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Abstract Complexity–entropy causality plane (CECP) is

a diagnostic diagram plotting normalized Shannon entropy

HS versus Jensen–Shannon complexity CJS that has been

introduced in nonlinear dynamics analysis to classify sig-

nals according to their degrees of randomness and com-

plexity. In this study, we explore the applicability of CECP

in hydrological studies by analyzing 80 daily stream flow

time series recorded in the continental United States during

a period of 75 years, surrogate sequences simulated by

autoregressive models (with independent or long-range

memory innovations), Theiler amplitude adjusted Fourier

transform and Theiler phase randomization, and a set of

signals drawn from nonlinear dynamic systems. The effect

of seasonality, and the relationships between the CECP

quantifiers and several physical and statistical properties of

the observed time series are also studied. The results point

out that: (1) the CECP can discriminate chaotic and sto-

chastic signals in presence of moderate observational

noise; (2) the signal classification depends on the sampling

frequency and aggregation time scales; (3) both chaotic and

stochastic systems can be compatible with the daily stream

flow dynamics, when the focus is on the information con-

tent, thus setting these results in the context of the debate

on observational equivalence; (4) the empirical relation-

ships between HS and CJS and Hurst parameter H, base

flow index, basin drainage area and stream flow quantiles

highlight that the CECP quantifiers can be considered as

proxies of the long-term low-frequency groundwater pro-

cesses rather than proxies of the short-term high-frequency

surface processes; (6) the joint application of linear and

nonlinear diagnostics allows for a more comprehensive

characterization of the stream flow time series.

Keywords Stream flow � Complexity–entropy

causality plane � Permutation entropy � Permutation

statistical complexity � Bandt and Pompe method �
Hurst parameter

1 Introduction

The need for classification of catchments and hydrological

phenomena has received an increasing attention in the lit-

erature in the last years (McDonnell and Woods 2004;

Sivakumar et al. 2007; Sivakumar and Singh 2012) owing

to the importance of making an appropriate identification

of models’ type and complexity and data requirements. A
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suitable classification framework can allow recognizing the

dominant processes of the hydrological systems, leading to

an overall simplification of the data collection (Grayson

and Blöschl 2000; Sivakumar et al. 2007) and the use of

modeling strategies that are in middle course between the

treatment of all hydrological systems in the same way,

despite their differences, and the treatment of each system

as a unique one, despite the systems’ similarities

(Sivakumar and Singh 2012). In this context, classification

plays a key role to transfer the information from gauged to

ungauged basins for modeling and prediction (e.g.,

Castellarin et al. 2001).

Looking at the stream flow generating mechanism from

the nonlinear dynamic viewpoint, Sivakumar (2004) pro-

posed a classification method based on the concepts of

‘‘extent of complexity’’ or ‘‘dimensionality’’, which has

been further developed by Sivakumar et al. (2007), intro-

ducing a simple phase space reconstruction technique.

Sivakumar and Singh (2012) further highlighted that sys-

tem complexity is an appropriate basis for the classification

framework and nonlinear dynamic concepts constitute a

suitable methodology for assessing system complexity.

However, the concepts of ‘‘system’’ and ‘‘complexity’’

are not uniquely defined in the literature. A reasonable

definition of system proposed by Dooge (1968) in a

hydrologic context and adopted by Sivakumar and Singh

(2012) is ‘‘Any structure, device, scheme, or procedure,

real or abstract, that interrelates in a given time reference,

an input, cause, or stimulus, of matter, energy, or infor-

mation, and an output, effect, or response, of information,

energy, or matter’’. On the other hand, many definitions of

complexity are available, especially from physics and

information theory (López-Ruiz et al. 2011); for example,

Kolmogorov–Chaitin algorithmic complexity (Kolmogorov

1965; Chaitin 1966), the Lempel–Ziv complexity (Lempel

and Ziv 1976), the effective measure complexity of

Grassberger (CE; Grassberger 1986), the e-machine com-

plexity (Crutchfield and Young 1989), among others.

The choice of a specific definition of complexity and

therefore the study of a system must be performed

according to the objective of the inquiry which can be

specified for instance in terms of process, scale, and pur-

pose of interest (Sivakumar 2008; Sivakumar and Singh

2012). Sivakumar and Singh (2012) assessed the com-

plexity of a system in terms of variability of the data

through dimension estimation. Krasovskaia (1995) and

Krasovskaia (1997) suggested a quantitative approach of

river flow regime classification based on Shannon entropy

S and the minimization of an entropy-based objective

function. Hauhs and Lange (2008) introduced symbolic

dynamics to quantify randomness and complexity of

stream flow time series by applying two information

quantifiers: the mean information gain HG; which

measures the randomness of a time series in a nonlinear

manner, and the fluctuation complexity (rk
2), which is

related to the structure of conditional probabilities. Pan

et al. (2011) applied S;HG; CE and rk
2 to compare patterns

in observed and simulated time series of soil moisture

contents and corresponding rainfall, confirming previous

results of Pachepsky et al. (2006). Pan et al. (2012) used

the same information metrics to characterize 5-year stream

flow and precipitation time series data from two monitored

agricultural watersheds managed by the United States

Department of Agriculture (USDA). These studies rely on

diagnostic diagrams plotting entropy and complexity

measures (e.g., rk
2 vs. HG and HE vs. S) to characterize the

temporal structure of the analyzed signals (at single or

multiple time scales), trying to distinguish rainfall, soil

water content and stream flow processes in terms of

information content.

In this study, we investigate the applicability of a

diagnostic plot based on the concepts of Shannon entropy,

Jensen–Shannon divergence and phase space reconstruc-

tion called complexity–entropy causality plane (CECP),

which has been proposed by Rosso et al. (2007a) for

examining the properties of a signal. The method merges

entropy and nonlinear dynamic concepts, is fully non-

parametric (as it is rank-based and does not depend on the

shape of the distribution function of the data) and focuses

on the temporal structure (complexity) of the signal

through an appropriate definition of the probabilities

involved in the entropy definition. We explore the capa-

bility of the CECP to discriminate the stream flow

dynamics in terms of complexity (defined in the next sec-

tion) and its suitability as a complementary graphical tool

for stream flow analysis. The CECP is studied analyzing

synthetic time series drawn from stochastic and chaotic

systems and 80 daily stream flow time series with 75 years

of observations recorded in the continental United States

(US). The heterogeneous nature of these 80 stream flow

records (described in the next sections) makes this dataset a

suitable test bed for exploring CECP applicability in

hydrological analyses. The remainder of this paper is

organized as follows. In Sects. 2 and 3, the methodology is

described in detail resorting to synthetic time series to

illustrate the CECP rationale and its performance for sig-

nals that exhibit prescribed properties. In Sect. 4, we pro-

vide a detailed description of the dataset and a preliminary

analysis based on linear methods such as autocorrelation

function and power spectrum. Moreover, the results of

CECP analysis are shown along with an examination of the

empirical relationships between CECP quantifiers (see later

for definitions) and several properties of the stream flow

series. The effect of the seasonality on CECP is also

investigated. Discussion, conclusions and future perspec-

tives are reported in Sects. 5 and 6.
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2 Randomness and complexity quantifiers

from permutation information theory

2.1 Shannon entropy and statistical complexity

The Shannon entropy is often used as the first natural entropy

measure. Focusing on the discrete version, given any arbitrary

probability distribution P = {pi: i = 1, …, M}, the widely

known Shannon logarithmic information measure, S[P] =

-
P

i=1
M pi log(pi), is related to the information associated with

the physical process described by P. If S[P] = 0 the knowl-

edge of the underlying process described by the probability

distribution is maximal and the possible outcomes can be

predicted with complete certainty. On the other hand, our

knowledge is minimal for a uniform distribution since every

outcome exhibits the same probability of occurrence. The

perfect crystal and the isolated ideal gas are two typical

examples of systems with minimum and maximum entropy,

respectively. However, they are also examples of simple

models and therefore of systems with zero complexity, as the

structure of the perfect crystal is completely described by

minimal information (i.e., distances and symmetries that

define the elementary cell) and the probability distribution for

the accessible states is centered around a prevailing state of

perfect symmetry. On the other hand, all the accessible states

of the ideal gas occur with the same probability and can be

described by a ‘‘simple’’ uniform distribution. According to

López-Ruiz et al. (2011) and using an oxymoron, an object, a

procedure, or system is said to be complex when it does not

exhibit patterns regarded as simple. It follows that a suitable

complexity measure should vanish both for completely

ordered and for completely random systems and cannot only

rely on the concept of information (which is maximal and

minimal for the above mentioned systems).

