UNIVERSITY OF HELSINKI

https://helda.helsinki.fi

Comparing pitch distributions using Praat and R

Lennes, Mietta

2015

Lennes , M, Stevanovic , M, Aalto, D & Palo , P 2015, ' Comparing pitch distributions
using Praat and R ', Phonetician , no. 111-112 , pp. 35-53 . <
http://www.isphs.org/Phonetician/Phonetician_111-112.pdf >

http://hdl.handle.net/10138/351051

cc_by
publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



COMPARING PITCH DISTRIBUTIONS USING PRAAT AND R

Mietta Lennes', Melisa Stevanovic?, Daniel Aalto®, and Pertti Palo*

' Department of Modern Languages, University of Helsinki, Finland
?Finnish Centre of Excellence on Intersubjectivity in Interaction,
University of Helsinki, Finland
3 Rehabilitation Medicine, Communication Sciences and Disorders, University of
Alberta, and Institute for reconstructive sciences in medicine, Misericordia
Community Hospital, Edmonton, Canada
*Speech and Language (CASL) Research Centre, Queen Margaret University,
Edinburgh, United Kingdom
e-mail: mietta.lennes@helsinki.fi, melisa.stevanovic@helsinki.fi, aalto@ualberta.ca,
pertti.palo@gmail.com

Abstract

Pitch analysis tools are used widely in order to measure and to visualize the melodic
aspects of speech. The resulting pitch contours can serve various research interests
linked with speech prosody, such as intonational phonology, interaction in
conversation, emotion analysis, language learning and singing. Due to physiological
differences and individual habits, speakers tend to differ in their typical pitch ranges.
As a consequence, pitch analysis results are not always easy to interpret and to
compare among speakers.

In this study, we use the Praat program (Boersma & Weenink 2015) for analyzing
pitch in samples of conversational Finnish speech and we use the R statistical
programming environment (R Core Team, 2014) for further analysis and
visualization. We first describe the general shapes of the speaker-specific pitch
distributions and see whether and how the distributions vary between individuals. A
bootstrapping method is applied to discover the minimal amount of speech that is
necessary in order to reliably determine the pitch mean, median and mode for an
individual speaker. The scripts and code written for the Praat program and for the R
statistical programming environment are made available under an open license for
experimenting with other speech samples. The datasets produced with the Praat script
will also be made available for further studies.

1 Introduction

The analysis of the melodic aspects of speech serves various research interests, such
as intonational phonology, speech communication, interactional linguistics,
interactional sociology, emotion analysis and language learning. Relative pitch levels
and patterns can be connected with many language-specific linguistic functions, such
as intonation, stress, (sentence) accent or lexical tones. In conversation, subtle
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variations in pitch have been shown to convey, for example, turn-taking or turn-
yielding intentions (Duncan, 1972; Ford & Thompson, 1996; Szczepek-Reed, 2004),
sequence organization (Kaimaki, 2010; Persson 2013), information status (Breen et
al., 2010) and confidence (Scherer et al., 1973).

The pitch range of a speaker depends on physiological (Titze, 1989) and psycho-
social (e.g., Cartei et al., 2014; Munson et al., 2015) factors and can serve as an
identifying characteristic of the speaker (Kinoshita et al., 2009; Munson, 2007). Due to
this variability, theories of intonational phonology usually work with relative pitch
levels or excursions within utterances (see, e.g., Ladd, 1996 for a detailed discussion)
and not absolute pitch. Moreover, the functional significance of pitch in conversation
depends not only on its absolute levels but largely on its relation to the speaker-specific
pitch range (e.g., Couper-Kuhlen, 1996). In other words, what counts as high or low
varies by speaker (Leather, 1983; Moore & Jongman, 1997). These insights are
supported by empirical research showing that listeners are capable of locating the pitch
of a given speech sound within the speaker’s range without external context or previous
exposure to the speaker’s voice (Honorof & Whalen,2005). Thus,in order to analyze the
pitch of a given speaker, it is necessary to relate it to his or her typical pitch range.

