
Citation: Moskalenko, V.;

Kharchenko, V.; Moskalenko, A.;

Petrov, S. Model and Training

Method of the Resilient Image

Classifier Considering Faults,

Concept Drift, and Adversarial

Attacks. Algorithms 2022, 15, 384.

https://doi.org/10.3390/a15100384

Academic Editors: Patrizia Ribino

and Giovanni Paragliola

Received: 18 September 2022

Accepted: 15 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Model and Training Method of the Resilient Image Classifier
Considering Faults, Concept Drift, and Adversarial Attacks
Viacheslav Moskalenko 1,* , Vyacheslav Kharchenko 2 , Alona Moskalenko 1 and Sergey Petrov 1

1 Department of Computer Science, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
2 Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”, 17,

Chkalov Str., 61070 Kharkiv, Ukraine
* Correspondence: v.moskalenko@cs.sumdu.edu.ua

Abstract: Modern trainable image recognition models are vulnerable to different types of pertur-
bations; hence, the development of resilient intelligent algorithms for safety-critical applications
remains a relevant concern to reduce the impact of perturbation on model performance. This paper
proposes a model and training method for a resilient image classifier capable of efficiently functioning
despite various faults, adversarial attacks, and concept drifts. The proposed model has a multi-section
structure with a hierarchy of optimized class prototypes and hyperspherical class boundaries, which
provides adaptive computation, perturbation absorption, and graceful degradation. The proposed
training method entails the application of a complex loss function assembled from its constituent parts
in a particular way depending on the result of perturbation detection and the presence of new labeled
and unlabeled data. The training method implements principles of self-knowledge distillation, the
compactness maximization of class distribution and the interclass gap, the compression of feature
representations, and consistency regularization. Consistency regularization makes it possible to uti-
lize both labeled and unlabeled data to obtain a robust model and implement continuous adaptation.
Experiments are performed on the publicly available CIFAR-10 and CIFAR-100 datasets using model
backbones based on modules ResBlocks from the ResNet50 architecture and Swin transformer blocks.
It is experimentally proven that the proposed prototype-based classifier head is characterized by
a higher level of robustness and adaptability in comparison with the dense layer-based classifier
head. It is also shown that multi-section structure and self-knowledge distillation feature conserve
resources when processing simple samples under normal conditions and increase computational
costs to improve the reliability of decisions when exposed to perturbations.

Keywords: image classification; robustness; resilience; graceful degradation; adversarial attacks;
faults injection; concept drift; convolutional neural network; self-learning; self-knowledge distillation;
prototypical classifier; contrastive-center loss

1. Introduction
1.1. Motivation

Image classification is one of the most common tasks in the field of artificial intelligence.
Classification analysis of visual objects is often a component of safety-critical applications,
such as medical diagnostics and autopilots of public transport and combat drones. It is
used in production processes, traffic flow monitoring, infrastructure inspection, industrial
facilities, and other similar tasks. Therefore, there is a need to ensure the resilience of
artificial intelligence algorithms, given their ability to continue to function under varying
system requirements, thus changing the parameters of the physical and information envi-
ronment, as well as the emergence of unspecified failures and malfunctions. In the case
of artificial intelligence for image classification, specific perturbations, such as adversarial
attacks or noise, faults, or fault injection attacks, as well as concept drifts and the presence

Algorithms 2022, 15, 384. https://doi.org/10.3390/a15100384 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6275-9803
https://orcid.org/0000-0001-5352-077X
https://doi.org/10.3390/a15100384
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100384?type=check_update&version=1

Algorithms 2022, 15, 384 2 of 24

of out-of-distribution samples, increase aleatoric and epistemic uncertainty, resulting in a
decrease in the performance of the intellectual algorithm [1–3].

The resilience of the image classifier to perturbations is primarily ensured by achieving
robustness in the absorption of a certain level of destructive perturbations and implement-
ing the graceful degradation mechanism to achieve the most effective behavior in conditions
of incomplete certainty [1]. Data analysis models need to be continuously improved to
take into account the non-stationary environment and new challenges. This is why the
ability of the model to quickly recover performance by adapting to destructive effects and
improve to increase the efficiency of subsequent adaptations are equally important compo-
nents of resilience [2]. Recovery and improvement mechanisms are developed within the
framework of the continual learning and meta-learning frameworks [4,5].

Achieving a certain level of resilience mandates the introduction of a certain resource
and functional redundancy into the system, but there are always resource constraints in
practice [6]. When designing and operating resilient systems with resource constraints taken
into account, the principles of affordable resilience are often used. This involves establishing
an effective balance between the system’s lifecycle costs and the technical characteristics
of its resilience [7]. In the case of biological intelligence, as learning progresses, the cost
of decision making decreases. Mechanisms of adaptive computing and cascade or multi-
branch models are concerned with achieving a biological-like performance of intelligent
algorithms [8,9].