A suitable measure of complexity can be defined as the

product of a measure of information and a measure of

disequilibrium, i.e. some kind of distance from the equi-

probable distribution of the accessible states of a system. In

this respect, Lamberti et al. (2004) introduced an effective

statistical complexity measure (SCM) that is able to detect

essential details of the dynamics. This SCM is defined as

(López-Ruiz et al. 1995)

CJS½P� :¼ QJ ½P;Pe�HS½P� ð1Þ

where

HS½P� :¼ S½P�=Smax ð2Þ

is the normalized Shannon entropy ðHS 2 ½0; 1�Þwith Smax ¼
S½Pe� ¼ logðMÞ;Pe ¼ f1=M; . . .; 1=Mg is the uniform dis-

tribution, and the disequilibriumQJ is defined in terms of the

extensive (in the thermodynamical sense) Jensen–Shannon

divergence. Namely, QJ ½P;Pe� ¼ Q0J ½P;Pe� with

J ½P;Pe� ¼ S½ðPþ PeÞ=2� � S½P�=2� S½Pe�=2 and Q0 is a

normalization constant equal to the inverse of the maximum

possible value ofJ ½P;Pe�; so thatQJ 2 ½0; 1�:Q0 is obtained

when one of the components of P, say pm, is equal to one and

the remaining pi are equal to zero. The Jensen–Shannon

divergence quantifies the difference between two (or more)

probability distributions and is well-suited to compare the

symbol composition between different sequences (Grosse

et al. 2002). The CJS value of a system is null and void in the

opposite extreme situations of perfect knowledge (perfect

crystal) and maximal randomness (ideal gas), whereas wide

range of possible degrees of physical structure does exist

between these extreme configurations.

The SCM in Eq. 1 is not a trivial function of the entropy

because it measures the interplay between the information

stored by the system and the distance from equipartition

(measure of a probabilistic hierarchy between the observed

parts) of the probability distribution of its accessible states

(López-Ruiz et al. 2011). Furthermore, a range of possible

SCM values does exist for a givenHS value (as is shown in

Sect. 2.2), meaning that additional information related to the

dependence structure between the components of the system

and the emergence of nontrivial collective behavior is pro-

vided by evaluating the statistical complexity (Martı́n et al.

2003; Sánchez and López-Ruiz 2005; Escalona-Morán et al.

2010). Moreover, it should be noted that CJS fulfills two

additional properties required for a suitable definition of

complexity in physics: (1) the quantifier must be measurable

in different physical systems and (2) it should allow for

physical interpretation and comparison between two mea-

surements (López-Ruiz et al. 2011). Of course, as mentioned

in Sect. 1, other complexity measures can be considered (see

Wackerbauer et al. (1994) for a comparison).

Following Zunino et al. (2010b), we apply the statistical

complexity for the analysis of time series in order to cap-

ture the property of temporal structure of the signals. In this

context, we must recall that complexity cannot be univo-

cally measured as it depends on the nature of the descrip-

tion (which always involves a reductionist process) and on

the (spatio-temporal) scale of observation (López-Ruiz

et al. 2011). Indeed, the definition of complexity in Eq. 1

also depends on the scale. For a given system at each scale

of observation, a new set of accessible states appears with

its corresponding probability distribution so that com-

plexity changes and therefore different values for HS and

CJS are obtained. This aspect is fundamental in geophysical

time series analysis (Koutsoyiannis 2010) and will be

further investigated in Sect. 3.2

2.2 Bandt–Pompe symbolization method

The evaluation of HS and CJS requires the preliminary

definition of a probability distribution P associated with the

time series. Bandt and Pompe (2002) introduced a simple
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method to define this probability distribution taking into

account the time causality of the process dynamics. This

approach is based on the symbol sequences that arise nat-

urally from the time series, replacing the observed series

with the sequence of the corresponding ranks. Namely,

given a time series {xt: t = 1, …, N}, an embedding

dimension D� 2 ðD 2 NÞ; and an embedding delay time

s ðs 2 NÞ; the ordinal pattern of order D generated by

s 7! xs�ðD�1Þs; xs�ðD�2Þs; . . .; xs�s; xs

� �
ð3Þ

is considered. For each time instant s, we assign a D-

dimensional vector that results from the evaluation of the

time series at times s - (D - 1)s, …, s - s, s. Clearly,

the higher the value of D, the more information about the

past is incorporated into the ensuing vectors. By the ordinal

pattern of order D related to the time instant s we mean the

permutation p = {r0, r1, …, rD-1} of {0, 1, …, D - 1}

defined by

xs�r0s� xs�r1s� � � � � xs�rD�2s� xs�rD�1s: ð4Þ

In this way the vector defined by Eq. 3 is converted into

a unique symbol p (see Zunino et al. (2011) and Zanin

et al. (2012) for illustrative examples). In order to get a

unique result we consider that ri\ri�1 if xs�ris\xs�ri�1s.

This is justified if the values of xt have a continuous

distribution so that equal values are very unusual. For all

the D! possible orderings (permutations) pi of order

D, their associated relative frequencies can be naturally

computed by the number of times this particular order

sequence is found in the time series divided by the total

number of sequences. Thus, an ordinal pattern probability

distribution P = {p(pi), i = 1, …, D!} is obtained from

the time series. This probability distribution is linked to the

sequences of ranks resulting from the comparison of

consecutive (s = 1) or non-consecutive (s[ 1) points,

allowing for empirical reconstruction of the underlying

phase space (Bandt and Pompe 2002). It is worth noting

that the method is rank-based, and the ordinal pattern

probability distribution is invariant with respect to

nonlinear monotonic transformations. Thus, nonlinear

drifts or scaling artificially introduced by a measurement

device do not modify the quantifier estimations. This

property can be highly desired for the analysis of

experimental data and natural time series analysis (see

e.g., Carpi et al. 2010). Nevertheless, the rank-based

description unavoidably results in loss of information,

which is however common to every nonparametric rank-

based statistical method.

The probability distribution P is obtained once we fix

the embedding dimension D and the embedding delay time

s. The former parameter plays an important role for the

evaluation of the appropriate probability distribution, since

D determines the number of accessible states, given by D!

It was established that the length N of the time series must

satisfy the condition N � D! to obtain a reliable statistics

(Kowalski et al. 2007; Staniek and Lehnertz 2007). As far

as s is concerned, Bandt and Pompe (2002) considered an

embedding delay s = 1. Nevertheless, other values of s
might provide additional information. Soriano et al.

(2011a, b) and Zunino et al. (2010a, 2012b) showed that

this parameter is strongly related, when it is relevant, with

the intrinsic time scales of the system under analysis.

In this work we evaluate HS and CJS using the permu-

tation probability distribution P = {p(pi): i = 1, …, D!}

so that the former quantifier is called permutation entropy

and the latter permutation statistical complexity. These

symbolic quantifiers were shown to be particularly useful

for different purposes (Zanin et al. 2012) like characteriz-

ing stochastic processes (Rosso et al. 2007b; Zunino et al.

2008), detecting noise-induced temporal correlations in

stochastic resonance phenomena (Rosso and Masoller

2009a, b), characterizing financial time series (Zunino

et al. 2009, 2010b, 2011, 2012a), quantifying the ran-

domness of chaotic pseudo-random number generators (De

Micco et al. 2009), characterizing the complexity of low-

frequency fluctuations in semiconductor lasers with optical

feedback (Tiana-Alsina et al. 2010), and developing a

formal independence test between two time series (Cánovas

et al. 2011). Lange et al. (2013) used ordinal patterns and

statistical complexity for analyzing a large set of worldwide

river runoff time series (with a focus on the Paraná River).

The present work can therefore be considered as a detailed

study focused on the US rivers.