Since the present study deals with perceptual and relative properties in speech, we
prefer to use the term pitch instead of the acoustic concept of fundamental frequency (f)
in this work. The choice of scale plays an important role in analyzing pitch variation.
Fundamental frequency fo, which correlates non-linearly with the perceived pitch in
voiced speech, is measured and reported as absolute values in Hertz scale. Traunmiiller
and Eriksson (1995) provide an overview of previous reports concerning the foranges of
male and female speakers. They point out that when the fprange is expressed in the
absolute Hertz scale, female speakers appear to exhibit a wider range than men, but the
difference more or less disappears when the data are converted into semitones. When
expressed in semitone scale, the overall shapes of pitch distributions appear to be similar
between speakers (Lennes, 2007) and even between different languages (Lennes et al.,
2008).Thisisnot surprising,since humans have similar vocal organs, and the vocal folds
can only be stretched within certain limits. Moreover, during modal phonation, it is not
possible to instantaneously jump from low pitch to high pitch or vice versa, but the
speaker will have to glide through the intermediate pitch levels.

The aim of the present work is to investigate the general distribution of pitch in
conversational Finnish speech and to discover the minimum requirements for obtaining
reliable statistics of speaker-specific pitch ranges. We will first calculate and describe
the pitch distributions of 40 Finnish speakers in everyday conversation, pinpointing
some factors that may affect the typical distribution shape in individual cases. Using a
bootstrapping method, we will then attempt to determine the minimum amount of
samples that is required in order to calculate the mean, median or mode.

We invite other researchers to replicate the results and to extend and improve the
method. For these purposes, the code for Praat and R, as well as the pitch data
produced for this study, will be shared online under an open license. Our actual
workflow is described more explicitly in the documentation of the scripts. Since the
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tools may be of interest to readers without a background in phonetics, we will first
briefly describe how human speakers may vary in their preferred pitch ranges and how
automatic pitch analysis generally works.

2 Background

Speakers tend to differ in the pitch region they usually employ during speech. This
variability in preferred pitch is partly due to anatomical and physiological differences.
On average, men have longer and thicker vocal folds than women (e.g., Titze, 1989).
This is largely why female speakers tend to speak at a higher pitch than male speakers.
Similarly, small children tend to use a much higher pitch region than adults.

In addition to the aforementioned physical differences, people also exhibit culture-
specific and idiosyncratic ways of using their voice while speaking or singing. Some
speakers may be perceived to have “lively” voices, whereas others may sound
“monotonous”. This may mean that some speakers employ larger pitch ranges,
whereas others prefer to keep their pitch close to their personal level of comfort. On
the other hand, some speakers creak almost all the time, whereas others use a breathy
voice quality or one that may sound like falsetto. In various medical conditions or as
a consequence of a surgical treatment affecting the upper airways, the pitch of a
person's voice may change significantly. All in all, voice and pitch are an important
part of a person's self and identity.

Since people are apparently able to estimate the general height of each others'
voices almost instantly, it is likely that this impression is not based on, e.g., the highest
and lowest pitches, which would vary from one utterance and situation to the next.
Instead, listeners are more likely to “tune in” to the pitch region that the speaker uses
most of the time. In music, the typical, most comfortable pitch range of a singer is
sometimes referred to as the fessitura.

Thus, in order to be able to compare speakers reliably, it is necessary to determine
the typical or preferred pitch range of a particular speaker. However, this is not a
technically straightforward task. The automatic analysis of pitch or fundamental
frequency in speech does not always provide data that can be easily interpreted and
compared among speakers. In addition, poor technical quality of the speech material
can distort the analysis result. In order to get plausible data, researchers need to be
aware of the general properties and inherent limitations of the pitch extraction
algorithm that is being applied.

2.1 Automatic pitch detection

In automatic pitch analysis, the voiced portions of speech are expected to represent a
single quasi-periodic sound source. This is true in recordings where only one speaker is
speaking at a time and the speaker's vocal folds are vibrating normally and rather
steadily. Pitch analysis is usually tuned so as to pick up the fundamental frequency fo,
which usually corresponds to detecting the presence and frequency of the slowest, at
least nearly periodic component in the complex acoustic signal. At least during modal
(regular) phonation, the fj thus reflects the frequency of the glottal pulses, i.e., the
repetitive opening-closing sequences of the vocal folds.
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There are various methods available for automatic pitch extraction and for
representing the resulting pitch contours. In this study, we apply the standard
autocorrelation method available in the Praat program (the command To Pitch...).
This method is often used for studying intonation in speech, whereas the cross-
correlation algorithm, also available in Praat, is suited for special purposes, such as
voice analysis. In practice, both algorithms calculate a sequence of pitch values using
short, partly overlapping time windows or frames extracted from the original audio
signal. The resulting values can be plotted as a pitch contour as a function of time, or
they may be further analyzed.