Separate components of resilience to certain types of destructive effects have been
researched in many scientific papers, but the complex influence of multiple destructive
factors at once has still not been considered [1–3]. In addition, machine learning algorithms
for image classification that simultaneously implement components of resilience, such as
robustness, graceful degradation, recovery, and improvement, have not yet been proposed.
Not all implementations of these components are compatible, especially under resource-
constrained conditions. These methodological gaps highlight the need for a research and
design of image classification systems with harmonized and resource-efficient implementa-
tion of all resilience components to reduce the impact of various kinds of perturbation on
classification performance.

1.2. Objectives and Contribution

The aim of the study is to develop a resilient image classifier, which would function
under influence of destructive perturbations and resource constraints.

By resilient we mean a classifier, which implements the basic principles of resilience
(robustness, graceful degradation, recovery, and improvement) to the selected type and
level of perturbations. The less the performance of the classifier decreases under the influ-
ence of perturbation and the faster it recovers and improves, the more resilient the classifier
is considered to be. Where the permissible level of performance declines and the allowable
number of iterations to restore performance is known, the classifier can be considered
resilient if its response to a given perturbation does not exceed the specified limits.

The key objectives are as follows:

- To develop a new resource-efficient model and a training method, which simultane-
ously implement components of resilience such as robustness, graceful degradation,
recovery, and improvement;

- To test the model’s and training method’s ability to provide robustness, graceful
degradation, recovery, and improvement.

Structurally, the work consists of the following sections. The related works are an-
alyzed in the Section 2. The Section 3 presents a new classifier model used to provide
resilience features. The Section 4 describes a new training method used to provide resilience
features. The Section 5 describes the experimental results of testing of the proposed model
and training method of the classifier. The research results are discussed in the Section 6.
The Section 7 concludes the paper and describes the directions of future research.

Algorithms 2022, 15, 384 3 of 24

The main contribution of the research includes a set of proposed principles, a classifier
model, and a training algorithm that provides resilience capabilities to fault injections,
concept drifts, and adversarial attacks. In addition, the behavior of the proposed classifier
is investigated and compared with conventional approaches under the influence of the
considered perturbations. The multi-section model has a hierarchical structure of class
prototypes and hyperspherical class boundaries, which are optimized during training and
provide perturbation absorption and graceful degradation capabilities. The novelty of the
machine learning method lies in the application of a complex loss function assembled from
its constituent parts in a particular way depending on the result of perturbation detection
and the presence of new labeled and unlabeled data. In addition, the applied regularization
provides an information bottleneck and compact distribution of classes, as well as the
maximum possible interclass gaps.

2. The State-of-the-Art

Basic principles of system resilience to destructive perturbations are formulated in [6,7].
These presuppose the existence of mechanisms of perturbation absorption, perturbation
detection, graceful degradation, productivity restoration, and improvement. Previous
studies [1–3] have explored the vulnerability of artificial intelligence algorithms, identifying
the following destructive effects: noise and adversarial attacks, faults and fault injection in
the environment of intelligent algorithm deployment, concept drifts, and the emergence of
novelty (i.e., test examples that monitor the distribution of training data).

The ability to absorb destructive perturbations is called robustness. There are many
methods and approaches used to increase robustness to adversarial attacks. Some re-
searchers separate methods for ensuring robustness to competitive attacks into the follow-
ing categories: gradient masking methods, robustness optimization methods, and methods
of detecting adversarial examples [10]. Gradient masking includes some input data pre-
processing methods (jpeg compression, random padding and resizing [11], discrete atomic
compression [12]), defensive distillation [13], randomly choosing a model from a set of
models or using dropout [14], and the use of generative models (i.e., PixelDefend [15] and
Defense-GAN [16]). However, [17] demonstrated the inefficiency of gradient masking meth-
ods. The robust optimization approach includes adversarial training [18] and regularization
methods, which minimize the effects of small perturbations of the input (such as Jacobian
regularization or L2-distance between feature representations for natural and perturbed
samples) [19,20], as well as provable defenses (i.e., Reluplex algorithm [21]). The optimiza-
tion approach also includes sparse coding-based methods of feature representation, which
provide a low-pass filtering effect. These methods are mainly implemented on the basis
of L0-regularization, L1-regularization, or similar alternatives [22]. However, robustness
optimization usually requires significant computational resource consumption to obtain a
good result. Finally, yet another approach lies in developing an adversarial sample detector
to reject such samples at the input of the main model [23–25]. However, Carlini and Wag-
ner [26] rigorously demonstrate that the properties of adversarial samples are difficult and
resource-intensive to detect. The authors of [10,27,28] proposed to divide the methods of
defense against adversarial attacks into two groups, implementing two separate principles:
methods of increasing intra-class compactness and inter-class separation of feature vectors
and methods of marginalizing or removing non-robust image features. The potential for
the further development of these fundamental principles and their combination, while
taking into account additional requirements and limits, is highlighted in this study [29,30].

