
https://helda.helsinki.fi

Linear Time Construction of Indexable Elastic Founder Graphs

Rizzo, Nicola

Springer

2022

Rizzo , N & Mäkinen , V 2022 , Linear Time Construction of Indexable Elastic Founder

Graphs . in C Bazgan & H Fernau (eds) , IWOCA 2022: Combinatorial Algorithms . Lecture

Notes in Computer Science , vol. 13270 , Springer , Cham , pp. 480-493 , 33rd International

Workshop on Combinatorial Algorithms (IWOCA) , Trier , Germany , 07/06/2022 .

https://doi.org/10.1007/978-3-031-06678-8_35 , https://doi.org/10.48550/arXiv.2201.06492

http://hdl.handle.net/10138/351030

https://doi.org/10.1007/978-3-031-06678-8_35

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Linear Time Construction of
Indexable Elastic Founder Graphs

Nicola Rizzo[0000−0002−2035−6309] and Veli Mäkinen[0000−0003−4454−1493]

Department of Computer Science, University of Helsinki, Finland
{nicola.rizzo,veli.makinen}@helsinki.fi

Abstract. The pattern matching of strings in labeled graphs has been
widely studied lately due to its importance in genomics applications.
Unfortunately, even the simplest problem of deciding if a string ap-
pears as a subpath of a graph admits a quadratic lower bound un-
der the Orthogonal Vectors Hypothesis (Equi et al. ICALP 2019, SOF-
SEM 2021). To avoid this bottleneck, the research has shifted towards
more specific graph classes, e.g. those induced from multiple sequence
alignments (MSAs). Consider segmenting MSA[1..m, 1..n] into b blocks
MSA[1..m, 1..j1], MSA[1..m, j1 + 1..j2], . . ., MSA[1..m, jb−1 + 1..n]. The
distinct strings in the rows of the blocks, after the removal of gap sym-
bols, form the nodes of an elastic founder graph (EFG) where the edges
represent the original connections observed in the MSA. An EFG is called
indexable if a node label occurs as a prefix of only those paths that start
from a node of the same block. Equi et al. (ISAAC 2021) showed that such
EFGs support fast pattern matching and gave an O(mn logm)-time al-
gorithm for preprocessing the MSA in a way that allows the construction
of indexable EFGs maximizing the number of blocks and, alternatively,
minimizing the maximum length of a block, in O(n) and O(n log log n)
time respectively. Using the suffix tree and solving a novel ancestor prob-
lem on trees, we improve the preprocessing to O(mn) time and the
O(n log log n)-time EFG construction to O(n) time, thus showing that
both types of indexable EFGs can be constructed in time linear in the
input size.

Keywords: multiple sequence alignment · pattern matching · data struc-
tures · segmentation algorithms · dynamic programming · suffix tree

Acknowledgements This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 956229.

1 Introduction

Searching strings in a graph has become a central problem along with the devel-
opment of high-throughput sequencing techniques. Namely, thousands of human
genomes are now available, forming a so-called pangenome of a species [20]. Such

pangenome can be used to enhance various analysis tasks that have previously
been conducted with a single reference genome [13,18,19,8,11,3,14]. The most
popular representation for a pangenome is a graph, whose paths spell the input
genomes. The basic primitive required on such pangenome graphs is to be able
to search occurrences of query strings (short reads) as subpaths of the graph.
Unfortunately, even finding exact matches of a query string of length q in a graph
with e edges cannot be done significantly faster than O(qe) time, and no index
built in polynomial time allows for subquadratic-time string matching, unless the
Orthogonal Vectors Hypothesis (OVH) is false [5,4]. Therefore, practical tools
deploy various heuristics or use other pangenome representations as a basis.

A G C G A C T A G A T A C
A G C − A C T A G − T A G
A G C G A T T A G T T A C
A G C − A C T A G T T A C

AGCG ACTA GATAC
AGC ATTA GTAG

GTTAC

Fig. 1. An indexable elastic founder graph induced from a segmentation of an MSA.
The example is adapted from Equi et al. [6].

Due to the difficulty of string search in general graphs, Mäkinen et al. [12]
and Equi et al. [6] studied graphs induced from multiple sequence alignments
(MSAs), as we describe in Section 2. Any segmentation of an MSA naturally in-
duces a graph consisting of nodes partitioned into blocks with edges connecting
consecutive blocks. Such elastic founder graph (EFG) is illustrated in Figure 1.
The key observation is that if the resulting node labels do not appear as a pre-
fix of any other path than those starting at the same block, then there is an
index structure for the graph that supports fast pattern matching [12,6]. Equi
et al. [6] also showed that such indexability property is required, as the OVH-
based lower bound holds for EFGs derived from MSAs. Mäkinen et al. [12] gave
an O(mn) time algorithm to construct an indexable EFG with minimum maxi-
mum block length, given a gapless MSA[1..m, 1..n]. Equi et al. [6] extended the
result to general MSAs. They obtained an O(mn logm)-time preprocessing algo-
rithm which allows the construction of indexable EFGs maximizing the number
of blocks and, alternatively, minimizing the maximum length of a block, in O(n)
and in O(n log log n) time, respectively. We recall these results in Section 3.