Since the larynx and the articulatory organs are rarely held completely steady during
speech, the frequency structure of the speech signal changes practically all the time.
Each analysis window may include speech that is only partly voiced and/or where the fy
is changing. In order to be able to select the best or most plausible candidate among a
number of all possible pitch candidates within each analysis window, the pitch algorithm
requires the user to supply the minimum and maximum frequencies prior to the analysis.
These parameters can be adjusted according to the expected frequencies for a particular
speaker or for specific analysis purposes. The minimum frequency parameter defines
the duration of each analysis window. In order to detect a low fy, where the glottal periods
arerelatively long, the analysis window needs to be wider than for a high fy. However,in
case the minimum parameter is set too low, the wide analysis frame will conceal fast
changes in the fy. In addition, users can also adjust more advanced parameters that
control the tolerance for abrupt pitch changes between consecutive analysis frames.
These parameters are used in the pitch algorithm, since human speakers are not able to
shift the pitch of their voice up or down at an arbitrary rate. Nevertheless, it is to be noted
that even if all the parameters are set in an appropriate way, external noises and
overlapping speakers may distort the result.

Non-modal phonation, such as creaky voice, occurs quite frequently in everyday
talk (Ogden, 2001; Gobl & Ni Chasaide, 2003; Yuasa, 2010). Irregular periodicity or
two simultaneous glottal modes of vibration may occur during creaky or glottalized
phonation, and they are difficult to analyze consistently with the standard pitch
algorithms. Such events will often result in missing values, potentially erroneous
values with halved or doubled frequency (often referred to as “octave jumps”), or
other outliers in the pitch curve. In these cases, it is still possible to perform a partly
manual analysis in Praat in order to check the result. This can be accomplished for
instance by editing a Pitch object. Alternatively, a PointProcess object can first be
generated from the Pitch and the corresponding Sound object. Next, the locations of
the automatically detected pitch periods can be edited in the PointProcess editor, after
which the PointProcess can be converted back to a Pitch object. Manual editing is
applied for instance in the ProsodyPro system, which is intended for the analysis of
pitch contours on more large-scale material (Xu, 2013). However, manual work is
time-consuming, somewhat subjective, and error-prone. On the other hand, it would
be efficient to analyze large amounts of data in batch mode, but even if the pitch
analysis parameters are individually adjusted for each speaker, it may not be

38



ultimately possible to avoid the halved or doubled frequency values. It would be useful
to be able to automatically discover which regions of the pitch distribution are likely
to represent the speaker's modal voice and which parts are potentially less reliable.

3 Material

We built our analysis on two corpora of conversational speech. The FinDialogue
corpus, a part of the larger FinINTAS corpus, contains ten conversations (five male-
male dyads and five female-female dyads) between young, native Finnish-speaking
adults. The participants in each dialogue knew each other well. The dialogues were
recorded in an anechoic room using high-quality headset microphones (AKG HSC-
200 SR). The two speakers in each dialogue were sitting a few meters apart and facing
opposite directions. They were instructed to chat freely for 45-55 minutes either on a
few given topics or on whatever they felt like talking about. Each speaker's voice was
recorded with a DAT recorder (Tascam DA-P1) on a separate track in a stereo file and
downsampled to a rate of 22050 Hz (sample size 16 bit). Thus, it was possible to
analyze each speaker's voice in isolation when required. This corpus will be referred
to as Corpus A.

The other collection of conversational Finnish speech, which we shall call Corpus
B, consists of shorter dialogues with 8 adult female and 8 adult male speakers (3 male-
male dyads, 3 female-female dyads, and 2 male-female dyads). The dialogues were
recorded in various conditions using one or two microphones. The dialogues included
two mundane telephone conversations (2-3 minutes each), two informal planning
interactions in a workplace setting (5 minutes and 20 minutes), and three
conversations, where the participants were engaged in a joint decision-making task in
an experimental setting (2-4 minutes each). The speakers are referred to with a number
preceded by the letter F for female and M for male speakers.

4 Analysis

The analysis procedure of this study was implemented as two main scripts: one for
collecting the pitch data from the original audio files in Praat, and the other for running
various analyses on the pitch data and for plotting the figures using the R statistical
programming environment. The two scripts are available and documented on GitHub
(Lennes, 2016).

Using a Praat script (see Lennes, 2016 for a detailed description), all the audio files
were analyzed with the standard, autocorrelation-based pitch algorithm available in
Praat. The distance between consecutive analysis frames was set to 0.02 seconds,
resulting in 50 observed pitch values per second in the measured data.