There are three main approaches which are used to ensure robustness to the injection of
faults in the computing environment where neural networks are deployed: the introduction
of explicit redundancy [31,32], learning algorithm modification [33], and architecture
optimization [34]. Faults are understood as accidental or intentional bit flips in memory,
which store the weights or the original value of the neuron. The introduction of explicit
redundancy is achieved, as a rule, via the duplication of critical neurons and synapses, the
uniform distribution of synaptic weights, and the removal of unimportant weights and

Algorithms 2022, 15, 384 4 of 24

neurons. It is also possible to increase the robustness of the neural network to the injection
of faults at the stage of machine learning by adding noise, introducing perturbations, or
injecting direct faults during training [33]. The same can also be achieved by including a
regularization (penalty) term in the performance measure to indirectly incorporate faults
in conventional algorithms. Optimizing the architecture to increase robustness means
minimizing the maximum error at the output of the neural network for a given number
of inverted bits in memory where weights or results of intermediate calculations are
stored. Some authors [34] solved this problem with evolutionary search algorithms or
neural architecture search tools. However, architecture optimization is traditionally a very
resource-intensive process.

Other papers [35,36] have proposed methods of domain randomization and adver-
sarial domain augmentation, which increase the robustness of the model under bounded
data distribution shifts. Domain randomization is the generation of synthetic data with
large enough variations so that that real-world data are simply viewed as another do-
main variation [35]. This can include the randomization of view angles, textures, shapes,
shaders, camera effects, scaling, and many other parameters. Adversarial domain aug-
mentation creates multiple augmented domains from the source domain by leveraging
adversarial training with relaxed domain discrepancy constraint based on the Wasserstein
auto-encoder [36]. Transfer learning and multi-task or multiple-source domain learning
also reinforce resistance to out-of-distribution perturbations [37]. However, if there is a
real concept drift in the data stream, there is a need to detect such a situation and imple-
ment reactive mechanisms to adapt [38]. There are studies on adapting to the real concept
drift, but the lack of labels for test data or a significant delay in obtaining them remains a
challenge. One of the successful approaches in reducing data quantity requirements and
increasing the generalization ability of the model involves transferring labeling information
across heterogeneous domains, cross-domain information may not be available for some
applications, however [39,40].

Adversarial attacks, fault injections, concept drifts, and out-of-distribution examples
cannot always be absorbed, so the development of reactive resilience mechanisms, namely
graceful degradation, recovery, and improvement, remains relevant [2,6]. In [41], mecha-
nisms of nested learning and hierarchical classification are proposed, particularly useful for
the implementation of the graceful degradation mechanism. However, the implementation
of these mechanisms is often associated with the need to detect perturbation. The most suc-
cessful methods of detecting adversarial and out-of-distribution samples and concept drifts
are based on the analysis of high-level feature space using a distance-based confidence
score or prototype-based classifier [25,42,43]. In [44,45], sum checking and low-collision
hash function are proposed in order to detect changes in the neural network weight un-
der the influence of memory faults. In [46], the mechanism for detecting faults affecting
inference is based on the calculation of the contrastive loss function reference value on
the test diagnostic samples of data in the absence of faults. To detect faults, the current
value of the contrastive loss function for diagnostic data is compared with the reference
value. In addition, a restoration of damaged neural network weights can be implemented
by fine-tuning [46,47].

Other papers [48,49] consider algorithms for adapting models to destructive perturba-
tions, where the principles of active learning or contrastive learning are used to speed up
adaptation by reducing the requirement for labeled data in quantities. Semi-supervised
learning methods are proposed in [50] for the simultaneous use of both labeled and unla-
beled data in order to accelerate adaptation to the concept drift. The methods of lifelong
learning, which help to continuously accumulate and improve knowledge from different
tasks, as well as different reminder mechanisms, which help to avoid catastrophic for-
getting problems, are considered in [5,51]. Various approaches to the implementation of
meta-learning to improve the effectiveness of adaptation are covered in [4,51]. In addition
to improving the model performance, [52] considers the principle of self-distillation for
training neural networks, which can implement adaptive calculations and speed up the

Algorithms 2022, 15, 384 5 of 24

inference mode as the learning efficiency of the lower layers. This property of inference
improving is not considered in the context of perturbation effects, but can potentially
improve the resilience of the algorithm.

Table 1 shows the capabilities of different approaches to building models and learning
algorithms to provide image classifier resilience to adversarial attacks, fault injection, and
concept drifts.

Table 1. Summary of the related works.

