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Abstract: The Aedes aegypti mosquito is the main hematophagous vector responsible for arbovirus
transmission in Brazil. The disruption of A. aegypti hematophagy remains one of the most efficient
and least toxic methods against these diseases and, therefore, efforts in the research of new chemical
entities with repellent activity have advanced due to the elucidation of the functionality of the ol-
factory receptors and the behavior of mosquitoes. With the growing interest of the pharmaceutical
and cosmetic industries in the development of chemical entities with repellent activity, computa-
tional studies (e.g., virtual screening and molecular modeling) are a way to prioritize potential
modulators with stereoelectronic characteristics (e.g., pharmacophore models) and binding affin-
ity to the AaegOBP1 binding site (e.g., molecular docking) at a lower computational cost. Thus,
pharmacophore- and docking-based virtual screening was employed to prioritize compounds from
Sigma-Aldrich® (n = 126,851) and biogenic databases (n = 8766). In addition, molecular dynamics
(MD) was performed to prioritize the most potential potent compounds compared to DEET according
to free binding energy calculations. Two compounds showed adequate stereoelectronic requirements
(QFIT > 81.53), AaegOBP1 binding site score (Score > 42.0), volatility and non-toxic properties and
better binding free energy value (∆G < −24.13 kcal/mol) compared to DEET ((N,N-diethyl-meta-
toluamide)) (∆G = −24.13 kcal/mol).

Keywords: Aedes aegypti; virtual screening; molecular dynamics; odorant binding protein 1;
pharmacophore model

1. Introduction

Aedes aegypti (A. aegypty) mosquito is the main hematophagous vector in the world,
responsible for one million new cases of arboviruses (e.g., zika virus, chikungunya, dengue
and urban yellow fever) in Brazil [1]. The disruption of A. aegypty hematophagy remains
one of the most efficient and least toxic methods against these diseases and, therefore,
efforts in the investigation of new chemical entities with repellent activity have advanced
due to the elucidation of the functionality of olfactory receptors and mosquito behavior [2].

The olfactory system of A. aegypti involves several odorant receptors within a hy-
drophilic lymph, which are expressed on the mosquito antenna. Thus, sensory perception
of volatile organic compounds (VOCs) is initiated upon presentation to mosquito neu-
roreceptors by odorant-binding protein (OBP) [3,4]. Among the 66 OBPs encoded by the
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A. aegypti genome, OBP1 is the most highly expressed member of the OBP family and has
been directly implicated in the regulation of female mosquito feeding behaviors [5].

OBP1 is highly conserved in several arbovirus-transmitting female mosquito species,
such as A. aegypti (PDB: 3K1E), Anopheles gambiae (PDB: 3V2L), and Culex quinque-fasciatus
(PDB: 3OGN). In addition, OBP1 has been extensively investigated by in silico methods in
the discovery of new chemical entities with repellent/attractant activities [6–8]. Therefore,
the identification of new olfactory modulators against Aedes aegypti odorant-binding protein
1 (AaegOBP1) could interfere with the olfactory system and behavior of mosquitoes.

Among the repellents available on the market, the compound DEET (N,N-diethyl-
meta-toluamide) is the most effective synthetic compound at present, which proves to be
a strong protective factor against a broad spectrum of insects and has elucidated agonist
activity against OBP1 [2]. However, synthetic repellents have shown low efficacy against
Aedes aegypti strains [9], skin toxicity [10] and relatively high cost. On the other hand,
natural product derivatives are considered effective as DEET and have more cosmetic
properties, such as piperidine derivatives (e.g., picaridin and icaridin) [11,12].

With the increasing interest of the pharmaceutical and cosmetic industries in the
discovery of new chemical entities with repellent activity, computational studies are a way
to prioritize potential modulators with stereoelectronic characteristics (e.g., pharmacophore
models) and binding affinity to the AaegOBP1 binding site (e.g., molecular docking) at a
lower computational cost [13–15].

The present study employed a validated and virtual hierarchical screening [8] to
prioritize compounds with the same stereoelectronic characteristics of known repellents
and binding affinity to the AaegOBP1 binding site from commercial databases. In addi-
tion, molecular dynamics (MD) was performed to prioritize the most potential potent
compounds compared to DEET according to binding free energy calculations.

2. Results
2.1. Virtual Screening

In recent years, virtual screening (VS) has become an alternative or better option for
both academic groups and pharmaceutical industries for drug discovery. Compared with
experimental methods, VS provides a cheaper and faster way to find hits by analyzing large
databases through in silico methods instead of in vitro experiments, where with the rapid
advancement of computer hardware, the improved speed VS workflow can drastically
shorten the cycle of compound prioritization [8,14,16,17].