In a first analysis pass, the default minimum frequency parameter was set at 50 Hz
and the maximum at 600 Hz. (The default parameters can be changed in the Praat
script for other experiments.) These parameters would be too far apart for almost all
adult speakers, i.e., the minimum would be clearly below the lowest fundamental
frequency that most male speakers would tend to use, and the maximum value would
exceed most of the fy values of female speakers. The intention was that these settings
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would be likely to create anomalies in the initial pitch data. After this first analysis pass,
speaker-specific minimum and maximum frequencies were manually determined by
inspecting the pitch distributions in R and by locating and generously delineating the
pitch cluster with the highest density in each distribution. The speaker-specific
parameters were applied in the second analysis pass so as not to include extremely
low or high pitch values.

In total, three different datasets were obtained. Dataset 1 was calculated from raw
audio using the default minimum and maximum parameters. This type of analysis can,
in principle, be done for any audio file without knowing anything of the speaker(s),
although the results will not be reliable. Dataset 2 was produced by applying the
speaker-specific pitch parameters to analyze the raw audio. This way, it was possible
to see how the pitch distribution was affected by whether the minimum and maximum
parameters were set individually or not. In order to save some disk space, all undefined
pitch values were excluded from these first two datasets. It should be noted that
Datasets 1 and 2 are considered as experimental and they will not be useful for audio
files that include more than one speaker. Dataset 3 was calculated from the annotated
corpora so that only those parts of the audio signals were analyzed where the speaker
in question was actually speaking, according to the utterance-level annotations in the
TextGrid files. Dataset 3 was used for comparing speaker-specific distributions.

The frequency values from all the individual analysis frames obtained for all three
datasets were automatically written to data tables (tabulated text files) in both Hertz and
semitones with respect to the frequency of 100 Hz. For Dataset 3, a total of 489,485 pitch
analysis frames, including 277,384 voiced ones, were recorded. A pitch difference
expressed in semitones corresponds to the respective musical interval, which makes the
data easier to read and interpret. For instance, a difference of 12 semitones (ST)
corresponds to an octave, an interval of 7 ST corresponds to a perfect fifthand 5 ST to a
perfect fourth. In this article, all pitch values expressed in semitones are provided
relative to 100 Hz, unless another reference level or comparison is mentioned.

5 Results

The analysis continued by visualizing the general properties of the pitch
distributions for each individual speaker. Since our aim was to estimate the shape of
the overall pitch distributions of individual speakers and since pitch and frequency are
continuous variables, we first plotted the probability density curves for all speakers
and for all three datasets for inspection. A density plot is a continuous version of the
more familiar histogram.

5.1 Probability density

The pitch distributions for one female speaker (F3 in Corpus A) are plotted in
Figure 1. The analysis calculated from the unannotated audio (Dataset 1) is indicated
with a dotted line, Dataset 2 with a dashed line, and Dataset 3 with a solid line. It is
observed that the main distribution is skewed to the right. The speaker generally stays
around her typical pitch level (mode = 9.8 ST, 176 Hz), but she sometimes goes
approximately 6 semitones below or 12 semitones above her mode. Since the audio
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signal was of high technical quality, this is probably why there is very little difference
between the Dataset 1 distribution, calculated from raw audio with the default
parameters, and the result of the more speaker-specific analysis in Dataset 3.

Hz
100 200 300 400 500

0.25
I

Density
0.20
I

0.05
I

-10 0 10 20 30
semitones re 100 Hz

0.00
|

Figure 1: The probability density function of the pitch values obtained from
conversational speech recorded from one female speaker (F3 in Corpus A). The mean
pitch (11.27 semitones above 100 Hz) is indicated with a red vertical line, median
(10.6 ST) with blue and the pitch mode (9.68 ST) with a green line. The corresponding
values in the absolute Hertz scale are 195 Hz, 184 Hz and 174 Hz. The dotted line
represents the pitch distribution obtained from raw audio (Dataset 1), the dashed line
is the distribution calculated from raw audio with manually defined speaker-specific
parameters (Dataset 2), and the solid line represents the data calculated within
annotated utterances only (Dataset 3).

