �, ') (C) = W� (C) − `'(C),

with initial conditions ((0), � (0), � (0) and '(0). A dot above a variable indicates

the time derivative, while # (C) is the number of live individuals at time C, i.e.,

# = ( + � + � + ' ≤ #0, #0 being the total initial population. In (4), ( is the

number of individuals susceptible to be exposed while � is the number of exposed

individuals, in which the disease is latent; they are infected but not infectious.

Individuals in the �-class become infected (�) with a rate n and infected become

recovered (') with a rate W. People in the ' class do not move back to the ( class

since lifelong immunity is assumed. Furthermore, 1/W and 1/n are the infection and

incubation periods, respectively, Λ is the birth rate, ` is the natural per capita death

rate, U is the average fatality rate, and V is the probability of disease transmission

per contact. All of these coefficients have units of 1/time. Given the short period of

the epidemic in Argentina (6 months at the time of writing), and that the average life

expectancy is about 76 years, it is reasonable to assume that Λ = `# , so that the

deaths balance the newborns.

Dead individuals � (C) are computed as � (C) = #0−# (C), so that the dead people

per unit time ¤� (C), can be obtained as [21]:

¤� (C) = U� (C). (5)

Next, we reformulate the system (4) into a fractional-order system by using the

Caputo derivative in (1):
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�a
2((C) = 5 a1 ((, �, �, ') (C) = `a# − `a((C) − Va((C)

� (C)

# (C)
,

�a
2� (C) = 5 a2 ((, �, �, ') (C) = Va((C)

� (C)

# (C)
− (`a + na)� (C) (6)

�a
2 � (C) = 5 a3 ((, �, �, ') (C) = na� (C) − (Wa + `a + Ua)� (C),

�a
2'(C) = 5 a4 ((, �, �, ') (C) = Wa � (C) − `a'(C).

The reproduction ratio, '0, indicates the number of cases induced by a single

infectious individual. When '0 < 1, the disease dies out; when '0 > 1, an epidemic

occurs. Al-Sheikh [22] analyzes the behavior of the SEIR models in terms of '0.

For the SEIR model, '0 is given by [23]

'0 =
Vana

(na + `a) (Wa + Ua + `a)
. (7)

The infection fatality rate (IFR) is defined as

IFR (%) = 100 ·
Ua

Ua + Wa
≈ 100 ·

Ua

Wa
, (8)

where this relation holds at all times, not only at the end of the epidemic.

3.1 Time discretization

An explicit conditionally stable GMMP algorithm for the fractional order system (6)

is formulated as follows [16, 17]:

(=+1 = −

<+1∑

9=1

2a9 ((< + 1 − 9) + (0

<+1∑

9=0

2a9 + (ΔC)a 51 ((=, �=, �=, '=) (9)

�=+1 = −

<+1∑

9=1

2a9 � (< + 1 − 9) + �0

<+1∑

9=0

2a9 + (ΔC)a 52((=, �=, �=, '=) (10)

�=+1 = −

<+1∑

9=1

2a9 � (< + 1 − 9) + �0

<+1∑

9=0

2a9 + (ΔC)a 53 ((=, �=, �=, '=) (11)

'=+1 = −

<+1∑

9=1

2a9 '(< + 1 − 9) + '0

<+1∑

9=0

2a9 + (ΔC)a 54((=, �=, �=, '=) (12)

The results of the GMMP method (9)-(12) will be validated against the solution

of the classical SEIR model (a = 1) and the Adams-Bashford-Moulton (ABM)

time-explicit scheme as defined in [15] and included in the Appendix.
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4 Numerical results.

4.1 Validation of the GMMP algorithm

The results of the GMMP algorithm are cross-checked with those of the ABM solver

for the classical SEIR model (a = 1 ) and SEIR models of fractional orders a = 0.9

and 0.8.

We use the following parameters, given in Chowel et al. [24] and used by Carcione

et al. [1] to perform a parametric analysis of the model. Average disease incubation

1/n = 3 days, infectious period 1/W = 8 days, induced fatality rate U = 0.006/day,

V = 0.75/day, and Λ = ` = 0. The initial conditions are � (0) = 1, ((0) = # (0) −

� (0) − � (0), � (0) = 1 and '(0) = 0. The time step is 3C = 0.01 day and N0 = 10

million. This case corresponds to a high reproduction ratio '0 = 5.72.