Goal Approach Capability Weakness Algorithm Authors

Adversarial
resilience

Gradient
masking

Perturbation
absorption

Vulnerability to attacks
based on gradient
approximation or
black-box
optimization with
evolution strategies

Non-differentiable
input transforma-
tion [11,12]

Xie, C.; Wang, J.;
Zhang, Z.; Ren, Z.;
Yuille, L. [11]
Makarichev, V.; Lukin,
V.; Illiashenko, O.;
Kharchenko V. [12]

Defensive
distillation [13]

Papernot, N.;
McDaniel, P.; Wu, X.;
Jha, S.; Swami, A. [13]

Random model
selection from a
family of models [14]

Srisakaokul, S.; Zhong,
Z.; Zhang, Y.; Yang, W.;
Xie, T. [14]

Generative model
PixelDefend or
Defense-
GAN [15,16]

Song, Y.; Kim, T.;
Nowozin, S.; Ermon,
S.; Kushman [15]
Samangouei, P.;
Kabkab, M.;
Chellappa, R. [16]

Robust- ness
optimization

Perturbation
absorption and
performance
recovery

Significant
computational
resource consumption
to obtain a good result

Adversarial
retraining [18] Kwon, H.; Lee, J. [18]

Stability training [19]
Laermann, J.;
Samek, W.;
Strodthoff, N. [19]

Jacobian
regularization [20]

Jakubovitz, D.;
Giryes, R. [20]

Sparse coding-based
representation [22]

Shu, X.; Tang, J.; Qi,
G.-J.; Li, Z.; Jiang Y.-G.;
Yan, S. [22]

Intra-
concentration and
inter-
separability
regularization [27–29]

Yang, S.; Luo, P.;
Change Loy, C.; Shum,
K. W.; Tang. X. [27]
Moskalenko, V.;
Zaretskyi, M.;
Moskalenko, A.;
Korobov, A.;
Kovalsky, Y. [28]
Moskalenko, V.;
Moskalenko, A. [29]

Provable defenses
with the Reluplex
algorithm [21]

Xu, J.; Li, Z.; Du, B.;
Zhang, M.; Liu, J. [21]

Detecting
adversarial
examples

Graceful
degradation Not reliable enough

Light-weight
Bayesian
refinement [23]

Deng, Z.; Yang, X.; Xu,
S.; Su, H.; Zhu, J. [23]

Algorithms 2022, 15, 384 6 of 24

Table 1. Cont.

Goal Approach Capability Weakness Algorithm Authors

Adversarial example
detection using
latent neighborhood
graph [24]

Abusnaina, A.; Wu, Y.;
Arora, S.; Wang, Y.;
Wang, F.; Yang, H.;
Mohaisen, D. [24]

Feature distance
space analysis [25]

Carrara, F.; Becarelli,
R.; Caldelli, R.; Falchi,
F.; Amato, G. [25]

Fault
resilience

Redundancy and
fault masking

Perturbation
absorption

Computational
intensive model
synthesis and
inference redundancy
overhead

Explicit
redundancy [31]

Huang, K.;
Siegel, P. H.;
Jiang, A. [31]

Weight
representation with
error-correcting
codes [32]

Jang, M.; Hong, J. [32]

Fault-tolerant
training based on
fault injection during
training [33]

Hoang, L.-H.; Hanif,
M. A.; Shafique,
M. [33]

Neural architecture
search [34]

Li, W.; Ning, X.; Ge, G.;
Chen, X.; Wang, Y.;
Yang, H. [34]

Error detection

Graceful
degradation and
recovery by
downloading a
clean copy
of weights

The model does not
improve itself and
information from
vulnerable weights is
not spread among
other neurons

Encoding the most
vulnerable model
weights using a
low-collision
hash-function [44]

Javaheripi, M.;
Koushanfar, F. [44]

Checksum-
based algorithm that
computes low-
dimensional binary
signature for each
weight group [45]

Li, J.; Rakin, A. S.; He,
Z.; Fan, D.;
Chakrabarti, C. [45]

Active recovery Performance
recovery Not reliable recovery

Contrastive
fine-tuning on
diagnostic
sample [46]

Wang, C.; Zhao, P.;
Wang, S.; Lin, X. [46]

Weight-shifting
mechanism in self-
organizing map [47]

Girau, B.;
Torres-Huitzil, C. [47]

Concept drift
resilience

Out-of-
domain
generalization

Perturbation
absorption

Applicable only to
counteract virtual
concept drift and
useless in case of real
concept drift

Domain
randomization [35]

Valtchev, S. Z.; Wu, J.
[35]

Adversarial data
augmentation [36]

Volpi, R.; Namkoong,
H.; Sener, O.;
Duchi, J.; Murino, V.;
Savarese, S. [36]

Algorithms 2022, 15, 384 7 of 24

Table 1. Cont.