In this paper, we improve the preprocessing algorithm of Equi et al. to O(mn)
by performing an in-depth analysis of their solution based on the generalized
suffix tree GSTMSA built from the gaps-removed rows of the MSA (Section 4).
Although removing gaps constitutes a loss of essential information, this infor-
mation can be fed back into the structure by considering the right subsets of its
nodes or leaves. Then, the main step in preprocessing the MSA is solving a novel
ancestor problem on the tree structure of GSTMSA that we call the exclusive
ancestor set problem, and as our main contribution, we identify such problem
and provide a linear-time solution. This directly improves the solution by Equi

et al. for constructing indexable EFGs maximizing the number of blocks from
O(mn logm) to O(mn) time. Moreover, in Section 5 we give a new algorithm
that after the O(mn)-time preprocessing can construct indexable EFGs minimiz-
ing the maximum block length in O(n) time. In our subsequent work [16], we
extend these techniques to minimize the maximum block height.

2 Definitions

We follow the notation of Equi et al. [6].

Strings. We denote integer intervals by [x..y]. Let Σ = [1..σ] be an alphabet of
size |Σ| = σ. A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn,
where Σn denotes the set of strings of length n over Σ. In this paper, we assume
that σ is always smaller or equal to the length of the strings we are working
with. A suffix (prefix) of string T [1..n] is T [i..n] (T [1..i]) for 1 ≤ i ≤ n and
we say it is proper if i > 1 (i < n). The length of a string T is denoted |T |
and the empty string ε is the string of length 0. In particular, substring T [i..j]
where j < i is the empty string. For convenience, we denote with Σ∗ and Σ+

the set of finite strings and finite non-empty strings over Σ, respectively. The
lexicographic order of two strings A and B is naturally defined by the order of
the alphabet: A < B iff A[1..i] = B[1..i] and A[i + 1] < B[i + 1] for some i ≥ 0.
If i + 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However,
we usually avoid this implicit comparison by adding an end marker $ to the
strings and we consider $ to be the smallest character lexicographically. The
concatenation of strings A and B is denoted as A ·B, or just AB.

Elastic founder graphs. MSAs can be compactly represented by elastic founder
graphs, the vertex-labeled graphs that we formalize in this section.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings
drawn from Σ ∪ {−}, each of length n, as its rows. Here, − /∈ Σ is the gap
symbol. For a string X ∈ (Σ ∪ {−})

∗
, we denote spell(X) the string resulting

from removing the gap symbols from X. If an MSA does not contain gaps then we
say it is gapless, otherwise we say that it is a general MSA. Let P be a partitioning
of [1..n], that is, a sequence of subintervals P = [x1..y1], [x2..y2], . . . , [xb..yb]
where x1 = 1, yb = n, and for all j > 2, xj = yj−1 + 1. A segmentation
S of MSA[1..m, 1..n] based on partitioning P is the sequence of b sets Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for
a (proper) segmentation that spell(MSA[i, xk..yk]) ̸= ε for any i and k. We call
set Sk a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The
length of block Sk or its segment [xk..yk] is L(Sk) = L([xk..yk]) = yk − xk + 1.

Definition 1 (Block Graph). A block graph is a graph G = (V,E, ℓ) where
ℓ : V → Σ+ is a function that assigns a string label to every node and for which
the following properties hold:

1. set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is,
V = V 1 ∪ V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i ̸= j;

2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and
3. if v, w ∈ V i then |ℓ(v)| = |ℓ(w)| for each 1 ≤ i ≤ b and if v ̸= w, ℓ(v) ̸= ℓ(w).

Definition 2 (Elastic block and founder graphs). We call a block graph
elastic if its third condition is relaxed in the sense that each V i can contain
non-empty variable-length strings. An elastic founder graph (EFG) is an elastic
block graph G(S) = (V,E, ℓ) induced by a segmentation S as follows: for each
1 ≤ k ≤ b we have Sk = {spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} = {ℓ(v) : v ∈ V k}.
It holds that (v, w) ∈ E if and only if there exist k ∈ [1..b − 1], i ∈ [1..m] such
that v ∈ V k, w ∈ V k+1, and spell(MSA[i, xk..yk+1]) = ℓ(v)ℓ(w).

For example, in the general MSA[1..4, 1..13] of Figure 1, the segmentation based
on partitioning [1..4], [5..8], [9..13] induces an EFG G(S) = (V 1 ∪ V 2 ∪ V 3, E, ℓ)
where the nodes in V 1 and V 3 have labels of variable length.

By definition, (elastic) founder and block graphs are acyclic. For convention,
we interpret the direction of the edges as going from left to right. Consider a
path P in G(S) between any two nodes. The label ℓ(P) of P is the concatenation
of the labels of the nodes in the path. Let Q be a query string. We say that Q
occurs in G(S) if Q is a substring of ℓ(P) for any path P of G(S).

Definition 3 ([12]). EFG G(S) is repeat-free if each ℓ(v) for v ∈ V occurs in
G(S) only as a prefix of paths starting with v.

Definition 4 ([12]). EFG G(S) is semi-repeat-free if each ℓ(v) for v ∈ V
occurs in G(S) only as a prefix of paths starting with w ∈ V , where w is from
the same block as v.