Figures 1–6 show the results of the four classes, S,E,I,R, and the dead and dead

per day individuals computed by using the GMMP and ABM algorithms. First, an

excellent agreement between the results of the two algorithms is observed for all

values of the fractional order derivative a. To quantify this agreement, we compute a

mean squared relative error between the estimations of both methods. For example,

in the computation of infected individuals, the following errors are obtained: 1.512×

10−5 for a = 1, 9.880 × 10−6 for a = 0.9 and 1.053 × 10−5 for a = 0.8. In particular,

the results for a = 1 agree with those of Figures 1 and 2 in [1]. Figure 1 shows

that decreasing the order of the fractional derivative causes a delay and an increase

in the number of susceptible individuals. While for the classical model the number

of infectious individuals vanish at long times, this is not the case for the orders

a = 0.8 and a = 0.9 (Figure 3). We run the simulator up to a very long time but the

individuals do not vanish, so that the epidemic never ends (in theory). This happens

because '0 ≥ 1. We run other examples with different parameters such that '0 < 1

and as expected the number of infectious individuals vanish and the epidemic dies

out. For brevity these plots are not shown. The case '0 < 1 is analyzed in Subsection

4.2, when simulating the evolution of the epidemic in the RMBA using fractional

derivatives. This value of '0 is associated with the strict lockdown imposed by the

government, with a corresponding decrease in the number of infected individuals.

Regarding the exposed infected classes (Figures 2-3), a decrease in a causes delays

and reduces the amplitude of the peaks of these classes. Furthermore, as a decreases

the number of casualties increase as seen in Figure 4 while Figure 6 shows a delay

and increase of the peak in the number of dead individuals per day. Also, note that

Figure 5 shows a delay and decrease in the number of recovered individuals as the

order of the fractional derivative decreases.

These simulations consider a single value of V, the lockdown parameter. In a

realistic case, V is a function of time and the procedure is that every time V changes,

the algorithm has to be fully initialized from the beginning. Changing V in the same

time loop yields wrong results. This fact has been verified by cross-checkingdifferent

algorithms and several fractional orders.
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Fig. 1 Susceptible individuals for the classical SEIR model (a = 1) and fractional-order derivatives

a = 0.8 and 0.9
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Fig. 2 Exposed individuals for the classical SEIR model (a = 1) and fractional-order derivatives

a = 0.8 and 0.9
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Fig. 3 Infected individuals for the classical SEIR model (a = 1) and fractional-order derivatives

a = 0.8 and 0.9

0 20 40 60 80 100 120 140
Time (days)

0

100

200

300

400

500

600

700

D
ea

d 
in

di
vi

du
al

s (
K

)

GMMP, ν = 1
ABM,    ν = 1
GMMP, ν = 0.9
ABM,    ν = 0.9
GMMP, ν = 0.8
ABM,    ν = 0.8

Fig. 4 Dead individuals for the classical SEIR model (a = 1) and fractional-order derivatives

a = 0.8 and 0.9
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Fig. 5 Recovered individuals for the classical SEIR model (a = 1) and fractional-order derivatives

a = 0.8 and 0.9
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4.2 Analysis of the COVID-19 epidemic in the RMBA

We model the COVID-19 epidemic in the RMBA, with a population #0 = 14839026

individuals according to the 2010 Census (https://www.indec.gob.ar/indec/

web/Nivel4-Tema-2-41-135). The prediction of the time evolution of the epi-

demic is very difficult due to the uncertainty of the parameters defining the SEIR

model. Virus properties such as the infectious and incubation periods (W−1 and n−1)

and life expectancy of an infected individual (U−1) lie in certain bounded intervals.

Instead, the parameter V is time dependent, due to changes according to the lock-

down and social-distance measures imposed by the government.Most authors use the

infectious individuals to calibrate the model, e.g., González-Parra et al. [25], who

model the AH1N1/09 influenza epidemic in Bogotá, Colombia and in the Nueva

Esparta state in Venezuela.

Since the number of asymptomatic, undiagnosed infectious individuals in RMBA

is unknown, we choose to calibrate the model with the number of officially re-

ported casualties as the most reliable data, from day 1 (March 9, 2020) to day

198 (September 22th, 2020) (https://www.argentina.gob.ar/coronavirus/

informe-diario). Concerning the parameters, fractional order and initial condi-

tions of the model, we assume ` = 3.6× 10 −5/ day, corresponding to a life expectancy

of 76 years. Changes in the V parameter are associated with different measures of

lockdown and social distance imposed by the goverment. Thus, we assume that V is

a piecewise constant function, where its variations are related to the inflection points

observed in the curve of casualties. After the initial time C0 = 1 day, this curve shows

two inflection points at times C1 = 31 day and C3 = 50 day. The fractional-order deriva-

tive a, the values of U, V, n , W and the initial exposed individuals � (0) are estimated

by minimizing the !2-norm between the simulated and actual casualties, which is

an inverse problem with an infinite number of solutions due to the existence of local

minima. The estimation is also performed for the classical case a = 1. This inverse

problem is solved by using a quasi Newton approximation technique for nonlinear

least-squares problems, based on the formula of Broyden-Fletcher-Goldfarb-Shanno

[20]. Application of this technique to solve inverse problems in reservoir engineer-

ing can be found in [26]. Table 1 shows ranges of the fractional derivative a, of the

parameters U, V, n , W and the initial exposed individuals � (0) used in the inversion

procedure. Table 2 displays the initial values and results of four outputs (Cases) of

the fitting procedure.

