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Abstract  The seasonal cycle of ice thickness and temperature in Lake Wuliangsuhai, a typical shallow lake in the central 

Asian arid climate zone, was simulated using the HIGHTSI model and the MERRA-2 data as the meteorological forcing. The 

average ice growth rate was 0.64 cm·d−1 and −1.65 cm·d−1 for the growth and melting stage of the ice cover, respectively. The ice 

thickness agreed well with the field observations conducted in winter 2017, with a correlation coefficient of 0.97. The ice 

temperature field also agreed with observations in both daily variations and the vertical profile, and a better agreement in the 

daily amplitude and profile shape of ice temperature could be achieved if field data on physical properties of snow cover and

melting ice were available. This study proved the feasibility of both the HIGHTSI model and the MERRA-2 data for modeling 

the ice cover evolution in Lake Wuliangsuhai, providing a basis for a deep insight into the difference of lake ice evolution 

between central Asian arid climate zone and polar/sub-polar regions. 
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1  Introduction 

In the Northern Hemisphere, approximately half of the 
inland surface waters freeze over every year, and the 
duration of ice cover has a major role on local climate 
(Downing et al., 2006; Kirillin et al., 2012). Compared to 
other cold climate terrestrial surfaces, lakes have a higher 
evaporation rate (Rouse et al., 2008) and less day-and-night 
temperature variability. The ice season has impacts on both 
the regional climate and weather events, such as thermal 
moderation and the lake effect on snow accumulation 
(Prowse et al., 1990; Brown and Duguay, 2010). Previous 
studies have shown that ice seasons have generally become 
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milder, resulting in a shorter duration and thinner ice cover 
(Magnuson et al., 2000; Leppäranta et al., 2017; Hewitt et 
al., 2018; Solarski and Rzętała, 2020). 

Similarly with polar and sub-polar lakes, which have 
attracted many attentions (Kirillin et al., 2012; Cheng et al., 
2014), lakes in the cold and arid climate of Central Asia are 
frozen for several months of the year. But Central Asia has 
many obvious differences from the northern areas in the 
growth and decay of the lake ice cover. There, for example, 
the incident solar radiation keeps at a high level throughout 
winter because of the high solar elevation angle at noon 
(30°–55°) and continuously sunny days in winter. 
Additionally, the snow cover on ice is always very thin or 
absent due to low winter precipitation. In recent years, 
research on ice–covered lakes has increased in Central Asia, 
and several new phenomena in the limnology of freezing 
lakes have been discovered. Shi et al. (2014) found that the 
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thermal diffusivity increases slowly with decreasing ice 
temperature in a thermokarst lake. Huang et al. (2019) 
reported a high heat flux from water to ice in a lake located 
on the central Qinghai-Tibet Plateau. Su et al. (2019) 
reported the impact of global warming with later ice-on and 
earlier ice-off dates in Qinghai Lake. However, 
investigations on ice thickness and temperature in central 
Asian lakes are still very limited (Huang et al., 2019), and 
their differences from polar/sub-polar lakes is not yet clear. 

Field observations are the first choice to address this 
issue, but the challenge comes from the difficulty with 
observing the complete process of lake ice growth and 
decay. Therefore, numerical simulations using lake ice 
models can be applied as powerful supplements to the 
limited field observations. Various lake models have been 
applied to perform numerical simulations of snow and ice 
(Vavrus et al., 1996; Wange et al., 2010; Yang et al., 2012; 
Cheng et al., 2014). Among them, the one-dimensional 
high-resolution thermodynamic snow and ice model 
(HIGHTSI) is well-calibrated and widely used (Semmler et 
al., 2012; Yang et al., 2012; Cheng et al., 2016). It is daily 
used in sea ice forecasting in the Finnish Meteorological 
Service, and it is also widely used in the simulations of 
seasonal formation and extinction of lake ice (Huang et al., 
2019a) and other related studies. Compared with other lake 
ice models, the HIGHTSI model takes into account the 
coupling of the ice and snow layers, and also the internal 

melting within the ice layer (Cheng et al., 2014). 
As the first step towards a deep insight into the 

difference of lake ice evolution between central Asian arid 
climate zone and polar/sub-polar regions, the motivation of 
this study was to investigate the evolution of thickness and 
temperature profile of the ice cover in Lake Wuliangsuhai 
in Inner Mongolia, for a typical shallow lake in central 
Asian arid climate zone. The HIGHTSI model was 
employed for this study and the modeling results were 
verified by limited in-situ observations. 