In this way, VS has gained notoriety among in silico approaches on the prioritization
of potentially active compounds and reduced investments allocated to the initial stages of
drug discovery [18]. VS can identify promising compounds in large databases that have
the same stereoelectronic characteristics, complementarity with the binding site cavity,
and the same physicochemical characteristics of known active compounds. Therefore,
VS can eliminate molecules identified as potentially toxic to humans or with unfavorable
pharmacokinetic properties.

VS can be classified into ligand-based VS (LBVS) and structure-based VS (SBVS). The
former strategy aims to identify structurally diverse molecules with similar bioactivity
according to similar stereoelectronic characteristics of known bioactive ligands of a target
(e.g., pharmacophore model). On the other hand, SBVS employs the steric and energetic
complement between the ligand and a specific target-binding site and thus allows the
prioritization of compounds according to molecular recognition events, such as molecular
interactions and binding energy (e.g., molecular docking).

Therefore, the integration of these strategies (LBVS and SBVS) ensures higher success
rates than randomized trials and when used separately [13].

2.1.1. Pharmacophore Model Virtual Screening

The search for new compounds based on pharmacophore characteristics allows the
identification of molecules with the same stereoelectronic requirements as active inhibitors.
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Therefore, the identification of molecules with partial stereoelectronic requirements of
known repellents is essential for the success of subsequent steps [6]. Thus, a pharma-
cophore model with two hydrophobic centers (HY) and a hydrogen bond donor (HBD) can
reproduce the characteristics of repellents with AaegOBP1 affinity and, therefore, can help
to prioritize compounds with the same stereoelectronic characteristics [2,8].

The three-dimensional alignment of a database to a pharmacophore model capable of
reproducing the same stereoelectronic characteristics of known repellents is essential for
VS [19]. GALAHAD™ (Genetic Algorithm with Linear Assignment for Hypermolecular
Alignment of Datasets) was employed because it is a program capable of flexibly aligning
large databases to the pharmacophore model with low computational cost [20]. Moreover,
this program can numerically measure the overlap value of each molecule aligned with the
pharmacophore model through the QFIT score.

The QFIT score represents the overlap between the requirements of the pharmacophore
and database molecules. This score varies between 0 and 100, where the maximum value
represents the best fit between the database molecule and the pharmacophore model. Thus,
QFIT values greater than the sum of the mean of these with twice the standard deviation
[Equation] guarantee the selection of molecules with overlap values with the model 95%
above the scores obtained.

The virtual screening performance of the pharmacophore model yielded 214,446 com-
pounds from the Sigma-Aldrich® database (https://www.sigmaaldrich.com, 4 February
2022) that were screened by the pharmacophore model AaegOBP1, which allowed the selec-
tion of 126,851 compounds with partial stereoelectronic requirements (0.13 < QFIT > 96.99).
After cutoff [Equation], 1640 molecules (QFIT > 81.53) were prioritized for subsequent
steps (Figure 1).
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Next, of the 8766 compounds from the biogenic database with the pharmacophore
model, 2428 compounds had partial stereoelectronic requirements (1.36 < QFIT > 91.80)
for target recognition. From this database, 41 compounds (QFIT > 79.10) were finally
prioritized [Equation] (Figure 1).

The low computational cost of pharmacophore-based virtual screening allowed rapid pri-
oritization of compounds with partial stereoelectronic characteristics for binding at AaegOBP1.

Despite the advantages of pharmacophore-based virtual screening, some limitations
are inherent to LBVS approaches, such as the difficulty in aligning flexible molecules and
the absence of steric constraints imposed by the binding site that is not considered. In

https://www.sigmaaldrich.com
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addition, it should be noted that pharmacophore models are constructed according to the
characteristics of the active ligands, and, therefore, it is assumed that similar compounds
with similar properties will be prioritized, which inevitably makes the search for new
chemotypes difficult.

Therefore, when the 3D structure of the biological target is available, the application
of SBVS can be employed to evaluate the binding mode of compounds on a target by
considering the spatial constraints of the binding site and selecting the best compounds
according to the contributions of intermolecular interactions. Thus, molecular docking was
applied to evaluate the binding mode and affinity of the prioritized compounds on the
AaegOBP1 binding site.

2.1.2. Docking-Based Virtual Screening

Molecular docking is a structure-based computational approach capable of increasing
the success rate of virtual screening by assessing the different binding modes and affinity
of a molecule in the active site and thereby prioritizing the compounds screened in the
pharmacophore-based step with affinity opposite AaegOBP1.

