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Abstract. We study the relationship between the residuality of the set of norm attaining
functionals on a Banach space and the residuality and the denseness of the set of norm attaining
operators between Banach spaces. Our first main result says that if C is a bounded subset of a
Banach space X which admit an LUR renorming satisfying that, for every Banach space Y , the
operators T from X to Y for which the supremum of ‖Tx‖ with x ∈ C is attained are dense,
then the Gδ set of those functionals which strongly exposes C is dense in X∗. This extends
previous results by J. Bourgain and K.-S. Lau. The particular case in which C is the unit ball
of X, in which we get that the norm of X∗ is Fréchet differentiable at a dense subset, improves
a result by J. Lindenstrauss and we even present an example showing that Lindenstrauss’ result
was not optimal. In the reverse direction, we obtain results for the density of the Gδ set
of absolutely strongly exposing operators from X to Y by requiring that the set of strongly
exposing functionals on X is dense and conditions on Y or Y ∗ involving RNP and discreteness
on the set of strongly exposed points of Y or Y ∗. These results include examples in which even
the denseness of norm attaining operators was unknown. We also show that the residuality
of the set of norm attaining operators implies the denseness of the set of absolutely strongly
exposing operators provided the domain space and the dual of the range space are separable,
extending a recent result for functionals. Finally, our results find important applications to the
classical theory of norm-attaining operators, to the theory of norm-attaining bilinear forms, to
the geometry of the preduals of spaces of Lipschitz functions, and to the theory of strongly
norm-attaining Lipschitz maps. In particular, we solve a proposed open problem showing that
the unique predual of the space of Lipschitz functions from the Euclidean unit circle fails to
have Lindenstrauss property A.
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1. Introduction

Given Banach spaces X and Y , we write L(X,Y ) to denote the space of all (bounded linear)
operators from X to Y , and NA(X,Y ) for the set of norm attaining operators (i.e., those
T ∈ L(X,Y ) for which there is a norm one x ∈ X such that ‖T‖ = ‖Tx‖). Our notation is
standard, and it can be found in Subsection 1.1 together with the definition of some needed
well known concepts. The study of the denseness of the set of norm attaining operators started
with the celebrated result by Bishop and Phelps of the 1960’s that NA(X,K) is dense in X∗ ≡
L(X,K) for every Banach space X (K denotes the base field R or C). Shortly afterward,
J. Lindenstrauss initiated a systemic study on norm attaining operators between Banach spaces
[57]. He introduced two properties – nowadays called (Lindenstrauss) properties A and B – as
follows: a Banach space X has property A if NA(X,W ) is dense in L(X,W ) for every Banach
space W , and a Banach space Y has property B if NA(Z, Y ) is dense in L(Z, Y ) for every
Banach space Z. What he proved is, among other results, that reflexive spaces and those spaces
for which the unit ball is the closed convex hull of a set of uniformly strongly exposed points,
have property A. It is also shown that finite-dimensional spaces whose dual unit ball have finitely
many extreme points up to rotations (in the real case, these are finite-dimensional spaces whose
unit ball is a polyhedron) and subspaces of `∞ containing the canonical copy of c0 (among
other spaces) have property B. On the other hand, Lindenstrauss presented a useful necessary
condition for Banach spaces to have property A. Namely, if a Banach space admits an LUR
renorming and has property A, then its closed unit ball is the closed convex hull of its strongly
exposed points. Up to our knowledge, this is the strongest necessary condition for property A
which has appeared in the literature.

In 1977, J. Bourgain linked the study of the denseness of norm attaining operators with
the Radon-Nikodým property (RNP, for short) in the remarkable paper [20]. It is shown that
the RNP implies property A and, conversely, that if a Banach space X has property A for all
equivalent norms, then X has the RNP (this formulation requires a refinement made by R.
Huff [49]). Since then, there has been an intensive research on norm attaining operators, an
account of which can be found in the expository papers [2, 4, 61]. Let us just mention here a
few known results. With respect to property A, apart from the aforementioned results on the
RNP, it is known that any weakly compactly generated space can be renormed with property
A [71]; examples of Banach spaces failing property A in their usual norm are C0(L) for infinite
metrizable space L and L1(µ) when µ is not purely atomic [57]. With respect to property B,
it is known that infinite dimensional strictly convex Banach spaces fail property B and the
same happens with any infinite-dimensional L1(µ) [3], and that every Banach space can be
renormed to have property B [66]. Moreover, there are even compact operators which can not
be approximated by norm attaining ones [60]. It is not known, however, whether finite rank
operators can be always approximated by norm attaining operators.

The main importance of Bourgain’s paper [20] is that it relates (via the concept of RNP) two
geometric properties whose relationship was unknown at that moment: dentability and strong
exposition. Indeed, Bourgain actually studied the following generalization of Lindenstrauss
property A replacing the unit ball with a bounded closed convex subset. A bounded subset C
of a Banach space X has the Bishop-Phelps property if, for every Banach space Y , the set of
those operators in L(X,Y ) for which sup{‖Tx‖ : x ∈ C} is a maximum, is dense in L(X,Y ). A
Banach space X has the Bishop-Phelps property if all of its bounded closed absolutely convex
subsets have the property. What Bourgain proved is that a Banach space has the Bishop-Phelps
property if and only if it has the RNP. This equivalence is proved through the following two
separate results:
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(a) If C is a separable bounded closed convex set with the Bishop-Phelps property, then it
is dentable (i.e., it contains slices of arbitrarily small diameter).

(b) If B is a bounded closed absolutely convex subset of a Banach space X such that every
nonempty subset of B is dentable (that is, B is an RNP set), then B has the Bishop-
Phelps property. Moreover, for every Banach space Y , the set of those operators in
L(X,Y ) which absolutely strongly expose B is dense in L(X,Y ).

The first main aim of this paper is to give an improvement of the item (a) above, which is
presented in Section 2. Indeed, Theorem 2.1 shows that for a bounded subset C of a Banach space
X admitting an LUR renorming and having the Bishop-Phelps property, the set of its strongly
exposing functionals is dense in X∗ so, in particular, C is contained in the closed convex hull
of its strongly exposed points. This result generalized the same conclusion already known for
weakly compact convex sets [19, 54] and for bounded closed convex RNP sets [20, Theorem 8].
The particular case of Theorem 2.1 for the unit ball of a Banach space X (Corollary 2.6) provides
a necessary condition for Lindenstrauss property A stronger than the one given in [57]: if X
admits an LUR renorming and has property A, then the norm of X∗ is Fréchet differentiable
at a dense subset of X∗ (or, equivalently, the set SE(X) of strongly exposing functionals on
X is dense in X∗). This allows us to show that Lindenstrauss’ original necessary condition for
property A is not sufficient, see Example 5.2 and Remark 5.3.

With respect to the result in item (b) above, let us give some comments. First, this result was
extended from far by C. Stegall [73] to a wide class of non-linear functions defined on bounded
RNP sets, which is now known as the Stegall variational principle. Second, Bourgain’s result is
stronger than the mere denseness of norm attaining operators, even when the set B is the unit
ball of a Banach space. On the one hand, it provides the denseness of operators T such that the
application x 7−→ ‖Tx‖ attains an strong maximum (up to rotations). On the other hand, as
the set of absolutely strongly exposing operators is a Gδ set, his result shows that NA(X,Y ) is
residual in L(X,Y ). Some consequences of the residuality of the set of norm attaining operators
are included in subsection 1.3. Let us comment that other topological properties of the set of
norm attaining functionals and norm attaining operators have been studied in the literature,
see [35] for functionals and [14] for operators, for instance.

In Section 3, we investigate the possible density of the set ASE(X,Y ) of absolutely strongly
exposing operators from X to Y , which is our second main aim in this paper. It is easy to
show that the denseness of ASE(X,Y ) in L(X,Y ) for a non-trivial Banach space Y implies that
SE(X) is dense in X∗ (see Proposition 1.5). We do not know when the converse result holds, so
the following is our leading question.

(Q1)
Find conditions on Y such that ASE(X,Y ) is dense in L(X,Y ) whenever SE(X) is

dense in X∗.

It is well known that SE(X) is dense in X∗ when X has the RNP and in this case ASE(X,Y )
is dense for every Y thanks to (b) above. On the other hand, SE(X) is also dense in X∗ if the
Banach space X is ALUR (in particular, if X is LUR) or even when every element in the unit
sphere of X is strongly exposed (see Proposition 3.11 where a stronger result is proved). Let us
comment on this that we do not know whether being LUR implies property A, so in this case
partial answers to (Q1) are especially interesting.

Some of our main results in Section 3 are the following ones. Let X be a Banach space for
which SE(X) is dense in X∗. Then, the Gδ set ASE(X,Y ) is dense in L(X,Y ) provided the
range space Y is in one of the situations below:



4 JUNG, MARTÍN, AND RUEDA ZOCA

(1) Y has property quasi-β (Theorem 3.1),

(2) Y has ACKρ structure and X or Y are Asplund (Corollary 3.6),

(3) Y has the RNP and str-exp(BY ) is either countable up to rotations or discrete up to
rotations (Theorem 3.17 and 3.32),

(4) Y ∗ has the RNP and str-exp(BY ∗) is countable up to rotations (Theorem 3.20),

(5) Y ∗ has the RNP and for every sequence {y∗n} of elements of w∗ -str-exp(BY ∗) which
converges to an element y∗0 ∈ str-exp(BY ∗), there exist n0 ∈ N and a sequence {θn} in T
such that y∗n = θny

∗
0 for every n > n0 (Theorem 3.34).

We also give several concrete examples where the above result applies, including preduals of `1(Γ)
spaces and finite-dimensional spaces for which the dual unit ball has countably many extreme
points (see Example 3.2, 3.18, 3.35, and Remark 3.8). For the cases (3), (4), and (5), even the
denseness of NA(X,Y ) was unknown for many Xs. Let us also mention that in Example 3.2,
new examples of Banach spaces having property quasi-β (hence Lindenstrauss property B), such
as real polyhedral predual spaces of `1 and arbitrary (real or complex) closed subspaces of c0(Γ),
are exhibited.

By (b) above, ASE(X,Y ) is dense in L(X,Y ) for any arbitrary Banach space Y when X
has the RNP. Besides, it was observed in [28, Proposition 4.2] that for X satisfying any of the
known conditions which guarantee property A (namely, property α, property quasi-α, or having
a norming subset of uniformly strongly exposed points), the set ASE(X,Y ) is dense in L(X,Y )
for every Banach space Y . We do not know, however, whether property A of X implies the
denseness of ASE(X,Y ) for all Banach spaces Y .

(Q2)
Does property A of a Banach space X imply that ASE(X,Y ) is dense in L(X,Y ) for

every Banach space Y ?

Corollary 2.6 links (Q2) with the previous question (Q1) and allows us to present partial answers
to the question (Q2) by applying the aforementioned results. Namely, if X has property A and
admits an equivalent LUR renorming and Y satisfies one of the conditions (1)–(5) above, then
ASE(X,Y ) is dense in L(X,Y ).

Furthermore, we obtain some results concerning the denseness of the set ASE(X,Y )∩K(X,Y ),
where K(X,Y ) denotes the space of all compact linear operators from X to Y . We prove that
the denseness of SE(X) in X∗ implies ASE(X,Y )∩K(X,Y ) is dense in K(X,Y ) not only when
the Banach space Y is in one of the above conditions (1), (3), (4), (5), but also when Y is an
L1-predual, or has ACKρ structure (this is (2) without the Asplundness condition on X or Y ),
or it admits a countable James boundary (see Example 3.4, Theorem 3.5 and Corollary 3.22).
In particular, if Y is a (real) polyhedral space or Y is a closed subspace of a C(K) space for an
scattered Hausdorff compact topological space K (see Examples 3.28 and 3.30).

In the fourth section of the paper, we prove that the residuality of NA(X,Y ) in L(X,Y )
is equivalent to the denseness of the set of points of L(X,Y ) at which the norm is Fréchet
differentiable provided X and Y ∗ are separable Banach spaces, which generalizes a result of
Guirao, Montesinos, and Zizler [47, Theorem 3.1] (see Theorem 4.1). Moreover, by using a
result of Moors and Tan [64] and one of Avilés et al. [13], we observe that this equivalence also
holds in the case when X is a subspace of weakly compactly generated space, Y is a reflexive
space, and L(X,Y ) = K(X,Y ) (see Remark 4.3).

In the final section, we present several applications of the results in Section 2 and 3 to the
geometry of Lipschitz free spaces, to the denseness of strongly norm attaining Lipschitz maps,
and to the denseness of strongly norm attaining bilinear forms. First, we show that for a
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separable metric space M , property A of F(M) forces the density of the set of strongly norm
attaining Lipschitz functions on M (Corollary 5.1). As a consequence, we show that the Banach
space F(T) fails to have property A (Example 5.2), answering a question implicitly possed in
[28]. We also present new examples of Banach spaces, coming from the theory of Lipschitz maps,
which can be used as target spaces in the results of Section 3 (Examples 5.5, 5.6, and 5.7). Next,
some sufficient conditions on a metric space M and on a Banach space Y are discussed for the set
of strongly norm attaining Lipschitz maps from M into Y to be dense (Corollary 5.8). Finally,
some results on the density of strongly norm attaining bilinear forms are presented (Corollaries
5.9 and 5.10) which improve previous results.

The rest of this introduction is devoted to introduce the needed notation and preliminar-
ies (Subsection 1.1), to present some background on absolutely strongly exposing operators
(Subsection 1.2), and to expose some consequences of residuality of norm attaining operators
(Subsection 1.3).

1.1. Notation and preliminaries. Here K denotes the field R of real numbers or C of complex
numbers, and T is the subset of K of modulus one elements. Let X and Y be Banach spaces
over K. We write BX and SX to denote, respectively, the closed unit ball and the unit sphere
of X. Given x ∈ X and r > 0, B(x, r) is the open ball centered in x with radius r.

The notation L(X,Y ) stands for the space of all bounded linear operators from X to Y and
we simply write X∗ ≡ L(X,K). We write Lw∗−w∗(Y ∗, X∗) = {T ∗ : T ∈ L(X,Y )} for the space of
w∗-w∗-continuous bounded linear operators from Y ∗ into X∗ which is isometrically isomorphic
to L(X,Y ). The space of all compact linear operators from X to Y is denoted by K(X,Y ) and
X⊗̂πY denotes the projective tensor product of X and Y .

For a nonempty bounded subset C of X, a point x0 ∈ C is called an exposed point of C if
there is x∗ ∈ X∗ such that

Rex∗(x0) = sup
x∈C

Rex∗(x) and {x ∈ C : Rex∗(x) = Rex∗(x0)} = {x0}.