2  Methodology 

2.1  Site description 

Lake Wuliangsuhai (40.9°N, 108.9°E) is located in the 
central part of Inner Mongolia, northern China. It is a 
representative shallow lake in the lake area of the 
Mongolian Plateau. Lake Wuliangsuhai covers an area of 
over 300 km2 and its altitude is 1019 m above the sea level 
(Figure 1). The lake is 35.4 km long and 6.6 km wide, and 
the mean and maximum depths are 1.0–1.5 m and 2.5–  
3.0 m, respectively. The annual mean air temperature is 
7.5 . The lake is frozen from early November to the end of ℃
March, and the average annual maximum ice thickness is 
63 cm (Yang et al., 2016).  

We conducted field observations in Lake Wuliangsuhai 

 
Figure 1  Location of Lake Wuliangsuhai. The lower left shows the ice cover on the lake, and the lower right shows the field site during 
winter 2017. 

during winter 2017, including weather, ice thickness, and 
ice–water temperature profile (Figure 1). The detailed 
descriptions of the observations, equipment, and results 
were reported in Lu et al. (2020). The water depth was   
1.7 m at the field site. Based on our previous field 
observation experience of Lake Wuliangsuhai, it was 
determined that the lake freezes around the beginning of 
December. The modeling start date was also determined to 

be 5 December based on the freezing degree day method. 
The variations of water level in winter are negligible, 
because no inflow or outflow is allowed then (Song et al., 
2019). 

2.2  Thermodynamic ice model 

A well-calibrated and widely used thermodynamic snow 
and ice model HIGHTSI is applied in this study to 
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investigate the lake ice thickness and temperature (Semmler 
et al., 2012; Yang et al., 2012; Cheng et al., 2016). The 
basic equations of the HIGHTSI model are shown below 
(Yang et al., 2012): 
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Eq. (1) controls the temperature conduction within the 
ice, and Eqs. (2) and (3) are the boundary conditions at the 
upper and lower surfaces. In Eq. (1), Ti is the ice 
temperature; ρi is the ice density; ci is the specific heat of 
ice; ki is the heat conduction coefficient of the ice, and Qs is 
the solar radiation. In Eq. (2), Ql, is the net long–wave 
radiation at the surface; α is the surface albedo; 1−γ is the 
fraction of surface absorption of solar radiation; Qh is the 
sensible heat flux; Qle is the latent heat flux; Qp is the heat 
flux from precipitation; Fc is the heat conduction from the 
ice to the surface; and Fm is the equilibrium term of the 
surface heat flux. The heat flux pointing towards the surface 
of ice/snow is defined as positive, and calculations of each 
term in Eq. (2) can refers to Cheng (2002). In Eq. (3), Lf is 
the latent heat of freezing; ℎi is ice thickness; Fw is the 
conductive heat flux from the water body; Tib is ice bottom 
temperature; Tf is the lake freezing temperature. In the 
HIGHTSI model, Fw is usually identified as a constant. 
Precipitation in the Lake Wuliangsuhai region is very low, 

and therefore the Qp term in Eq. (2) can be neglected 
(Huang et al., 2019a). 

2.3  Meteorological data and model parameters 

The meteorological forcing data were obtained from 
MERRA-2 (The Modern Era Retrospective–analysis for 
Research and Applications) provided by NASA (National 
Aeronautics and Space Administration). It is a reanalysis 
dataset that includes long time-series of meteorological 
quantities, such as air temperature, wind speed, humidity, 
and radiation. MERRA-2 covers the whole world with a 
spatial resolution of 0.5° × 0.625° and a temporal resolution 
of 1 h. Therefore, it can be used directly in HIGHTSI model 
calculations. 