The GOLD (Genetic Optimization for Ligand Docking) program was employed in
docking-based virtual screening because it uses the genetic algorithm to find the most
stable conformation of each molecule at a low computational cost [8,21]. In addition, the
previously validated docking-based virtual screening methodology by the GOLD program
employs the ChemPLP scoring function to evaluate the affinity of each generated pose at
the binding site [22].

In accordance with the stochastic nature of the genetic algorithm and the ability to
predict the best poses implemented in the GOLD program [22], the score of the priori-
tized compounds in the pharmacophore-based virtual screening was calculated using the
ChemPLP function. Of these, only 1253 compounds from the Sigma-Aldrich® database
(https://www.sigmaaldrich.com, 4 February 2022) and 18 compounds from the Biogenic
database had no torsional penalties at the AaegOBP1 binding site (score > 0) [22] and were
therefore prioritized for the next step (Figure 2).
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Based on the results of the docking-based virtual screening, this approach was able
to prioritize the best position of compounds with stereoelectronic characteristics at the
AaegOBP1 binding site. However, the integration of pharmacophore- and docking-based
virtual screening does not guarantee that the molecules have the necessary requirements to

https://www.sigmaaldrich.com
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reach the target site. In this perspective, the calculation of physicochemical descriptors of
the prioritized compounds in the molecular docking step was employed.

2.2. Volatile Filtering and Prediction of Chemical Toxicity

Among the prioritized compounds from the docking-based virtual screening, four com-
pounds from the Sigma-Aldrich® database (https://www.sigmaaldrich.com, 4 February
2022) and one compound from the biogenic database (Table S1) showed a molecular weight
below 250 Da (MW < 250 Da); a polar surface area between 60 and 101 (60 Å2–101 Å2); a
partition coefficient between 1.54 and 3.13; and have less than five hydrogen bond acceptors
(HBA) (Table 1). All isomers and mutagenic compounds were excluded from this study in
order to use pure and safe compounds in repellency assays, respectively.

Table 1. Physicochemical prediction of selected molecules in the virtual screening step. clog
P = octanol-water partition coefficient; PM = molecular weight (Da); HBD = hydrogen bond donor;
HBA = hydrogen bond acceptor; PSA = polar surface area (Å2).

Molecule MW PSA HBD HBA clog P Skin Sensitivity

Database: ZINC

ZINC141 244.25 72.8 0 4 1.68 No

ZINC047 230.223 72.8 0 4 1.75 No

ZINC878 228.251 61.17 0 3 1.91 No

ZINC698 219.269 68.01 2 3 2.23 No

Database: BIOGENIC

ZINC305 222.247 41.46 2 1 2.63 No

Skin sensitization is a complex and critical adverse toxicological endpoint that is
influenced by several biological parameters, such as dose exposure time, protein binding
and individual variation, and merits major public and occupational health concerns [23].
Compounds with sensitizing properties are responsible for allergic contact dermatitis
(ACD), the main skin condition resulting from the induction of a dermal immune response
after repeated exposures, and, therefore, much effort has been devoted to the identification
and classification of skin sensitizers.

One way to predict the sensitization of compounds exposed to human skin in the
drug discovery process is by employing in silico models [23]. Among the online predictors,
the pkCSM server [24] is able to predict skin sensitization by searching for toxicophore
fingerprints based on a dataset with potential AMES mutagenicity indicators [25].

To prioritize potential non-toxic repellents for A. aegypti, the prioritized compounds in
pharmacophore and docking-based SVs did not show toxicity for predicted H. sapiens skin.

2.3. Intermolecular Interactions

To illustrate the binding mode of the prioritized compounds with volatility and stereo-
electronic requirements to modulate AaegOBP1, 2D complexes were generated (Figures 3–8).

Compound ZINC141 (Figure 3; ChemPLP = 38.88; QFIT = 85.00) establishes a hydrogen
bond with Trp114-A (donor) and hydrophobic bonds with HIS77-A, LEU73-A, LEU96-A,
and LEU96-B. Compound ZINC047 (Figure 4; ChemPLP = 54.71; QFIT = 85.00) establishes a
hydrogen bond with Trp114-A and hydrophobic bonds with HIS77-A, LEU73-A and LEU96-B.

https://www.sigmaaldrich.com
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Figure 3. (A) Interaction map of ZINC141 in the Poseview software generated by the AaegOBP1
binding site (ChemPLP = 38.88). (B) ZINC141 superimposed on the AaegOBP1 pharmacophore
model (QFIT = 85.00). Cyan spheres represent hydrophobic centers (HY) and green spheres represent
hydrogen bond donors (HBD). The size of the spheres varies according to the radius tolerance
calculated by GALAHAD™. All distances were measured in angstroms. (Legend: Ligand: Carbons
are represented in green, nitrogen in blue and oxygen in red).
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calculated by GALAHAD™. All distances were measured in angstroms. (Legend: Ligand: Carbons
are represented in green, nitrogen in blue and oxygen in red).