Goal Approach Capability Weakness Algorithm Authors

Domain-
invariant
representation [37]

Xu, Q.; Yao, L.; Jiang,
Z.; Jiang, G.; Chu, W.;
Han, W.; Zhang, W.;
Wang, C.; Tai, Y. [37]

Heterogeneous-
domain knowledge
propagation [39,40]

Tang, J.; Shu, X.; Li, Z.;
Qi, G.-J.; Wang,
J. [39,40]

Drift detection Graceful
degradation

Increasing the ability
to detect concept drift
at the expense of fast
adaptation abilities

Constraint
embedding [43]

Castellani, A.; Schmitt,
S.; Hammer, B. [43]

Meta-learning to
detect concept
drift [43]

Yu, H.; Zhang, Q.; Liu,
T.; Lu, J.; Wen, Y.;
Zhang, G. [43]

Continual
adaptation

Performance
recovery and
improvement

The need to
implement complex
mechanisms to
prevent catastrophic
forgetting and
speedup of adaptation

Adaptive diversified
ensemble
selection [38]

Museba, T.;
Nelwamondo, F.;
Ouahada, K. [38]

Continual
learning [48]

Wang, Z.; Chen, Y.;
Zhao, C.; Lin, Y.; Zhao,
X.; Tao, H.; Wang, Y.;
Khan, L. [48]

Active learning [49]
Margatina, K.;
Vernikos, G.; Barrault,
L.; Aletras, N. [49]

Semi-
supervised
learning [50]

Chen, Y.; Wei, C.;
Wang, D.; Ji, C.; Li,
B. [50]

Continual
meta-learning [51]

Caccia, M.; Rodríguez,
P.; Ostapenko, O.;
Normandin, F.; Lin,
M., Caccia, L.; Laradji,
I.; Rish, I.; Lacoste, A.;
Vazquez, D.;
Charlin, L. [51]

The analysis of related works allows us to conclude that most studies focus on separate
principles of resilience of data classification models, but there are virtually no works which
consider their coterminous combination to provide a synergy effect. The analysis shows
that the known approaches implementing particular resilience properties do not take
into account the principles of affordable resilience [7], which is relevant in the context of
limited resources.

To summarize, there is a strong need to evolve a new algorithm to provide image
classifier resilience to well-known perturbations considering the resource efficiency.

3. Classification Model Design
3.1. Principles

When building the model, we aim to implement the main characteristics of resilience:
robustness, graceful degradation, recovery, and improvement. The model is based on the
following principles:

Algorithms 2022, 15, 384 8 of 24

- hierarchical labeling and hierarchical classification to implement the principle of
graceful degradation by coarsening the prediction with a more abstract class and with
reasonable confidence when classes at the bottom of the hierarchy are recognized with
a low confidence level;

- combining the mechanisms of self-knowledge distillation and nested learning to
increase the robustness of the model by increasing the informativeness of the feedback
for the lower layers at the training stage and accelerate inference by skipping high-level
layers for simple samples at the inference stage;

- prototype and compact spherical container formation for each class to simplify the
detection of out-of-distribution samples and concept drifts;

- using memory FIFO queues with a limited size to store labeled and unlabeled data
with corresponding values of loss function obtained by inference for implementation
diagnostic and recovery mechanism.

These principles should ensure resource efficiency because the model will have small
branches for intermediate decisions which introduces minimal redundancy, since the main
part of the feature extractor body is shared between intermediate classifiers. In addition,
the size of data queues for diagnostic samples with corresponding loss, or labeled and
unlabeled samples with the result of their recognition, can be set to an acceptable capacity
from the point of view of resource constraints.

3.2. Architecture

Figure 1 depicts the architecture of the resilient classifier.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 26

3. Classification Model Design

3.1. Principles

When building the model, we aim to implement the main characteristics of resilience:

robustness, graceful degradation, recovery, and improvement. The model is based on the

following principles:

- hierarchical labeling and hierarchical classification to implement the principle of

graceful degradation by coarsening the prediction with a more abstract class and

with reasonable confidence when classes at the bottom of the hierarchy are recog-

nized with a low confidence level;

- combining the mechanisms of self-knowledge distillation and nested learning to in-

crease the robustness of the model by increasing the informativeness of the feedback

for the lower layers at the training stage and accelerate inference by skipping high-

level layers for simple samples at the inference stage;

- prototype and compact spherical container formation for each class to simplify the

detection of out-of-distribution samples and concept drifts;

- using memory FIFO queues with a limited size to store labeled and unlabeled data

with corresponding values of loss function obtained by inference for implementation

diagnostic and recovery mechanism.

These principles should ensure resource efficiency because the model will have small

branches for intermediate decisions which introduces minimal redundancy, since the

main part of the feature extractor body is shared between intermediate classifiers. In ad-

dition, the size of data queues for diagnostic samples with corresponding loss, or labeled

and unlabeled samples with the result of their recognition, can be set to an acceptable

capacity from the point of view of resource constraints.

3.2. Architecture

Figure 1 depicts the architecture of the resilient classifier.

Figure 1. Model architecture of resilient image classifier. Figure 1. Model architecture of resilient image classifier.

It illustrates the sectional design of the deep neural classifier. Sections consist of
ResBlocks of the well-known ResNet50 architecture. The ResNet50 architecture also pro-
vided the inspiration for the Bottleneck module, serving to mitigate the impacts between
each classifier of the lower sections, and to add distillation knowledge from the high-level
feature map to the lower-level feature maps. The output of each section is used to construct
a separate classifier. Each classifier receives feedback from the data labels and the last layer.