3 Complexity–entropy causality plane

3.1 CECP properties of some chaotic and stochastic

signals

The CECP is the representation space obtained by plotting

the permutation statistical complexity CJS versus permuta-

tion entropy HS of the system. The term causality denotes

that the temporal correlation between successive samples is

taken into account by using the permutation probability

distribution to estimate both quantifiers.

An example is given in Fig. 1. We considered time

series simulated by six types of systems, namely, the

Duffing, Lorenz and Rossler chaotic systems, the Henon

chaotic map, the fractional Brownian motion (fBm) sto-

chastic process and a fully deterministic sinusoidal signal.

The equations of the chaotic systems/map and their

parameters’ setup are detailed in the ‘‘Appendix’’. The

sampling frequencies of the signals drawn from the chaotic

and sinusoidal systems are chosen based on two criteria:

(1) we used the frequencies that maximize the value of CJS

1688 Stoch Environ Res Risk Assess (2014) 28:1685–1708
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for D = 6 and s = 1 (De Micco et al. 2010), and (2) the

frequencies that yield signals which exhibit the average

period or quasi-period equal to 365. The second criterion

allows us to study the behavior of periodic and quasi-

periodic signals that mimic the typical annual seasonality

of the daily stream flow time series. In both cases, the

sample size was set as 75 x 365 = 27,375, i.e. the size of

the stream flow time series that are analyzed in the fol-

lowing sections. The sinusoidal and chaotic signals were

standardized so that the amplitude As = 1. Moreover, these

signals were combined with a Gaussian noise characterized

by zero mean and several values of amplitude An ranging

from 0.01 to 20, so that the signal-to-noise ratio SNR

(defined as the ratio of the signal amplitude As to the noise

amplitude An) ranges from 100 to 0.05. The resulting sig-

nals (sinusoidal and chaotic plus noise) allow for the

assessment of the effect of the increasing level of noise on

the location of the pairs ðHS; CJSÞ in the CECP. The fBm

signals were simulated using values of the power spectrum

slope b [ (1, 3), with step 0.1, corresponding to Hurst

parameter values H [ (0,1).

As mentioned above, for a given value of HS; CJS can

assume a range of values, which describes an admissible

region in the CECP (i.e., the area enclosed between the

continuous lines shown in Fig. 1). The CECP bounds only

depend on D and can be computed as described by Martı́n

et al. (2006). Focusing on the optimally sampled signals,

for s = 1, Fig. 1a, b shows that the chaotic signals and the

sinusoidal sequence tend to exhibit HS\0:7 and the cor-

responding values of CJS are close to the upper limit,

meaning that the signals are characterized by mid-low

entropy and high complexity (namely, the maximum

complexity for the given entropy. These results agree with

those obtained by Rosso et al (2007a) for other chaotic

systems (logistic map, Skew Tent map and Shuster map).

The additive random noise (observational noise) introduces

an increasing uncertainty in the time series, reducing the

signal complexity and increasing the entropy. When the

noise dominates the signal, the position of the signal in the

CECP tends to the boundary position ðHS ¼ 1; CJS ¼ 0Þ:
Unlike the chaotic series, the fBm signals in Fig. 1a, b

shows mid-high entropy, whereas the corresponding values

of CJS are in the middle between the lower and upper CECP

limits. The fBm signals describe the same behavior

observed for noise sequences with uniform marginal dis-

tribution and power law spectrum that were studied by

(b)(a)

(d)(c)

Fig. 1 CECP for signals

simulated from chaotic and

stochastic systems and maps.

The cases D = 6 (left column)

and D = 7 (right column) with

s = 1 are considered. The top

panels show the CECP patterns

of the chaotic systems (Duffing,

Lorenz, Rossler) optimally

sampled according to the

maximum achievable value of

CJS for D = 6, whereas the

bottom panels show the case

where the chaotic systems are

sampled so that the resulting

time series exhibit an average

period (365 steps) and length

(&75 9 365) similar to the

seasonal components which

usually characterize the

observed stream flow series
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Rosso et al. (2007a, 2013). For the fBm signals, HS

decreases as the Hurst parameter increases, since the series

exhibit an increasing persistence, which implies redundant

information. For low values of H, the CECP location of the

fBm approaches to the limit point (1, 0) as is expected for

an uncorrelated random noise. It should be noted that these

results also agree with the CECP patterns of the logistic

map contaminated with additive uncorrelated noise and

colored correlated noise (Rosso et al. 2012a, b).

Figure 1a, b also shows that the choice of D can change

the absolute values HS and CJS; but the mutual positions

with respect to the CECP bounds are almost unchanged. Of

course, for high values of D, the length and the number of

the accessible symbols increase, leading to more accurate

estimates (Zunino et al. 2011). Nevertheless, as the com-

putational time also increases, in the analyses of observed

data, we used D = 6 (as is also suggested by Bandt and

Pompe (2002)), whereas the role of the embedding delay s
was studied by analyzing the stream flow data.

3.2 The impact of the sampling frequency on CECP

Unlike the chaotic signals, the sinusoidal signal in Fig. 1a

does not exhibit a monotonic decreasing pattern as would

be expected when the random noise is added. The reason of

this behavior is better highlighted by the signals that are

sampled with average period &365 (the second sampling

strategy mentioned in the previous section). The corre-

sponding CECP patterns (Fig. 1c, d) indicate that all sig-

nals collapse in a unique curve that characterizes the

chaotic systems, the stochastic fBm and the pure deter-

ministic sinusoidal signal. Therefore, the sampling strategy

(sampling frequency) influences the capability of discrim-

ination between chaotic and stochastic signals more than a

moderate additive observational noise. However, this

behavior is expected and clearly explained by De Micco

et al. (2010) and Zunino et al. (2012b). The optimum

sampling frequency is the minimum sampling frequency

that retains all the information concerning the time struc-

tures of the signal. Using higher sampling frequencies (as it

was done in the second strategy) results in an oversampling

that produces unnecessary long files to cover the full

attractor. In this case, specific D-length ordinal patterns

{D - 1, …, 1, 0} and {0, 1, …, D - 1}, which corre-

spond respectively to monotonic increasing and decreasing

patterns, appear more frequently than any other ordinal

pattern, resulting in low entropy HS and low complexity

CJS: On the other hand, sampling frequencies lower than

the optimal one lead to lose fundamental information

concerning nonlinear correlations. In this case, since the

samples are not correlated at all and the series behave

randomly, all the ordinal patterns appear with almost the

same frequency, resulting in high entropy HS and low

complexity CJS: Therefore, the points corresponding to

undersampled trajectories of the continuous systems tend

to fall in the region close to the limit point (1, 0). Based on

these remarks, the Henon map was not reported in Fig. 1c,

d, as it is a discrete system whose dynamical structure is

lost for every sampling frequency lower than one.

Salas et al. (2005) already recognized the problem of the

sampling frequency in the detection of the original chaotic

nature of a system and showed that linear filters, such as

aggregation and sampling at regular intervals, influence the

values of the correlation dimension obtained by the

Grassberger–Procaccia algorithm (Grassberger and

Procaccia 1983) for the Lorenz system and sample size

equal to 15,000. Therefore, our results generalize to some

extent the finding of Salas et al. (2005), considering a

different sample size, several systems and a different

technique of detection.

4 Data analyses

4.1 Data

The data consist of 75 years of daily stream flow records

spanning from 1934 to 2009 for 80 stations in the conti-

nental United States (Fig. 2). The dataset was retrieved

from the US Geological Survey (USGS) website (http://

waterdata.usgs.gov/nwis) along with the corresponding

metadata. The summary statistics of the 80 series are

reported in Table 1. Almost all rivers and creeks are reg-

ulated by lakes, reservoirs, power plants and diversions for

irrigation, industrial and municipal supply, influencing to

different extent the properties of the stream flow records.

Nineteen time series show time intervals with zero stream

flow values (and are denoted as intermittent). Figure 3

shows six example series along with their autocorrelation

function (ACF) and power spectrum density (PSD), which

describe different types of regime.