Another example of the pitch distributions is shown in Figure 2 for the female
speaker F23 in Corpus B. In this case, Dataset 1 includes an external low-frequency
noise. The total amount of data for this speaker was small (2282 samples in Dataset 3),
which is probably the reason why the distribution looks more irregular than that of
speaker F3 (12640 samples).
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Figure 2: The pitch distribution of the speaker F23 (Corpus B), whose recording
contained a constant, low, humming background noise at around 50 Hz. The effect of
the noise is prominent in the raw overall pitch distribution (Dataset 1, dotted line),
where the minimum frequency parameter was set at 50 Hz.

The number of pitch frames analyzed for each speaker is provided in Table 1. A
summary of their individual pitch statistics in Dataset 3 is provided in Table 2. As a
general observation, it is seen that the pitch mode for the maximal data in Dataset 3 is
in most cases (for 33 speakers out of 40) located below the median, which in turn is
usually below the mean pitch for each speaker. This confirms that a majority of the
distributions are skewed to the right. Only seven speakers (F1, F21, M4, M5, M21,
M?22 and M26) are different in this respect. M4 has an almost symmetric distribution,
and MS is even slightly skewed to the left. Both of them creaked quite extensively.
M21 and M22 exhibit bimodal pitch distributions, which may be due to the technical
quality of the audio, perhaps overlapping speech. M26 has a relatively flat and
irregular distribution.
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Table 1: The number of pitch frames recorded for each of the 40 speakers in Dataset 3.
The speakers of Corpus A are shown in the two leftmost columns, and speakers in
Corpus B in the rightmost ones.

Speaker N Speaker N Speaker N Speaker N

OF1 16335 OM1 13387 F21 17296 M21 10139
0F2 15669 0M2 13409 F22 04757 M22 07712
0F3 12640 0M3 12144 F23 02282 M23 04900
OF4 15455 0M4 21201 F24 07829 M24 02790
OF5 14563 0M5 15405 F25 08424 M25 02729
0F6 19197 0M6 14313 F26 08846 M26 05053
OF7 15506 oM7 19685 F27 12056 M27 02397
OF8 15615 0M8 16024 F28 17702 M28 08638
0F9 15778 0M9 21053
F10 09725 MI10 10216
F11 15921 M1l 19740
F12 14737 M12 08217

5.2 Establishing a reference pitch for comparing speakers

Figure 3 shows the pitch densities of all 40 speakers in Dataset 3. It is observed that
male speakers tend to have lower pitch than females, which is hardly surprising. The
overall mean pitch in Dataset 3 was 191.3 Hz (10.8 ST) for female speakers and 117.5
(2.2 ST) for males, with all speakers pooled. The corresponding standard deviations
were 44.6 Hz (3.8 ST) for females and 33.0 Hz (4.5 ST) for males. The pitch
distributions for the individual males form a cluster around 100 Hz or below, and most
of the distributions for females are centered at about 150-200 Hz. However, there are
also 6 male and 2 female speakers with more clearly overlapping distributions whose
modes are located between 100 and 150 Hz. It is thus not uncommon for the two
genders to exhibit similar pitch. Another important observation is that the shapes of
these primary distributions exhibit at least roughly similar properties: usually one
peak, generally similar width, and the distributions are more or less right-skewed.

In order to compare the way different speakers exploit their typical pitch range, it
is possible to shift the pitch distributions over each other by referring the semitone-
scaled pitch values to the speaker-specific modes. Using the semitone scale and the
mode as the common anchor point enables us to compare the details of the individual
distributions, while no information is lost about the perceptual distances of the pitch
values. The result is shown in Figure 4.

Figure 5 shows a histogram of the mode-referred pitch values pooled for all 40
speakers in Dataset 3, supplemented with the corresponding probability density curve.
The pooled mean of mode-referred pitch was 1.14 ST (s =3.36 ST, median 0.61 ST).
In the histogram of the pooled data, the probability of the bin with the highest
probability (-0.5-0.5 ST) was 0.17 (17 %). The sum of the probabilities of the bins
between -2.5 ST and 4.5 ST was approximately 0.77.
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Table 2: Summary statistics of the primary pitch distributions for 40 speakers (Sp.) in
Dataset 3.