Table 1 Constraints and ranges of the estimation procedure

Variable → a U V n −1 W−1 � (0)

day−1 day−1 day day

Lower bound 0.8 10−5 0.1 3 3 102

Upper bound 1.0 10−1 0.9 9 9 104
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Table 2 Initial values and results of the estimation procedure.

Variable → a U V1 V2 V3 n −1 W−1 � (0)

day−1 day−1 day−1 day−1 day day

Case 1

Initial 0.9 6.00×10−3 0.5 0.2 0.3 5.0 4.0 500

Optimum 0.919 2.130761×10−4 0.66090 0.12507 0.34002 8.976007 5.335143 1623

'0 3.178 0.688 1.725

IFR =0.197

Case 2

Initial 0.85 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.812 4.179268× 10−4 0.77273 0.47231 0.56801 8.121503 3.022527 1138

'0 1.982 1.329 1.539

IFR = 0.444

Case 3

Initial 1 6.00×10−3 0.5 0.2 0.3 5.0 4.0 500

Optimum 1 2.822018 ×10−4 0.49040 0.10396 0.27568 8.975264 6.212071 2821

'0 3.041 0.645 1.710

IFR = 0.175

Case 4

Initial 0.9 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.929 2.787611 ×10−4 0.47289 0.10168 0.31122 8.244641 5.751017 4110

'0 2.526 0.606 1.713

IFR = 0.254

Let us analyze four cases, resulting from the minimization algorithm. We obtained

the SEIR parameters, the fractional order and the initial exposed humans values fitting

the data. In all the cases, the initial number of infected individuals is assumed to be

� (0) = 100.

Figures 7 and 8 show the dead individuals and dead individuals per day for Case

1. The inflection point at C1 = 30 day, related to a change of '0 from 3.178 to

0.688, shows a decay in the simulated curves, because of the effect of the lockdown.

After C1 = 50 day, the curves exhibits a continuous increase in casualties due to the

relaxation of the lockdown measures with '0 = 1.725. Figure 9 shows the behavior of

all classes, with a a peak of 555 thousand infected individuals at day 188 (September

12th, 2020) while Figure 10 exhibits a death toll of 19000 people after 800 days

(May 17th, 2022) and a peak of 234 casualties at day 188.

The parameters of Cases 2 and 3 in Table 2 also fit the data, with graphs similar

to those in Figures 7 and 8. Case 2 estimates peaks of 309 deaths and 285 thousand

infected individuals at day 222 (October 16th, 2020). At day 800 (May 17, 2022),

there are 34 thousand deaths and 7457 thousand recovered humans. This increase in
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the number of casualties is due to the higher infection fatality rate IFR and higher

reproduction ratios '0 as compared with those of Case 1 (see Table 2).

Case 3, which corresponds to the classical SEIR model (a = 1), exhibits a peak of

171 casualties at day 184 (September 8th, 2020) and 607 thousand people infected.

The end of the epidemic is consider the day at which the number of infected indi-

viduals is smaller than 1, which is day 594 (October 24th, 2021) for this case. At

this day, the total number of recovered and dead individuals are 10157 thousand and

18 thousand, respectively, so that the total number of infected people at the end of

the epidemic is 10175 thousand individuals. This is the case predicting the smallest

number of casualties.

Finally, since the reported number of deceased people could possibly be under-

estimated due to undeclared cases and delays in the upload of official data, we also

consider a case with 30 % more casualties to date (Case 4 in Table 2), giving IFR =

0.254 % and values of the parameters similar to those of Case 1. Besides, the peak

occurs almost at the same day of Case 1 (day 187: September 11th, 2020) with 592

thousand infected individuals and 296 casualties. This peak of casualties and the

death toll of 24400 individuals are approximately 30 % higher than those of Case 1.
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Fig. 7 Dead individuals. The red dots represent the data and the solid line the fit using the SEIR

model of fractional order with a = 0.919
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Fig. 8 Dead individuals per day. The red dots represent the data and the solid line the fit using the

SEIR model of fractional order with a = 0.919
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Fig. 10 Total number of deaths and deaths per day for the SEIR model of fractional order with

a = 0.919

In the following, we compare the behavior of all classes for the different orders

of the fractional derivative used in this analysis, i.e., a = 1, 0.919 and 0.812. Figure

11 displays the number of infected individuals, where there is a delay and decrease

of the peak values as the order of the fractional derivative decreases. This behavior

is consistent with that observed in Figure 3. Figure 12 shows an increase in the

number of casualties by decreasing the order of the fractional derivative, with a 47

% increase between a = 1 and a = 0.812. Moreover, it can be seen that the curves

stabilize at later times as the fractional order decreases. Finally, Figures 13 and 14

exhibit the estimated recovered and susceptible individuals for the three values of a.