In this case, we say that x∗ exposes x0 and that x∗ is an exposing functional. A point x0 ∈ C is
called a strongly exposed point of C if there is x∗ ∈ X∗ such that Rex∗(x0) = supx∈C Rex∗(x)
and {xn} converges in norm to x0 for all sequences {xn} ⊆ C such that limn Rex∗(xn) =
x∗(x0). In this case, we say that x∗ strongly exposes x0 in C and x∗ is said to be a strongly
exposing functional of C. We write str-exp(C) and SE(C) for, respectively, the set of strongly
exposed points of C and the set of strongly exposing functionals of C. It is immediate that
R+ SE(C) = SE(C); if C is actually balanced (i.e. λC = C for every λ ∈ K with |λ| = 1), then
λSE(C) = SE(C) for every λ ∈ K \ {0}. In the case C = BX , we just write SE(X) := SE(BX)
and call strongly exposing functionals to their elements. It is well known that x∗ ∈ SE(X) if and
only if the norm of X∗ is Fréchet differentiable at x∗ (Šmulyan test, see [36, Corollary 1.5] for
instance). If X = Z∗ is a dual space and z∗ ∈ BZ∗ is strongly exposed by some x ∈ X ⊂ X∗∗,
we say that z∗ is a w∗-strongly exposed point.

A point x0 ∈ X is said to be a locally uniformly rotund point (LUR point, for short) if whenever
{xn} is a sequence in X such that ‖xn‖ 6 ‖x0‖ for every n ∈ N and ‖xn + x0‖ −→ 2‖x0‖, then
‖xn − x0‖ −→ 0. A Banach space X is locally uniformly rotund (LUR, for short) if all the
elements in X are LUR points, equivalently, if all elements in SX are LUR points. It is known
that weakly compactly generated (for short, WCG) Banach spaces (in particular, separable or
reflexive Banach spaces) admit LUR equivalent renormings [74, Theorem 1]. A point x0 ∈ X is
said to be a rotund point if for every x ∈ X with ‖x‖ 6 ‖x0‖ and ‖x+x0‖ = 2‖x0‖, we have that
x = x0. A Banach space X is rotund if all the elements in X are rotund points, equivalently, if
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all elements in SX are rotund points, equivalently, if all elements in SX are extreme points. It is
known that `∞ admits a rotund equivalent norm [38, Theorem 8.13] but not an LUR equivalent
norm (this follows since `∞ does not admit any equivalent norm with the Kadec-Klee property
[36, Theorem II.7.10]).

1.2. Some preliminary results on absolutely strongly exposing operators. Let X, Y
be Banach spaces and let B ⊂ X be a bounded closed absolutely convex subset. An operator
T ∈ L(X,Y ) is said to absolutely strongly exposes B if there exists x0 ∈ B such that whenever
a sequence {xn} in B satisfies ‖Txn‖ −→ sup{‖Tx‖ : x ∈ B}, then there exists a sequence {θn}
of elements of T such that {θnxn} −→ x0. When B = BX , we just say that T is an absolutely
strongly exposing operator and write ASE(X,Y ) for the set of those operators. This is the case
that we are most interested in. It is easy to see and well known that ASE(X,Y ) is a Gδ subset
of L(X,Y ). Indeed, given ε > 0, we consider the subsets

Aε =
{
T ∈ L(X,Y ) : S(T, η) ⊂ TB(x0, ε) for some x0 ∈ X, η > 0

}
where S(T, η) = {x ∈ BX : ‖T (x)‖ > ‖T‖ − η}. Then, each set Aε is open and, clearly,

ASE(X,Y ) =
⋂∞

n=1
Arn

for every sequence {rn} of positive numbers converging to 0.

The main results on absolutely strongly exposing operators is, of course, its denseness when
the domain space has the RNP (Bourgain). The next result contains two versions of this result.
Item (a) follows routinely from Stegall variational principle [73, Theorem 14] (as it is done in
Theorems 15 and 19 of the same paper); item (b) follows in the same way using a weak-star
version of Stegall variational principle which appeared in [6, Theorem 2.6], and it is actually
implicit in Theorem 21 of [73].

Proposition 1.1 (Bourgain–Stegall). Let X and Y be Banach spaces.

(a) If X has the RNP, then ASE(X,Y ) is residual in L(X,Y ). Moreover, given T ∈ L(X,Y )
and ε > 0, there is y ∈ SY , x∗ ∈ SX∗ and 0 < ρ < ε such that the operator S :=
T + ρ x∗ ⊗ y belongs to ASE(X,Y ).

(b) If Y ∗ has the RNP, then ASE(Y ∗, X∗)∩Lw∗−w∗(Y ∗, X∗) is residual in Lw∗−w∗(Y ∗, X∗).
Moreover, given T ∈ L(X,Y ) and ε > 0, there is y ∈ SY , x∗ ∈ SX∗ and 0 < ρ < ε such
that the operator S := T + ρ x∗ ⊗ y satisfies S∗ ∈ ASE(Y ∗, X∗).

Next, from the proof of [28, Proposition 3.14], we may extract the following easy results which
we will use all along the paper.

Lemma 1.2 ([28]). Let X and Y be Banach spaces.

(1) If T ∈ ASE(X,Y ) with ‖Tx0‖ = ‖T‖ and y∗ ∈ SY ∗ satisfies that Re y∗(Tx0) = ‖T‖,
then T ∗y∗ ∈ SE(X).

(2) If T ∈ L(X,Y ) attains its norm at x0 ∈ str-exp(BX), then for any ε > 0, there exists
S ∈ ASE(X,Y ) such that ‖Sx0‖ = ‖S‖ and ‖S − T‖ < ε. Moreover, S − T is of rank
one and Sx0 ∈ R+Tx0.

(3) If T ∈ Lw∗−w∗(Y ∗, X∗) attains its norm at y∗0 ∈ w∗ -str-exp(BY ∗), then for any ε > 0,
there exists S ∈ ASE(Y ∗, X∗)∩Lw∗−w∗(Y ∗, X∗) such that ‖Sy∗0‖ = ‖S‖ and ‖S−T‖ < ε.
Moreover, S − T is of rank one and Sy∗0 ∈ R+Ty∗0.

(4) If T ∈ L(X,Y ) satisfies that ‖T‖ = ‖T ∗(y∗0)‖ and T ∗(y∗0) ∈ SE(X) for some y∗0 ∈ BY ∗,
then T attains its norm at a strongly exposed point. Hence, by (2), T ∈ ASE(X,Y ).
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Some comments on the previous results may be of interest.

Remark 1.3. (1) The facts that an operator T ∈ L(X,Y ) attains its norm at x0 ∈ str-exp(BX)
and that y∗0 ∈ SY ∗ satisfies that |y∗0(T (x0))| = ‖T‖ do not imply T ∗(y∗0) ∈ SE(X). For
instance, take x0 = (1, 1) ∈ `2∞ and x∗0 = (1, 0) ∈ `21 ≡ (`2∞)∗. Then T := x∗0 ⊗ x0 ∈
L(`2∞, `

2
∞) attains its norm at x0 ∈ str-exp(B`2∞), x∗0(T (x0)) = ‖T‖, but T ∗(x∗0) = x∗0 is

not an exposing functional.

(2) Even if T ∗y∗0 ∈ SE(X) and ‖T ∗y∗0‖ = ‖T ∗‖ for some y∗0 ∈ SY ∗ , T may be not absolutely
strongly exposing. For this, take the identity operator Id on `2; then Id∗ y∗ ∈ SE(`2) for
every y∗ ∈ `∗2, but Id is not in ASE(`2, `2).

Related to item (4) of Lemma 1.2 is the following easy fact which will be used all along the
paper.

Fact 1.4. Let X, Y be Banach spaces and T ∈ L(X,Y ). Then, T ∈ NA(X,Y ) if and only if
T ∗ ∈ NA(Y ∗, X∗) and there is y∗ ∈ SY ∗ such that ‖T ∗y∗‖ = ‖T ∗‖ with T ∗y∗ ∈ NA(X,K). In
this case, T attains its norm at the points where T ∗y∗ does.

A first consequence of Lemma 1.2 is that the denseness of SE(X) is necessary to have denseness
of absolutely strongly exposing operators.

Proposition 1.5. Let X be a Banach space. If ASE(X,Y ) is dense in L(X,Y ) for some
nontrivial space Y , then SE(X) is dense in X∗.

Proof. Let x∗ ∈ SX∗ and ε > 0 be given. Fix y0 ∈ SY and consider T = x∗ ⊗ y0 ∈ L(X,Y ). By
assumption, there is S ∈ ASE(X,Y ) such that ‖S‖ = 1 and ‖S − T‖ < ε. Let say ‖S‖ = ‖Sx0‖
for some x0 ∈ str-exp(BX) and take y∗ ∈ SY ∗ so that y∗(S(x0)) = 1 (hence S∗y∗ ∈ SE(X)
by Lemma 1.2). Note that |y∗0(S(x0) − T (x0))| < ε, so |y∗(y0)||x∗(x0)| > 1 − ε. In particular,
|y∗(y0)| > 1− ε. Pick θ ∈ T such that θy∗(y0) = |y∗(y0)|. We observe that

‖θS∗y∗ − x∗‖ 6 ‖θS∗y∗ − θy∗(y0)x∗‖+ ‖θy∗(y0)x∗ − x∗‖ < 2ε.

As S∗y∗ ∈ SE(X), the same happens with θS∗y∗ ∈ SE(X), finishing the proof. �

The next characterization taken from [48] relates differentiability points of L(X,Y ) with
absolutely strongly operators.

Proposition 1.6 ([48, Theorem 3.1]). Let X, Y be Banach spaces and T ∈ L(X,Y ). Then,
the norm of L(X,Y ) is Fréchet differentiable at T if and only if T absolutely strongly exposes a
point x0 ∈ SX and Tx0 is a point of Fréchet differentiability of Y .

Observe that, in particular, the existence of Fréchet differentiability points of the norm of
L(X,Y ) implies the existence of Fréchet differentiability points of the norm of X∗ and of the
norm of Y .

1.3. Some consequences of the residuality of norm attaining operators. Our aim in this
subsection is to show some implications of the residuality of the set of norm attaining operators.
The next result contains the particularization to the case of operators of some folklore results
on residual sets on Banach spaces.

Proposition 1.7. Let X and Y be Banach spaces and suppose that NA(X,Y ) is residual.

(a) Given S ∈ L(X,Y ), the set A(S) := {T ∈ L(X,Y ) : S + T ∈ NA(X,Y )} is residual.
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(b) Given a sequence {Sn} in L(X,Y ) and ε > 0, there exists T ∈ L(X,Y ) with ‖T‖ < ε
such that T + Sn ∈ NA(X,Y ) for every n ∈ N.

(c) L(X,Y ) = NA(X,Y )−NA(X,Y ).

Proof. (a): It is an immediate consequence of the fact that homeomorphisms conserve Gδ-dense
sets applied to the affine map ΦS : L(X,Y ) −→ L(X,Y ) given by ΦS(T ) = T − S for every
T ∈ L(X,Y ), as ΦS(NA(X,Y )) = A(S).

(b): By (a), the set A(Sn) is residual for each n ∈ N; hence
⋂
nA(Sn) is residual. In

particular, there exists T ∈ L(X,Y ) with ‖T‖ < ε such that T ∈
⋂
nA(Sn), meaning that

T + Sn ∈ NA(X,Y ) for every n ∈ N.

(c): For a given S ∈ L(X,Y ), A(S)∩NA(X,Y ) is non-empty, so there is T ∈ NA(X,Y ) such
that S + T ∈ NA(X,Y ). �

Observe that, in the proof given for Proposition 1.7, we do not use any special property of
NA(X,Y ) more than its residuality, so it can be also written in terms of ASE(X,Y ).

Proposition 1.8. Let X and Y be Banach spaces and suppose that ASE(X,Y ) is dense.

(a) Given S ∈ L(X,Y ), the set A(S) := {T ∈ L(X,Y ) : S + T ∈ ASE(X,Y )} is residual.

(b) Given a sequence {Sn} in L(X,Y ) and ε > 0, there exists T ∈ ASE(X,Y ) with ‖T‖ < ε
such that T + Sn ∈ ASE(X,Y ) for every n ∈ N.

(c) L(X,Y ) = ASE(X,Y )−ASE(X,Y ).

It is easy to give examples showing that the residuality of NA(X,Y ) is necessary in Proposi-
tion 1.7 (or the denseness of ASE(X,Y ) in Proposition 1.8).

Example 1.9. Let X = c0. Then, NA(X,K) = `1 ∩ c00 ⊆ `1, so it is not residual. Besides,
ASE(X,K) = SE(X) = {0} since the norm of `1 is nowhere Fréchet differentiable. Moreover:

• NA(X,K)−NA(X,K) = `1 ∩ c00 6= `1; ASE(X,K)−ASE(X,K) = {0}.
• Given x∗1 = 0 and x∗2 ∈ `1 \ c00, there is no x∗ ∈ NA(X,K) such that x∗1 +x∗ ∈ NA(X,K)

and x∗2 + x∗ ∈ NA(X,K).

2. Necessary conditions for the Bishop-Phelps property and for property A

Our main result here is the following.

Theorem 2.1. Let X be a Banach space and let C be a bounded subset of X with the Bishop-
Phelps property.

(a) If X admits an equivalent LUR renorming, then SE(C) is dense in X∗. In particular,
C is contained in the closed convex hull of its strongly exposed points.

(b) If X admits an equivalent strictly convex norm, then the set of exposing functionals of
C is dense in X∗. In particular, C is contained in the closed convex hull of its exposed
points.

We need a preliminary lemma to prove the theorem. Recall that a monomorphism between
two Banach spaces X and Y is an operator T ∈ L(X,Y ) which is an isomorphism from X onto
T (X). It is well known that T ∈ L(X,Y ) is a monomorphism if and only if there is C > 0
such that ‖Tx‖ > C‖x‖ for all x ∈ X, and if and only if kerT = {0} and T (X) is closed (see
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[51, § 10.2.3], for instance). It is also a classical result that the set of monomorphisms between
Banach spaces is open (see [1, Lemma 2.4], for instance).

Lemma 2.2. Let X, Y be Banach spaces, T ∈ L(X,Y ) be a monomorphism, and let C ⊂ X be
bounded.

(1) If x0 ∈ C satisfies that ‖Tx0‖ = sup{‖Tx‖ : x ∈ C} and that Tx0 is an LUR point of Y ,
then x0 is a strongly exposed point of C. Moreover, x0 is strongly exposed by T ∗y∗ for
every y∗ ∈ SY ∗ such that Re y∗(Tx0) = sup{‖Tx‖ : x ∈ C}.

(2) If x0 ∈ C satisfies that ‖Tx0‖ = sup{‖Tx‖ : x ∈ C} and that Tx0 is a rotund point of
Y , then x0 is a exposed point of C. Moreover, x0 is exposed by T ∗y∗ for every y∗ ∈ SY ∗
such that Re y∗(Tx0) = sup{‖Tx‖ : x ∈ C}.

Proof. The proof of both assertions is almost the same, so we only provide the one of (1), the
one in which we are more interested. Take y∗ ∈ SY ∗ such that

Re y∗(Tx0) = ‖Tx0‖ = sup{‖Tx‖ : x ∈ C}.
First, observe that

ReT ∗y∗(x0) = Re y∗(Tx0) = ‖Tx0‖ = sup{‖Tx‖ : x ∈ C}
> sup{Re y∗(Tx) : x ∈ C} = sup{ReT ∗y∗(x) : x ∈ C}.