Sp. Mode Median Mean Stdev
ST Hz ST Hz ST Hz ST Hz

F1 1029 16584 1023 180.59 1055 18635 273 31.85
F2 0947 17206 0964 17449 1000 18035 2.63 29.69
F3 0968 17438 10,60 18448 1127 19485 3.03 37.30
F4 1129 189.61 1286 21023 1336 22105 350 48.64
FS 1203 19885 1294 21121 1321 21645 230 3051
F6 0959 17285 1047 183.08 11.12 194.11 339 4301
F7 0997 17708 10.64 18491 1127 19434 272 3574
F8 0969 17393 1124 19146 11.81 202778 373 48.71
F9 07.89 15678 08.88 167.01 948 17596 3.14 3592
F10 03.06 11857 03.61 123.19 390 12705 285 2283
F11 0605 13795 0631 144.02 6.65 148,53 2.60 23.83
F12 0706 150.13 0742 15351 7.65 15672 201 20.19
F21 13779 19277 13.09 21294 1324 21774 275 37.12
F22 1073 18495 1128 19185 11.78 201.13 325 40.83
F23 1203 20033 1256 20663 12.77 2112 249  30.66
F24 1044 182.09 11.19 190.84 1191 20225 299 40.26
F25 0995 17642 11.775 197.12 1256 21303 4.19 5682
F26 13.04 21059 1359 21923 1395 22900 3.63 51.17
F27 08.79 16100 0956 173.74 10.15 183.16 325 38.96
F28 09.00 16697 1005 178.72 10.71 189.75 3.53 4196
M1  -122 093.09 -0.07 099.61 0.60 10608 3.60 27.57
M2 050 096.65 0057 103.34 115 108.60 3.05 21.10
M3 055 09637 00.73 10433 1.65 112,67 3.66 26.69
M4 0680 14751 06.79 147.98 706 152778 3.03  29.65
M5 049 09556 085 095.19 032 10491 549 5294
M6 0176 11022 0276 117.27 331 12375 349  28.50
M7 -145 09050 00.08 10044 0.77 10724 375 27.06
M8 -601 06979 -593 07100 -554 07423 349 17.14
M9 0445 128.15 0481 132.05 516 13633 265 21.79
M10 -307 08335 -140 09223 -0.74 09753 3.17 20.10
M1l 004 09849 0142 108.52 2.16 11659 401 2992
M12 04.64 130.14 0523 135.23 564 14003 249 2231
M21 0208 11221 0156 109.40 143 11137 385 2548
M22 0449 11249 0434 128351 444 13128 3.04 2374
M23 0126 106.74 0243 115.07 286 11952 277 2052
M24  -103 09387 00.14 100.81 1.18 109.72 371 2646
M25 -048 096.75 00.63 103.73 145 11072 3.19 2271
M26 0356 11054 0259 116.17 256 11809 332 2320
M27  -121 092778 -0.52 097.06 0.05 10222 328 21.30
M28 0194 11128 02.81 117.63 321 12250 3.18 23.55
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Figure 3: The overall pitch densities within annotated utterances of 20 male (blue
lines) and 20 female (red) speakers.
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Figure 4: The mode-referred pitch distributions plotted as density curves for 40
speakers in Dataset 3. The zero pitch level refers to the speaker-specific mode. Male
speakers are indicated with blue lines, females with red.
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Figure 5: The distribution of mode-referred pitch values in voiced speech (N =
277,384) for all 40 speakers in Dataset 3. The zero pitch level refers to the speaker-
specific mode. The bin width in the histogram is 1 semitone.

Thus, speakers would tend to exhibit pitch levels within such a span around their
most typical pitch in about 77% of their voiced speech. 95% of all pitch values in
Dataset 3 fall in the bins whose midpoints are located between -4 ST and 8 ST.
Conversely, speakers would hit pitch levels outside this span in about 5% of their
speech produced in the modal register. Since these probabilities are based on pooled
data, they are to be taken as rough approximations. Speakers may differ to some
extent, e.g., in the effective width of the primary pitch distribution.

5.3 Technical observations

Pitch analysis provides inconsistent results in cases where several speakers are
captured in the same single-channel sound signal and two or more of them are speaking
simultaneously. The analysis for the present study did not exclude the overlapped
portions, since the amount of audible “crosstalk” in these dialogue corpora was
considered relatively small and it only concerned a few speakers. However, such an
exclusive feature could easily be implemented in the Praat script, when it is known
which annotation tiers contain the utterance items that should not overlap.