Figure 2 shows the comparison between MERRA-2 and 
the field observations for the winter 2017, including air 
temperature, wind speed, and humidity. It can be seen that the 
air temperature of MERRA-2 is close to the measurements, 
with the mean bias of 0.94℃ and a correlation coefficient of 
0.91. The mean bias between the wind speed of MERRA-2 
and the measurements is 0.11 m·s−1, with a correlation 
coefficient of 0.62, and for the humidity these values 
are –16.26% and 0.69%. These accuracies are considered 
sufficient to use MERRA-2 data in the modelling the ice 
season in Lake Wuliangsuhai (Huang et al., 2019a). 

Clouds were not considered during the modeling 
period because the sky was mostly clear over Lake 
Wuliangsuhai in winter. Moreover, the heat flux at the 
bottom of the ice was estimated from the field 
measurements (Lu et al., 2020). The standard thermal 

 
Figure 2  Air temperature (a), wind speed (b) and relative humidity (c) produced by MERRA-2 and comparisons with field observations.  
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properties of ice was determined according to the average 
ice temperature that was –3.4  during observation period ℃
on Lake Wuliangsuhai in winter 2017 (Lu et al., 2010). 
Since the lake ice density was 2.5% less than the density of 
pure ice, the thermal properties of ice were modified 
according to ice density and air content (Leppäranta, 2014), 
as shown in Table 1. 

Table 1  The thermal properties of ice 

Parameters Values Sources 

Heat conductivity of ice 2.1 W·m−1·K−1 Yen, 1981 

Specific heat of ice 2039 J·kg−1·K−1 Leppäranta, 2014 

Latent heat of freezing 0.33×106 J·kg−1 Leppäranta, 2014 

Ice density 895 kg·m−3 Observed 

Ice bottom heat flux 6.5 W·m−2 Observed 

 

3  Results and discussions 

3.1  Lake ice thickness 

The HIGHTSI model results on the cycle of ice thickness 
and temperature in a complete winter season are shown in 
Figure 3. Within the observation period from 1 January to 9 
March, the correlation coefficient between modeling and 
observations is 0.97, and the average error is 0.01 m. It 
proves the feasibility and accuracy of the modeling using 

both MERRA-2 data and the HIGHTSI model. 
In winter 2017, the ice thickness increased rapidly 

from 0 to 48 cm from 5 December to 24 January. From 25 
January to 3 March, the ice thickness increased slowly from 
48 cm to 56 cm. The average ice growth rate was      
0.64 cm·d−1. After March 3, the ice began to melt at a rate of 
1.65 cm·d−1, and the lake ice disappeared on 6 April. 
Because of the human intervention of opening the gates and 
releasing water during the melting period in spring, the end 
of ice period is always earlier than the date obtained from 
the pure thermodynamic model. 

3.2  Lake ice temperature 

A comparison between the modelled and measured ice 
temperature is shown in Figure 4. According to the 
deployment of the temperature probe, the temperature at the 
depths of 10 cm and 20 cm below the ice surface were 
selected, and the basic statistics of the comparisons are listed 
in Table 2. Similar to the ice thickness, the modelled ice 
temperature was close to the measured value, with the mean 
bias of 0.63℃ at the 10 cm depth and 0.09℃ at the 20 cm 
depth. The measured and modelled average ice temperature 
at 10 cm were –4.46℃ and –3.67℃, respectively, and at   
20 cm the corresponding values were –3.68℃ and –2.62℃. 
The correlation coefficients were greater than 0.85 and the 
average error were less than 0.55℃, which further illustrates 
the high accuracy of the modelled results. 

 
Figure 3  HIGHTSI modelled ice thickness, temperature (color scale) and measured ice thickness (circles) for winter 2017 in Lake 
Wuliangsuhai. 