For example, the EFG of Figure 1 is not repeat-free, since AGC occurs as a prefix of
two distinct labels of nodes in the same block, but it is semi-repeat-free since all
node labels ℓ(v) with v ∈ V k occur in G(S) only starting from block V k, or they
do not occur at all elsewhere in the graph. We will discuss these two indexability
properties together as the (semi-)repeat-free property, when applicable.

Basic tools. A trie [2] of a set of strings is a rooted directed tree with outgoing
edges of each node labeled by distinct symbols such that there is a root-to-leaf
path spelling each string in the set; the shared part of the root-to-leaf paths of
two different leaves spell the common prefix of the corresponding strings. In a
compact trie, the maximal non-branching paths of a trie become edges labeled
with the concatenation of labels on the path. The suffix tree of T ∈ Σ∗ is
the compact trie of all suffixes of string T$. In this case, the edge labels are
substrings of T and can be represented in constant space as an interval. Such
tree takes linear space and can be constructed in linear time, assuming that
σ ≤ |T |, so that when reading the leaves from left to right the suffixes are listed
in their lexicographic order. [21,7] We say that two or more leaves of the suffix
tree are adjacent if they succeed one another when reading them left to right. A
generalized suffix tree is one built on a set of strings. In this case, string T above
is the concatenation of the strings with symbol $ between each.

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit
node of Q in the suffix tree of T is (v, k) such that Q = XY , where X is the
path spelled from the root to the parent of v and Y is the prefix of length k of
the edge from the parent of v to v. The leaves in the subtree rooted at v, or the
leaves covered by v, are then all the suffixes sharing the common prefix Q. Let
aX and X be the paths spelled from the root of a suffix tree to nodes v and w,
respectively. Then one can store a suffix link from v to w.

String B[1..n] from a binary alphabet is called a bitvector. The operation
rank(B, i) returns the number of 1s in B[1..i], whereas the operation select(B, j)
returns the index i containing the j-th 1 in B. Both queries can be answered
in constant time using an index requiring o(n) bits in addition to the bitvector
itself and computable in linear time [10,9].

3 Overview of EFG construction algorithms

Equi et al. have shown that (semi-)repeat-free EFGs are easy to index for fast
pattern matching [6], and as we describe in Section 3.1 they extended the previ-
ous research for the gapless and repeat-free setting showing that finding (semi-)
repeat-free elastic founder graphs is equivalent to finding (semi-)repeat-free MSA
segmentations. Moreover, to show that the (semi-)repeat-free property does not
hinder the flexibility in choosing the resulting EFGs, they considered the follow-
ing score functions for MSA segmentations: i. maximizing the number of blocks,
and ii. minimizing the maximum length of a block.

In the gapless and repeat-free setting, scores i. and ii. admit the construc-
tion of indexable founder graphs in O(mn) time, thanks to previous research on
founder graphs and MSA segmentations [12,15,1]. In the general and semi-repeat-
free setting, Equi et al. have given O(mn logm) and O(mn logm + n log log n)-
time algorithms for scores i. and ii., respectively, based on a common prepro-
cessing of the MSA that we review in Section 3.2.

3.1 Segmentation characterization for indexable EFGs

Consider a segmentation S = S1, S2, . . . , Sb that induces a (semi-)repeat-free
EFG G(S) = (V,E, ℓ), as per Definition 2. The strings occurring in graph G(S)
are a superset of the strings occurring in the original MSA rows because each node
label can represent multiple rows and each edge (v, w) ∈ E means the existence
of some row spelling ℓ(v)ℓ(w) in the corresponding consecutive segments. For
example, string GACTAGT occurs in the EFG of Figure 1 but it does not occur in
any row of the original MSA.

The (semi-)repeat-free property involves graph G(S), but luckily it does not
depend on the new strings added in the founder graph and can be checked only
against the MSA and segmentation S. This simplifies choosing a segmentation
resulting in an indexable founder graph and it was initially proven by Mäkinen
et al. in the gapless and repeat-free setting.

Lemma 1 (Characterization, gapless setting [12]). We say that a segment
[x..y] of a gapless MSA[1..m, 1..n] is repeat-free if string MSA[i, x..y] occurs in
the MSA only at position x of some row, for all 1 ≤ i ≤ m. Then G(S) is
repeat-free if and only if all segments defining S are repeat-free.

Equi et al. in [6] refined this property for MSAs with gaps, but did not provide
an explicit proof. Since it is essential for the correctness of the construction
algorithms, we provide such a proof in the full version of this paper [17].

Lemma 2 (Characterization [6]). We say that segment [x..y] of a general
MSA[1..m, 1..n] is semi-repeat-free if for any i, i′∈ [1..m] string spell(MSA[i, x..y])
occurs in gaps-removed row spell(MSA[i′, 1..n]) only at position g(i′, x), where
g(i′, x) is equal to x minus the number of gaps in MSA[i′, 1..x]. Similarly, [x..y]
is repeat-free if the eventual occurrence of spell(MSA[i, x..y]) at position g(i′, x)
in row i′ also ends at position g(i′, y). Then G(S) is (semi-)repeat-free if and
only if all segments of S are (semi-)repeat-free.