Recovered individuals increase and, consequently, susceptible individuals decrease

as the order of fractional derivative increases. The curves exhibit asymptotic values

at later times as a decreases, and the lower the value of a the later individuals recover

from the virus infection. Note that the general trends of Figures 11–14 are similar to

those of the figures in Subsection 4.1, in spite of the fact that parameters obtained

from the adjustment are different for the three cases.

In the four cases described above, we consider that the initial number of infected

individuals is � (0) = 100. Nevertheless, we tested other values: if � (0) belongs to the

interval [10, 150] a reasonable adjustment is obtained, with similar values to those

shown in Table 2 and a slight delay on the infected individuals peak as � (0) decreases.

Outside this interval, the fit is poor and the results have no physical meaning.
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Fig. 11 Infected individuals for the SEIR model of fractional orders a = 1, 0.919 and 0.812
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Fig. 12 Dead individuals for the SEIR model of fractional orders a = 1, 0.919 and 0.812
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Fig. 13 Recovered individuals for the SEIR model of fractional orders a = 1, 0.919 and 0.812
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Fig. 14 Susceptible individuals for the SEIR model of fractional orders a = 1, 0.919 and 0.812
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5 Conclusions

We use a fractional SEIR (Susceptible, Exposed, Infected, Recovered) diffusion

model to analyze the evolution of the COVID-19 epidemic in Argentina, particularly

in the Region Metropolitana de Buenos Aires (RMBA), where a significant number

of the population is concentrated.

We solve the SEIR system of fractional order a, 0 < a < 1 and the classical

(a = 1) SEIR model by using a time-explicit Gorenflo-Mainardi-Moretti-Paradisi

(GMMP) method. To validate this method, the results were cross-checked with those

of the time-explicit fractional Adams-Bashford-Moulton (ABM) method, obtaining

an excellent agreement between the two schemes.

Assuming that the birth and death rates are balanced, the parameters that charac-

terize the model are the infection and incubation periods, the probability of disease

transmission per contact, the fatality rate and the initial number of exposed individ-

uals. These parameters and the order a of the fractional derivative are estimated by

fitting the number of casualties officially reported. This inverse problem is solved

by using a quasi-Newton technique for non-linear least-squares problem with the

Broyden-Fletcher-Goldfarb-Shanno formula.

In all the simulations we used three lockdown parameters (denoted by V), asso-

ciated with the different measures taken by the government during the evolution of

the epidemic. One important conclusion related with this time-dependent parameter

is that both the fractional GMMP and ABM algorithms need to be fully initialized

from the beginning in order to obtain correct results.

Different cases have been analyzed since the inverse problem has an infinite

number of solutions. We observe a similar behavior in all the cases, with a fatality

rate IFR varying in the range, [0.175, 0.444]. After the 50th day of lockdown, it is

observed a continuous increase in casualties due to the relaxation of the preventive

social isolation and community circulation of the virus.

The numerical simulations in RMBA show that when the order of the fractional

derivative decreases, i.e., higher subdiffusion of the virus, the duration of the epi-

demic is extended, and the peak of infected individuals and number of casualties

increase. Furthermore, the classical SEIR model yield a smaller number of casualties

and infected individuals with associated peaks located at earliest times as compared

with those of the fractional-order cases.

6 Appendix

The Adams-Bashford-Moulton explicit scheme for the fractional order SEIR equa-

tions is formulated as follows [15]

Predictor
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In (13)-(14) the coefficients 1 9 ,=+1, 0 9 ,=+1 are

1 9 ,=+1 =
1

Γ(1 + a
[(= − 9 + 1)a − (= − 9)a]

0 9 ,=+1 =
1

Γ(2 + a)
=





(=)a+1 − (= − a) (= + 1)a, 9 = 0,

(= − 9 + 2)a+1 + (= − 9)a+1 − 2(= − 9 + 1)a+1, 1 ≤ 9 ≤ = − 1

1, 9 = = + 1.

Concerning the error of the numerical scheme ABM, Abdullah et al. [18] give a

bound in terms of the time step size ΔC. On the other hand, Li and Zeng [15] and Li

et al. [27] show that the fractional forward Euler and ABM methods are stable and

convergent of order one in ΔC.
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