The first series refers to the Oconee River at Dublin

(Georgia; USGS ID 02223500). The flow is regulated by

Lake Oconee and Sinclair Reservoir and the series appears

rather stationary. The ACF points out the evident annual

seasonality, whereas the PSD highlights the presence of an

additional meaningful weekly periodicity likely related to

the lake and reservoir operation policies. Moreover, the

PSD exhibits a break point at about 15-day period.

The Yellowstone River at Corwin Springs (Montana;

USGS ID 06191500) is influenced by the natural storage of

the Yellowstone Lake and diversions for irrigation of about

3.88 km2, of which 0.16 km2 are downstream of the sta-

tion. The ACF and PSD highlight the dominant power of

the annual component of the signal. Nevertheless, the PSD

also highlights the strong inter-seasonal and intra-seasonal
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components. The time series seems not to show periodic-

ities shorter than 60 days, which are usually related to

human activities, such as power plant operation scheduling.

The Mountain Fork River near Eagletown (Oklahoma;

USGS ID 07339000) exhibits a typical example of non-

stationarity due to human activity, namely, the complete

regulation since 1968 (day 12,410 in the figure) by the

Broken Bow Lake. The seasonality is evident but the signal

is more noisy than those of the Oconee and Yellowstone

rivers. An apparent break point as well as a spike at 7-day

period emerge in the PSD.

Nueces River at Cotulla (Texas; USGS 08194000) is an

example of intermittent stream flow series showing zero

stream flow values. At least the 10 % of the contributing

drainage area has been regulated since March 1948. Part of

the flow of the Nueces River and its headwater tributaries

enter the Edwards and associated limestones in the Bal-

cones Fault Zone that crosses the basin between Nueces

River at Laguna and Nueces River below Uvalde. Losses of

flow into various permeable formations occurs downstream

from the Balcones Fault Zone. Many diversions for irri-

gation are located upstream from the station. Both ACF

and PSD show that the seasonality is not so evident. The

PSD exhibits an apparent break point at 7-day period. The

peak at the beginning of the time series corresponds to the

maximum stage recorded at this gauge station since at least

1879 (&9.87 m from floodmarks on June 18, 1935).

The flow of the Colorado River below Hoover Dam

(Arizona/Nevada; USGS 09421500) is strongly affected by

the intensive power plant regulations of the dam on the

Lake Mead since February 1, 1935. The annual and

seasonal periodicity are evident; however, they are domi-

nated by the half-weekly and weekly periodicities, as is

highlighted by the ACF and the high spikes of the PSD at

3.5- and 7-day time scales.

The Columbia River at The Dalles (Oregon; USGS

14105700) shows pattern, ACF and PSD similar to Yel-

lowstone River; however, the considerable regulation by

many large reservoirs (60 dams have a significant role in

the river system management), diversions for irrigations

upstream from the station, and the power plant and gates

activities at The Dalles Dam (operating since March 10,

1957) cause half-weekly and weekly fluctuations (PSD

spikes at 3.5- and and 7-day time scales). Moreover, the

dam regulations also introduce daily fluctuations that can-

not be detected in the power spectrum as their frequency is

equal to the sampling frequency and the condition stated by

the Nyquist-Shannon sampling theorem is not fulfilled. The

behavior of the stream flow time series also exhibits a

change between 1964 and 1974 (days 10,950 and 14,600 in

the figure). This change is related to the flood control

policies of the multiple-use reservoir storage plan devel-

oped by the US Army Corps of Engineer for the Columbia

River basin after the flood of 1948 that destroyed Vanport,

Oregon (Bonneville Power Administration et al. 2001).

This plan has evolved over the years up to the desired level

of protection of the lower Columbia. The stream flow

measured at The Dalles is the control point for this oper-

ation, and, in years of low to moderate runoff, the reservoir

system can be operated to limit peak flows of

12,743 m3 s-1 at The Dalles, the level above which dam-

age begins to occur in areas not protected by levees. In this

Fig. 2 Map showing the location of the USGS stream gauge stations with a record of at least 75 years used in this study. The white lines

represent the boundaries of the first level (2-digit) hydrologic unit code
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context, large dams were built until the middle of the

1970s.

4.2 Dependence of HS and CJS on s and the effect

of the deseasonalization

In this section, we study the dependence ofHS and CJS on the

embedding delay time s used to obtain the ordinal pattern

probability distribution defined in Sect. 2.2 for D = 6. The

analysis is carried out on the observed stream flow series and

the corresponding deseasonalized sequences. The deseason-

alization was performed by a three-step procedure. Firstly, the

average discharge and the standard deviation for each calen-

dar day were computed. Secondly, the obtained seasonal

patterns were smoothed applying the local weighted scatter-

plot smoothing (LOESS) filter (Cleveland and Devlin 1988).

Finally, each observation was standardized through the rela-

tionship Yi(t) = [Xi(t) - mi] / si, for i = 1, …, 365, where

mi and si are the values of the smoothed average and standard

deviation for a given calendar day. We notice that the des-

easonalized signals preserve the other multiple periodic

trends that are often shown by the stream flow time series at

different time scales. Nevertheless, as the annual periodicity is

a common property of daily stream flow records and the

deseasonalization is a common preprocessing procedure (e.g.,

Montanari et al. 1997, 2000; Kantelhardt et al. 2003;

Montanari 2005; Koscielny-Bunde et al. 2006) it is worth

studying its effect on the complexity and entropy quantifiers.

Figure 4 shows the patterns of HS and CJS; for

s = 1, …, 800, corresponding to the six series described in

the previous section for raw and deseasonalized data. For

the Oconee River and Yellowstone river, the patterns ofHS

and CJS tend to show well defined peaks corresponding to

values of s multiple of 365 (the annual cycle), meaning that

the signal tends to be less organized as the delay between

the observations matches multiples of 1 year. Even though

this result might be expected, we note that these peaks

emerge from an underlying plateau and their magnitude

reflect the strength of the annual component of the signal in

terms of information content. Indeed, after deseasonaliza-

tion, the plateau shifts towards the peak values, meaning

that the removal of the annual periodicity returns a more

random signal with similar behavior for all s values.

For the Oconee River, the contribution of the seasonality

is less relevant than in the Yellowstone River, as already

highlighted in Fig. 3. The seasonality exerts even less

influence on the temporal structure of the Mountain Fork

River. We notice that the magnitude of the peaks follows the

same pattern of the amplitude of the ACF waves in Fig. 3.

The HS and CJS patterns of the Nueces River signal do

not exhibit peaks at any scale, meaning that there are not

dominant time scales, as is also pointed out by the PSD.T
a
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The contribution of the seasonal component is highlighted

by the magnitude of the shift of the patterns after desea-

sonalization. In this case, the peaks characterize the pat-

terns of the deseasonalized series. This behavior is related

to the intermittent nature of this time series and is further

studied in Sect. 4.5.

The HS and CJS patterns of the Colorado River are

characterized by evident weekly oscillations (multiple of

s = 7). The small shift after deseasonalization and the high

(small) values of HS (CJS) indicates that the signal is

dominated by weekly periodicity. However, the weekly

regulation is not able to introduce a strong temporal

organization in the signal, which shows a pattern charac-

terized by changes that are related to particular dam

operation activities (Fig. 3 bottom-left panel). The

Columbia River exhibits HS and CJS patterns similar to

Oconee River with weekly oscillations superimposed to the

evident seasonality.

It is worth noting that the values of HS and CJS of the

raw and deseasonalized series are identical (apart from

numerical approximations) for multiples of s = 365, as the

sequences {Yt, Yt?365…, Yt?365D} in the reconstructed

phase space are identical to {Xt, Xt?365…, Xt?365D} unless

a normalizing factor that is the same for all values of the set

Fig. 3 Times series (panels on the left), ACF (panels in the middle) and PSD (panels on the right) of the six example stream flow series that are

described in detail in the text
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(Fig. 5). Moreover, HS and CJS values for s = 1 are also

weakly influenced by deseasonalization because the val-

ues of the sequences {Yt, Yt?1…, Yt?D} are computed

using the values of the seasonal components of D consec-

utive days, which in turn are reasonably close to each other

(Fig. 5).