3.2 EFG construction algorithms

Just as in the gapless and repeat-free setting, Lemma 2 implies that the opti-
mal score s(j) of a (semi-)repeat-free segmentation of the general MSA prefix
MSA[1..m, 1..j] can be computed recursively for a variety of scoring schemes:

s(j) =
⊕

j′ : 0≤j′<j s.t.
MSA[1..m,j′+1..j] is
(semi-)repeat-free

E
(
s(j′), j′, j

)
(1)

where operator
⊕

and function E depend on the desired scoring scheme. Indeed:
i. for s(j) to be equal to the optimal score of a segmentation maximizing the
number of blocks, set

⊕
= max and E(s(j′), j′, j) = s(j′) + 1; for a correct

initialization set s(0) = 0 and if there is no (semi-)repeat-free segmentation set
s(j) = −∞; ii. for minimizing the maximum block length, set

⊕
= min and

E(s(j′), j′, j) = max(s(j′), L([j′ + 1, j])) = max(s(j′), j − j′); set s(0) = 0 and if
there is no (semi-)repeat-free segmentation set s(j) = +∞.

Equi et al. studied the computation of semi-repeat-free segmentations opti-
mizing for these two scores [6]. The algorithms they developed—and that we will
improve in Sections 4 and 5—are based on a common preprocessing of the valid
semi-repeat-free segmentation ranges, based on the following observation.

Observation 1 (Semi-repeat-free right extensions [6]). Given a general
MSA[1..m, 1..n], for any x < y we say that segment [x + 1..y] is an extension of
prefix MSA[1..m, 1..x]. If extension [x + 1..y] is semi-repeat-free, then extension
[x + 1..y′] is semi-repeat-free for all y < y′ ≤ n.

Note that in the presence of gaps Observation 1 does not hold if we swap the semi-
repeat-free notion with the repeat-free one, or if we swap the right extensions
with the symmetrically defined left extensions.

To compute s(j), Equation (1) considers all semi-repeat-free right extensions
[j′ + 1..j] ending at column j. Equi et al. discovered that the computation of
values s(j) can be done efficiently by considering that each semi-repeat-free right
extension [j′ + 1..j] has as prefix a minimal (semi-repeat-free) right extension
[j′ + 1..f(j′)], with function f defined as follows.

Definition 5 (Minimal right extensions [6]). Given MSA[1..m, 1..n], for
each 0 ≤ x ≤ n − 1 we define value f(x) as the smallest integer greater than x
such that segment [x+1..f(x)] is semi-repeat-free, or, in other words, [x+1..f(x)]
is the minimal (semi-repeat-free) right extension of prefix MSA[1..m, 1..x]. If
there is no semi-repeat-free extension, we define f(x) = ∞.

Indeed, Equi et al. in [6] developed an algorithm computing values f(x) in time
O(mn logm). Using only these values, described by a list of pairs (x, f(x)) sorted
in increasing order by the second component, they developed two algorithms
computing the score of an optimal semi-repeat-free segmentation: in time O(n)
for the maximum number of blocks score and in time O(n log log n) for the
maximum block length score. We will explain in detail how the latter works in
Section 5, as we will improve its run time to O(n).

4 Preprocessing the MSA in linear time

In this section, we study the computation of the minimal right extensions f(x),
for 0 ≤ x ≤ n−1 (Definition 5). Equi et al. in [6] proposed an O(nm logm)-time
solution using the following structure, built from the gaps-removed MSA rows.

Definition 6. Given MSA[1..m, 1..n] from alphabet Σ∪{−}, we define GSTMSA

as the generalized suffix tree of the set of strings {spell(MSA[i, 1..n]) ·$i : 1 ≤ i ≤
m}, with $1, . . . , $m m new distinct terminator symbols not in Σ.1

An example of GSTMSA is given in Figure 2. From the suffix tree properties, it
follows that for any gaps-removed row αi := spell(MSA[i, 1..n])$i, with 1 ≤ i ≤
m: each suffix αi[x..|αi|] corresponds to a unique leaf ℓi,x of GSTMSA and vice
versa, with 1 ≤ x ≤ |αi|; each substring αi[x..y] corresponds to an explicit or
implicit node of GSTMSA in the root-to-ℓi,x path; and each explicit or implicit
node corresponds to one or more such substrings, uniquely identifiable thanks
to the leaves covered by the node. Also, note that GSTMSA does not contain
any information about the gap symbols of the MSA, as this information will be
added back into the structure thanks to the set of leaves and nodes considered.

In Section 4.1 we perform an analysis of GSTMSA similar to that of Equi et
al., showing that semi-repeat-free segments of the MSA correspond to a specific
set of nodes of GSTMSA covering exactly m leaves. Then, in Section 4.2, we show

1 We added the m new distinct terminators for simplicity, whereas Equi et al. used the
suffix tree of the concatenation of all gaps-removed rows with a single new symbol
$ between each. The suffix tree of this string, if a second unique terminator # is
concatenated to this string, is equivalent to GSTMSA for our purposes.