The audio signal may sometimes contain background noise or electrical disturbances
that can distort the pitch detection. For instance, in two of the dialogues in Corpus B, a
humming noise was detected at the frequency of 50 Hz. This persistent noise is included
in the analysis of Dataset 1 and thus creates an extra peak in the pitch distribution (see
Figure 2 for an example). Since this kind of noise occurs within a low frequency range
and usually does not overlap with speech frequencies, it might be possible to filter the
noise out without significantly affecting the actual speech signal.
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5.4 Bootstrapping

In order to estimate the minimum amount of speech that is required in order to obtain
a reliable statistical description of the speaker's typical pitch range, we applied a
bootstrapping procedure. In statistics, bootstrapping refers to any method — usually a
statistic or a test — that uses random resampling of existing data. Bootstrapping can be
used for calculating accuracy estimates of a (likewise estimated) statistic (Efron, 2003;
Efron and Tibshirani, 1994). As such, it is used in finding sample sizes required for the
convergence of a given statistical estimate that originates from an unknown distribution.
In practice, random samples are drawn from a larger body of data. These samples are
then analyzed as if they were regular samples from the studied phenomenon. For
instance, it is possible to systematically increase sample size and repeat the random
sampling a number of times for each sample size, and for each of these simulated
samples to calculate the mean. This would provide a bootstrap estimate of the variation
of the mean as a function of sample size and give us a way of estimating the sample size
corresponding to arequired level of accuracy.

Foreach of the 40 speakers, subsets of consecutive pitch values were randomly drawn
from Dataset 3, beginning with the sample size of 50 pitch values (corresponding to 1
second of net speaking time) and increasing the sample size in steps of 50 values after
each sampling round, either until the speaker had fewer samples than 1.5 times the
sample size or until the maximum sample size of 10,000 pitch values was reached. For
each sample size and for each speaker, up to five non-overlapping sequences of pitch
values were drawn from the dataset, depending on whether a sufficient number of frames
were available for the speaker in question. One single draw in the maximum sample size
was possible for 16 speakers, who were represented with more than 15,000 pitch frames.
The means of all the sampled portions from all 40 speakers are plotted in Figure 6, and
the corresponding modes are shown in Figure 7. At sample sizes larger than 3000, fewer
than five draws were possible for most speakers. However, the mean and mode have
mostly converged before this point.

As shown in Figure 6, the standard deviation of the pitch means is about 2 ST in
small sample sizes, but is reduced into less than 1 semitone after analyzing 650 pitch
frames (only 12 seconds) or more. For many speakers, the pitch mode also converges
quickly to a rather stable level and the overall standard deviation drops under 1
semitone after analyzing at least 34 seconds of net speaking time. For some speakers
in Corpus B, the overall pitch distribution was bimodal, and the location of the primary
mode is unstable, even after three minutes of net speaking time (e.g., speakers M21,
M22, F21, F27). This phenomenon is visible in the mode-referred distributions that
would overlap to a large extent apart from three female and two male speakers (see
Figure 7). The bimodal distributions might be partly explained by the type of audio
material. The recordings of the dialogues among M21 and F21, as well as F27 and
F28, were noisy, the dialogues were recorded with only one microphone, and the
speakers often overlapped in the signal. The reason for obtaining a bimodal pitch
distribution in M22's recording was less clear, although background noise was present.
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In some cases of Corpus B, the small amount of material available may explain why
the distributions look unstable (cf. Table 1).

30 sec 1 min 1,5 min 2 min 2,5 min 3 min
| | | | | |

ST re total mean

-4

I I I I I I
0 2000 4000 6000 8000 10000

Number of consecutive pitch samples in one draw

Figure 6: Bootstrapping the pitch mean. At most five sequences of 50 to 10000
consecutive pitch values were randomly drawn from each of the 40 speakers in
Dataset 3. The means of all draws are plotted as grey circles relative to the
corresponding speaker's total mean. The thick curve shows the local mean and the thin
curves show the standard deviation for the means in each sample size. The values
converge towards the speaker-specific mean in the complete dataset (zero level).