4.3 CECP analysis

The CECP analysis is based on the values of the com-

plexity quantifiers for D = 6 and two values of the

embedding delay s, namely, 1 and 150. The first value of

s allows us to recognize the short-term structure of the

signals, whereas the values of HS and CJS for s = 150

represent the overall structure of the series for several

values of s, as is testified by the approximate plateaus

emerging in Fig. 4. The results for s = 1 are displayed in

Fig. 6, where the theoretical patterns of Fig. 1c are shown

in gray for the sake of comparison. The position of the 80

observed series in the CECP (Fig. 6a) indicates that the

structure of the stream flow series is close to that of the

fBm (with Hurst parameter H [ 0.5) and the noisy

oversampled sinusoidal and chaotic sequences. This

agreement confirms the difficulty in characterizing real

world data in terms of chaotic or stochastic processes. On

the other hand, the ‘‘middle’’ position of the points

denotes that the distinction between chaotic or stochastic

interpretation may be ill-posed because of the interplay of

Fig. 4 Patterns of HS and CJS

for D = 6 and s = 1, …, 800.

The figure refers to the six

example stream flow series

shown in Fig. 3

Fig. 5 HS and CJS values of observed and deseasonalized stream flow

series for D = 6 and s = {1,365}
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multiple factors, such as sample size, intermittency and

sampling frequency. These findings can partially explain

the variety of results on the recognition of chaotic/sto-

chastic behavior in some geophysical time series: if the

series fall in ‘‘shared’’ zone of the CECP, both mecha-

nisms (low- and high-dimensional) can be plausible under

some conditions and can be reasonably detected. The

above results further stress the importance of the sampling

procedure recognized by Salas et al. (2005), which

therefore should be added to the list of the key factors

that influence the analysis of the signal dynamics.

To better understand the temporal structure of the stream

flows sequences, we have computed the values ofHS and CJS

of synthetic series simulated by different methods that are

commonly applied to emulate stream flow series. We have

considered linear auto regressive (AR) models of order 1–3,

the Theiler phase randomization (PR) and the Theiler

amplitude adjusted Fourier transform (AAFT; Theiler et al.

(1992)). PR and AAFT are two nonparametric techniques

that are widely used to generate surrogate series which pre-

serve the observed power spectrum by resampling data in the

frequency space. The AR synthetic series were simulated

using two types of innovation values: the resampled resid-

uals obtained during the model calibration, and innovations

drawn from a fractional Gaussian noise (fGn, also known as

Hurst–Kolmogorov process (e.g., Koutsoyiannis 2011a;

Tyralis and Koutsoyiannis 2011)). The second method

results in the AR-fGn models suggested by Király and Jánosi

(1998) and similar to that proposed by Livina et al. (2003).

When long range dependence is detected in the time series

(as it is discussed in the following sections), these models

allow us to introduce it in the simulated time series in a

simple manner. As the CECP is a rank-based technique, we

do not aim at faithfully reproducing the observed series, but

the overall temporal structure of the signals.

For s = 1 (Fig. 6b–i), the AR1, AR1-fGn, AR2 and AR3

models seem to be too simple, whereas the AR2-fGn and AR3-

fGn signals exhibit a degree of complexity closer to the

observed series. It is worth noting that reproducing the PSD (PR

method) and the amplitude distribution and PSD (AAFT

method) is not sufficient to preserve all the information

embedded in the original series, which are characterized by

deterministic changes and possible periods of zero stream flow.

These properties introduce additional temporal structures that

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 CECP patterns (D = 6,

s = 1) of the observed stream

flow time series and the

corresponding surrogate

sequences simulated by eight

different methods. Gray lines

and symbols denote the patterns

corresponding to the theoretical

models shown in Fig. 1c. CECP

patterns for the surrogate data

correspond to the average

values over 100 simulations.

Sampling error is not shown as

it is negligible
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are not modeled by the simple models mentioned above. The

use of fGn innovations results in an apparent improvement of

the CECP patterns. Moreover, the AR-fGn models do not

account for intra-annual periodicities, which can play an

important role in the overall structure of the signals. Never-

theless, the results show that the short-term behavior of daily

stream flows series is close to that of some simple stochastic

time series. The CECP patterns corresponding to s = 150

(Fig. 7) highlight that all methods but AR2-fGn and AR3-fGn

reproduce the CECP patterns. In this case, setting s = 150

smoothed out the signal components with frequency\150 days

(e.g., weekly cycles), thus making the reproduction of the

temporal patterns corresponding to s = 150 easier than the

simulation of the pattern related to s = 1.

To further highlight the role of the seasonality on the

temporal structure of the daily stream flow signals, Fig. 8

shows the CECP patterns of the observed series, their

quasi-periodic LOESS smoothed mean component, and the

deseasonalized series. For s = 1, the points of the seasonal

components are close to the CECP upper bound and the

position of the pure oversampled sinusoidal/chaotic signals

shown in Fig. 1c, whereas the points corresponding to the

deseasonalized series are close to those of the observed

series, as already shown in Fig. 5. For s = 150, the points

of the seasonal components are still close to the CECP

upper bound (as expected); however, in this case, the

mutual positions of the points corresponding to the three

series (observed, seasonal components and deseasonalized)

highlight the strong impact of the seasonality on the signal

structure. Recalling that the values of HS and CJS for

s = 150 are a good approximation of the plateau values

that characterize a signal (Fig. 4), these patterns also hold

for other values of s. Therefore, we can argue that the

deseasonalized daily series reasonably behave similar to

stochastic processes as they fall in the CECP region close

to limit point (1, 0). Nevertheless, as this result relies on a

graphical analysis, we cannot exclude that the position of

the deseasonalized series results from a chaotic process

affected by a dominant noise with small SNR. However,

this does not change our conclusions because in this case

the signals are more similar to those corresponding to

stochastic rather than deterministic processes.

4.4 Empirical relationships between CECP quantifiers,

Hurst parameter H, and other stream flow

properties

The Hurst parameter is a well-known index that measures

the long range dependence of a process (e.g., Beran 1994),

and characterizes important theoretical stochastic pro-

cesses, such as fGn and the corresponding fBm. Bandt and

Shiha (2007) showed that some analytical relationships do

exist between H and the probability distribution

P = {p(pi), i = 1, …, D!}, and therefore HS and CJS; for

fGn and fBm processes, and derived explicit formulas for

D = {3,4} and arbitrary s[ 0 (see also Zunino et al.

2008). In this study, we investigate the empirical rela-

tionship among the CECP quantifiers, the Hurst parameter

H and other physical attributes of the stream flow series on

a real world dataset.

4.4.1 Hurst parameter

Following Serinaldi (2010), the Hurst parameter H was

computed through three different methods based on different

rationales to check the reliability of the estimates. We used

the aggregate variance method (AGV; Beran (1989)), the

detrending fluctuation analysis (DFA; Peng et al. (1994))

with a 3-order smoothing polynomial and Higuchi method

(HIG; Higuchi (1988)). The values of H were computed on

the deseasonalized series to avoid the detrimental effects of

the seasonality (Hu et al. 2001; Marković and Koch 2005;

Ludescher et al. 2011; Zhang et al. 2011). The results are

shown in the scatter plot matrix of Fig. 9. The three methods

provide coherent results (see the upper triangular matrix of

plots). All methods yield values[0.5. The range of H values

is consistent with the results published in the literature for

stream flow series from international rivers (Kantelhardt

et al. 2006; Wang et al. 2007; Movahed and Hermanis,

2008; Hirpa et al. 2010; Rego et al. 2013). The HIG method

yields H values which are slightly different from those

obtained by the AGV and DFA methods. Distinguishing

perennial stream flow series (empty circles) and intermittent

series (filled circles), we note that the discrepancy mainly

refers to the H estimates corresponding to the intermittent

sequences. As the HIG method is based on the computation

of the fractal dimension, while the others rely on the variance

of the mean (AGV) and the mean of the variance (DFA), the

algorithm is probably sensitive to strings of zero values,

which contribute to the persistence of the signal, inflating the

values of H. However, we do not further explore this aspect

and assume the DFA values for the following analysis

because this method provides rather reliable results for sta-

tionary and nonstationary time series (e.g., Kantelhardt et al.