AGC

AT C GC

AGC

T

A

C

C GC

AGC

T
$1 $2 $3 $4

$2 C$4

TCCAC$1 $1

CTAGC$3

$2 $3 C$4

$2 C$4

TCCAC$1

$1 $2 $3 $4

AC$1

$4 AC$1 TAGC$3

TAGC$3

$2 $3 C$4

$2 $3 C$4

CCAC$1

TCCAC$1

AGC

AT C GC

AGC

T

A

C

C GC

AGC

T

A A − T T C C A C $1
A A − T A − G − C $2
A C C T A − G − C $3
A A − T A − G C C $4

1 2 3 4 5 6 7 8 9 10

Fig. 2. Example of an MSA[1..4, 1..10] and its GSTMSA, where the label to each leaf has
been moved inside the leaf itself. We have also highlighted the leaves corresponding to
suffixes spell(MSA[i, 1..n]) (black outline) and its exclusive ancestors (arrows).

that the novel resulting problem on the tree structure of GSTMSA, that we call the
exclusive ancestor set problem, can be solved efficiently, resulting in an algorithm
computing the minimal right extensions in linear time, described in Section 4.3.

4.1 Semi-repeat-free segments in the generalized suffix tree

The following has been implicitly stated and exploited in [6].

Definition 7 (Semi-repeat-free substrings). Recall the definition of semi-
repeat-free segment (Lemma 2). Given substring MSA[i, x..y] of MSA[1..m, 1..n]
such that spell(MSA[i, x..y]) ∈ Σ+, we say that MSA[i, x..y] is semi-repeat-free
if, for all 1 ≤ i′ ≤ m, string spell(MSA[i, x..y]) occurs in gaps-removed row i′

only at position g(i′, x) (or it does not occur at all).

Observation 2. Segment [x..y] is semi-repeat-free if and only if all substrings
MSA[i, x..y] are semi-repeat-free, for 1 ≤ i ≤ m. If MSA[i, x..y] is semi-repeat-
free, then MSA[i, x..y′] is semi-repeat-free for all y < y′ ≤ n. Let f i(x) be the
smallest integer greater than x such that substring MSA[i, x + 1..f i(x)] is semi-
repeat-free: it is easy to see that f(x) = maxm

i=1 f
i(x).

This translates into a specific set of implicit or explicit nodes of GSTMSA.
The fact that we added a unique terminator symbol to each row is equivalent to
the addition of an MSA column spelling $1 · · · $m at position n+ 1, which means
that [x + 1..n + 1] is always semi-repeat-free and the minimal right extensions
such that f(x) = ∞ become f(x) = n + 1.

Lemma 3. Given m row substrings MSA[i, x..yi] of MSA[1..m, 1..n] such that
spell(MSA[i, x..yi]) ∈ Σ+ for 1 ≤ i ≤ m, let W = {w1, . . . , wk} be the set of im-
plicit or explicit nodes of GSTMSA corresponding to strings {spell(MSA[i, x..yi]) :

1 ≤ i ≤ m}. Then MSA[i, x..yi] is semi-repeat-free for all 1 ≤ i ≤ m if and only
if W covers exactly m leaves in GSTMSA.

Proof. By construction of GSTMSA, W covers the m leaves ℓ1,z1 , . . . , ℓm,zm , with
zi = g(i, x), so we only need to prove that if some MSA[i, x..yi] is not semi-
repeat-free, or invalid, then W covers more than m leaves, and vice versa.

(⇐) Let MSA[i, x..yi] be invalid, i.e. spell(MSA[i, x..yi]) occurs in αi′ at some
position ẑ other than zi′ , for some row 1 ≤ i′ ≤ m. Then the node of GSTMSA

corresponding to string spell(MSA[i, x..yi]) covers leaf ℓi′,ẑ ̸= ℓi′,zi′ , thus W covers
more than m leaves.

(⇒) Let ℓi′,ẑ be a leaf of GSTMSA other than leaves ℓ1,z1 , . . . , ℓm,zm covered
by some node w ∈ W . By construction, w corresponds to spell(MSA[i, x..yi])
for some 1 ≤ i ≤ m, so we have that spell(MSA[i, x..yi]) occurs in αi′ at some
position other than g(i′, x), since ℓi′,ẑ ̸= ℓi′,zi′ . Thus, MSA[i′, x..yi] is invalid.

Note that the correctness of Lemma 3 does not hold if we swap the semi-repeat-
free notion with the repeat-free one.

Lemma 3, combined with Observation 2, implies that the problem of com-
puting values f i(x) for all i ∈ [1..m] can be solved by analyzing the tree struc-
ture of GSTMSA against the MSA suffixes. Indeed, let Lx := {ℓi,zi : 1 ≤ i ≤
m, zi = g(i, x + 1)} be the leaves of GSTMSA corresponding to the suffixes
spell(MSA[i, x + 1..n]). For each row 1 ≤ i ≤ m, the first semi-repeat-free prefix
of spell(MSA[i, x + 1..n]) corresponds to the first implicit or explicit node v of
GSTMSA in the root-to-ℓi,zi path such that v covers only leaves in Lx. The fact
that GSTMSA is a compacted trie is not an issue: the parent of v in the suffix
trie is branching, since it covers more leaves than v, so the first explicit node of
GSTMSA in the root-to-ℓi,zi path covering only leaves in Lx is the first explicit de-
scendant w of v, thus we can identify v by finding w. Finally, f i(x) is computed
by retrieving the smallest column index y such that spell(MSA[i, x + 1..y]) =
string(parent(w)) · char(w), where string(u) is the concatenation of edge la-
bels of the root-to-u path, and char(u) is the first symbol of the edge label
from parent(u) to u. In other words, y corresponds to the k-th non-gap sym-
bol of MSA row i, with k = rank(MSA[i, 1..n], x) + stringdepth(parent(w)) + 1,
where rank(MSA[i, 1..n], x) is the number of non-gap symbols in MSA[i, 1..x] and
stringdepth(u) = |string(u)|. For example, in Figure 2 the leaves of L0 have been
marked and so have the shallowest ancestors covering only leaves in L0.