Algorithms 2022, 15, 384 9 of 24

Feedback from the last layer, denoted by a dotted line, ensures the implementation of the
principle of self-knowledge distillation.

A set of prototype vectors is constructed for the classification analysis of the feature
representation of each section output. Prototype vectors are not fixed; they are tuned in the
training process together with weights of the feature extractor. To implement the graceful
degradation principle, prototypes can belong to different levels in the hierarchy, according
to the hierarchy of labeling. In the example provided, a two-level hierarchy is used. To
increase immunity to noise and implement the information bottleneck, we approximate
the feature representation to a discrete form, which is why the output of the feature
extractor of each section uses the sigmoid layer and the corresponding regularization in the
training algorithm.

The radius of hyperspherical containers of classes is optimized for each prototypical
classifier. Container radii are stored in memory to detect high levels of uncertainty when
making decisions. Test samples outside the class containers become candidates for semi-
supervised tuning and for manual labeling (active learning) to be performed at a later stage.
Controlling for the samples outside the class container can also be used for real concept
drift and out-of-distribution detection.

After updating the weights and parameters of the model, the diagnostic dataset and
the corresponding value of the loss function must be stored (or updated) in memory. After
that, a subset of diagnostic data should be passed along for inference purposes, together
with the test samples in each batch. This will allow a comparison of the past and present
values of the loss function to detect errors or injection faults in the memory of the neural
network weights. Where the difference between past and present values of the loss function
exceeds a certain threshold α = 0.01, a neural network fine-tuning algorithm utilizing the
diagnostic data needs to be initiated to bring this difference under a threshold β = 0.001.

The multi-section structure of the model with intermediate classifiers allows adaptive
calculations to be implemented and the recognition of simple images to be accelerated.
At the same time, as the model is continually trained, it becomes faster due to increased
prediction confidence of the lower section classifiers. This, in turn, will allow the rest of
the high-level sections of the model to be skipped. The following rules for classification
analysis in the adaptive calculations framework are proposed:

- neural network calculations are performed sequentially, section by section;
- high-level sections can be skipped if the maximal value of the membership function

in the output of the current section, with regards to a particular class of the lower
hierarchical level, exceeds the confidence threshold T;

- if the maximal value of the membership function of any of the hierarchical levels of
the classifier at the output of the current section has not increased compared to the
previous section, the subsequent calculations can be omitted;

- where any of the conditions of omission of the subsequent sections are fulfilled or the
classifier in question is the last classifier in the model and the maximal value of the
membership function of the lower hierarchical level does not exceed the confidence
threshold, a higher level in the hierarchy is checked;

- where a class with a sufficient confidence level has not been identified, a decision is
refused, a request for a manual labeling is generated, and the corresponding sample is
designated as suitable for semi-supervised tuning.

The hierarchical prototype-based classifier module consists of class prototypes, hy-
perspherical container parameters, and parameter regularization intended to compress
(discretize) feature representation and prototypes. In this case, the confidence in the forecast
of the i-th sample belonging to the k-th class, is determined by the following membership
function [28,29,52]

µk(zi) = 1− dist(zi, zk)

N·rk
, (1)

where zi is a binarized feature representation of i-th example at the feature extractor output;
zk is a trainable k-th class prototype;

Algorithms 2022, 15, 384 10 of 24

N is a dimension of input feature vector zi;
rk is a trainable scale factor for the radius of hyperspherical decision boundary (con-

tainer) of the k-th class, rk ∈ (0; 1);
dist(·) is a Euclidean squared distance.
If the maximum value of Function (1) for an input unlabeled sample zi is less than

zero, such a forecast should not be trusted and such a sample should be added to the queue
of unlabeled data outside the training distribution. Where the input unlabeled sample
falls into one of the containers of the recognition classes (at any of the levels), it should
be added to the in-class unlabeled data buffer within the training distribution. Unlabeled
sample buffers can be used for training with pseudo-labeling and soft-labeling, or for
consistency regularization.

Where the model is trained, but an occurrence of n samples of the c-th class misallo-
cated during forward propagation to k-th class container is detected in the queue of the
new labeled data, the real concept drift is recognized.

To avoid catastrophic forgetting in the context of concept drifts or the emergence of a
new recognition class, a reminder function is implicitly implemented. Such a function is
based on unlabeled data queues and prototypical vectors in feature space, which are chang-
ing slowly. Upper-layer knowledge distillation mechanism also serves the same purpose.

Data from the unlabeled data queue can be moved to the labeled data queue after
the feedback on their actual affiliation with the classes is received. The priority of specific
samples being recommended for manual labeling depends on the value of the membership
Function (1).