2002; e.g., Serinaldi 2010).

4.4.2 Relationships between CECP and stream flow

attributes

The scatter plot matrix in Fig. 10 shows the pairwise

relationships among seven stream flow attributes. We

report results corresponding to HS and s = 150 for the

deseasonalized series since dual conclusions hold for CJS:

A negative relationship does exist between HS and

H, except for an isolated point referring to the Owyhee River

below the Owyhee Dam. This time series is strongly
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influenced from the reservoir operations scheduling, which

results in a well-defined short-term temporal structure and a

small HS value. Distinguishing perennial and intermittent

stream flow series, the LOESS curve computed on the

perennial points shows that the relationship is monotonic.

The values of the corresponding Kendall correlation coeffi-

cient, which are shown in the upper triangular matrix of plots,

are significant at 5 % level of significance, and confirm the

strength of the relationship between HS and H. Therefore,

more persistent series generally exhibit lower entropy and

higher complexity (figure not shown). The intermittent series

tend to exhibit low H and low HS (high CJS) as the zeros

introduce a set of preferential accessible states.

A non-monotonic relationship characterizes HS and the

logarithm of the drainage area log(A). In this case, the

Kendall correlation coefficient is statistically significant at

the 5 % level and negative (sK is positive for CJS and log(A)).

Therefore, we may argue that the degree of randomness of

the stream flow signal resulting from small drainage areas is

larger than that corresponding to large drainage areas.

Fig. 8 CECP patterns of the 80 observed stream flow time series

(black symbols) and the corresponding mean seasonal components

(gray symbols) and deseasonalized sequences (light gray symbols) for

D = 6 and s = {1,150}

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 CECP patterns (D = 6,

s = 150) of the observed stream

flow time series and the

corresponding surrogate

sequences simulated by eight

different methods. CECP

patterns for the surrogate data

correspond to the average

values over 100 simulations.

The length of the segments

describes the sampling standard

error around the average
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However, the non-monotonic pattern of the relationship

between HS and log(A) does not allow us to confirm this

statement, which must be considered with care.

For the logarithm of median, 95th percentile, and stan-

dard deviation, the patterns of the LOESS curves of the

pairs (HS; logðx0:5Þ), (HS; logðx0:95Þ) and (HS; logðSDÞ) are

similar to that of the pairs (HS; logðAÞ), confirming the

presence of non-monotonic relationships. Moreover, for

these summary statistics, the Kendall correlation is sig-

nificant at the 5 % level and positive (negative for CJS).

However, the non-monotonic patterns make the values of

the Kendall correlation questionable. Therefore, our results

must be considered with care and should be only used as a

base for more extensive analyses.

4.4.3 Relationships between stream flow attributes

with emphasis on the association

between H, drainage area A and BFI

In general, in a stream flow signal (hydrograph) two

components can be recognized: the base flow, which is

mainly related to slowly varying ground water processes,

and the quick flow (or direct runoff), which represents the

direct catchment response to rainfall events (Smakhtin

2001). As the BFI denotes the percentage of runoff cor-

responding to the base flow, the stream flow of the rivers

characterized by high BFI is likely driven by the pattern

of the base flow rather than by the direct runoff. The

resulting signals are therefore dominated by the compo-

nents that evolve at the time scales which are typical of

ground water fluxes. Thus, the negative (positive) and

significant relationship between HS (CJS) and BFI

(Fig. 10) reflects the link between the degrees of ran-

domness and complexity (measured by the CECP quan-

tifiers) and the time scales of evolution of base flow and

direct flow. The intermittent rivers are an exception. It is

worth noting that the ðHS;BFIÞ panel allows us to dis-

criminate between intermittent and perennial stream flow

(in terms of separate clusters) more clearly than the other

pairwise scatter plots.

The scatter plots in Fig. 10 highlight other interesting

properties of the daily stream flow series. The weak rela-

tionship between H and the drainage area is coherent with the

results discussed by Koscielny-Bunde et al. (2006) and

Wang et al. (2007) and can be likely ascribed to the inter-

basin variability, which was not taken into account in these

Fig. 9 Hurst parameter values

of deseasonalized series

computed by aggregate variance

(AGV) method, detrending

fluctuation analysis (DFA) with

3-order polynomial and Higuchi

(HIG) method. Perennial and

intermittent stream flow series

are highlighted by empty and

filled circles, respectively
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studies (Mudelsee 2007). Indeed, Mudelsee (2007) and

Hirpa et al. (2010) showed that H increases with the

drainange area, moving downstream along the same river

basin. In particular, Mudelsee (2007) explained this

behavior as the result of the aggregation of short-memory

contributions from an increasing number of hydrological

units.

Another quantity that in principle might increase by

moving downstream is the base flow. However, while the

area summarizes the filter (the basin) of the precipitation

input, the base flow can be seen as a footprint of the output,

namely, of the slowly varying long-term basin response.

The positive and significant relationship between H and

BFI values confirms that the base flow can be considered as

a proxy attribute which is less affected by the inter-basin

variability, as it can be related to the long-range behavior

more closely than the drainage area. As a proof of concept,

Fig. 11 (top panel) shows the H values reported by Hirpa

et al. (2010) for 14 stream gauge stations across the Flint

River Basin (Georgia, south eastern US) along with the

corresponding BFI versus the drainage area. Despite the

zero BFI values of the smallest sub-basins, the pattern of

Fig. 10 The lower triangular matrix of panels shows the pairwise

scatter plots of seven properties of the 80 observed stream flow series,

namely: the HS corresponding to D = 6 and s = 150 (DCECP), the

Hurst parameter computed by DFA-3 (HDFA), the logarithm of the

drainage area of the basin upstream each station [log(A)], the base

flow index (BFI), the logarithm of the median, 95th percentile, and

standard deviation of each series [log(x0.5), log(x0.95) and

log(SD), respectively]. Perennial stream flow series (empty circles)

are distinguished from the intermittent series (filled circles). The

LOESS curves fitted to perennial stream flow series are also shown.

The main diagonal shows the histograms of each properties, while the

upper triangular matrix of panels displays the values of the pairwise

Kendall correlation coefficient computed on all the points (‘‘whole’’)

and perennial stream flow series (‘‘peren’’)
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the BFI tends to follow that of H. The bottom panel of

Fig. 11 shows the relationship between H and BFI, and the

values of Kendall correlation coefficient sK confirm that

these attributes are related more closely than the pairs

(H, A) and (BFI, A). The sK value was computed on the

pairs (BFI, H) with and without the points corresponding to

BFI = 0, to assess their impact on the estimates. It should

be noted that the sK value for the pair (H, A) is slightly

greater than that reported by Hirpa et al. (2010), probably

because of small differences in the H values that can

influence the ranks of the observations and the final sK

value in this small sample.

The basin area is strongly related to the stream flow

quantiles (x0.50 and x0.95) and the SD, which summarize the

overall hydrograph (base flow plus direct runoff), while

H and BFI are only weakly related to these statistics,

showing no clear patterns. Therefore, the drainage area can

be considered as a suitable index of the magnitude of the

overall short-term response of the basin, while BFI is more

related to long range dependence as it summarizes slowly-

varying low-frequency ground water processes.

Finally, we notice that the SD values of the intermittent

rivers tend to be larger than that of the perennial streams

for similar values of x0.50 and x0.95. This behavior depends

on zero values: if a perennial series and an intermittent

series show the same median, therefore the latter must

show higher variability to compensate the null contribution

of zero flow records.