4.2 Exclusive ancestor set

The results of the previous section show that we can compute the minimal right
extensions by solving multiple instances of the following problem on the tree
structure of GSTMSA.

Problem 1 (Exclusive ancestor set). Let T = (V,E, root) be a rooted ordered
tree, with LT ⊆ V the set of its leaves. Given T and a subset of leaves L ⊆ LT ,
find the minimal set W of exclusive ancestors of L in T , i.e. the minimal set
W ⊆ V such that W covers all leaves in L and only leaves in L. Can T be
preprocessed to support the efficient solving of multiple instances of the problem?

As is the case for GSTMSA, we can assume that each internal node of T has
at least two children, otherwise, a linear-time processing of T can be employed
to compact its unary paths. Indeed, after a linear-time preprocessing of T , any
instance of exclusive ancestor set can be solved in time O(|L|) by a careful
traversal of the tree with the following procedure, that we describe informally:

1. partition L in k maximal sets L1, . . . , Lk of leaves contiguous in the ordered
traversal of T , to be processed independently (if two leaves belong to different
contiguous sets, any common ancestor cannot be part of the solution);

2. for each Li, with 1 ≤ i ≤ k, start from the leftmost leaf ℓi and ascend in the
tree until the closest ancestor of ℓi that covers some leaf not in Li;

3. upon failure in step 2., add the last safe ancestor to the solution W and if
there are still uncovered leaves in Li repeat steps 2. and 3. starting from the
leftmost uncovered leaf.

An example of the procedure is shown in Figure 3. The failure condition of step
2. can be evaluated by checking if both the leftmost leaf and the rightmost leaf
in the subtree of the candidate replacement are still in set Li, and step 2. always
terminates if we assume that L is a nontrivial instance: if L ⊂ LT , then the root
of T is not the solution to the problem.

Fig. 3. Example of an instance of exclusive ancestor set, where the set of leaves L
corresponds to the black leaves: the algorithm partitions L into sets of contiguous
leaves (shown as brown, blue, and purple leaves), and for each set it finds the exclusive
ancestors (marked with rectangles). Each arrow shows the ascent of step 2. up the tree
until the node corresponding to the failure condition, marked with a cross.

Assuming the leaves of T are sorted, step 1. can be implemented efficiently: we
can partition L into sets of contiguous leaves by coloring leaves in L and finding
all the leaves with the preceding leaf not in L. We can easily preprocess T to
support the required operations in constant time, leading to a time complexity
of O(|L|), since any forest built on top of leaves L has O(|L|) nodes.

Lemma 4. The exclusive ancestor set problem on a rooted ordered tree T =
(V,E, root) and a subset L of its leaves can be solved in time O(|L|), after a
O(|V |)-time preprocessing to support operations v.leftmostleaf, v.rightmostleaf
on any node v ∈ V and operations ℓ.prevleaf, ℓ.nextleaf, and the binary coloring
of any leaf ℓ ∈ LT in constant time.

4.3 Computing the minimal right extensions

Returning to the problem of computing values f(x), the representation of GSTMSA

needs to support the operations on its tree structure described by Lemma 4 plus
operations v. stringdepth, returning the length of the string corresponding to the
root-to-v path in GSTMSA of an explicit node v, and ℓ.suffixlink, implementing
the suffix links of the leaves. The final algorithm, described in the full version
of this paper [17], computes leaf sets L0, L1, . . . , Ln−1 corresponding to the
MSA suffixes starting at column 1, 2, . . . , n, respectively, and for each Lx with
0 ≤ x < n:

1. it marks the leaves in Lx and partitions them in sets of contiguous leaves,
by finding all their left boundaries ℓ such that ℓ.prevleaf is not marked;

2. it solves the exclusive ancestor set problem on each set of contiguous leaves
and whenever it finds an exclusive ancestor, covering leaves ℓi1 , . . . , ℓik , it
computes values f i(x) for i ∈ {i1, . . . , ik} (see the conclusion of Section 4.1);

3. after processing all leaves, it finally computes f(x) = maxm
i=1 f

i(x) and trans-
forms Lx into Lx+1 by taking the suffix links2 of only leaves ℓi such that
MSA[i, x + 1] ̸= −.

Theorem 1. Given MSA[1..m, 1..n], we can compute the minimal right exten-
sions f(x) for 0 ≤ x ≤ n− 1 in time O(mn).

Proof. The correctness is given by Observation 2 and Lemmas 3 and 4. The
construction of GSTMSA is equivalent to building the suffix tree of a string of
length smaller than or equal to (m + 1)n: a suffix tree supporting the required
operations in constant time can be constructed in O(mn) time, since we assume
|Σ| ≤ mn. Also, we can preprocess the MSA rows to answer in constant time
rank and select queries on the position of gap and non-gap symbols. Thus, the
computation of each f(x) takes time O(|Lx| + m) = O(m), so O(mn) time in
total.