4. Training Method Design
4.1. Principles

During the development of the training method, we aim to ensure robustness, graceful
degradation, recovery, and improvement. To this end, the training algorithm will be based
on the following principles:

- accounting for the hierarchy of data labeling and hierarchy class prototypes by calcu-
lating the loss function separately for each level of the hierarchy to provide graceful
degradation at the inference;

- the implementation of self-knowledge distillation, i.e., distillation of knowledge from
the high-level layer (section) of the model down to lower layers (sections) as additional
regularization components to increase robustness and provide adaptive calculations
in inference mode;

- increasing the compactness of the distribution of classes and the buffer zone between
classes to increase resistance to noise, outliers, and adversarial attacks in turn as an
additional distance-based regularization component;

- the discretization of feature representation in order to implement the information
bottleneck and increase the robustness of the feature representation as an additional
regularization component;

- the ability to effectively use both labeled and unlabeled data samples to speed up
adaptation with a limited quantity of labeled data, which usually comes with a
time lag;

- the avoidance of catastrophic forgetting when adapting to change and adversarial
attacks without full retraining by implementing a reminding mechanism which utilizes
the data buffers and distillation feedback of the upper layers.

4.2. Stages

The proposed training method consists of the following stages:

- self-supervision pre-training of the model with instance-prototype contrastive loss LICPL;
- prototype and radius initialization for each class;
- supervised learning with loss function LS, which includes conventional cross-entropy

and additional components for self-knowledge distillation and regularization;

Algorithms 2022, 15, 384 11 of 24

- selecting fault diagnostic data (selected randomly or with respect to the value of the
loss function);

- inference on a new and diagnostic data;
- requesting manual labeling of hard examples;
- supervised learning with loss function LS, taking into account manual labeling re-

sponses or semi-supervised fine-tuning (adaptation) with additional component LSSIN
or LSSOUT depends on the result of inference;

- updating diagnostic data.

Where a large amount of unlabeled data is available, the model preparation should
start with self-supervised learning of feature extractor. For this purpose, it is proposed
to use instance-prototype contrastive loss, characterized by computational efficiency and
generalizing ability close to the biological prototype [53]. Instance-prototype contrastive
loss is calculated by the formula

LICPL = − log
exp(−dist(zi, zi)/τ)

exp(−dist(zi, zi)/τ) + ∑B
b=1 exp(−dist(zi, zb)/τ)

, (2)

where zi is a feature representation at the output of the feature extractor zi = f(xi) for input
example xi from a mini-batch;

zi represents an averaged feature representation for the augmented version of input
example and considered as a positive pair for the input example xi,

zi =
1

na

na

∑
j=1

f
(
aj(xi)

)
, (3)

where aj is an augmentation operator, such as random cropping, rescaling, random hori-
zontal/vertical flip, random adjustment to hue, saturation, contrast and brightness, and
random grayscale conversion;

B is the number of pre-processed examples considered as negative pairs, the feature
representations of which are stored in the non-indexed FIFO queue (with queue length
B = 1024) and updated after the processing of each mini-batch;

τ is a temperature parameter that controls the dynamic range of the similarity function.
The loss function LS used in supervised learning includes, in addition to the conven-

tional cross-entropy LSCE computed with labels and predictions, a class-level component
LCSD and a feature-level component LFSD of self-knowledge distillation. A regularization
component LD can also be added to the loss function in order to achieve compression of
feature representation, implementing an information bottleneck principle. The contrastive-
center loss LCCL can be used as a regularization component to enhance robustness optimiza-
tion by increasing intra-class compactness and inter-class separability. Thus, the following
combined loss function is suggested for supervised learning

LS = λSCE LSCE + λCCL LCCL + λCSD LCSD + λFSD LFSD + λD LD, (4)

where LSCE and LCCL represent the values of the respective loss functions LSCE and LCCL
averaged over S-sections and H-levels of the hierarchy of classes of the classification model;

LFSD and LCSD represent the values of the respective loss functions LFSD and LCSD
averaged over (S− 1)-sections and H-levels of the hierarchy of classes of the classifica-
tion model;

LD is averaged by S-outputs (sections) of the classification model, including the output
of the last layer and the value of the loss function LD;

λSCE, λCCL, λFSD, λCSD, and λD are the coefficients for regulating the influence of the
components of the resulting loss function.

Algorithms 2022, 15, 384 12 of 24

The classifier module is proposed to be built on the basis of class prototypes, which
are the centers of hyperspherical containers. In this case, the cross-entropy loss LSCE is
calculated at the output of the classifier by the formula

LSCE = CE(q(zi, τ = 1), yi), (5)

where CE(·) is the cross-entropy loss function;
yi is a one-hot encoded vector of the target variable for the i-th input sample;
q(·) is an assessment of the probability of belonging to the feature representation of

the i-th sample to a particular class container, which for the k-th class is calculated by
the formula

qk(zi, τ) = softmax(leaky_relu(µ(zi)/τ))k =
exp(leaky_relu(µk(zi)/τ))

∑K
c=1 exp(leaky_relu(µc(zi)/τ))