Compound ZINC878 (Figure 5; ChemPLP = 56.59; QFIT = 83.86) establishes a π-
stacking interaction with Trp114-A, and a hydrophobic interaction with Ala88-A.
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Figure 5. (A) Interaction map of ZINC878 in the PoseView software generated by the AaegOBP1
binding site (ChemPLP = 56.59). (B) ZINC878 superimposed on the model pharmacophore AaegOBP1
(QFIT = 83.86). Cyan spheres represent hydrophobic centers (HY) and green spheres represent
hydrogen bond donors (HBD). The size of the spheres varies according to the radius tolerance
calculated by GALAHAD™. All distances were measured in angstroms. (Legend: Ligand: Carbons
are represented in green, nitrogen in blue and oxygen in red).

Compound ZINC698 (Figure 6; ChemPLP = 59.81; QFIT = 83.45) establishes a π-
stacking interaction with Trp114-A, and a hydrophobic interaction with Leu96-B.
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Figure 6. (A) Interaction map of ZINC698 in the Poseview software generated by the AaegOBP1
binding site (ChemPLP = 59.81). (B) ZINC698 superimposed on the model pharmacophore AaegOBP1
(QFIT = 83.45). Cyan spheres represent hydrophobic centers (HY) and green spheres represent
hydrogen bond donors (HBD). The size of the spheres varies according to the radius tolerance
calculated by GALAHAD™. All distances were measured in angstroms. (Legend: Ligand: Carbons
are represented in green, nitrogen in blue and oxygen in red).

The only compound in the biogenic database prioritized in the virtual evaluation step,
compound ZINC305 (Figure 7; ChemPLP = 42.71; QFIT = 85.41), establishes a hydrogen
bonding with Lys93-B (acceptor) and a hydrophobic interaction with Leu76-A.
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Figure 7. (A) Interaction map of ZINC305 in the PoseView software generated by the AaegOBP1
binding site (ChemPLP = 42.71). (B) ZINC305 superimposed on the model pharmacophore AaegOBP1
(QFIT = 85.41). Cyan spheres represent hydrophobic centers (HY) and green spheres represent
hydrogen bond donors (HBD). The size of the spheres varies according to the radius tolerance
calculated by GALAHAD™. All distances were measured in angstroms. (Legend: Ligand: Carbons
are represented in green, nitrogen in blue and oxygen in red).

In comparison to the interactions established by DEET, a commercial repellent, it
shows a π-stacking interaction with TRP114-A, and hydrophobic bonds with Leu7-A,
Ala88-A and Leu76-A (Figure 8).
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Figure 8. Crystallographic ligand interaction map in the PoseView software generated at the
AaegOBP1 binding site. (Legend: Ligand: Carbons are represented in green, nitrogen in blue and
oxygen in red).

An analysis of the interaction maps of the compounds prioritized in the virtual screen-
ing step suggests that the low molecular weight, piperidine derivatives with polar chemical
groups with hydrogen bond acceptor/donor characteristics, can bind at the AaegOBP1
binding site. Interestingly, this chemical scaffold is observed in potent A. aegypti repel-
lents [2,12].
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Furthermore, it was possible to observe the overlap of all of the prioritized compounds
in the virtual screening step in the AaegOBP1 pharmacophore model and, therefore, the
same stereoelectronic characteristics of the compounds with repellent activity [2,8].

Docking-based virtual screening was useful for prioritizing compounds with stereo-
electronic requirements with the best binding mode at the AaegOBP1 binding site. Therefore,
based on the validated virtual screening [8], it is suggested that the prioritized compounds
in the virtual screening step were predictive against the AaegOBP1 binding site and for
biological barriers and non-toxicity to mosquitoes, which needs to be confirmed by fur-
ther testing.

Although the integration of pharmacophore and coupling-based approaches can
prioritize potential olfactory modulators, these computational strategies do not allow
consideration of all potency-related factors in the biological target (e.g., free binding energy).
Therefore, the application of strategies employs the flexible ligand–macromolecule complex
in a solvated environment to prioritize compounds capable of stabilizing AaegOBP1.