Corollary 1. Given MSA[1..m, 1..n] from Σ ∪ {−}, with Σ = [1..σ] and σ ≤
mn, the construction of an optimal semi-repeat-free segmentation minimizing
the maximum number of blocks can be done in time O(mn).

Proof. Algorithm [6, Algorithm 1] by Equi et al. solves the problem in O(n) time,
assuming it is given the minimal right extensions (x, f(x)) sorted in increasing
order by the second component, which we can now compute and sort in time
O(mn) thanks to Theorem 1.

5 Minimizing the maximum block length

The improvement on the computation of the minimal right extensions in the
case of general MSAs from O(nm logm) to O(nm) gives us the motivation to

2 As noted by an anonymous reviewer, the support for suffix links is not strictly
necessary, since we are exploring leaves only. Indeed, a traversal of the tree can
easily fill an m× n table containing L0, . . . , Ln−1, that we then have to store.

improve the O(n log log n)-time algorithm of Equi et al. [6, Algorithm 2] for an
optimal semi-repeat-free segmentation minimizing the maximum block length.
As mentioned in Section 3.2, we can compute s(j) by processing the recursive
solutions corresponding to all right extensions (x, f(x)) with f(x) ≤ j. For the
maximum block length there are two types of recursion for an optimal solution
of MSA[1..m, 1..j′] using semi-repeat-free [x + 1..j′] as its last segment:

non-leader recursion: if j′ ≤ x+ s(x) then the score of s(j′) is equal to s(x),
because the length of segment [x+ 1..j′] is less than or equal to s(x); in this
case, we say that [x + 1..j′] is a non-leader segment ;

leader recursion: otherwise, if j′ > x+ s(x), we say that [x+ 1..j′] is a leader
segment, since it gives score j′ − x to an optimal solution constrained to use
it as its last segment.

1 x f(x) x + s(x) n

score s(x) score j′ − x

non-leader recursion leader recursion

Fig. 4. Scheme for the score of an optimal semi-repeat-free segmentation of
MSA[1..m, 1..j′] constrained to use [x+ 1..j′] as its last segment.

Note that if x + s(x) < f(x) then the non-leader recursion does not occur for
(x, f(x)). Then, it is easy to see that

s(j) = min

(
min

(x,f(x)):
f(x)≤j≤x+s(x)

s(x), min
(x,f(x)):

j>f(x) ∧ j>x+s(x)

j − x

)
(2)

so Equi et al. correctly solve the problem by keeping track of the two types of
recursions with two one-dimensional search trees: the first keeps track of ranges
[f(x)..x+ s(x)] with score s(x), the second tracks ranges [x+ s(x) + 1..n] where
the leader recursion must be used, saving only the −x part of score j′ −x. With
two semi-infinite range minimum queries, for ranges [j + 1.. + ∞] and [−∞..j]
respectively, we can compute s(j) and solve the problem in time O(n log log n).

Instead, we can reach a linear time complexity using simpler data structures,
thanks to the following observations: the data structure for the leader recursion
can be replaced by a single variable S holding value min{j − x : j > f(x) ∧ j >
x + s(x)}, so that S is the best score of a segmentation ending with a leader
segment [x + 1..j]; for the non-leader recursion, we can swap the structure of
Equi et al. with an equivalent array C[1..n] such that C[k] counts the number of
available solutions with score k using the non-leader recursion so that a variable
K = min{k : C[k] > 0} is equal to the best score of a segmentation ending
with a non-leader segment [x + 1..j]. The final and crucial observation is that
the two types of recursion are closely related: when [x + 1..j] goes from being a

non-leader segment to a leader segment, that is, j = x + s(x) + 1, we decrease
C[s(x)] by one and update S with value s(x) + 1 = j − x if needed. Therefore,
when the best score of C[1..n] is removed in this way, we do not need to update
K to min{k : C[i] > 0}, but it is sufficient to increment K by 1 to ensure that
s(j) = min(K,S), unless other updates of C and S result in a better score.

Theorem 2. Given the minimal right extensions (x, f(x)) of MSA[1..m, 1..n],
we can compute in time O(n) the score of an optimal semi-repeat-free segmen-
tation minimizing the maximum block length.

Proof. The correctness of the algorithm, described in the full version of this
paper [17], follows from that of [6, Algorithm 2] and from the fact that when
C[K] = 0 we have that C[j′] = 0 for 1 ≤ j′ ≤ K and S ≤ K + 1. Similarly, the
processing of minimal right extensions (x, f(x)) and the dynamic management
of intervals [f(x)..s(x) + j′] takes time O(n) in total, thus the algorithm takes
linear time.

Combined with Theorem 1, we get our second main result.

Corollary 2. Given MSA[1..m, 1..n] from Σ ∪ {−}, with Σ = [1..σ] and σ ≤
mn, the construction of an optimal semi-repeat-free segmentation minimizing
the maximum block length can be done in time O(mn).