Moreover, if a sequence {xn} ⊂ C satisfies that

lim
n

ReT ∗y∗(xn) = sup{ReT ∗y∗(x) : x ∈ C} = ‖Tx0‖,

we have that ‖Txn‖ 6 ‖Tx0‖ and

lim
n
‖Txn + Tx0‖ > lim

n
ReT ∗y∗(xn + x0) = 2‖Tx0‖.

As Tx0 is an LUR point, this implies that ‖Txn− Tx0‖ −→ 0. But now T is a monomorphism,
so it is bounded from below, which implies that lim

n
xn = x0. In other words, T ∗y∗ strongly

exposes C at x0 and, in particular, x0 is a strongly exposed point of C. �

We are ready to present the pending proof.

Proof of Theorem 2.1. We only include the arguments to get item (a). The proof of item (b)
follows the same lines using item (2) of Lemma 2.2 instead of item (1).

We write ‖ · ‖ for the given norm of X. Consider a norm |||·||| on X which is LUR and
satisfies |||x||| 6 ‖x‖ for every x ∈ X. Define Y := (X, |||·|||)⊕2 K and note that Y is LUR. Pick
x∗ ∈ X∗ \ {0} and ε > 0. As SE(C) = SE(C + x0) for every x0 ∈ X, without loss of generality,
we may assume that

(2.1) x∗(C) ⊂
{
r eiθ : r > 1, |θ|‖x∗‖ 6 ε/2

}
(in the real case this is just x∗(C) ⊂ [1,+∞[). For each n ∈ N, define Tn ∈ L(X,Y ) by
Tnx = (n−1x, x∗(x)) for every x ∈ X. Observe that each Tn is a monomorphism.

Define S ∈ L(X,Y ) by Sx = (0, x∗(x)) for every x ∈ X and observe that ‖Tn − S‖ −→ 0.
Since the set of monomorphisms from X to Y is open and C has the Bishop-Phelps property, we
may find a sequence {Sn} of monomorphisms from X to Y which attain the supremum of their
norms on C and lim

n
‖Tn−Sn‖ = 0. Therefore, ‖Sn−S‖ −→ 0. As every Sn is a monomorphism

attaining the supremum of its norms on C and Y is LUR, item (1) of Lemma 2.2 provides
a sequence {xn} of points of C and a sequence {y∗n} of elements of SY ∗ such that each S∗ny

∗
n
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belongs to SE(C) and strongly exposes C at xn. We write y∗n = (z∗n, λn) ∈ Y ∗ = X∗ ⊕2 K and,
passing to a subsequence, assume that λn −→ λ0 for some λ0 ∈ K. Since ‖S∗y∗n − S∗ny∗n‖ −→ 0
and S∗y∗n = λnx

∗ for every n ∈ N, we have that

(2.2) ‖λ0x
∗ − S∗ny∗n‖ −→ 0.

Now, we set
αn := y∗n(Sn(xn)) = sup{‖Sn(x)‖ : x ∈ C}

and observe that

|λnx∗(xn)− αn| =
∣∣y∗n(Sxn)− y∗n(Snxn)

∣∣ 6 ‖S − Sn‖ sup
n
‖xn‖ −→ 0.

Passing to a subsequence, we may suppose that α := lim
n
αn and β := lim

n
x∗(xn) exist, and we

obtain from (2.2) that λ0β = α.

Notice from (2.1) that sup{‖S(x)‖ : x ∈ C} = sup{|x∗(x)| : x ∈ C} > 1; hence we get that
α > 1 since ‖Sn − S‖ −→ 0. In particular, λ0 6= 0. Besides, using again (2.1), we may write
β := r eiθ with r > 1 and |θ|‖x∗‖ 6 ε/2. Now,

λ0 = αβ−1 = |λ0| e−iθ,
and so ∥∥∥∥x∗ − λ0

|λ0|
x∗
∥∥∥∥ =

∣∣1− e−iθ
∣∣‖x∗‖ = 2

∣∣sin(θ/2)
∣∣‖x∗‖ 6 ε/2.

From (2.2), and since λ0 6= 0, we have that∥∥∥λ0|λ0|−1x∗ − |λ0|−1S∗ny
∗
n

∥∥∥ −→ 0,

so we may find n ∈ N such that
∥∥x∗ − |λ0|−1S∗ny

∗
n

∥∥ < ε. The arbitrariness of ε > 0 and the fact
that λ SE(C) = SE(C) for every λ ∈ R+ finish the proof. �

Some remarks on the previous result are pertinent.

Remark 2.3. If the set C in Theorem 2.1 is balanced, then the proof slightly simplifies. Indeed,
in this case we have that λ SE(C) = SE(C) for every λ ∈ K \ {0} and so we only need to prove
that λ0 6= 0, a easier fact to show.

Remark 2.4. Observe that we do not need convexity nor closedness of the set C in Theorem 2.1.

(1) With respect to convexity, this is not very important as the set of strongly exposing
functionals of a set and the one of its convex hull coincide and, on the other hand, a set
has the Bishop-Phelps property if and only if it convex hull does.

(2) With respect to closedness, the situation is different. On the one hand, SE(C) and SE(C)
may be completely different, and it is not true that C has the Bishop-Phelps property
whenever C does (while the other implication is clear).

(3) Let us also comment here that the Bishop-Phelps property of C does not imply C to be
closed: just consider a square in the plane for which we have removed the sides but not
the vertices.

Remark 2.5. Theorem 2.1 improves results of Lindenstrauss [57, Theorem 2], where C is the
unit ball and only the fact that BX is the closed convex hull of the strongly exposed points is
obtained. Besides, the fact that SE(C) is dense in X∗ was previously known for weakly compact
convex sets (Bourgain [19] and Lau [54]) and for bounded closed convex sets with the RNP
(Bourgain [20]).
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Applying Theorem 2.1 to the unit ball of a Banach space, we get the following improvement
of the necessary conditions given by Lindenstrauss in [57, Theorem 2].

Corollary 2.6. Let X be a Banach space with property A.

(a) If X admits an LUR renorming, then SE(X) is dense in X∗.

(b) If X admits an strictly convex renorming, then functionals exposing BX are dense in
X∗.

We will present in Example 5.2 a separable Banach space X such that BX is the closed convex
hull of its strongly exposed points but SE(X) is not dense in X∗ (even more, exposing functionals
are not dense in X∗), see also Remark 5.3. In particular, this space fails property A while it
fulfills the necessary condition provided by Lindenstrauss in [57, Theorem 2], so Corollary 2.6
really improves Lindenstrauss result. As far as we know, no example of such phenomenon has
already appeared in the literature (that is, an example of a Banach space X for which the unit
ball is the closed convex hull of its strongly exposed points but SE(X) is not dense in X∗). From
the isomorphic point of view, it is known that a separable Banach space X has the RNP if and
only if every equivalent renorming of X satisfies one (and so all) of the following properties (see
[47, Theorem 3.4] for instance): (i) the unit ball contains slices of arbitrary small diameter, (ii)
the unit ball is the closed convex hull of its strongly exposed points, (iii) the strongly exposing
functionals are dense in X∗. It is immediate that conditions (i) and (ii) are not equivalent for
a concrete norm (containing just one strongly exposed point implies dentability). Remark 5.3
shows that conditions (ii) and (iii) are neither equivalent for a concrete norm.

3. Sufficient conditions for the denseness of ASE(X,Y )

Our aim here is to provide conditions on a Banach space Y ensuring that ASE(X,Y ) is dense,
provided SE(X) is dense.

3.1. When the range space satisfies some previously known conditions. We start show-
ing that the known conditions for a Banach space Y to have Lindenstrauss property B actually
imply ASE(X,Y ) to be dense when SE(X) is dense in X∗. As far as we know, there are only two
properties studied in the literature which imply Lindenstrauss property B: property β introduced
by Lindenstrauss himself in the seminal paper [57] and the weaker property quasi-β introduced
by Acosta, Aguirre, and Payá in 1996 [5]. A Banach space Y is said to have property quasi-β
if there exist A = {y∗λ : λ ∈ Λ} ⊆ SY ∗ , a mapping σ : A −→ SY , and a function ρ : A −→ R
satisfying

(i) y∗λ(σ(y∗λ)) = 1 for every λ ∈ Λ,

(ii) |z∗(σ(y∗))| 6 ρ(y∗) < 1 whenever y∗, z∗ ∈ A with y∗ 6= z∗,

(iii) for every e∗ ∈ ext(BY ∗), there exists a subset Ae∗ ⊆ A and t ∈ C with |t| = 1 such that

te∗ ∈ Ae∗
w∗

and sup{ρ(y∗) : y∗ ∈ Ae∗} < 1.

If there is 0 6 R < 1 such that ρ(y∗) 6 R for all y∗ ∈ A, then the space Y has property β
introduced by Lindenstrauss (with an equivalent formulation). Examples of Banach spaces with
property β are finite-dimensional spaces whose unit ball is a polytope (in the complex case, those
spaces for which the set of extreme points of the dual ball is finite up to rotation) and closed
subspaces of `∞ containing the canonical copy of c0. There are examples of Banach spaces with
property quasi-β which do not have property β (and we will show some more in Remark 3.3),
including some finite-dimensional real spaces whose dual unit ball has infinitely many extreme
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points and the so-called Gowers space [5, Example 7] (which is an isometric predual of the
Lorentz sequence space d({1/n}, 1)). We refer the interested reader to [5].

The following result can be proved in the same way as in [5, Theorem 2] but using the
denseness of SE(X) instead of the Bishop-Phelps theorem.

Theorem 3.1. Let X, Y be Banach spaces. Suppose that SE(X) is dense in X∗ and that Y
has property quasi-β. Then, for every closed subspace I(X,Y ) of L(X,Y ) containing rank one
operators, ASE(X,Y ) ∩ I(X,Y ) is dense in I(X,Y ). In particular, ASE(X,Y ) is dense in
L(X,Y ) and ASE(X,Y ) ∩ K(X,Y ) is dense in K(X,Y )

Proof. Let T ∈ L(X,Y ), ‖T‖ = 1 and ε > 0 be given. Due to a result by Zizler [77, Proposi-
tion 4], there is S1 ∈ L(X,Y ) with ‖S1‖ = 1 such that ‖T−S1‖ < ε and S1 ∈ NA(Y ∗, X∗). Going
into the proof of [77, Proposition 4], one realizes that when T ∈ I(X,Y ), then S1 ∈ I(X,Y )
as T − S1 is the limit of a sequence of operators of finite rank. On the other hand, by a
result of Johannesen (see [56, Theorem 5.8]), S∗1 attains its norm at an extreme point e∗ of

BY ∗ . As Y has property quasi-β, there exists Ae∗ ⊆ A and t ∈ T such that te∗ ∈ Ae∗
w∗

and
η := sup{ρ(y∗) : y∗ ∈ Ae∗} < 1. Fix γ > 0 so that

1 + η
(ε

2
+ γ
)
<
(

1 +
ε

2

)
(1− γ)

and find y∗1 ∈ Ae∗ such that ‖S∗1y∗1‖ > 1 − γ. Since SE(X) is dense, there exists z∗ ∈ SE(X)
such that ‖z∗ − S∗1y∗1‖ < γ and ‖z∗‖ = ‖S∗1(y∗1)‖. Define S2 ∈ I(X,Y ) by

S2(x) = S1(x) +
[(

1 +
ε

2

)
z∗(x)− S∗1(y∗1)(x)

]
y1

for every x ∈ X, where y1 = σ(y∗1). Arguing as in the proof of [5, Theorem 2], we have

(1) ‖S2 − S1‖ < ε,

(2) S∗2(y∗1) =
(
1 + ε

2

)
z∗,

(3) ‖S∗2‖ = ‖S∗2(y∗1)‖.

Since z∗ ∈ SE(X), it follows from (2), (3), and Lemma 1.2, that there exists S3 ∈ ASE(X,Y ) ∩
I(X,Y ) such that ‖S2 − S3‖ < ε; hence ‖T − S3‖ < 3ε. This completes the proof. �

Let us present now new examples of Banach spaces with property quasi-β. We need some
notation. Given a Banach space Y , let us consider the equivalence relation on ext(BY ∗) given
by x∗ ∼ y∗ if and only if x∗ = λy∗ for some λ ∈ T. We write EY to denote the topological space
ext(BY ∗)/ ∼ endowed with the quotient topology of the weak star topology. A real Banach
space is said to be polyhedral if the unit ball of any of its finite-dimensional subspaces is a
polyhedron (the convex hull of finitely many points). We refer to [41] and references therein for
an exhaustive account on different definitions of polyhedrality.

Example 3.2. The following are examples of Banach spaces having property quasi-β

(1) Preduals of `1 which are polyhedral (real case).

(2) Banach spaces Y for which EY is discrete (i.e. it has no accumulation points). In
particular:
(a) a real Banach space Y which satisfies that the w∗-accumulation points of ext(BY ∗)

belongs to the norm interior of BY ∗ (they are the so-called (III)-polyhedral spaces
following [41, Definition 1.1]);

(b) arbitrary closed subspaces of (real or complex) c0(Γ).
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As far as we know, assertion (1) was unknown. Assertion (2) appeared in the PhD dissertation
of F. Aguirre (see [8, Teorema 1.20]) but it has not been published in the journal literature. Its
consequences for (III)-polyhedral spaces and for closed subspaces of c0(Γ), while easy, seem to
be new.

Proof. (1): Suppose that Y is a real polyhedral `1-predual space. Notice that every extreme
point of BY ∗ is w∗-exposed [72, Lemma 3.3]. So, for y∗ ∈ ext(BY ∗), we can consider σ(y∗) ∈ SY
such that y∗(σ(y∗)) = 1 and |z∗(σ(y∗))| < 1 whenever z∗ 6∈ {y∗,−y∗}. Next, by [25, Theorem 4.1]
we have that

ρ(y∗) := sup
{
|z∗(σ(y∗))| : z∗ ∈ ext(BY ∗) \ {±y∗}

}
< 1

for every y∗ ∈ ext(BY ∗) (this is called (BD) polyhedrality in [25]). Now, consider the set A ⊆ SY ∗
given by A = {y∗ ∈ ext(BY ∗) : u(y∗) = 1}, where u is the vector in Y ∗∗ which corresponds
isometrically to (1, 1, . . .) ∈ `∞. Since u is an extreme point of BY ∗∗ , we have that |u(y∗)| = 1
for every y∗ ∈ ext(BY ∗) (see [52, Corollary 2.8], for instance). For each e∗ ∈ ext(BY ∗), take
t ∈ {1,−1} so that u(te∗) = 1 and set Ae∗ := {te∗} ⊂ A. Therefore, the set A and the mappings
σ and ρ satisfy the conditions (i)-(iii) of property quasi-β.