Additionally, the commercial availability for the acquisition of the five molecules was
verified. ZINC698 and ZINC047 were discarded from this study because they were not
commercially available.

2.4. Molecular Dynamics

Although the integration of VS approaches ensures higher success rates than random-
ized trials or applying them in isolation, pharmacophore- and docking-based strategies
cannot guarantee the behavior of prioritized compounds in a biological environment
with solvation and desolvation effects. In addition, VS cannot fully consider ligand–
macromolecule flexibility and evaluate complex stabilization.

Molecular Dynamics (MD) is a computational approach able to simulate biological
phenomena considering the total flexibility of the ligand-and-macromolecule complex in a
close biological environment and, therefore, to analyze the stability of protein binding to a
ligand and energetic contributions of the whole system [26].

The reliability of the simulation results depends on a stable system during the tra-
jectory. One way to analyze stability is by Root-Mean Square Deviation, which measures
the position variation of the complex relative to its poses during the trajectory. For this
reason, the APO form and the complexes (ZINC878/AaegOBP1, ZINC141/AaegOBP1,
ZINC047/AaegOBP1 and ZINC305/AaegOBP1) were evaluated for deviation of atomic
positions along the trajectory (Figure 9).

According to the RMSD results, the systems form APO (RMSD = 3.29 Å; σ = ±0.48 Å),
AaegOBP1-DEET (RMSD = 3.25 Å; σ = ±0.34 Å), AaegOBP1-ZINC878 (RMSD = 3.24 Å;
σ = ±0.47 Å), AaegOBP1-ZINC305 (RMSD = 3.20 Å; σ = ±0.52 Å) and AaegOBP1-ZINC141
(RMSD = 3.06 Å; σ = ±0.21 Å) were stable at 20 ns. Compared to the APO form, the
complexes had a lower RMSD value due to the presence of ligand-holding interactions at
the AaegOBP1 binding site, which directly affects the variation of atomic positions.

Although RMSD demonstrates the stability of the complexes from 20 ns onwards, this
analysis only considers the flexibility of the protein globally and therefore does not allow
visualization of the contributions of ligands at the AaegOBP1 binding site to the stability of
the complex. Therefore, the behavior of the AaegOBP1 binding residues of the APO form
and the complexes was analyzed (Figure 10).

RMSF results suggest that the atomic fluctuation of the skeleton in the form of APO
(RMSF = 2.13 Å; σ = ±0.43 Å) was reduced in the presence of DEET (RMSF = 1.86 Å;
σ = ±0.31 Å), ZINC878 (RMSF = 1.56 Å; σ = ±0.51 Å), ZINC305 (RMSF = 1.45 Å; σ = ±0.58 Å)
and ZINC141 (RMSF = 1.70 Å; σ = ±0.6 Å) and thus the complexes are stable with slight
fluctuations. In addition, residues of Phe59, Leu76, Trp114, Tyr122 and Phe123 are involved
in the stabilization of molecules with repellent activity at the AaegOBP1 binding site [2].

Despite the stability results, RMSD and RMDF are protein-only evaluation approaches
and do not provide information on the contribution of ligands to the equilibrium of the
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system. One of the strategies to measure ligand contributions is through the sum of the
energetic contributions of the complex.
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2.5. Binding Free Energy Calculation

The MM-PBSA calculation allows for measuring the interaction energy of the com-
plexes, the energy difference between them, and, consequently, the affinity of the ligand at
the binding site. In this way, the energy decomposition tool implemented in the g_mmpbsa
package helps to understand the energy variations in different complexes. This approach
calculates the enthalpy of each bonding or non-bonding atom in the complex, and, therefore,
the energy contribution of each residue and the ligand is obtained at a low computational
cost [27].

The g_mmpbsa module was used to calculate the free binding energy of the complexes
during the productive step of the complex trajectory (20–40 ns), where ZINC878, ZINC305
and ZINC141 showed negative values of free binding energy, similar to the value obtained
by the commercial repellent (Table 2).

Table 2. Calculation of binding free energy by g_mmpbsa. (EvdW = van der Waals en-
ergy; Eelec = electrostatic energy; EMM = potential energy; Gpolar = polar solvation energy;
Gapolar = nonpolar solvation energy; ∆G = binding free energy. All values are calculated in kcal/mol).