In Figure 4, the amplitude of the modelled daily ice 
temperature is close to the measured data in the early period, 
but in the later stage the modelled amplitude is much less 
than the observations. The modelled daily ice temperature 
difference at the 10 cm depth is close to the measured value 
before the snowfall on 8 February, with a deviation of 
0.35 , while thereafter the deviation is ℃ –1.91 . The main ℃
reason is that in the model calculation the effect of snow on 
the ice temperature change needs to be revised. Due to the 

insufficient snow observations, with only snow depth 
measured, it is impossible to give proper physical properties 
of the snow cover, such as snow density, thermal 
conductivity and so on. These physical properties have an 
impact on the accuracy of the model results. The 
temperature at the 20 cm depth is less affected by snow, and 
the daily temperature difference of ice temperature before 
and after the snowfall is relatively close, with a deviation of 
0.09 .℃  
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Figure 4  The modelled and measured ice temperature at 10 cm (a) and 20 cm (b) depth in winter 2017. The vertical black lines denotes 
the date of two snowfall events.  

Table 2  The mean bias (MB), root mean square error (RMSE), 
correlation coefficient, and relative error between the 
modelled and observed ice temperature 

 MB/℃ RMSE/℃ Correlation coefficient 

10 cm 0.63 1.95 0.88 

20 cm 0.09 0.77 0.86 

3.3  Vertical ice temperature profile 

To further examine the accuracy of the model results, the 
modelled temperature profiles at 0:00, 8:00, 12:00, 16:00, 
and 20:00 on three typical dates (January 15, February 8, 
and March 5) for bare ice, snow-covered ice, and melting 
ice stages were selected for comparison with the 
measurements. The results are shown in Figure 5. 

 
Figure 5  The modelled (lines) and observed (circles) temperature profiles at different times of day. The first row is bare ice 15 January 
(a–e), the second row is snow-covered ice 8 February (f–j) and the third row is melting ice 5 March (k–o). 

For the bare ice period, the model results are close to 
the measured data with correlation coefficients higher than 
0.91. The ice temperature profiles at 0:00, 8:00, and 20:00 
show a linear distribution pattern and are mainly affected by 

the air temperature (Figures 5a, 5b, 5e). Moreover, the 
profiles at 12:00 and 16:00 have a “C-shape” due to the 
enhanced solar radiation and the increasing surface air 
temperature (Figures 5c, 5d). In particular, the modelled ice 
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temperature profile at 16:00 clearly shows an increase in 
temperature at the thickness of 0–0.3 (Figure 5d), consistent 
with the results of Cheng et al. (2002), mainly due to the 
high temperature of the subsurface layer of the lake ice 
caused by solar radiation.  

The snow-covered period shows similar characteristics 
as the bare ice case. The model agrees with the 
measurements, with correlation coefficients exceeding 0.94 
and the average error was less than 0.07℃. The vertical 
pattern of the profile is also similar with the bare ice stage. 
The ice temperature profiles are linear at night-time 
(Figures 5f, 5j). During the daytime, with the increase of 
solar radiation, the ice temperature in the upper part 
increases and shows again the “C-shape” profile (Figures 5h, 
5i). 

It is complicated during the melting stage, and most 
modelled results are close to the measurements, except for 
some points in daytime. The correlation coefficients 
between the model and measurements at 0:00, 8:00, and 
20:00 all exceed 0.70, and the average error is less than 
0.02  (Figures 5k, 5l, 5o)℃ . At 12:00 and 16:00, after the 
increase of solar radiation, there are differences in 
individual points in the profiles (Figures 5m, 5n). A 
low-temperature region in the middle of the ice layer can be 
found at 12:00 in both measured and model results  
(Figure 5m). The reason for this phenomenon is that the 
increase in solar radiation intensity and the increase in 
temperature heats up the surface ice cover, while the water 
body also has a heat transfer behavior for the ice bottom. 
Therefore, the middle depth of the ice cap is subject to both 
surface and surface heat transfer effects, resulting in the 
lowest ice temperature in the middle. However, there is no 
such low-temperature region in the modeled profile at 16:00 
(Figure 5n), 20:00 (Figure 5o), and especially at 8:00 
(Figure 5i). There are two main reasons for this discrepancy. 
On the one hand, the existence of an obvious daily 
freeze–melt cycle during the melting stage causes 
differences between the model and measurements. On the 
other hand, comparing with the freezing period, the physical 
properties of the lake ice will change in the melting period. 
For reasons such as the observation equipment and 
personnel safety, the observations during the melting phase 
are insufficient to correct the parameters of ice physical 
properties in the model.  