(2): Suppose that Y is a real or complex Banach space satisfying that EY contains no accumu-
lation points. By [17, Proposition 2.2], this implies that every point in ext(BY ∗) is w∗-strongly
exposed. The Axiom of Choice allows us to consider a subset A of ext(BY ∗) which is consists
of a unique representative of each equivalence class. For y∗ ∈ A, let σ(y∗) be an element in SY
which strongly exposes y∗. Observe that

ρ(y∗) := sup{|z∗(σ(y∗))| : z∗ ∈ A, z∗ 6= y∗} < 1

for each y∗ ∈ A. Indeed, otherwise, we may find a sequence {z∗n} ⊆ A with z∗n 6= y∗ (so [z∗n] 6=
[y∗] by the way we have selected A) such that z∗n(σ(y∗)) −→ 1. Since σ(y∗) strongly exposes
y∗, we get that {z∗n} converges in norm to y∗. This implies that the sequence of equivalence
classes {[z∗n]} converges to the equivalence class [y∗], which contradicts the fact that EY has no
accumulation points. Finally, given e∗ ∈ ext(BY ∗), let t ∈ C with |t| = 1 such that te∗ ∈ A
and set Ae∗ := {te∗}. Then e∗ ∈ tAe∗ and sup{ρ(y∗) : y∗ ∈ Ae∗} < 1. This shows that Y has
property quasi-β.

Finally, it is immediate that (a) implies that EY is discrete. To get (b), it is immediate that
Y = c0(Γ) satisfies that 0 is the unique w∗-accumulation point of ext(BY ∗), and this property
clearly goes down to closed subspaces (see, for instance, [41, Theorem 1.2]). �

Remark 3.3. (1) Observe that [5, Theorem 2] and Example 3.2 show that closed subspaces
of c0 have property B. As far as we know, this result is new.

(2) Also, by the proof of [5, Theorem 2], it follows from Example 3.2 that for every closed
subspace Y of c0, NA(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ) for every Banach space X.
As far as we know, this result is also new. It was known with the extra assumption that
Y has the approximation property (and in this case every element in K(X,Y ) can be
approximated by elements in NA(X,Y ) of finite rank), see [60, Example 4.7].

(3) There are closed subspaces of c0 without property β. Indeed, for each k ∈ N, consider
Yk = R2 endowed with the norm ‖(x, y)‖ = max{|x|, |y| + 1

k |x|}. Viewing Yk as a
closed subspace of the three dimensional `∞ space, the space Y := [⊕∞k=1Yk]c0 is a
closed subspace of c0. It is known that Y lacks property β (see the arguments in [11,
Example 4.1]).
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Dealing with compact operators, there are more sufficient conditions on a Banach space Y
than the property quasi-β to ensure that NA(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ) for every
Banach space X. We refer to [61] for a detailed account. Some of the results have a counterpart
for ASE(X,Y ) ∩ K(X,Y ) when SE(X) is dense. The following is one of interesting examples.

Example 3.4. Let X be a Banach space such that SE(X) is dense in X∗ and let Y be a
Banach space such that Y ∗ ≡ L1(µ) for some measure µ. Then ASE(X,Y ) ∩ K(X,Y ) is dense
in K(X,Y ).

The proof is motivated by the corresponding result of Johnson and Wolfe [50] for norm
attaining compact operators.

Proof. Let T ∈ K(X,Y ) and ε > 0 be given. Take {y1, . . . , yn} a ε
8 -net of T (BX). By results

of Lazar and Lindenstrauss in the real case (see [55, Theorem 3.1]) and Nielsen and Olsen in
the complex case (see [65, Theorem 1.3]), we may find a 1-complemented subspace E of Y such
that E is isometric to `m∞ for some m ∈ N and for each i = 1, . . . , n, there exists ei ∈ E so that
‖yi − ei‖ < ε

8 . Let us denote by P a norm one projection from Y onto E and write J : E −→ Y
for the canonical inclusion. For each x ∈ BX , there exists e ∈ E such that ‖T (x) − e‖ < ε

4 ;
hence

‖T (x)− JPT (x)‖ 6 ‖T (x)− J(e)‖+ ‖e− PT (x)‖ < ε

2
.

This shows that ‖T−JPT‖ 6 ε
2 . Since PT ∈ K(X,E) and E is isometric to `m∞, by Theorem 3.1,

there exists G ∈ ASE(X,E) such that‖PT −G‖ < ε
2 , so

‖T − JG‖ 6 ‖T − JPT‖+ ‖JPT − JG‖ 6 ‖T − JPT‖+ ‖PT −G‖ < ε.

Finally, JG ∈ ASE(X,Y ) ∩ K(X,Y ). �

Beside the property of being the predual space of L1-space, there is another property, called
ACKρ structure, on the range space Y which guarantees that ASE(X,Y ) ∩K(X,Y ) is dense in
K(X,Y ) for every Banach space X provided that SE(X) is dense in X∗. In order to establish
the result, we need the following notation and definition. Recall from [24] that a Banach space
Y is said to have ACKρ structure whenever there exists a 1-norming set Γ ⊆ BY ∗ such that
for every ε > 0 and every nonempty relatively w∗-open subset U ⊆ Γ, there exist a nonempty
subset V ⊆ U , y∗1 ∈ V , e ∈ SY and an operator T ∈ L(Y, Y ) with the following properties:

(1) ‖Fe‖ = ‖F‖ = 1,

(2) y∗1(Fe) = 1,

(3) F ∗y∗1 = y∗1,

(4) denoting V1 = {y∗ ∈ Γ: ‖F ∗y∗‖+ (1− ε)‖(IdY ∗ − F ∗)(y∗)‖ 6 1}, then |y∗(Fe)| 6 ρ for
every y∗ ∈ Γ \ V1,

(5) dist(F ∗y∗, aconv{0, V }) < ε2 for every y∗ ∈ Γ,

(6) |v∗(e)− 1| 6 ε for every v∗ ∈ V .

Given Banach spaces X and Y , and Γ ⊂ Y ∗, an operator T ∈ L(X,Y ) is said to be Γ-flat [24]
if T ∗|Γ : (Γ, w∗) −→ (X∗, ‖ · ‖X∗) is openly fragmented. We denote the set of all Γ-flat operators
by FlΓ(X,Y ). Among others results, it is known that every Asplund operator from X to Y is
Γ-flat for every Γ ⊆ Y ∗, and that L(X,Y ) = FlΓ(X,Y ) when (Γ, w∗) is discrete.

We state the promised result which provides new information about the set ASE(X,Y ) in
presence of ACKρ structure.
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Theorem 3.5. Let X be a Banach space. If SE(X) is dense in X∗ and Y is a Banach space

having ACKρ structure associated with a 1-norming set Γ ⊆ BY ∗, then FlΓ(X,Y ) ⊆ ASE(X,Y ).

Before providing the proof of Theorem 3.5, let us derive some consequences about the density
of ASE(X,Y ).

Observe that if either X or Y is Asplund, then L(X,Y ) = FlΓ(X,Y ); hence we have the
following.

Corollary 3.6. Let X and Y be Banach spaces. If either X or Y is an Asplund space, SE(X)
is dense in X∗ and Y is a Banach space having ACKρ structure, then ASE(X,Y ) is dense in
L(X,Y ).

As compact operators are particular cases of Asplund operators, we also obtain the following
consequence.

Corollary 3.7. Let X be a Banach space such that SE(X) is dense in X∗ and let Y be a Banach
space having ACKρ structure. Then, ASE(X,Y ) ∩ K(X,Y ) is dense in L(X,Y ) ∩ K(X,Y ).

Remark 3.8. Let us point out that the previous corollaries provide new examples of pairs (X,Y )
for which ASE(X,Y ) (resp. ASE(X,Y )∩K(X,Y )) is dense in L(X,Y ) (resp. K(X,Y )). Observe
that we can require X being Asplund and SE(X) being dense, and we only have to require on Y
having ACKρ structure. Let us provide a list of examples of Banach spaces with ACKρ structure
(see [24] for details):

(1) If Y has property β, then Y has ACKρ structure.

(2) If K is a compact Hausdorff topological space and Y has ACKρ structure, then so does
C(K,Y ).

(3) A uniform algebra has ACKρ structure.

(4) The property of having ACKρ structure is preserved by taking finite injective tensor
products.

(5) c0(Y ) and `∞(Y ) has ACKρ structure if Y has ACKρ structure.

Now it is time to prove Theorem 3.5. In order to do so, we will prove a stronger result, related
with a version of Bishop-Phelps-Bollobás result for absolutely strongly exposing operators, which
has its own interest and from which Theorem 3.5 will be obtained immediately.

To this end, we begin by introducing the following definition for functionals, which can be
seen as a version of the Bishop-Phelps-Bollobás theorem for SE(X).

Definition 3.9. A Banach space X is said to have property [P] if there exists a function
ε ∈ (0, 1) 7−→ η(ε) > 0 such that whenever Rex∗(x) > 1− η(ε) for x ∈ SX and x∗ ∈ SX∗ , then
there exists y∗ ∈ SE(X) and y ∈ SX such that ‖y∗‖ = y∗(y) = 1, ‖y∗−x∗‖ < ε and ‖y−x‖ < ε.

Note that the property [P] implies not only that SE(X) is dense inX∗ but also that str-exp(BX)
is dense in BX . We write

Π(X) :=
{

(x, x∗) ∈ SX × SX∗ : x∗(x) = 1
}
.

Lemma 3.10. Let X be a Banach space. Then, the following assertions are equivalent:

(i) X has property [P],

(ii) the set {(x, x∗) ∈ str-exp(BX)× SE(X) : ‖x∗‖ = x∗(x) = 1} is dense in Π(X),
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(iii) X has property [P] witnessed with the function ε 7−→ ε2/2.

Proof. Only that (ii) implies (iii) has to be proved. Pick (x, x∗) ∈ SX×SX∗ such that Rex∗(x) >
1− ε2/2 and apply the Bishop-Phelps-Bollobás theorem (see [26, Corollary 2.4] for this version)
to find (y, y∗) ∈ Π(X) such that ‖y − x‖ < ε and ‖y∗ − x∗‖ < ε. Assertion (ii) allows us to find
z ∈ str-exp(BX) and z∗ ∈ SE(X) with ‖z∗‖ = z∗(z) = 1 and satisfying that ‖z − x‖ < ε and
‖z∗ − x∗‖ < ε. �

We do not know if the separate density of str-exp(BX) in SX and that of SE(X) in X∗ implies
property [P ], but the following result provides an useful sufficient condition.

Proposition 3.11. Let X be a Banach space. If SX = str-exp(BX), then X has property [P].

Proof. Take (x0, x
∗
0) ∈ Π(X). As x0 ∈ str-exp(BX), there is u∗0 ∈ SE(X) which strongly exposed

x0. Since x∗0(x0) = 1, it is immediate that the norm-one functional x∗n = (1 + n−1‖u∗0‖)
(
x∗0 +

n−1u∗0
)

strongly exposes x0 for every n ∈ N and that {x∗n} −→ x∗0. Now, Lemma 3.10 gives the
result. �

Recall from [16] that a point x in the unit sphere SX of a Banach pace X is said to an almost
LUR (in short, ALUR) point if any (xn) ⊆ BX and (x∗m) ⊆ BX∗ , the condition

lim
m

lim
n
x∗m

(
xn + x

2

)
= 1

implies that ‖xn − x‖ −→ 0. We say that X is ALUR if every element of SX is ALUR. It is
clear that LUR spaces are ALUR, but the reverse implication is not true (see [16, Corollary
12]). It is observed in [15, Corollary 4.6] that if X is ALUR, then each point x in SX is strongly
exposed by every x∗ ∈ SX∗ which attains its norm at x. Thus, in particular, if X is ALUR, then
SX = str-exp(BX).

Corollary 3.12. ALUR Banach spaces satisfy property [P].

Our next aim is to provide a very general result in which the property [P] of a Banach space
X produce a denseness result of ASE(X,Y ) which recall the Bishop-Phelps-Bollobás property.

Theorem 3.13. Let X be a Banach space with property [P], Y be a Banach space with ACKρ

structure with the corresponding 1-norming set Γ ⊆ BY ∗. Then, there exists a function ε ∈
(0, 1) 7−→ η(ε, ρ) > 0 such that if T ∈ FlΓ(X,Y ) satisfies that ‖T‖ = 1 and ‖Tx0‖ > 1− η(ε, ρ)
for some x0 ∈ SX , then there exists S ∈ ASE(X,Y ) and u0 ∈ str-exp(BX) such that ‖Su0‖ =
‖S‖ = 1, ‖S − T‖ < ε, and ‖u0 − x0‖ < ε.

We need the following lemma which can be obtained by arguing as in [24, Lemma 2.9] but
using property [P] instead of the Bishop-Phelps-Bollobás theorem.

Lemma 3.14. Let X be a Banach space which has property [P] with a function ε 7−→ η(ε), and
let Y be Banach space. Let Γ ⊆ BY ∗ be a 1-norming set, T ∈ L(X,Y ) be a Γ-flat operator with
‖T‖ = 1, ε > 0 and x0 ∈ SX such that ‖T (x0)‖ > 1− η(ε). Then for every r > 0, there exist

(1) w∗-open set Ur ⊆ Y ∗ with Ur ∩ Γ 6= ∅,
(2) x∗r ∈ SE(X) and ur ∈ str-exp(BX) such that |x∗r(ur)| = 1, ‖T ∗z∗ − x∗r‖ < r + ε + η(ε),

and ‖ur − x0‖ < ε for every z∗ ∈ Ur ∩ Γ.
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Proof of Theorem 3.13. Given ε > 0, let η(ε) be the constant from the property [P]. Fix 0 <
ε0 < ε and take ε1 > 0 such that

max

{
ε1, 4

(
ε1 + η(ε1) +

2(ε1 + η(ε1))

1− ρ+ ε1 + η(ε1)

)}
< ε0.

Take r > 0 and 0 < ε2 <
ε
3 so that 3ε2 + r < ε1 + η(ε1).

Now, let T ∈ L(X,Y ) be a Γ-flat operator such that ‖T‖ = 1 and ‖T (x0)‖ > 1 − η(ε1) for
some x0 ∈ SX . By Lemma 3.14, there exists

(1) w∗-open set Ur ⊆ Y ∗ with Ur ∩ Γ 6= ∅,
(2) x∗r ∈ SE(X) and ur ∈ SX such that |x∗r(ur)| = 1, ‖ur − x0‖ < ε1 and ‖T ∗z∗ − x∗r‖ <

r + ε1 + η(ε1), for every z∗ ∈ Ur ∩ Γ.

On the other hand, by definition of ACKρ, we can obtain V ⊆ Ur∩Γ, y∗1 ∈ V, e ∈ SY , F ∈ L(X,Y )
and V1 ⊆ Γ satisfying the desired properties.