Compound EvdW Eelec EMM Gpolar Gapolar ∆G

DEET −4.32 21.39 17.07 −42.10 −0.81 −24.13

ZINC878 −27.96 −5.18 −33.14 22.09 −3.04 −58.29

ZINC305 −23.47 −3.20 −26.67 13.71 −2.26 −42.64

ZINC141 −8.08 −23.37 −31.45 50.89 1.55 −80.80

Intermolecular interactions are associated with reduced mobility of residues in the
AaegOBP1 binding site and, thus, with the stability of the complex. Components favorable
to intermolecular interactions suggest that ZINC878 (MSE = −33.14 kcal/mol), ZINC305
(MSE = −26.67 kcal/mol) and ZINC141 (MSE = −31.45 kcal/mol) were efficient in binding
to AaegOBP1, as indicated by low potential energy values (MSE) compared to DEET
(MSE = 17.07 kcal/mol).

Although the MME values are favorable for the prioritized compounds, the contribu-
tion to the desolvation of polar and nonpolar groups is unfavorable and thus may reduce the
binding affinity [28]. ZINC878 (Gpolar = 22.09 kcal/mol), ZINC305 (Gpolar = 13.71 kcal/mol)
and ZINC141 (Gpolar = 50.59 kcal/mol) had higher polar solvation energy values than DEET
(Gpolar = −42.10 kcal/mol). In addition, ZINC141 (Gno polar = 1.55 kcal/mol) had a differ-
ent value of nonpolar energy compared to DEET (Gnon-polar = −0.81 kcal/mol).

In agreement with the low MME values of the prioritized compounds, the penalties
explained by Gpolar could not affect the binding energy and, thus, the stability of the
complexes. Thus, the binding free energy suggests that ZINC878 (∆G = −58.29 kcal/mol),
ZINC305 (∆G = −42.64 kcal/mol) and ZINC141 (∆G = 80.80 kcal/mol) have better binding
energy values compared to DEET (∆G = −24.13 kcal/mol) and, therefore, can better stabilize
AaegOBP1 in the DM pathway. Moreover, when the binding free energy is converted to
dissociation constant (Kd), ZINC878 (Kd = 3.24 × 10−43), ZINC305 (Kd = 8.29 × 10−32) and
ZINC141 (Kd = 1.27 × 10−59) had lower values compared to DEET (Kd = 2. 58 × 10−18)
and, therefore, these compounds will have more potent repellent activity than DEET, which
needs to be proven by biological assays.

Although RMSD, RMSF and power estimation of the complexes demonstrate that
ZINC878, ZINC305 and ZINC141 can bind and stabilize AaegOBP1, these strategies cannot
explain the interactions of the complexes. One way to hypothesize the interaction profile of
the complexes is by using the conformation that is most frequent during the MD trajectory
and thus represents the most stable conformation (representative structure). Thus, cluster-
ing of representative structures of the MD trajectory by RMD values at a cutoff = 0.15 was
employed [29].
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2.6. MD Representative Structure Interaction Maps

The interaction maps were constructed from the representative structure of the MD
complexes of DEET-AaegOBP1 (t = 34,772 ns), ZINC878-AaegOBP1 (t = 27,372 ns), ZINC305-
AaegOBP1 (t = 33,728 ns) and ZINC141-AaegOBP1 (t = 26,406 ns) Figure 11).

According to the interaction maps of representative MD structures, DEET performs a
hydrogen bond with HIS77-A (donor) and hydrophobic interactions with residues Leu89-
A, His77-A and Gly92-A (Figure 11A), whereas ZINC878 only performs a hydrophobic
interaction with His77-A (Figure 11B). ZINC305 made a hydrogen bond with Cys95-B
(donor) and hydrophobic interactions with Leu76-A, Ala88-A, Leu89-A, Leu89-B, His77-B
and Leu96-B (Figure 11C). In addition, ZINC141 performed a hydrogen bond with His77-A
and hydrophobic interactions with Leu89-A, Leu89-B and Lys93-A (Figure 11D).

Compared with the docking interaction maps, AaegOBP1-DEET, AaegOBP1-ZINC878
and AaegOBP1-ZINC305 maintained the nature of the interaction pattern, while ZINC141
showed a new interaction profile with ionic interactions and hydrogen bonding, which
may be related to potency.

According to the computational approaches employed, ZINC878, ZINC305 and
ZINC141 are more potent potential modulators of AaegOBP1 than DEET. Thus, ZINC878
and ZINC305 were prioritized for repellency assays and were purchased based on their
price (<R$ 100/mg).
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3. Materials and Methods
3.1. Hierarchical Virtual Screening
3.1.1. Pharmacophore-Based Virtual Screening

A previously validated pharmacophore model constructed with Ae. aegypti repel-
lents (Table S2) [8] was employed in a flexible alignment with Sigma-Aldrich® (https:
//www.sigmaaldrich.com, 4 February 2022) [30] and biogenic databases [30], available in
the GALAHAD™ module [31].