4.5 Comparison of simple linear and nonlinear

diagnostics: the example of the Nueces River

at Cotulla

The results discussed in the previous sections highlight the

importance of using several techniques to study the complex

behavior of daily stream flow series. In this section, we

further stress this point showing the different information

which can be provided by a few linear and nonlinear diag-

nostic plots applied to the deseasonalized series of the

Nueces River at Cotulla. Figure 12 shows the ACF, the

average mutual information (AMI), the PSD and the so-

called lag plot. ACF and PSD are linear measures; they

convey the same information, but PSD can highlight the

existence of periodic components at middle and high fre-

quencies better than ACF (see e.g. Fig. 3). The AMI for

measuring the lag-1 temporal dependence of discrete time

series is computed as:

Iðxt; xtþkÞ ¼
XX

p2ðxt; xtþkÞ log
p2ðxt; xtþkÞ
pðxtÞpðxtþkÞ

¼ SðxtÞ � SðxtjxtþkÞ
¼ SðxtÞ þ SðxtþkÞ � Sðxt; xtþkÞ; ð5Þ

where p2 is the joint distribution of the the variables Xt and

Xt?k, k is the lag, S(xt) and S(xt?k) are the marginal

entropies, S(xt|xt?k) is the conditional entropy and

S(xt, xt?k) denotes the joint entropy. The AMI is a non-

linear measure like HS and CJS: The lag plot is the plot of

the pairs (xt, xt?k), it enables the detection of nonlinearities

and was suggested by Sivakumar et al. (2007) and

Sivakumar and Singh (2012) as a possible tool for classi-

fying stream flow time series.

Based on Fig. 12a, the ACF of the deseasonalized

stream flow series exhibits strong persistence; a residual

seasonality can exist but is difficult to recognize. The PSD

(Fig. 12b) is approximately linear, and the peak close to the

annual frequency (&2.74 9 10-3) is not prominent. On

the other hand, the AMI plot (Fig. 12c) highlights the

presence of a strong annual periodicity superimposed to

higher frequency cycles. The pattern of the AMI is very

similar to the patterns of HS and CJS shown in Fig. 4 since

these quantifiers are devised to recognize the temporal

structure of the time series. The lag plot (Fig. 12d) indi-

cates that the process is the sum of two processes: the first

one is the quasi-periodic seasonal component resulting

Fig. 11 Top panel scatter plots of BFI and H versus drainage area

A for the Flint River basin analyzed by Hirpa et al. (2010). Bottom

panel scatter plots of BFI versus H. Values of Kendall rank

correlation coefficient sK are also shown. The sK values for the pair

(BFI, H) are computed for the whole sample and excluding the points

characterized by BFI = 0
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from the deseasonalization of the sequences of zero flow,

while the second one represents the deseasonalized positive

stream flow values. The two processes are shown in

Fig. 13. The quasi-periodic signal corresponding to the

observed zero flow is shown in black in the top panel and

was selected by properly thresholding the time series. This

process is magnified in the middle panel and its nature

appears more clearly in the bottom panel after removing

the time intervals characterized by the superposed process.

Even though the residual seasonality in the deseason-

alized time series is an artifact due to the deseasonalization

of the sequences of zero flow, the nonlinear techniques are

able to recognize its presence, whereas linear diagnostics

appear to be insensitive because they are based on the

signed values of the time series. When the amplitude of the

signal at given frequencies is small, as is in the case of the

transformed zero values, the linear measures are not able to

recognize those temporal structures. On the other hand, the

measures based on probability and ranks are able to iden-

tify subtle (small amplitude) regular patterns within the

signal. These results confirm the importance of using a

suitable set of linear and nonlinear diagnostics for the

preliminary characterization and classification of hydro-

logical signals (Sivakumar et al. 2007).

5 Discussion

Based on the study of the synthetic series drawn from

stochastic and chaotic deterministic systems, we found that

the CECP can distinguish the two types of signals based on

the position of the complexity quantifiers on the plane. A

moderate additive Gaussian noise does not affect the

results very much. On the other hand, an appropriate

sampling frequency plays a fundamental role. Under

oversampling conditions, the chaotic signals cannot be

distinguished from purely deterministic signals. An

important consequence of this behavior is that a stream

flow series can be interpreted as either the composition of

quasi-deterministic seasonal components and stochastic

noise (with or without memory) or noisy chaotic systems.

Even though, at the first glance, this lack of discrimination

can appear as a shortcoming of the CECP, actually, it

confirms the findings of Regonda et al. (2004) and Salas

et al. (2005) about the impact of the sampling time (and

aggregation scale) on chaos detection and, more interest-

ingly, it provides a possible explanation, in terms of

information content, of the contrasting results available in

the literature. Under the above mentioned conditions

(sampling time and noise), samples drawn from chaotic and

(a)

(b)

(c)

(d)

Fig. 12 Linear and nonlinear

diagnostics for the Nueces River

deseasonalized data: a ACF,

b PSD, c AMI, d lag plot
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stochastic systems can contain similar amount of infor-

mation (based on the quantifiers HS and CJS). Thus, under

the hypothesis that nonlinear low-dimensional dynamics

are in act, it seems reasonable that their detection is pos-

sible only in some cases and is not so easy. In the CECP

plane, a genuine and properly sampled chaotic signal

would lie in the upper part of the admissible values, cor-

responding to the highest complexity values and mid-low

entropy values. When the quantifiers fall far from this area,

the study of the patterns of HS and CJS for different values

of the delay time s can help to shed light on possible

oversampling (see De Micco et al. 2010; see Zunino et al.

2012b).

Our results contribute from an empirical point of view to

the discussion about the observational equivalence between

measure-theoretic deterministic systems and stochastic

processes, in which observational equivalence means that

deterministic description, when observed, and indetermin-

istic descriptions gives the same predictions (Werndl

2009). Moreover, if the evidence equally supports a

deterministic and a stochastic description, there is under-

determination concerning which description is preferable

relative to evidence (Werndl 2012). Indeed, Werndl (2009)

showed that every stochastic process is observationally

equivalent to a deterministic system and many determin-

istic systems are observationally equivalent to stochastic

processes. By studying a simple (non-linear deterministic)

toy model describing a caricature hydrologic system,

Koutsoyiannis (2010) showed that determinism and ran-

domness coexist, and deciding which of them dominates

depends on the horizon and scale of prediction. In this

context, our results concerning the effect of the sampling

frequency and the similarity of CECP patterns for deter-

ministic and stochastic processes under particular condi-

tions provide an empirical support to observational

equivalence and its consequences.

The analysis of 80 long stream flow series from the con-

tinental US showed that the patterns described byHS and CJS

for different values of the delay time s allow highlighting

important features of the signal information content such as

its evolution with the sampling interval. Plotting the pairs

ðHS; CJSÞ for two characteristic delay times (s = {1,150}

days), the position of the complexity quantifiers for s = 1

pointed out that the stream flow series lie in an area that is

shared by oversampled noisy chaotic/deterministic systems

and seasonal stochastic signals. This ambiguity, which can

be interpreted in terms of observational equivalence, can

partially justify the mixed outcomes of the past attempts of

distinguishing chaotic and stochastic behavior in real word

geophysical signals from the point of view of the information

contents. The comparison with the patterns described by

surrogate series (drawn by different simulation techniques)

showed that seasonal stochastic systems produce similar

patterns, highlighting the discrepancies related to features

such as zero flow sequences and intra-annual periodicities.

This comparison also highlighted the effect of the

Fig. 13 Time series plots of the

Nueces River deseasonalized

data. The top panel shows the

spurious base process (black

lines) resulting by the

deseasonalization of sequences

of zero values (zero flow) and

the superposed process resulting

from the deseasonalization of

positive stream flow values. The

base process is magnified in the

middle and bottom panels, by

rescaling the y-axis and

removing the time intervals

corresponding to the superposed

process
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combination of the seasonality and long-term correlated

residuals on the information content at different sampling

time scales. Therefore, the CECP may also be used in per-

spective as a complementary tool to assess the adequacy of a

simulation scheme in terms of information content at dif-

ferent time scales.

The comparison between the normalized entropyHS and

several stream flow attributes indicated that the degree of

temporal organization (i.e., the temporal structure of

dependence) of the signals is negatively correlated with the

Hurst parameter H and the BFI values, whereas the oppo-

site holds for CJS: Combining these results with those

obtained by the pairwise analysis of other attributes, we

can conclude that CJS;H and BFI can be considered as

proxies of the low-frequency groundwater processes that

drive the long-term response of the watershed, whereas the

drainage area is a proxy for high-frequency surface pro-

cesses as is indicated by the strong relationships with the

stream flow quantiles. It is worth noting that the relation-

ship between the CECP quantifiers and the Hurst parameter

is not surprising because analytical relationships do exist in

the case of Hurst–Kolmogorov dynamics [fGn and the

corresponding fBm; Bandt and Shiha (2007), Zunino et al.