Define S(x) := x∗r(x)F (e) + (1− δ)(IdY −F )T (x) for every x ∈ X, where δ ∈ (ε2, 1) is chosen
so that ‖S‖ 6 1 (it is possible to find such δ, see [24, Lemma 3.5]). Note that

1 = |x∗r(ur)| = ‖y∗1(x∗r(ur))F (e)‖ = |y∗1(S(ur))| 6 ‖S(ur)‖ 6 1;

which implies that S attains its norm at ur. Computing as in [24, Lemma 3.5] (or, see [30,
Theorem 3.5]), we have ‖S−T‖ < ε

2 . Finally, since ur is a strongly exposed point, by Lemma 1.2,
there is G ∈ ASE(X,Y ) such that ‖G(ur)‖ = 1 and ‖G− S‖ < ε

2 , so ‖G− T‖ < ε. �

Proof of Theorem 3.5. The idea is just to follow the proof of Theorem 3.13, forgetting the esti-
mation on the distance between vectors in the domain space and then property [P] can be easily
replaced by the density of SE(X) instead. �

3.2. When the set of strongly exposed points in the range space is countable (up
to rotations). Our next aim is to provide results on denseness of absolutely strongly exposing
operators for which even the denseness of the norm attaining operators was unknown. Our first
general result in this line is the following one from which we will get a number of corollaries.

Theorem 3.15. Let X, Y be Banach spaces and let I(X,Y ) be a closed subspace of L(X,Y )
containing rank one operators. Suppose that there is a sequence {y∗n} in SY ∗ such that the set

A =
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N

}
is residual in I(X,Y ). Then:

(a) if NA(X,K) is residual, then NA(X,Y ) ∩ I(X,Y ) is residual in I(X,Y );

(b) if SE(X) is dense, then ASE(X,Y ) ∩ I(X,Y ) is dense in I(X,Y ).

In the proof of Theorem 3.15, we will use the following easy result on residuality.

Lemma 3.16. Let Z, W be Banach spaces, let I ′(Z,W ) be a closed subspace of L(Z,W )
and let {zn} be a sequence in SZ . Suppose that for every n ∈ N, the bounded linear opera-
tor Φn : I ′(Z,W ) −→ W given by Φn(T ) = T (zn) for every T ∈ I ′(Z,W ) is onto. Then, for
every residual set D of W , the set

B =
{
T ∈ I ′(X,Y ) : T (zn) ∈ D for all n ∈ N

}
is residual in I ′(X,Y ).



18 JUNG, MARTÍN, AND RUEDA ZOCA

Proof. Let {On} be a sequence of dense open set of W such that
⋂
m∈NOm ⊆ D. As Φn

is bounded linear and onto, Φn is an open map. Moreover, Φ−1
n (Om) is open and dense in

I ′(Z,W ). Indeed, the set is open by continuity; also, for every open subset U of I ′(Z,W ) and
every n,m ∈ N, Φn(U)∩Om 6= ∅ as Φn(U) is open and Om is dense in W ; hence Φ−1

n (Om)∩U 6= ∅.
Now, the set ⋂

n,m∈N
Φ−1
n (Om)

is residual in I ′(Z,W ) and it is immediate that it is contained in B. �

Proof of Theorem 3.15. Suppose first that NA(X,K) is residual in X∗. We apply Lemma 3.16
with Z = Y ∗, W = X∗, zn = y∗n for every n ∈ N, D a residual set contained in NA(X,K) ⊂W ,
and

I ′(Z,W ) = {T ∗ ∈ L(Z,W ) : T ∈ I(X,Y )},
which is closed since it is isometrically isomorphic to I(X,Y ). Moreover, Φn(I ′(Z,W )) = W
for every n ∈ N. Indeed, for every x∗0 ∈ W = X∗, define T ∈ I(X,Y ) by Tx = x∗0(x)yn where
yn ∈ Y is a point at which y∗n(yn) = 1. Observe that T ∗ ∈ I ′(Z,W ) and Φn(T ∗) = T ∗(y∗n) = x∗0;
hence Φn is surjective. Now, we can apply Lemma 3.16 to have that the set

B =
{
T ∈ I(X,Y ) : T ∗(y∗n) ∈ D for all n ∈ N

}
is residual in I(X,Y ) ≡ I ′(Z,W ). Therefore, A ∩ B is also residual, but this intersection is
contained in the set

C =
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ with T ∗y∗n ∈ D for some n ∈ N

}
which is a fortiori residual in I(X,Y ). As D ⊂ NA(X,K), it follows from Fact 1.4 that C ⊂
NA(X,Y ) ∩ I(X,Y ), getting the residuality of the latter set.

In the case when SE(X) is dense, we take the above set D to be SE(X). Then the set C is
contained in the closure of ASE(X,Y )∩ I(X,Y ) by Lemma 1.2, hence ASE(X,Y )∩ I(X,Y ) is
dense in I(X,Y ). �

We are ready to present the main consequences of Theorem 3.15.

Corollary 3.17. Let X be a Banach space, let Y be a Banach space with the RNP such that
str-exp(BY ) is countable up to rotations, and let I(X,Y ∗) a closed subspace of L(X,Y ∗) con-
taining rank one operators.

(a) If NA(X,K) is residual, then NA(X,Y ∗) ∩ I(X,Y ∗) is residual in I(X,Y ∗).

(b) If SE(X) is dense, then the elements of I(X,Y ∗) at which the norm of L(X,Y ∗) is
Fréchet-differentiable is dense in I(X,Y ∗); in particular, ASE(X,Y ∗) ∩ I(X,Y ∗) is
dense in I(X,Y ∗).

Proof. Write Ψ: L(X,Y ∗) −→ L(Y,X∗) given by Ψ(T ) = T ∗|Y and observe that Ψ is an iso-
metric isomorphism. Let {yn} a sequence in SY such that T{yn : n ∈ N} = str-exp(BY ). Then,
the set {

T ∈ I(X,Y ∗) : ‖T‖ = ‖Ψ(T )(yn)‖ for some n ∈ N
}

contains
Ψ−1

(
ASE(Y,X∗) ∩Ψ

(
I(X,Y ∗)

))
which is residual in I(X,Y ∗) by Bourgain-Stegall result as Y has the RNP (see the item (a) of
Proposition 1.1). The first assertion of the corollary now follows from the same argument as in
the proof of Theorem 3.15, where the Lemma 3.16 is applied to Ψ(L(X,Y ∗)) = L(Y,X∗) . For
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the second assertion (b), if SE(X) is dense in X∗, then by taking D to be SE(X), we have the
denseness of the set{

T ∈ Ψ
(
I(X,Y ∗)

)
: ‖T‖ = ‖Ty‖ with Ty ∈ SE(X) for some y ∈ str-exp(BY )

}
as in Theorem 3.15. But then Lemma 1.2 gives that the set

C =
{
T ∈ Ψ

(
I(X,Y ∗)

)
∩ASE(Y,X∗) :

‖T‖ = ‖Ty‖ with Ty ∈ SE(X) for some y ∈ str-exp(BY )
}

is actually dense in Ψ
(
I(X,Y ∗)

)
. Now, Proposition 1.6 shows that the norm of L(Y,X∗) is

Fréchet-differentiable at all elements of C so, the norm of L(X,Y ∗) is Fréchet-differentiable at
all element of Ψ−1(C), which is dense in I(X,Y ∗). The denseness of ASE(X,Y ∗) follows also
from Proposition 1.6. �

A first immediate consequence of this corollary deals with finite-dimensional range spaces.

Example 3.18. Let X be a Banach space and let Y be a finite-dimensional Banach space such
that ext(BY ∗) is countable up to rotations.

(a) If NA(X,K) is residual, then NA(X,Y ) is residual.

(b) If SE(X) is dense, then Fréchet-differentiability points in L(X,Y ) are dense; in particu-
lar, ASE(X,Y ) is dense in L(X,Y ).

Remark 3.19. It was observed in [5, p. 414] that a finite-dimensional Banach space has property
quasi-β if and only if EY = ext(BY ∗)/ ∼ is a discrete topological space. It is clear that for a
finite-dimensional Banach space Y , the hypothesis that ext(BY ∗) is countable up to rotations is
much weaker than the hypothesis that EY is discrete; hence we can obtain more examples from
Corollary 3.17 than the ones which can be obtained via property quasi-β. It might be worth
mentioning that for a 2-dimensional Banach space Y , the space EY is discrete if and only if EY
is finite (since the set ext(BY ∗) is compact in this case).

Another interesting consequence of Theorem 3.15 is the following one which looks similar to
the previous corollary, but now the conditions stated in Corollary 3.17 are assumed for a dual
Banach space.

Corollary 3.20. Let X be a Banach space, let Y be a Banach space, and let I(X,Y ) a
closed subspace of L(X,Y ) containing rank one operators. Suppose that Y ∗ has the RNP and
str-exp(BY ∗) is countable up to rotations.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ I(X,Y ) is residual in I(X,Y ).

(b) If SE(X) is dense, then the elements of I(X,Y ) at which the norm of L(X,Y ) is
Fréchet-differentiable is dense in I(X,Y ); in particular, ASE(X,Y ) ∩ I(X,Y ) is dense
in I(X,Y ).

Proof. Write Ψ: L(X,Y ) −→ L(Y ∗, X∗) given by Ψ(T ) = T ∗ and observe that Ψ is an isometric
embedding. Let {y∗n} be a sequence in SY ∗ such that T{y∗n : n ∈ N} = str-exp(BY ∗) ⊆ NA(Y,K).
By Theorem 3.15, it suffices to show that

A :=
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N

}
is residual in I(X,Y ). This is immediate since A contains the following set

Ψ−1
(
ASE(Y ∗, X∗) ∩Ψ

(
I(X,Y )

))
,
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which is residual in I(X,Y ) by Bourgain-Stegall result (see the item (b) of Proposition 1.1). Note
that the denseness of elements of I(X,Y ) at which the norm of L(X,Y ) is Fréchet-differentiable
follows from Proposition 1.6. �

Corollary 3.20 gives the following particular case.

Example 3.21. Let X be a Banach space, let Y be a predual of `1, and let I(X,Y ) a closed
subspace of L(X,Y ) containing rank one operators.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ I(X,Y ) is residual in I(X,Y ).

(b) If SE(X) is dense, then the elements of I(X,Y ) at which the norm of L(X,Y ) is Fréchet-
differentiable is dense in I(X,Y ); in particular, ASE(X,Y )∩I(X,Y ) is dense in I(X,Y ).

As far as we know, the question of whether all preduals of `1 have Lindenstrauss property
B remains unsolved, so the above result provides new examples of pairs of Banach spaces for
which the set of norm attaining operators is dense.

Another consequence of Theorem 3.15 is the following. Recall that a subset B ⊂ SY ∗ is a
James boundary for Y if for every y ∈ Y there is y∗ ∈ B such that |y∗(y)| = ‖y‖.

Corollary 3.22. Let X be a Banach space and let Y be a Banach space admitting a countable
James boundary.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ K(X,Y ) is residual in K(X,Y ).

(b) If SE(X) is dense, then ASE(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ).

The proof requires the fact, which is easy to prove, that the adjoint of a compact operator
between Banach spaces attains its norm at an element of a prefixed James boundary.

Remark 3.23. Let X, Y be Banach spaces and let B ⊂ SY ∗ be a James boundary. Then, given
T ∈ K(X,Y ), there is y∗ ∈ B such that ‖T ∗y∗‖ = ‖T‖. Indeed, as T (BX) is compact in Y , there

is y0 ∈ T (BX) with ‖y0‖ = ‖T‖. Pick y∗0 ∈ B such that |y∗0(y0)| = ‖y0‖ = ‖T‖ and observe that

‖T ∗y∗0‖ > sup
x∈BX

∣∣[T ∗y∗0](x)
∣∣ = sup

x∈BX

∣∣y∗0(Tx)
∣∣

= sup
y∈T (BX)

|y∗0(y)| > |y∗0(y0)| = ‖T ∗‖.

Proof of Corollary 3.22. Write B = {y∗n : n ∈ N} for the countable James boundary for Y and
use the previous Remark 3.23 to show that the set

{T ∈ K(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N
}

coincides with K(X,Y ), so is trivially residual in K(X,Y ). Then, Theorem 3.15 applies and
gives the results. �

Remark 3.24. Observe that a closed subspace of a Banach space admitting a countable James
boundary also admits a countable James boundary (just consider the restrictions of elements of
the boundary to the subspace which attain their norm at the subspace). Therefore, the denseness
results from Corollary 3.22 pass to closed subspaces. This is not common in the theory of norm
attaining operators: observe that `∞ has property β, hence property B and there are separable
Banach spaces X and Y for which NA(X,Y ) ∩ K(X,Y ) is not dense in K(X,Y ) [60]. Besides,
the space c, which has property β, is not polyhedral, so it contains a two-dimensional subspace
with infinitely many extreme points in its dual ball, hence failing property quasi-β (so it is not
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know if such a subspace has property B). In any case, every subspace of c satisfies the conditions
of Corollary 3.22.

The following consequence of Corollary 3.22 is specially interesting.

Example 3.25. Let X be a Banach space and let Y be a separable polyhedral space.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ K(X,Y ) is residual in K(X,Y ).

(b) If SE(X) is dense, then the norm of L(X,Y ) is Fréchet-differentiability at a dense subset
of K(X,Y ); in particular, ASE(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ).

Proof. Every separable polyhedral space Y admits a countable James boundary [40, Theo-
rem 1.4] and then Corollary 3.22 gives the result. Only the part related to the denseness of
Fréchet-differentiability points in case (b) does not follows directly from such corollary, so let us
prove it. It is actually proved in [40, Theorem 1.4] that the set w∗ -str-exp(BY ∗) is countable
and it is a James boundary for Y . Therefore, the proof of Corollary 3.22 shows that the set

A =
{
T ∈ K(X,Y ) : ‖T ∗y∗‖ = ‖T ∗‖ and T ∗y∗ ∈ SE(X) for some y∗ ∈ w∗ -str-exp(BY ∗)

}
is dense in K(X,Y ). By Lemma 1.2, for every T ∈ A and every ε > 0 there is S ∈ K(X,Y ) such
that ‖T − S‖ < ε and S∗ ∈ ASE(Y ∗, X∗), ‖S∗‖ = ‖S∗y∗0‖ with S∗y∗0 ∈ SE(X). Proposition 1.6
shows that S∗ is a point of Fréchet-differentiability of the norm of L(Y ∗, X∗) so, a fortiori, a
point of Fréchet differentiability of the norm of Lw∗−w∗(Y ∗, X∗) and, therefore, S is a point of
Fréchet-differentiability of the norm of L(X,Y ). �

Remark 3.26. It is known (and easy to prove) that for every Banach space X and every poly-
hedral space with the approximation property, NA(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ) [61,
Corollary 4.5]. As far as we know, whether the assumption for Y to have the approximation
property can be removed or not is an open question. The previous example shows that this is
the case when NA(X,K) is residual and Y is separable.

Remark 3.27. While every separable polyhedral space contains a countable James boundary
(actually the set of w∗-strongly exposed points of its dual ball) which is the key to proving Ex-
ample 3.25, there are examples of polyhedral Banach spaces Y for which ext(BY ∗) is uncontable
(even that it cannot be covered by a countable union of compact sets, see [59]). We do not
know whether Corollary 3.20 is applicable for these spaces, as we do not know how big is the
set str-exp(BY ∗) for these examples.

We can remove the separability hypothesis in Example 3.25 in the case of SE(X) dense, but
the result gives less information.

Example 3.28. Let X be a Banach space for which SE(X) is dense and let Y be a polyhedral
space. Then, ASE(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ).