The compounds aligned by the pharmacophore were ranked according to QFIT values
and a cut-off point (Equation (1)) was employed to prioritize the top ranked compounds
for molecular docking [31].

The cut-off point used in the pharmacopore-based virtual screening step:

X = x + 2 x σ (1)

X = QFIT value
x = Average
σ = Standard deviation

3.1.2. Docking-Based Virtual Screening

Docking studies were employed in order to prioritize the best-ranked compounds
according to score evaluation using the GOLD program [22].

The chemical structure of compounds prioritized in pharmacophore-based virtual
screening was converted to 3D using the CONCORD module and energetically minimized
through the conjugated-gradient protocol (convergence criterion = 0.001 kcal/mol; maxi-
mum iteration = 50,000), using the Tripos force field [32], Gasteiger–Huckel charges were
added [33] in an implicit solvent environment (Dielectric constant = 80.0) as available on
the SYBYL®-X 2.0 platform [31].

The X-ray crystallographic structure of AaegOBP1 (https://www.rcsb.org/structure/
3k1e, 4 February 2022; PDB: 3K1E) [34] was employed in this study. The biopolymer
module from the SYBYL-X 2.0 platform [31] was employed to remove water and ions
and to add hydrogen atoms in a standard geometry. Next, an H++ server (Virginia Tech,
Blacksburg, VA, USA) [35] was employed to check the protonation state of residues with
pH = 8.0 [2]. The AaegOBP1 binding site was defined according to previous studies [6,8].

A previous study evaluated the ability of piecewise linear potential (ChemPLP),
GoldSore, ChemScore and Astex statistical potential (ASP) scoring functions as available
on the GOLD program to generate satisfactory solutions according to the root mean square
deviation value (Figure S1). This way, the conformational search and scoring evaluation
were performed employing the piecewise linear potential (ChemPLP) using the default
parameters [8,22].

The prioritized compounds in pharmacophore-based virtual screening were employed
in a molecular docking routine, which employs the genetic algorithm (GA) to flexibly
consider the ligands and active site in the molecular docking study and thus find the
most stable conformer of each compound. [28]. In addition, compounds with a ChemPLP
score > 0, and thus without any steric penalties, were prioritized at the volatile filtering step.

3.2. Volatile Filtering

The filtered molecules from the hierarchical virtual screening were subjected to the
Marvin® Sketch 15.4.20 program [36] to calculate the volatile properties: molecular weight
(MW); polar surface area (PSA); hydrogen bond acceptors (HBA); hydrogen bond donors
(HBD) and calculated partition coefficient (cLog P). Those molecules without penalties [2]
and commercially available were selected for the repellency assays.

https://www.sigmaaldrich.com
https://www.sigmaaldrich.com
https://www.rcsb.org/structure/3k1e
https://www.rcsb.org/structure/3k1e
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3.3. Molecular Dynamics

The APO form and the DEET/AaegOBP1 (crystallographic ligand), ZINC698/AaegOBP1,
ZINC878/AaegOBP1, ZINC141/AaegOBP1, ZINC047/AaegOBP1 and ZINC305/AaegOBP1
complexes were simulated using the GROMACS 4.5 package version [37]. The ligands’
topologies were generated using the ATB 3.0 server [38,39] and used to build the complexes.
The GROMOS96 (53a6) force field [40] was used for all simulations. Water molecules
(Extended Simple Point Charge (SPC/E) model [40,41] were inserted into a cubic box at
a distance of 1.4 nm from the protein surface. This distance ensured that the minimum
distance between the molecules and their periodic image was larger than the cutoff used
for electrostatic and Lennard-Jones interactions (0.9 nm) [42]. To neutralize the systems,
some water molecules were replaced by positive ions (Na+), randomly distributed inside
the box.

A three-step (5000 steps) energy minimization procedure was employed to prepare the
system to produce molecular dynamics [40–44]. First, the steepest descent algorithm was
applied by harmonically constraining the non-hydrogen atoms of the protein to their initial
positions, followed by a second steepest descent minimization with all atoms unconstrained.
Subsequently, a conjugate gradient (CG) algorithm was applied to all systems for further
energy minimization. Bonds involving hydrogen atoms were constrained using the LINCS
algorithm for proteins/ligands and SETTLE for water molecules, which allowed for the use
of an integration time of 2 fs [40–44]. Periodic boundary conditions (PBC) were applied,
and the unbound cutoff was set to 0.9 nm for Coulomb and van der Waals interactions.
Long-range electrostatic interactions were treated using the particle mesh Ewald (PME)
method [45].