(2008)], and these processes can result from the extremi-

zation of entropy production of stationary stochastic rep-

resentations of natural systems (Koutsoyiannis 2011b).

The comparison of some simple diagnostic plots based

on linear and nonlinear indexes confirmed the importance

of using ‘‘middle-ground’’ approaches (Sivakumar 2009) to

obtain a more comprehensive description of the complexity

that usually characterizes geophysical time series.

6 Conclusions

In this study, we have investigated the properties of a

diagnostic plot called complexity–entropy causality plane

based on the concepts of entropy and complexity, and the

symbolization of the patterns retrieved by the phase space

reconstruction. The method is nonparametric, meaning that

the quantifiers that are used to draw the diagram depend on

the ranks instead of the signed values of the analyzed time

series. Under ideal conditions, linear or nonlinear, sto-

chastic or chaotic deterministic dynamics can be discrim-

inated in the CECP, even in presence of moderate

observational noise, based on the position of the com-

plexity quantifiers within the CECP area: chaotic deter-

ministic systems tend to fall in the left region of the CECP

and near the upper bound, while stochastic and highly

noisy signals tend to occupy the right region close to the

limit point (1, 0).

The CECP quantifiers depend on the delay time s chosen

for the phase space reconstruction. By changing the

embedding delay we can change the sampling interval of

the original system under analysis. Thus, the examination

of the pattern of the CECP quantifiers for different s values

allows us to explore the temporal structure of the signal,

highlighting periodic components and their information

content. Moreover, the position of the complexity quanti-

fiers in the CECP has a direct physical interpretation in

terms of information content. Therefore, the CECP can be

considered an example of ‘‘middle-ground’’ approach

(Sivakumar 2009) that integrates different methods, deduced

from stochastic and nonlinear dynamics analysis, in order to

provide a balanced tool, which is less biased towards the two

extreme, purely chaotic or stochastic points of view.

A few concluding remarks concern the implementation

of the methodology and possible future lines of research.

Bandt-Pompe symbolization method aims at alleviating the

curse of dimensionality in estimating a continuous density

function in the reconstructed state-space by replacing this

density with the density of the ordinal patterns. Therefore,

selecting D = 6 implies the use of 6! (720) rank based

patterns instead of 106 data points required for continuous

density estimation. With 27, 375 data points (the length of

the analyzed stream flow series) the method approximately

allocates 38 points per pattern. However, Figs. 6 and 7

show that the uncertainty of the estimates is negligible.

As mentioned in Sect. 2.2, the CECP quantifiers are

devised for continuous variables, so that the ranks of the

sampled observations are well defined. Therefore, the

sequences of zeros of the intermittent rivers, as well as

possible ties resulting from the instrument accuracy of

some geophysical variables such as the rainfall, might

affect the results. In this respect, Bian et al. (2012) pro-

posed a modified permutation entropy estimator accounting

for presence of ties. Even though preliminary analyses

showed no substantial differences in the CECP results for

our stream flow dataset, we are planning further analyses

and a comparison of the estimators on zero-inflated roun-

ded-off rainfall data.

Finally, the CECP quantifiers were computed on the

complete time series to obtain an overall picture of the

information content. However, since several rivers are

characterized by regime changes related to human activi-

ties, a future direction of research can be the study of the

evolution of CECP quantifiers on sliding windows (see

e.g., Zunino et al. 2011) to quantify the change of infor-

mation content due to regime shifts.
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Appendix

The equations of the chaotic systems used in this study are

listed as follows. The sets of parameters were chosen so

that the systems describe chaotic attractors.

Duffing system:

_x ¼ y

_y ¼ �x3 � cyþ F cosðzÞ
_z ¼ X

8
<

:
; ð6Þ

where c = 0.05, F = 7.5 and X ¼ 1:

Lorenz system:

_x ¼ aðy� xÞ
_y ¼ xðb� zÞ � y

_z ¼ xyþ cz

8
<

:
; ð7Þ

where a = 10, b = 28 and c = -8/3.

Rossler system:

_x ¼ �ðyþ zÞ
_y ¼ xþ ay

_z ¼ bþ zðx� cÞ

8
<

:
; ð8Þ

where a = 0.2, b = 0.2 and c = 5.7.

Henon map:

xt ¼ a� x2
t�1 þ byt�1

yt ¼ xt�1

�

; ð9Þ

where a = 1.4 and b = 0.3.
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Sánchez JR, López-Ruiz R (2005) A method to discern complexity in

two-dimensional patterns generated by coupled map lattices.

Phys A 355(2–4):633–640

Serinaldi F (2010) Use and misuse of some Hurst parameter

estimators applied to stationary and non-stationary financial

time series. Phys A 389(14):2770–2781

Sivakumar B (2004) Dominant processes concept in hydrology:

moving forward. Hydrol Process 18(12):2349–2353

Sivakumar B (2008) Dominant processes concept, model simplifica-

tion and classification framework in catchment hydrology. Stoch

Environ Res Risk Assess 22(6):737–748

Sivakumar B (2009) Nonlinear dynamics and chaos in hydrologic

systems: latest developments and a look forward. Stoch Environ

Res Risk Assess 23(7):1027–1036

Sivakumar B, Singh VP (2012) Hydrologic system complexity and

nonlinear dynamic concepts for a catchment classification

framework. Hydrol Earth Syst Sci 16(11):4119–4131

Sivakumar B, Jayawardena AW, Li WK (2007) Hydrologic com-

plexity and classification: a simple data reconstruction approach.

Hydrol Process 21(20):2713–2728

Smakhtin VY (2001) Low flow hydrology: a review. J Hydrol

240(3–4):147–186

Stoch Environ Res Risk Assess (2014) 28:1685–1708 1707

123

http://www.R-project.org


Soriano MC, Zunino L, Larger L, Fischer I, Mirasso CR (2011a)

Distinguishing fingerprints of hyperchaotic and stochastic

dynamics in optical chaos from a delayed opto-electronic

oscillator. Opt Lett 36(12):2212–2214

Soriano MC, Zunino L, Rosso OA, Fischer I, Mirasso CR (2011b)

Time scales of a chaotic semiconductor laser with optical

feedback under the lens of a permutation information analysis.

IEEE J Quantum Electron 47(2):252–261

Staniek M, Lehnertz K (2007) Parameter selection for permutation

entropy measurements. Int J Bifurcat Chaos 17(10):3729–3733

Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992)

Testing for nonlinearity in time series: the method of surrogate

data. Phys D 58(1–4):77–94

Tiana-Alsina J, Torrent MC, Rosso OA, Masoller C, Garcı́a-Ojalvo J

(2010) Quantifying the statistical complexity of low-frequency

fluctuations in semiconductor lasers with optical feedback. Phys

Rev A 82(1):013,819

Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the

parameters of the Hurst–Kolmogorov stochastic process. Stoch

Environ Res Risk Assess 25(1):21–33

Wackerbauer R, Witt A, Atmanspacher H, Kurths J, Scheingraber H

(1994) A comparative classification of complexity measures.

Chaos Solitons Fractals 4(1):133–173

Wang W, Van Gelder PHAJM, Vrijling JK, Chen X (2007) Detecting

long-memory: Monte carlo simulations and application to daily

streamflow processes. Hydrol Earth Syst Sci 11(2):851–862

Werndl C (2009) Are deterministic descriptions and indeterministic

descriptions observationally equivalent. Stud Hist Philos Sci B

40(3):232–242

Werndl C (2012) Evidence for the deterministic or the indeterministic

description? A critique of the literature about classical dynamical

systems. J Gen Philos Sci 43(2):295–312

Wuertz D et al (2008) fArma: ARMA time series modelling. http://

www.rmetrics.org, R package version 270.74

Zanin M, Zunino L, Rosso OA, Papo D (2012) Permutation entropy

and its main biomedical and econophysics applications: a

review. Entropy 14(8):1553–1577

Zhang Q, Zhou Y, Singh VP, Chen YD (2011) Comparison of

detrending methods for fluctuation analysis in hydrology.

J Hydrol 400(1–2):121–132
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