Proof. Fix T ∈ K(X,Y ) and ε > 0. As Z = T (X) is separable and polyhedral, it follows from
Example 3.25 that there is S ∈ ASE(X,Z) ∩ K(X,Z) for which ‖T ′ − S‖ < ε, where T ′ is just
T considered as operator from X to Z. Now, write J : Z −→ Y for the canonical inclusion and
observe that ‖T − JS‖ = ‖T ′ − S‖ < ε and JS ∈ ASE(X,Y ) ∩ K(X,Y ). �

Another case in which Corollary 3.22 applies is for real almost-CL-spaces with separable dual.
Recall that a Banach space Y is an almost-CL-space if its unit ball is the absolutely closed convex
hull of every maximal convex subset of SY . Examples of almost-CL-spaces are C(K) spaces and
L1(µ) spaces, among many others. We refer the reader to [62] and references therein for more
information on almost-CL-spaces.
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Example 3.29. Let X be a Banach space and let Z be a real almost-CL-space with Z∗ separable
and let Y be a closed subspace of Z.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ K(X,Y ) is residual in K(X,Y ).

(b) If SE(X) is dense, then ASE(X,Y ) ∩ K(X,Y ) is dense in K(X,Y ).

Proof. It follows from [62, Lemma 3] that Z admits a countable James boundary (see the proof
of [62, Theorem 5] for details). Therefore, Corollary 3.22 and Remark 3.24 apply. �

It is not know whether all subspaces of a real almost-CL-space with separable dual have
Lindenstrauss property B. It is easy to find such subspaces failing property quasi-β: a two-
dimensional subspace of c with infinitely many extreme points in the dual ball.

The validity of a complex version of Example 3.29 is not clear. For instance, it is not true
that complex almost-CL-spaces with separable dual contains a countable James boundary, as it
can be checked from the two-dimensional `1 space. As far as we know, it is an open problem
if this space has property B. On the other hand, for C(K) spaces the result is also valid in the
complex case. Recall that a topological space is called scattered if every subset of it contains an
isolated point (relative to the subset).

Example 3.30. Let K be a Hausdorff scattered compact topological space, and let Y be a closed
subspace of (the real or complex space) C(K). If SE(X) is dense, then ASE(X,Y )∩K(X,Y ) is
dense in K(X,Y ).

Proof. Fix T ∈ K(X,Y ) and ε > 0. Observe that Z = T (X) is separable and then there is
countable compact space KT such that Z is contained in C(KT ) [68, Theorem 2]. As {δt : t ∈
KT } is clearly a James boundary for C(KT ) and it is countable, it follows that Z admits a
countable James boundary. We can now argue as in the proof of Example 3.28. �

Remark 3.31. It is known [57] that C(K) spaces have property β when K contains a dense
subset of isolated points (in particular, when K is scattered); hence Theorem 3.1 can be applied
Y = C(K). Moreover, for a compact space K, since the dual of C(K) is isometric to L1(µ)
for some suitable measure µ, the result in Example 3.4 is also valid for Y = C(K). The main
interest of Example 3.30 is to show the denseness of ASE(X,Y ) ∩ K(X,Y ) when Y is a closed
subspace of C(K) spaces provided that K is scattered.

3.3. When the set of strongly exposed points in the range space is discrete (up to
rotations). Our next aim is to provide results on the residuality of NA(X,Y ) which can be
applied for non-separable Y ’s. Instead of requiring countability of some sets as in Theorem 3.15
and its consequences, we will require some topological discreteness. Our first result in this line
is the following one. We will use the following notation: a subset A of BX is discrete up to
rotations if every sequence {an} of elements of A which converges in norm to an element a ∈ A
satisfies that an = θna with θn ∈ T for all sufficiently large n (and then {θn} converges to 1). In
the real case, this is the same as requiring A to be discrete for the norm topology.

Theorem 3.32. Let X be a Banach space and let Y be a Banach space with the RNP such
that str-exp(BY ) is discrete up to rotations. Let I(X,Y ∗) be a closed subspace of L(X,Y ∗)
containing rank one operators.

(a) If NA(X,K) is residual, then NA(X,Y ∗) ∩ I(X,Y ∗) is residual in I(X,Y ∗).
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(b) If SE(X) is dense in X∗, then the elements of I(X,Y ∗) at which the norm of L(X,Y ∗)
is Fréchet differentiable are dense in I(X,Y ∗). In particular, ASE(X,Y ∗)∩I(X,Y ∗) is
dense in I(X,Y ∗).

We need the following easy lemma which will be used in the proof of Theorem 3.32.

Lemma 3.33. Let Z, W be Banach spaces, let E ⊆ W be a dense subset, and let I ′(Z,W )
be a closed subspace of L(Z,W ) such that for every z ∈ SZ , the bounded linear operator
Φz : I ′(Z,W ) −→ W given by Φz(S) = S(z) is surjective. Then, given T ∈ ASE(Z,W ) ∩
I ′(Z,W ) which absolutely strongly exposes z0 ∈ SZ and given ε > 0, there exists G ∈ I ′(Z,W )
satisfying:

(1) ‖T −G‖ < ε,

(2) G(z0) ∈ E,

(3) There exists δ > 0 so that

z ∈ BZ satisfies ‖G(z)‖ > ‖G‖ − δ =⇒ z ∈ TB(z0, ε).

Proof. By hypothesis, Φz0 is onto, hence open. Define A to be the set of those S ∈ I ′(Z,W )
such that ‖T − S‖ < ε and satisfying that there exists δ > 0 with the property

z ∈ BZ , ‖S(z)‖ > ‖S‖ − δ =⇒ z ∈ TB(z0, ε).

It is not difficult to prove that A is open and, clearly, T ∈ A. Hence Φz0(A) is a non-empty
open subset of W . Consequently, Φz0(A) ∩ E 6= ∅ and so, Φ−1

z0 (E) ∩ A 6= ∅. �

Proof of Theorem 3.32. Notice that L(X,Y ∗) is isometrically isomorphic to L(Y,X∗) through
the surjective isometry T 7−→ Ψ(T ) := T ∗|Y for every T ∈ L(X,Y ∗). Let D =

⋂
n∈NOn, where

On is open and dense, be a Gδ dense subset of NA(X,K). As TNA(X,K) = NA(X,K), we may
and do suppose that TOn = On for every n ∈ N. We claim that the set

C :=
{
T ∈ ASE(Y,X∗) ∩Ψ(I(X,Y )) : T attains its norm at some y0 ∈ BY with Ty0 ∈ D

}
is residual in Ψ(I(X,Y )). Once the claim is proved, the proof of the theorem finishes. Indeed,
Ψ−1(C) ⊆ NA(X,Y ∗) by Fact 1.4. Since Ψ−1(C) forms a Gδ dense set, we conclude that
NA(X,Y ∗) is residual in L(X,Y ∗). If, moreover, SE(X) is dense in X∗, we may take D = SE(X)
and Proposition 1.6 shows that the norm of L(Y,X∗) is Fréchet differentiable at every element
of C, hence the norm of L(X,Y ∗) is Fréchet differentiable at every element of Ψ−1(C), which is
dense in I(X,Y ∗).

Let us go to prove that the set C is residual. For each n ∈ N, define An to be the set of
those T ∈ Ψ(I(X,Y ∗)) ⊂ L(Y,X∗) with the property that there exists a strongly exposed point
z0 ∈ BY such that T (z0) ∈

⋂n
k=1Ok and that there exists δ > 0 satisfying that

{z ∈ BY : ‖T (z)‖ > ‖T‖ − δ} ⊆ TB (z0, 1/n) .

Claim: An is open for every n ∈ N. Indeed, given T ∈ An, take z0 and δ > 0 witnessing the
defining property of An. Since T (z0) ∈

⋂n
k=1Ok, there exists r > 0 such that B(T (x0), r) ⊆⋂n

k=1Ok. Take 0 < δ′ < δ and choose µ < min{r, δ−δ′2 }. Now, if ‖G − T‖ < µ and G ∈
Ψ(I(X,Y ∗)), then

{z ∈ BY : ‖G(z)‖ > ‖G‖ − δ′} ⊆ {z ∈ BY : ‖T (z)‖ > ‖T‖ − δ} ⊆ TB (z0, 1/n) .

Besides, ‖T (z0)−G(z0)‖ 6 r, from where G(z0) ∈
⋂n
k=1Ok. This proves that B(T, µ) ⊆ An.
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Claim: An is dense in Ψ(I(X,Y ∗)) for each n ∈ N. To this end, let G ∈ Ψ(I(X,Y ∗)) ⊂
L(Y,X∗) and n ∈ N be fixed. Since Y has the RNP, by Bourgain-Stegall result (see Propo-
sition 1.1), there exists T ∈ ASE(Y,X∗) ∩ Ψ(I(X,Y ∗)) such that ‖G − T‖ < 1

n . By ap-
plying Lemma 3.33 for Z = Y , W = X∗, E =

⋂n
k=1Ok, I ′(Z,W ) = Ψ(I(X,Y ∗)) and

T ∈ ASE(Z,W )∩I ′(Z,W ), we can find an element H ∈ An with ‖T −H‖ < 1
n , so ‖G−H‖ < 2

n .

This shows that An is 2
n -dense in Ψ(I(X,Y ∗)) for every n ∈ N. But observe that An+1 ⊆ An

for every n ∈ N, which implies that An is 2
j -dense for any j > n. It follows that each An is

actually dense in L(Y,X∗).

Therefore, A :=
⋂
n∈NAn is a Gδ dense subset of Ψ(I(X,Y ∗)). Note that every element in

A is an absolutely strongly exposing operator. Indeed, take T ∈ A. Then, for every n ∈ N, we
may find a strongly exposed point zn ∈ BY with the property that there exists δn > 0 so that

{z ∈ BY : ‖T (z)‖ > ‖T‖ − δn} ⊆ TB
(
zn,

1

n

)
.

It is immediate that ‖T (zn)‖ −→ 1, from where the property defining An implies that there is
a sequence {θn} in T such that {θnzn} is a Cauchy sequence in Y . Since Y is complete, we may
take z0 ∈ BY to be the limit of (θnzn). It is immediate that T absolutely strongly exposes z0,
hence z0 ∈ str-exp(BY ). By the discreteness assumption on the strongly exposed points of BY ,
we get that z0 = θ′nzn with θ′n ∈ T holds for every n > n0 for suitable n0 ∈ N. Consequently, we
have that

T (z0) = T (θ′nzn) ∈
n⋂
k=1

TOk =

n⋂
k=1

Ok for every n > n0.

By the arbitrariness of n ∈ N, we conclude that T (z0) ∈ D which shows that T ∈ C. Hence, the
set C contains the Gδ dense subset A of Ψ(I(X,Y ∗)), finishing the proof. �

Notice that the above Theorem 3.32 is applicable to a closed subspace I(X,Y ∗) of L(X,Y ∗)
when Y = `1(Γ) for some set Γ. But, in this case, Y ∗ = `∞(Γ) readily has property β, so the
same result can be achieved from Theorem 3.1.

The next result is somehow a dual version of the previous theorem, but the discreteness
assumption on strongly exposed points is slightly different.

Theorem 3.34. Let X be a Banach space and let Y be a Banach space such that Y ∗ has the
RNP and that for every sequence {y∗n} of elements of w∗ -str-exp(BY ∗) which converges to an
element y∗0 ∈ str-exp(BY ∗), there is n0 ∈ N and a sequence {θn} in T such that y∗n = θny

∗
0 for

every n > n0. Let I(X,Y ) be a closed subspace of L(X,Y ) containing rank one operators.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ I(X,Y ) is residual in I(X,Y ).

(b) If SE(X) is dense in X∗, then the elements of I(X,Y ) at which the norm of L(X,Y )
is Fréchet differentiable are dense in I(X,Y ). In particular, ASE(X,Y ) ∩ I(X,Y ) is
dense in I(X,Y ).

Proof. The idea of the proof is more or less similar to the one of Theorem 3.32. We give a proof
for the sake of completeness. For each ε > 0, let us consider the set

Aε := {G ∈ I(X,Y ) : ∃ η > 0 and y∗0 ∈ str-exp(BY ∗) so that S(G∗, η) ⊆ TB(y∗0, ε)},
where S(G∗, η) := {y∗ ∈ BY ∗ : ‖G∗(y∗)‖ > ‖G∗‖ − η}.

Claim: for each ε > 0, Aε is dense. To this end, use Proposition 1.1 to get that Aε is
dense. Indeed, given T ∈ I(X,Y ) and δ > 0, there is 0 < ρ < δ, x∗ ∈ X∗ and y ∈ Y so that
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S := T + ρx∗⊗ y, which is an element of I(X,Y ∗), enjoys that S∗ ∈ ASE(Y ∗, X∗). It is obvious
that S ∈ Aε. Since ‖T − S‖ < δ, we conclude the density.

Claim: for each ε > 0, Aε is contained in

Bε :=
{
G ∈ I(X,Y ∗) : ∃η > 0 and z∗0 ∈ w∗ -str-exp(BY ∗) so that S(G∗, η) ⊆ TB(z∗0 , 2ε)

}
.

Indeed, let G ∈ Aε be given. Let η > 0 and y∗0 ∈ str-exp(BY ∗) be such that S(G∗, η) ⊆ TB(y∗0, ε).
Since Y ∗ has the RNP, we have that BY ∗ = convw

∗
(w∗ -str-exp(BY ∗)). Thus, there exists

z∗0 ∈ w∗ -str-exp(BY ∗) such that z∗0 ∈ S(G∗, η). Find λ ∈ T so that ‖z∗0 − λy∗0‖ < ε. Now, if
y∗ ∈ S(G∗, η), then

‖y∗ − µλz∗0‖ 6 ‖y∗ − µy∗0‖+ ‖µy∗0 − µλz∗0‖ < 2ε

for some µ ∈ T. This implies that S(G∗, η) ⊆ TB(z∗0 , 2ε); hence G ∈ Bε.
Let D =

⋂
n∈NOn be a Gδ subset of NA(X,K) which is dense in X∗. Without loss of

generality, we may assume that TOn = On for every n ∈ N. For each n ∈ N, define Cn to be the
set of those T ∈ I(X,Y ) with the property that there exists η > 0 and z∗0 ∈ w∗ -str-exp(BY ∗)
such that S(T ∗, η) ⊆ TB(z∗0 ,

2
n) and T ∗(z∗0) ∈

⋂n
j=1Oj .

Claim: Cn is open and dense for every n ∈ N. Clearly, Cn is open for every n ∈ N, and the
proof follows from the idea of the first Claim in the proof of Theorem 3.32. Let us prove that
Cn is dense. Indeed, let G ∈ I(X,Y ) and n ∈ N be fixed. Then, by the previous claim, there is

G̃ ∈ Bn−1 witnessed by η > 0 and z0 ∈ w∗ -str-exp(B∗Y ) such that ‖G− G̃‖ < 1
n . If we consider

the set A of elements T ∈ I(X,Y ) such that ‖T −G‖ < 2
n and satisfying that there exists δ > 0

so that S(T ∗, δ) ⊆ TB(z∗0 ,
2
n), it is clear that G̃ ∈ A; hence A is non-empty. By considering

the map Φ: I(X,Y ) −→ X∗ given as Φ(T ) = T ∗(z∗0) we conclude, with the same argument to
that of Lemma 3.33, we can observe that there exists H ∈ I(X,Y ) satisfying ‖H − G‖ < 2

n ,

H∗(z∗0) ∈
⋂n
j=1Oj and there exists δ > 0 so that S(H∗, δ) ⊆ TB(z∗0 ,

2
n). This shows that each

Cn is 2
n -dense. As the sequence {Cn} is decreasing, it actually follows that each Cn is dense.