3.4  Differences from Arctic lake ice 

Lake ice in the central Asian region has its own importance 
and uniqueness according to the above results, and they are 
significantly different from others in the boreal or Arctic 
lakes in the high latitudes at least in the following three 
aspects. 

First, lake ice in the boreal or Arctic regions has a 
longer freeze period. For example, Lake Kilpisjärvi 
(Leppäranta et al., 2019) in Arctic tundra and Lake Orajärvi 
(Cheng et al., 2014) in northern Finland both have a 
freezing period of about 7 months, which is significantly 

longer than that of the Lake Wuliangsuhai in the central 
Asian region. This leads to differences in the maximum ice 
thickness (Figure 3) and also the impact of seasonal ice 
cover on human life. 

Secondly, the northern lake ice is always covered by a 
thick snow layer. Lake MacDonald (Ariano and Brown, 
2019) experiences high snowfall, resulting in snow ice 
accounting for more than 70% of the total ice thickness. It is 
significantly different from Lake Wuliangsuhai where 
snowfall is rare (Figure 4) and coagulated ice constitutes the 
dominant ice thickness. A thick snow cover blocks the heat 
exchange between atmosphere and ice, and also raises the 
surface albedo (Cheng et al., 2014). 

Finally, less cloudy days and higher solar elevation 
make the lake ice in Central Asia controlled primarily by 
the incident solar radiation. Compared with Arctic lakes, 
solar radiation can easily pass through the lake ice here 
covered only by a thin snow layer, and then heats the water 
column beneath ice, which in turn increases the water-ice 
heat flux and warms the whole ice cover (Cao et al., 2019). 

4  Summary and conclusions 

The evolution of the lake ice thickness and temperature 
profile were simulated in the Lake Wuliangsuhai in Inner 
Mongolia, a typical shallow lake in the central Asian arid 
climate zone, by using the HIGHTSI model and the 
MERRA-2 data as the forcing. The simulated results were 
compared with and validated by the field observations 
conducted in winter 2017.  

The simulated ice growth rate was 0.64 cm·d−1 and 
−1.65 cm·d−1 for ice growth and melting periods of Lake 
Wuliangsuhai. The maximum ice thickness was 56 cm, 
occurring on March 3. The average ice temperature was 
–1.6  in winter 2017. The simulated ice thickness agreed ℃
well with the observations during the observation period 
from January 1 to March 9. 

The simulated lake ice temperature also agreed with 
the observations, with the mean error less than 0.55  ℃ at the 
depths of 10 cm and 20 cm below the ice surface. However, 
the daily amplitude of the modelled ice temperature during 
snowfall was less than in the measurements. The main 
reason was the absence of the snow physical properties 
needed in the calculations, such as the snow density, 
thermal conductivity and so on. The modelled vertical ice 
temperature profile agreed well with observations for both 
the bare ice and snow-covered periods, but some differences 
existed in the melting period. The main reason was the lack 
of the measured data of lake ice physical properties of the 
melting period that can be modified in HIGHTSI model.  

Both the HIGHTSI model and the MERRA-2 
meteorological data have been proved to be feasible to 
simulate the seasonal evolution of the lake ice cover in Lake 
Wuliangsuhai. The seasonal evolution of lake ice in large 
time scale can be calculated in future study to investigate 
the difference between Lake Wuliangsuhai, a shallow lake 
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with strong sunlight but little snow on the surface, and 
boreal lakes, with deep snow cover but weak sunlight in 
winter. 
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