Figures 8 and 9 show the more detailed density curves in three exemplary
conditions where each speaker is represented by one random sample of either 1000,
3000 or 6000 consecutive pitch points. In Figure 8, these pitch values are shown with
respect to each speaker's overall pitch mean, and Figure 9 shows the corresponding
mode-referred distributions. The mean of the pitch modes for the complete 1000-point
samples was 0.12 ST (standard deviation 1.14 ST), 0.05 ST (s = 0.80 ST) for 3000
points and -0.11 ST (s = 0.43 ST) for 6000 points. The corresponding mean of the
pitch means was 0.04 ST (s =0.73 ST) for 1000, 0.04 ST (s = 0.44 ST) for 3000 and
-0.08 ST (s =0.25) for 6000 points.
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Figure 7: Bootstrapping the pitch mode. At most five sequences of 50 to 10000
consecutive pitch values were randomly drawn from each of the 40 speakers in Dataset 3.
The modes of all draws are plotted as grey circles relative to the corresponding speaker's
pitch mode in the complete dataset. The thick curve shows the local mean of the modes,
whereas the thin curves show the standard deviation for each sample size. Four speakers
(cf. the curves with “additional” peaks in the rightmost panel of Figure 9) exhibited
bimodal pitch distributions, and their primary modes do not seem to fully converge even
after 3 minutes of speech is included. These speakers contribute to the secondary “row”
of data points below the overall mode.
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Figure 8: Distribution of a randomly selected subset of 1000, 3000 or 6000
consecutive pitch samples from 40 speakers. The pitch values are referred to the
speaker-specific total mean, shown as the black vertical line in each plot.
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Figure 9: Distribution of a randomly selected subset of 1000, 3000 or 6000
consecutive pitch samples from 40 speakers. The pitch values are referred to the
speaker-specific total mode, shown as the black vertical line in each plot. Male
speakers are indicated with blue lines; females with red.

6 Conclusions

It was confirmed that in a sufficiently large dataset, a majority of the pitch values
measured from each individual speaker tend to be distributed in a roughly similar
fashion. This is likely to reflect the natural modes of vibration of the vocal folds and
thus the pitch ranges of probable comfort vs. discomfort for the speaker. The primary
distributions tend to be generally right-skewed. This observation is consistent with
previous data (see, e.g., Traunmiiller & Eriksson, 1995). The skewed distribution may
be at least partly due to the fact that the length of the vocal folds sets a natural lower
limit to glottal frequency, whereas humans can rather flexibly stretch their vocal folds
in order to increase the pitch of their voices.

On the basis of these two corpora, it is typical for speakers to exhibit a primary pitch
range that extends about 3—6 ST below and 612 ST above the pitch mode. Secondary
“bulks” of data may be observed below and/or above the main range in the pitch
distribution.In case these local modes occur at adistance of 12 ST (i.e.,one octave) from
the main pitch mode, itis to be suspected that they reflect a tendency of the speaker to use
non-modal laryngeal settings (such as creaky voice or falsetto) and/or that the pitch
analysis parameters have not been set in an optimal way for the speaker in question. For
specific research purposes, it may be desirable to keep those results where the speaker's
actual fundamental frequency has potentially been halved or doubled, since these may
provide information about voice quality changes. In some cases,however, the additional
modes may be due to other overlapping speakers or periodic background noise and need
to be excluded. The present study paves the way for further research on the effects of
various technical issues on pitch analysis, such as those of recording equipment,
background noise, overlapping speech, voice quality differences, etc.

The minimum and maximum pitch do not provide a reliable summary of the
speaker's preferred pitch range, since they are easily affected by non-modal voice
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quality as well as by the selected analysis parameters. The standard deviation of the
bootstrapped means and modes was reduced to less than 1 semitone after analyzing
about 30 seconds or about 1500 pitch frames of net speaking time, given that the
analysis parameters were set in an appropriate way. This may already be accurate
enough for many research purposes. In case it is possible to determine the pitch mode
of each particular speaker within a speech corpus, the mode is a good reference level
for comparing the ways in which different speakers utilize their typical pitch ranges.

The tools for the analysis of pitch distributions may be applied in various domains,
such as phonological models of intonation or clinical voice assessment. Given that
some aspects in the pitch distributions may be highly speaker-dependent and relatively
stable across different situations, the present tools may be applicable in the study of
social identity (cf. Pierrehumbert et al., 2004; Munson, 2007; Cartei et al., 2014;
Munson et al., 2015) and in the development of forensic speaker recognition (see
Kinoshita et al., 2009). In terms of external factors that can affect speech, the tools for
analyzing pitch distributions may be useful in studies of the effects of noise on speech
production (cf. Hazan & Baker, 2011; Vainio et al., 2012) or for revealing whether
speakers tend to accommodate their pitch levels to those of other speakers (cf.,
Gregory et al., 1993; 2001; Bosshardt et al., 1997; Babel and Bulatov, 2012; Garnier
et al., 2013). Our findings will also be of interest in the analysis of the sequential
unfolding of spoken social interaction, where the pitch range of the participants may
systematically vary according to the position of a spoken turn within a larger sequence
of turns (Stevanovic et al., submitted) and where speakers may be seeking to match
each other’s pitch levels according to sequential contingencies (Szczepek-Reed, 2010;
Stevanovic & Lennes, submitted).
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