Finally,
⋂
n Cn is a Gδ dense subset in I(X,Y ). If G ∈

⋂
n Cn, then there would be z∗0 ∈

str-exp(BY ∗) and a sequence {z∗n} ⊆ w∗ -str-exp(BY ∗) converging to z∗0 such that ‖G∗(z∗0)‖ =
‖G∗‖ and G∗(z∗n) ∈

⋂n
j=1Oj for every n ∈ N. By our assumption, there is a sequence {θn} in T

such that z∗n = θnz
∗
0 for all sufficiently large n. Consequently, we obtain that G∗(z∗0) ∈

⋂n
j=1Oj

for all large n which implies that G∗(z∗0) ∈ D. Finally, by taking pre-adjoint, we conclude that
NA(X,Y ) is a residual set in L(X,Y ). �

Note that Theorem 3.34 applies to isometric preduals of `1(Γ) as, clearly, the set of extreme
points of its dual unit ball is discrete up to rotations.

Example 3.35. Let X be a Banach space and let Y be a predual of `1(Γ) for some set Γ. Let
I(X,Y ) be a closed subspace of L(X,Y ) containing rank one operators.

(a) If NA(X,K) is residual, then NA(X,Y ) ∩ I(X,Y ) is residual in I(X,Y ).

(b) If SE(X) is dense in X∗, then the elements of I(X,Y ) at which the norm of L(X,Y ) is
Fréchet differentiable are dense in I(X,Y ). In particular, ASE(X,Y )∩I(X,Y ) is dense
in I(X,Y ).

Beside the case when Y is either `1(Γ) or an isometric predual of `1(Γ), some applications of
Theorem 3.32 and 3.34 to the setting of the Lipschitz-free space over a certain metric space will
be provided in Section 5.
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4. Residuality and Fréchet differentiability in the space of operators

In this section we address the following natural question.

(Q3) Does the residuality of NA(X,Y ) imply the density of ASE(X,Y ) in L(X,Y )?

In the case when Y is one-dimensional, the residuality of NA(X,K) is closely related to the
Fréchet differentiability of the dual norm on X∗ (and hence to the geometric structure of the
unit ball of X due to the Šmulyan test). For instance, it has been shown by Guirao, Montesinos,
and Zizler [47, Theorem 3.1] that if X is separable, then NA(X,K) is residual if and only if the
dual norm on X∗ is Fréchet differentiable on a dense subset of X∗, hence if and only if SE(X)
is dense in X∗ (by [36, Corollary 1.5]). This result has been extended by Moors and Tan [64]
showing that the same conclusion holds for dual differentiation Banach spaces. Examples of
dual differentiation spaces are those Banach space which can be equivalently renormed to be
LUR [43] and also Banach spaces whose duals are weak Asplund (in particular, RNP spaces)
[44]. It is actually an open question whether every Banach space is a dual differentiation space.

Under separability assumptions on X and Y ∗, the previous result of Guirao et al. can be
extended to the case of bounded linear operators from X to Y .

Theorem 4.1. Let X and Y be Banach spaces. Suppose that X and Y ∗ are separable, and that
NA(X,Y ) is residual. Then, the points of L(X,Y ) at which the norm is Fréchet differentiable
are dense in L(X,Y ), in particular, ASE(X,Y ) is dense in L(X,Y ).

Proof. Let P be a Gδ subset of NA(X,Y ) which is dense in L(X,Y ). From the fact that a
Gδ dense subset of a Baire space is again Baire, P is a Baire space (see [63, Theorem 589],
for instance). Let A ⊆ P be the set of all points where the norm of L(X,Y ) is not Fréchet
differentiable. We claim that A is meager in P , which is enough to finish the proof. Note that
the denseness of ASE(X,Y ) in L(X,Y ) is then immediate by Proposition 1.6.

For each T ∈ A, there exists xT ∈ SX where T attains its norm. Take y∗T ∈ SY ∗ so that
y∗T (T (xT )) = ‖T‖. Note that for every G ∈ L(X,Y ),

‖T +G‖ − ‖T‖ > Re[xT ⊗ y∗T ](G),

where the tensor xT ⊗ y∗T is considered as an element of L(X,Y )∗. Using that T is not a point
of Fréchet differentiability, we can take mT ∈ N such that

lim sup
G→0

‖T +G‖ − ‖T‖ − Re[xT ⊗ y∗T ](G)

‖G‖
>

1

mT
.

For each m ∈ N, let Am := {T ∈ A : mT = m} and consider a cover of

BX ⊗BY ∗ := {x⊗ y∗ : x ∈ BX , y ∈ BY ∗} ⊆ L(X,Y )∗

by open balls of radius (12m)−1. Since BX ⊗ BY ∗ is separable, by the Lindelöf property,
there is a countable subcover {Bm

k } of open balls of radius (12m)−1. For m, k ∈ N, define
Am,k := {T ∈ Am : xT ⊗ y∗T ∈ Bm

k }. Observe that

‖xT ⊗ y∗T − xG ⊗ y∗G‖ < (6m)−1

for all T,G ∈ Am,k. From the Šmulyan test, A =
⋃
m,k Am,k. We claim that Am,k is nowhere

dense in P for each m, k ∈ N, which will show that A is meager in P , finishing then the proof
of the theorem. Assume to the contrary that there is an nonempty open subset O of Am,k for
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some m, k ∈ N. Pick T ∈ O ∩ Am,k and r > 0 such that B(T, r) ⊆ O. Since T ∈ Am, we can
find H ∈ L(X,Y ) such that ‖H‖ < r

2 and

‖T +H‖ − ‖T‖ > ‖H‖
m

+ (xT ⊗ y∗T )(H).

Since P is dense in L(X,Y ), we may assume that T +H ∈ P .

Note that B
(
T +H, ‖H‖3m

)
⊆ B(T, r) ⊆ O ⊆ Am,k. Thus, B

(
T +H, ‖H‖3m

)
∩ Am,k is

nonempty. Take G ∈ B
(
T +H, ‖H‖3m

)
∩Am,k. Observe that the following is true:

(1) ‖T +H −G‖ < ‖H‖
3m ,

(2) ‖T −G‖ 6 ‖H‖+ ‖H‖
3m < 2‖H‖,

(3) ‖T +H‖ − ‖G‖ 6 ‖T +H −G‖ < ‖H‖
3m .

Then,

‖T‖ − ‖G‖ = ‖G+ (T −G)‖ − ‖G‖ > [xG ⊗ y∗G](G+ (T −G))− [xG ⊗ y∗G](G)

= [xG ⊗ y∗G](T −G).

On the other hand,

‖T +H‖ − ‖G‖ = ‖T +H‖ − ‖T‖+ ‖T‖ − ‖G‖

>
‖H‖
m

+ [xT ⊗ y∗T ](H) + [xG ⊗ y∗G)(T −G)

=
‖H‖
m

+ [xT ⊗ y∗T ](T +H −G) + [xG ⊗ y∗G − xT ⊗ y∗T ](T −G)

>
‖H‖
m
− ‖H‖

3m
− 2‖H‖ 1

6m
=
‖H‖
3m

,

where we have used (1) and (2) in the last inequality. This contradicts (3). So, we conclude
that Am,k is nowhere dense for each m, k ∈ N. �

Remark 4.2. It is not possible, in general, to get denseness of Fréchet differentiable points of
L(X,Y ) when NA(X,Y ) is residual. For instance, if X has the Radon-Nikodým property, then
ASE(X, `1) is dense in L(X, `1) (hence, NA(X, `1) is residual), but there is no point in L(X, `1)
where the norm on L(X, `1) is Fréchet differentiable since the norm of `1 is nowhere Fréchet
differentiable (use Proposition 1.6). On the other hand, there is no known objection, as far
as we know, to get the denseness of ASE(X,Y ) from the residuality of NA(X,Y ) in complete
generality. On the other hand, we do not know if the residuality of NA(X,Y ) for a non-trivial
Y implies that of NA(X,K) as the denseness of ASE(X,Y ) does.

Remark 4.3. (1) If the Banach space Y in Theorem 4.1 is reflexive, then the denseness
of the set of Fréchet differentiable points of L(X,Y ) can be obtained directly from
[47, Theorem 3.1]. Indeed, in this case we have that (X⊗̂πY ∗)∗ = L(X,Y ) and the
inclusion NA(X,Y ) ⊆ NA(X⊗̂πY ∗,K) holds. It follows that NA(X⊗̂πY ∗,K) is residual.
Applying [47, Theorem 3.1] to X⊗̂πY ∗, the dual norm of (X⊗̂πY ∗)∗ = L(X,Y ) is Fréchet
differentiable on a Gδ-dense subset.

(2) With the aid of the recent result [13] of A. Avilés et al., we can obtain a non separable
version of Theorem 4.1. That is, if X is a subspace of a WCG space, Y is a reflexive
Banach space, and L(X,Y ) = K(X,Y ), then the residuality of NA(X,Y ) implies the
denseness of the points of L(X,Y ) at which the norm is Fréchet differentiable. Indeed,
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the assumptions show that X⊗̂πY ∗ is a subspace of WCG space [13, Corollary 5.21].
Since WCG spaces are dual differentiation Banach spaces [43] and a closed subspace of
a dual differentiation Banach space is again a dual differentiation Banach space [44],
the space X⊗̂πY ∗ turns to be a dual differentiation Banach space. Since Y is reflexive,
arguing as in the above item (1), the residuality of NA(X,Y ) implies the residuality
of NA(X⊗̂πY ∗,K). Now, [64, Theorem 3] proves that the dual norm of (X⊗̂πY ∗)∗ =
L(X,Y ) is Fréchet differentiable on a Gδ-dense subset.

We next present two more related observations, one of them providing a partial solution to
an open problem in [7].

Remark 4.4. (1) Given separable Banach spaces X and Y , if BX is not dentable and Y is
reflexive, then NA(X,Y ) is of the first Baire category. To see this, observe first that
BX⊗̂πY ∗ is not dentable and it is separable. By a result of Bourgain and Stegall (see

the proof of [22, Theorem 3.5.5]), NA(X⊗̂πY ∗) turns to be of the first category in
(X⊗̂πY ∗)∗ = L(X,Y ). Since NA(X,Y ) ⊆ NA(X⊗̂πY ∗) by the reflexivity of Y , we have
that NA(X,Y ) is also of the first category in L(X,Y ). This observation gives a partial
answer to [7, Problem 7 in p. 12].

(2) Let X be a separable Banach space and let Y be a separable reflexive space. If X is
convex-transitive and NA(X,Y ) is of the second Baire category, then X must be super-
reflexive. Indeed, under the assumption, by the above item, BX must be dentable. It
follows that the norm on X∗ is not rough [36, Proposition 1.11]. Since X is convex-
transitive, X∗ is convex w∗-transitive; hence [18, Theorem 3.2] implies that X is super-
reflexive. This extends the result in [18] that convex-transitive RNP spaces are super-
reflexive.

5. Applications to the geometry of Lipschitz-free spaces, to strongly norm
attaining Lipschitz maps, and to norm attaining bilinear forms

5.1. Lipschitz functions spaces and strong norm attainment. Throughout this subsec-
tion, we will only consider real Banach spaces. Given a pointed metric space M and a Banach
space Y , the notation Lip0(M,Y ) denotes the Banach space of all Lipschitz maps F : M −→ Y
which vanishes at 0, endowed with the Lipschitz norm given by

‖F‖L := sup

{
‖F (x)− F (y)‖

d(x, y)
: x, y ∈M,x 6= y

}
.

Recall from [23] that F ∈ Lip0(M,Y ) is said to strongly attain its norm when the above supre-
mum is actually a maximum, that is, when there exists x 6= y in M such that

‖F‖L =
‖F (x)− F (y)‖

d(x, y)
.

By SNA(M,Y ), we denote the set of all strongly norm attaining Lipschitz maps in Lip0(M,Y ).

There is a connection between the strong norm attainment in spaces of Lipschitz functions
and the classical norm attainment in spaces of operators. In order to exhibit it, we need to
introduce a bit of notation. Let M be a pointed metric space. We denote by δ the canonical
isometric embedding of M into Lip0(M,R)∗, which is given by 〈f, δ(x)〉 = f(x) for x ∈ M and
f ∈ Lip0(M,R). We denote by F(M) the norm-closed linear span of δ(M) in the dual space
Lip0(M,R)∗, which is usually called the Lipschitz-free space over M , see the papers [45] and
[46], and the book [75] (where it receives the name of Arens-Eells space) for background on
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this. It is well known that F(M) is an isometric predual of the space Lip0(M,R) [45, p. 91].
When M is a pointed metric space and Y is a Banach space, every Lipschitz map f : M −→ Y

can be isometrically identified with the continuous linear operator f̂ : F(M) −→ Y defined by

f̂(δp) = f(p) for every p ∈ M . This mapping completely identifies the spaces Lip0(M,Y ) and
L(F(M), Y ). Bearing this fact in mind, the set SNA(M,Y ) is identified with the set of those
elements of L(F(M), Y ) which attain their operator norm at some molecule, that is, at an
element of F(M) of the form

mx,y :=
δ(x)− δ(y)

d(x, y)

for x, y ∈M , x 6= y. We write Mol (M) to denote the set of all molecules of M . Note that, since
Mol (M) is balanced and norming for Lip0(M,R), a straightforward application of Hahn-Banach
theorem implies that

co(Mol (M)) = BF(M).

From this point of view, it is now clear that when SNA(M,Y ) is dense in Lip0(M,Y ), then
NA(F(M), Y ) has to be dense in L(F(M), Y ) a fortiori. The converse result is not true as, for
instance, NA(F(M),R) is always dense by the Bishop-Phelps theorem but there are many metric
spaces M such that SNA(M,R) is not dense in Lip0(M,R) [53]. See [23, 28, 53] and references
therein for background on the denseness of strongly norm attaining Lipschitz functions.

Of course, if SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y , then F(M) has
property A. However, the question whether the property A of F(M) implies that SNA(M,Y )
is dense in Lip0(M,Y ) for every Banach space Y is one of the main questions in theory of
strong norm attainment of Lipschitz functions (asked at [23, 28]). It is even open the question
whether Lindenstrauss property A of F(M) implies that SNA(M,R) dense in Lip0(M,R). As a
consequence of Theorem 2.1, we obtain the following partial answer to this question.

Corollary 5.1. If M is a separable metric space and F(M) has property A, then SNA(M,R)
is dense in Lip0(M,R).