References

1. Cazaux, B., Kosolobov, D., Mäkinen, V., Norri, T.: Linear time maximum seg-
mentation problems in column stream model. In: Brisaboa, N.R., Puglisi, S.J.
(eds.) String Processing and Information Retrieval - 26th International Sympo-
sium, SPIRE 2019, Segovia, Spain, October 7-9, 2019, Proceedings. Lecture Notes
in Computer Science, vol. 11811, pp. 322–336. Springer (2019)

2. De La Briandais, R.: File searching using variable length keys. In: Papers Presented
at the the March 3-5, 1959, Western Joint Computer Conference. p. 295–298. IRE-
AIEE-ACM ’59 (Western), Association for Computing Machinery, New York, NY,
USA (1959). https://doi.org/10.1145/1457838.1457895, https://doi.org/10.
1145/1457838.1457895

3. Eggertsson, H.P., Kristmundsdottir, S., Beyter, D., Jonsson, H., Skuladottir, A.,
Hardarson, M.T., Gudbjartsson, D.F., Stefansson, K., Halldorsson, B.V., Mel-
sted, P.: Graphtyper2 enables population-scale genotyping of structural vari-
ation using pangenome graphs. Nature Communications 10(1), 5402 (Nov
2019). https://doi.org/10.1038/s41467-019-13341-9, https://doi.org/10.

1038/s41467-019-13341-9
4. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string

matching for graphs. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S.
(eds.) 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece. LIPIcs, vol. 132, pp. 55:1–55:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

5. Equi, M., Mäkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polynomial
time for sub-quadratic time string matching, unless seth fails. In: SOFSEM 2021:
Theory and Practice of Computer Science. pp. 608–622. Springer International
Publishing, Cham (2021)

https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1038/s41467-019-13341-9

6. Equi, M., Norri, T., Alanko, J., Cazaux, B., Tomescu, A.I., Mäkinen, V.: Algo-
rithms and complexity on indexing elastic founder graphs. In: Ahn, H., Sadakane,
K. (eds.) 32nd International Symposium on Algorithms and Computation, ISAAC
2021, December 6-8, 2021, Fukuoka, Japan. LIPIcs, vol. 212, pp. 20:1–20:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/

LIPIcs.ISAAC.2021.20, https://doi.org/10.4230/LIPIcs.ISAAC.2021.20

7. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
38th Annual Symposium on Foundations of Computer Science. pp. 137–143. IEEE
(1997)

8. Garrison, E., Sirén, J., Novak, A., Hickey, G., Eizenga, J., Dawson, E., Jones, W.,
Garg, S., Markello, C., Lin, M., Paten, B.: Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nature Biotechnology
36 (08 2018). https://doi.org/10.1038/nbt.4227

9. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS. pp. 549–554
(1989)

10. Jacobson, G.J.: Succinct static data structures. Carnegie Mellon University (1988)

11. Kim, D., Paggi, J., Park, C., Bennett, C., Salzberg, S.: Graph-based genome align-
ment and genotyping with hisat2 and hisat-genotype. Nature Biotechnology 37, 1
(08 2019). https://doi.org/10.1038/s41587-019-0201-4

12. Mäkinen, V., Cazaux, B., Equi, M., Norri, T., Tomescu, A.I.: Linear time construc-
tion of indexable founder block graphs. In: Kingsford, C., Pisanti, N. (eds.) 20th
International Workshop on Algorithms in Bioinformatics, WABI 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 172, pp. 7:1–7:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/

LIPIcs.WABI.2020.7, https://doi.org/10.4230/LIPIcs.WABI.2020.7

13. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology 17(3), 281–308
(2010)

14. Norri, T., Cazaux, B., Dönges, S., Valenzuela, D., Mäkinen, V.: Founder re-
construction enables scalable and seamless pangenomic analysis. Bioinformat-
ics 37(24), 4611–4619 (07 2021). https://doi.org/10.1093/bioinformatics/

btab516, https://doi.org/10.1093/bioinformatics/btab516

15. Norri, T., Cazaux, B., Kosolobov, D., Mäkinen, V.: Linear time minimum seg-
mentation enables scalable founder reconstruction. Algorithms Mol. Biol. 14(1),
12:1–12:15 (2019)

16. Rizzo, N., Mäkinen, V.: Indexable elastic founder graphs of minimum height. In:
Proc. 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
(2022), to appear.

17. Rizzo, N., Mäkinen, V.: Linear time construction of indexable elastic founder
graphs. CoRR abs/2201.06492 (2022), https://arxiv.org/abs/2201.06492

18. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against multiple
genomes. Genome Biology 10, R98 (2009)

19. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with appli-
cations in genome research. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 11(2), 375–388 (2014)

20. The Computational Pan-Genomics Consortium: Computational pan-genomics: sta-
tus, promises and challenges. Briefings Bioinform. 19(1), 118–135 (2018). https:
//doi.org/10.1093/bib/bbw089, https://doi.org/10.1093/bib/bbw089

https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.1093/bioinformatics/btab516
https://doi.org/10.1093/bioinformatics/btab516
https://doi.org/10.1093/bioinformatics/btab516
https://doi.org/10.1093/bioinformatics/btab516
https://doi.org/10.1093/bioinformatics/btab516
https://arxiv.org/abs/2201.06492
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089

21. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–
260 (1995). https://doi.org/10.1007/BF01206331, https://doi.org/10.1007/
BF01206331

https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/BF01206331