An MD equilibrium of 1000 ps, at 298 K, was performed with the restricted position of
the distinct hydrogen atoms of the protein. In this step, a Boltzmann random distribution
was used to generate the initial velocities for each simulation. The temperature and pressure
were held constant at 303.15 K and 1 atm, using Berendsen’s weak coupling approach [46].
Then, 40,000 ps of unconstrained MD was performed to obtain data.

3.3.1. Trajectory Analysis

The structural stability of APO and complexes was evaluated by the root mean square
deviation of the atomic positions (RMSD) of the Cα atoms of the APO form and complexes
using the RMS function implemented in GROMACS 4.5.6. Then, root mean square fluctua-
tion (RMSF) was employed to evaluate the residual fluctuation of the APO form and com-
plexes (DEET/AaegOBP1, ZINC698/AaegOBP1, ZINC878/AaegOBP1, ZINC141/AaegOBP1,
ZINC047/AaegOBP1 and ZINC305/AaegOBP1) by the RMS Function implemented in GRO-
MACS 4.5.6. The RMSD and RMSF analysis plots were plotted in the Grace program [47].
The average structure of the stable complexes was selected by a clustering algorithm
method [48] implemented in GROMACS 4.5.6, with a cutoff of 0.15 nm during the produc-
tive phase; the 3D plot of each average structure was generated, and the interaction maps
were analyzed.

3.3.2. Binding Free Energy

The molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) method im-
plemented in the g_mmpbsa tool [49] was employed to quantify the binding free energy
of DEET/AaegOBP1, ZINC698/AaegOBP1, ZINC878/AaegOBP1, ZINC141/AaegOBP1,
ZINC047/AaegOBP1 and ZINC305/AaegOBP1 complexes in 40 snapshots extracted ev-
ery 0.5 ns from the production trajectories (20 to 40 ns). The vacuum potential energy
(MSE) was measured by electrostatic (Eelec) and van der Waals (EvdW) interactions using
Coulomb and Lennard-Jones (LJ) potential functions. While the polar solvation energy
(Gpolar) of the complexes was quantified in a lattice box (cfac = 2 and fadd = 20) with
0.150 M NaCl solvent (radiiNa = 0.95 Å; radiiCl = 1.81 Å) and dielectric constant = 80 by
Debye–Huckel approximation. The nonpolar solvation energy (Gnonpolar) was calculated
using a solvent-accessible surface area model (SASA) with a predetermined solvent surface
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tension (gamma= 0.02267 kJ mol−1 Å−2) [50]. The standard output provides the binding
free energy value of each complex.

4. Conclusions

The use of a previously validated methodology allowed for the prioritization of poten-
tial compounds with stereoelectronic characteristics and binding affinity to AaegOBP1. In
addition, the application of physicochemical and toxicological filters allowed the predic-
tion of compounds with the same physical–chemical requirements of known repellents of
A. aegypti and non-toxic chemical groups that can affect the human skin.

The virtual screening model based on pharmacophores and coupling allowed the
prioritization of 1253 compounds from Sigma-Aldrich® (https://www.sigmaaldrich.com,
4 February 2022) and 18 compounds from the biogenic database available on the ZINC15
platform. Among the prioritized compounds, five had no physicochemical and toxicological
penalties and, therefore, possibly no permeability problems against mosquito barriers and
no toxicity to human skin. ZINC878, ZINC305 and ZINC141 were the only ones available
for acquisition and were therefore prioritized for further steps.

The MD trajectory provided an analysis of the stability behavior and free energy
estimation of AaegOBP1 complexed with ZINC878, ZINC305 and ZINC141 through RMSD,
RMSF and binding free energy calculation. When the MD representative structure interac-
tion maps were compared with the docking interaction maps, a similar interaction profile
was observed for DEET, ZINC00131924 and ZINC00170981 compounds, while ZINC141
showed a new interaction profile in the MD pathway. In addition, ZINC878 and ZINC305
were prioritized and acquired for further testing, such as repellency testing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206777/s1, Figure S1: RMSD representation of best
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0.703 A2); Yellow line: GoldSCORE (RMSD: 2.92 A2); Magenta line: ChemSCORE (RMSD: 8.10 A2);
Green line: ASP (RMSD: 8.24 A2); Table S1: 2D chemical structure of prioritized compounds from
pharmacophore and docking-based virtual screening; Table S2: Training and test set employed in
pharmacophore model construction and validation.
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