Proof. Since M is separable, the Lipschitz-free space F(M) over M is separable; hence it admits
an LUR renorming. Thus, by Corollary 2.6, SE(F(M)) is dense in F(M)∗ = Lip0(M,R). Since
every strongly exposed point of F(M) is indeed a molecule [23, Proposition 1.1], SE(F(M)) ⊂
SNA(M,R), we conclude that SNA(M,R) is dense in Lip0(M,R). �

We do not know whether the separability assumption can be removed in the above result.
Clearly, this assumption can be replaced by the hypothesis that F(M) admits an LUR renorm-
ing. However, we do not know which non-separable metric spaces M satisfy that F(M) admits
an LUR renorming.

Let us obtain consequences of Corollary 5.1. First of all, consider the unit sphere T of the
Euclidean plane endowed with the inherited Euclidean metric. It is shown in [28, Theorem 2.1]
that SNA(T,R) is not dense in Lip0(T,R), hence Corollary 5.1 implies F(T) fails property A.
On the other hand, it was also observed in [28, Theorem 2.1] that every molecule of F(T) is
a strongly exposed point hence, in particular, co

(
str-exp(BF(T))

)
= BF(T). So, we obtain the

following result.

Example 5.2. The separable space F(T) fails to have property A, while

BF(T) = co
(
str-exp(BF(T))

)
.
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This answer the implicit question from [28] of whether F(T) has property A. This question
was discussed during the PhD defense of Rafael Chiclana in March 2021 and this was the starting
point of the research conducting to the elaboration of the present manuscript.

Remark 5.3. (1) The arguments before Example 5.2 show that X = F(T) is an example of
a separable Banach space where BX = co(str-exp(BX)) but SE(X) is not dense in X∗

(and hence X fails property A). As far as we know, a previous example of this kind has
not been mentioned in the literature. Even more, the functionals in X∗ exposing BX
are also not dense in X∗. Indeed, every functional exposing BX attains its norm at an
exposed point, hence at a extreme point. Since extreme points of BF(T) are molecules
[9, Theorem 1], functionals exposing BX are contained in SNA(T,R) which is not dense.

(2) The result of Example 5.2 should be compared with the fact that if BX = co(A) for a set
A of uniformly strongly exposed points, then ASE(X,Y ) is dense in L(X,Y ) for every
Y , see [28, Proposition 4.2].

There are many other examples of separable metric spaces M for which SNA(M,R) is not
dense and hence, F(M) fails property A by using Corollary 5.1: when M is a length metric
space [23, Theorem 2.2], in particular, when M is a closed convex subset of a separable Banach
space. But in all these cases, the unit ball of F(M) fails to have strongly exposed points, so
they fails property A by just using Lindenstrauss’s necessary condition [57, Theorem 2]. New
examples of metric spaces M for which SNA(M,R) is not dense in Lip0(M,R) have appeared
recently in [27]: every metric space M which is the range of a C1-curve into a Banach space
whose derivative is not identically 0. As a consequence of Corollary 5.1, we have the following
example.

Example 5.4. Let M be the range of a C1-curve into a Banach space whose derivative is not
identically 0. Then, F(M) fails property A.

Next, we show examples of Lipschitz-free spaces so that the set of strongly exposed points is
countable up to rotations or discrete up to rotations. This will enlarge the class of target spaces
to which the results of Section 3 can be applied.

First, in the case of some countable metric spaces, the following result gives a case in which
the results of Subsection 3.2 apply.

Example 5.5. If M is a countable proper (i.e. every closed ball is compact) metric space, then
F(M) has the RNP [34] and str-exp(BF(M)) is countable up to rotations (indeed, Mol (M) is

bijective with a subset of M2, which is countable).
Therefore, Corollary 3.17 can be applied to Y = F(M) getting, for instance, that ASE(X,Y ∗)
is dense in L(X,Y ∗) for every Banach space X such that SE(X) is dense in X∗.

In the cases covered by the previous example, the spaces F(M) are actually dual spaces, so
Corollary 3.20 can be also applied for the preduals. We need some notation. The little Lipschitz
space on a metric space M is the subspace lip0(M) of Lip0(M) of those functions f satisfying
that for every ε > 0, exits δ > 0 such that |f(x) − f(y)| 6 ε d(x, y) when d(x, y) < δ. When
M is countable compact, lip0(M)∗ ≡ F(M) [33]. When M is countable proper, the isometric
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predual of F(M) is the following space (see [34]:

S(M) :=

f ∈ lip0(M) : lim
r→+∞

sup
x or y /∈ B(0, r)

x 6= y

|f(x)− f(y)|
d(x, y)

= 0


(which coincides with lip0(M) in the case when M is compact). As we already mentioned,
Corollary 3.20 can be applied to get the following result with the arguments in Example 5.5.

Example 5.6. Let X be a Banach space such that SE(X) is dense in X∗.

(a) IfM is a countable compact metric space, then ASE(X, lip0(M)) is dense in L(X, lip0(M)).
(b) If M is a countable proper metric space, then ASE(X,S(M)) is dense in L(X,S(M)).

Finally, the results of Subsection 3.3 can be applied for discrete metric spaces.

Example 5.7. If M is a discrete metric space, then F(M) has the RNP and str-exp(BF(M)) is
discrete up to rotations. Indeed, it has the RNP by [10, Theorem C] and Mol (M) satisfies that
if a net of molecules mxα,yα converges weakly to mx,y, then d(xα, x) → 0 and d(yα, y) → 0 [58,
Lemma 2.2].
Therefore, Theorem 3.32 can be applied to Y = F(M) getting, for instance, that ASE(X,Y ∗)
is dense in L(X,Y ∗) for every Banach space X such that SE(X) is dense in X∗.

Next, we would like to apply the results of Section 3 to provide more examples of pairs (M,Y )
for which the set SNA(M,Y ) is dense in Lip0(M,Y ). Observe that, given a metric space M
and a Banach space Y , then ASE(F(M), Y ) is contained in SNA(M,Y ) since every element of
ASE(F(M), Y ) attains its norm at a strongly exposed point of F(M), which is a molecule. As
a consequence, we get the following result which extends previous results from [30] and [29]. We
have not included the results which are covered by these two references.

Corollary 5.8. Let M be a metric space in one of the following situations:

(a) M is separable and F(M) has property A,

(b) M is a compact metric space not containing any isometric copy of [0, 1] and satisfying
that SNA(M,R) is dense and Lip0(M,R).

Let Y be a Banach space in one of the following situations:

(1) Y has the RNP and str-exp(BY ) is either countable up to rotations or discrete up to
rotations.

(2) Y ∗ has the RNP and str-exp(BY ∗) is countable up to rotations.

(3) Y ∗ has the RNP and for every sequence {y∗n} of elements of w∗ -str-exp(BY ∗) which
converges to an element y∗0 ∈ str-exp(BY ∗), there exist n0 ∈ N and a sequence {θn} in T
such that y∗n = θny

∗
0 for every n > n0.

Then, SNA(M,Y ) is dense in Lip0(M,Y ).

Proof. Observe that, by Theorem 2.1 in the case (a) and by [28, Theorem 3.7] in case (b),
SE(F(M)) is dense in Lip0(M,R). Consequently, depending on the assumptions on the space
Y , Corollary 3.17, 3.20, Theorem 3.32 or 3.34 concludes the result. �
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5.2. Bilinear forms and tensor product spaces. In this subsection, we will give applications
to the study of norm attaining bilinear forms.

Given Banach spaces X,Y and Z, we let the notation B(X × Y,Z) stand for the space of all
continuous bilinear mappings from X × Y to Z endowed with the norm

‖B‖ = sup{‖B(x, y)‖ : x ∈ BX , y ∈ BY }
for every B ∈ B(X × Y,Z). When Z = K, we simply denote the space by B(X × Y ). A bilinear
mapping B ∈ B(X×Y,Z) is said to be norm attaining if the supremum defining ‖B‖ is actually
a maximum. Let us denote by NAB(X × Y, Z) the set of all norm attaining bilinear mappings
in B(X × Y, Z).

Before exhibiting classical results in theory of denseness of bilinear mappings, let us exhibit
the strong connection with norm attainment of bounded operators, for which we need to explain
the useful language of tensor product spaces. The projective tensor product of X and Y , denoted
by X⊗̂πY , is the completion of the space X ⊗ Y endowed with the norm given by

‖z‖π = inf

{ ∞∑
n=1

‖xn‖‖yn‖ :

∞∑
n=1

‖xn‖‖yn‖ <∞, z =

∞∑
n=1

xn ⊗ yn

}

= inf

{ ∞∑
n=1

|λn| : z =
∞∑
n=1

λnxn ⊗ yn,
∞∑
n=1

|λn| <∞, ‖xn‖ = ‖yn‖ = 1

}
,

where the infimum is taken over all such representations of z. It is well-known that ‖x⊗ y‖π =
‖x‖‖y‖ for every x ∈ X, y ∈ Y , and the closed unit ball of X⊗̂πY is the closed convex hull of
the set BX ⊗ BY = {x ⊗ y : x ∈ BX , y ∈ BY }. We refer the reader to [70] for background on
tensor product theory.

It is known that the three spaces B(X × Y ), L(X,Y ∗) and (X⊗̂πY )∗ are isometrically iso-
morphic. Given B ∈ B(X × Y ), then B can be seen as an operator TB : X −→ Y ∗ acting as
TB(x)(y) := B(x, y). Moreover, B can be seen as a linear functional acting on X⊗̂πY as follows:

B

(
n∑
i=1

xi ⊗ yi

)
:=

n∑
i=1

B(xi, yi).

Consequently, given B ∈ B(X × Y ) we have three different ways in which we can consider that
B is norm attaining: if B is norm-attaining as a bilinear mapping, as an operator in L(X,Y ∗),
and as a functional on X⊗̂πY . Among all of them, the strongest notion is the one inherited
from B(X × Y ).

On the one hand, if B ∈ B(X × Y ) then B attains its norm as bilinear form if, and only if,
B attains its norm as bounded linear functionals on X⊗̂πY at a point of the form z = x⊗ y ∈
SX ⊗ SY . Consequently, every bilinear form which attains its norm as bilinear form is a norm-
attaining linear functional on X⊗̂πY . Let us mention that the converse is not true (see e.g. [45,
Remark 5.7]).

On the other hand, if B ∈ B(X × Y ), then B attains its norm as bilinear form at (x, y) ∈
SX × SY if, and only if, the associated operator TB : X −→ Y ∗ attains its operator norm at
x and satisfies that TB(x) ∈ NA(Y,K). Let us also mention that the norm attaining of B as
bilinear form and the one of TB as operator are different, as also are the denseness associated
to these two notions of norm attainment, see [31, 39].

In view of the previous connection between the different notion of norm attainment for a bi-
linear mapping, it is natural that sufficient conditions for the density of norm attaining bounded
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operators are behind most of the results in the literature about density of norm attaining bilinear
mappings. Let us mention, for instance, that if X has property α [67] (or even quasi-α [32]),
then NAB(X × Y ) is dense in B(X × Y ) with no assumption on Y . Moreover, it is observed in
[32] that if X has property quasi-α and Y has property A, then actually X⊗̂πY has property A.
Recall that a Banach space X has property quasi-α [32] if there exist a subset {xλ}λ∈Λ of SX ,
a subset {x∗λ}λ∈Λ ⊆ SX∗ , and ρ : Λ −→ R such that

(a) x∗λ(xλ) = 1 for all λ ∈ Λ.
(b) |x∗λ(xµ)| 6 ρ(µ) < 1 for all xλ 6= xµ.

(c) For every e∗∗ ∈ ext(BX∗∗), there exists a subset Ae∗∗ ⊆ A such that e∗∗ belong to Ae∗∗
ω∗

and re∗∗ = sup{ρ(µ) : xµ ∈ Ae∗∗} < 1.

If there is 0 < R < 1 such that re∗∗ 6 R for every e∗∗ ∈ ext(BX∗∗), then the space X has
property α.

We can obtain stronger results than the mere denseness of NAB(X×Y ) by using Theorem 2.1.
Let us say that a bilinear mapping B ∈ B(X×Y, Z) is a strongly norm attaining bilinear mapping
if there exists (x0, y0) ∈ BX ×BY such that whenever a sequence {(xn, yn)} ⊂ BX ×BY satisfies
‖B(xn, yn)‖ −→ ‖B‖, then there exists a subsequence {xkn , ykn} such that {xkn} and {ykn}
converge to αx0 and βy0 for some α, β ∈ K with |α| = |β| = 1, respectively.

Now we have the following result.

Corollary 5.9. Let X and Y be Banach spaces. Suppose that X has property quasi-α and Y
has property A. Suppose that one of the following conditions holds:

(1) X and Y both are separable,

(2) either X or Y has the Dunford-Pettis property, and both X and Y are WCG spaces.

Then, the set of strongly norm attaining bilinear forms in B(X × Y ) is dense in B(X × Y ).

Proof. Notice that, in any case, X⊗̂πY is a WCG space (in the case (2), it follows from [37,
Theorem 16]). Moreover, X⊗̂πY has property A as X has property quasi-α and Y has property
A [32]. It follows from Corollary 2.6 that SE(X⊗̂πY ) is dense in (X⊗̂πY )∗ = B(X × Y ).
Suppose that B ∈ (X⊗̂πY )∗ strongly exposes BX⊗̂πY at some µ ∈ BX⊗̂πY . By [76], we have

that µ = x0 ⊗ y0 for some x0 ∈ str-exp(BX) and y0 ∈ str-exp(BY ). Now, if a sequence
{(xn, yn)} ⊂ BX × BY satisfies |B(xn, yn)| −→ ‖B‖, then {(xn ⊗ yn)} −→ (θx0) ⊗ y0 for some
θ ∈ K with |θ| = 1. From this, we have that there are subsequences {xkn} and {ykn} such that
{xkn} converges to αx0 and {ykn} converges to βy0 for some α, β ∈ K with |α| = |β| = 1. �

It is known that if X and Y are Banach spaces having RNP, then NAB(X × Y,Z) is dense
in B(X × Y,Z) for every Banach space Z [12] (compare this with the fact that there exists a
Banach space E with RNP such that E⊗̂πE fails to have RNP [21]). This, in particular, shows
that X⊗̂πY has property A provided X and Y have the RNP. Thus, the same argument as in
the proof of Corollary 5.9 yields the following result.

Corollary 5.10. Let X and Y be Banach space. Suppose that X and Y have the RNP and one
of the following conditions holds:

(1) X and Y both are separable,

(2) either X or Y has the Dunford-Pettis property, and both X and Y are WCG spaces.

Then, the set of strongly norm attaining bilinear forms in B(X × Y ) is dense in B(X × Y ).
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[39] C. Finet and R. Payá, Norm attaining operators from L1 into L∞, Israel J. Math. 108 (1998), 139–143.
[40] V. P. Fonf, On the boundary of a polyhedral Banach space, Extracta Math. 15 (2000), 145–154.
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18071 Granada, Spain
ORCID: 0000-0003-4502-798X

Email address: mmartins@ugr.es

URL: https://www.ugr.es/local/mmartins

(Rueda Zoca) Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo 30100
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