, (6)

where K is a size of the class set;
leaky_relu is an improved version of the ReLU function with a small slope (alpha = 0.02)

for negative values.
Contrastive-center loss function LCCL, which impacts the optimization efficiency of

each class prototype, is calculated on a labeled training set by the formula [10]

LCCL =
dist

(
zi, zyi

)
∑K

k=1, k 6=yi
dist(zi, zk) + 1

. (7)

Self-knowledge distillation components, such as LFSD in the form of L2 loss from hints
and LCSD in the form of Kullback–Leibler divergence loss, are calculated based on the S-th
(last) output of the model and the s-th output (intermediate) of the model

LFSD = dist
(

zs
i , zS

i

)
, (8)

LCSD = KL(q(zs
i , τ), q(zS

i , τ)), (9)

where zs
i , zS

i is the feature representation at the output of the s-th section (intermediate
output) of the model and at the S output (last output) model.

A regularization component LD implements the information bottleneck by penalizing
the discretization error of feature representation

LD = zi
T(e− zi), (10)

where e is a unit vector.
To speed up adaptation to changes, unlabeled data examples can be used in consistency

regularization [50]. In this case, unlabeled data are divided into two groups: unlabeled
examples, which fall into the class containers, and unlabeled examples, which are outside
all class containers.

Unlabeled examples which fall into class containers, are used to calculate regulariza-
tion component LSSIN by the following formula

LSSIN = CE
(
q(z′i, τ = 1), q(z′′i , τ = 1)

)
, (11)

where z′i, z′′i are feature presentations of two augmented versions of the input sample xi.
Certain portions γ (≤10%) of unlabeled data, which fall into class containers and have

maximum values of q(zi), can be pseudo-labeled with the corresponding classes. Such
pseudo-labeled data can be included in every mini-batch during training.

Unlabeled examples which fall outside of all class containers, may be examples of
unknown classes or concept drift results. In this case, soft-labeling qdist

k (zi) based on

Algorithms 2022, 15, 384 13 of 24

distances to prototype of known classes should be used in the consistency regularization
component LSSOUT:

LSSOUT = CE
(

q(zi, τ = 1), qdist(zi)
)

(12)

qk(zi) = softmax(−dist (zi, z))k =
exp(−dist(zi, zk))

∑K
c=1 exp(−dist(zi, zc))

. (13)

Figure 2 shows a block diagram of the proposed algorithm for training image classifier
with resilience to adversarial attacks, fault injection, and concept drifts.

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 26

Figure 2. Block diagram of training algorithm.

As the next step, to facilitate the process of adapting the class prototype to the data

structure, the proposed approach uses label smoothing. This is performed according to

the formula Z′ = Z ∙ 0.7 + 0.15; as a result, the 1′ s will turn into 0.87, and the 0′ s into 0.15.

K of the first vectors truncated by N first features, i.e., z̅ = Z′[1: K, 1: N], are then selected

from the resulting matrix. The trainable scale factor rk for the radius of the hyperspherical

decision boundary (container) of the k-th class is initialized with a value of half of the

Plotkin bounds, divided by the dimensionality of the feature space [29,54].

Figure 2. Block diagram of training algorithm.

Algorithms 2022, 15, 384 14 of 24

Algorithm execution steps 2 to 5 are responsible for the preparation phase of the
resilient image classifier. Algorithm execution steps 6 to 20 are related to the collection of
new data and adaptation to perturbations. The adaptation process is continuous until the
end of the classifier life cycle.

Step 3, step 13, and step 15 of the algorithm (Figure 2) are quite important, since the
efficiency of the classifier depends on their implementation. These steps aim to initialize
or re-initialize the prototype and container radius for each class. The initial values of the
parameters of the lower-level class prototypes are initialized on the basis of the Hadamard
matrix [22] using the principle of label smoothing. For this, first, the dimensionality of
the Hadamard matrix is determined NHadamard = 2ceil(log2 (N)), where ceil() is the function
rounding a number to a larger integer value. All values less than 0 are replaced by 0,
i.e., Z = max(0, Hadamard(NHadamard)) subsequently.

As the next step, to facilitate the process of adapting the class prototype to the data
structure, the proposed approach uses label smoothing. This is performed according to the
formula Z′ = Z·0.7 + 0.15; as a result, the 1′ s will turn into 0.87, and the 0′ s into 0.15. K
of the first vectors truncated by N first features, i.e., z = Z′[1 : K, 1 : N], are then selected
from the resulting matrix. The trainable scale factor rk for the radius of the hyperspherical
decision boundary (container) of the k-th class is initialized with a value of half of the
Plotkin bounds, divided by the dimensionality of the feature space [29,54].

rk ←
(

1
2

N
2

K
K− 1

)
1
N

=
K

4(K− 1)
. (14)

The appearance of a sample with a label indicating a new (K + 1)-th lower-level class
necessitates the formation of a new prototype for the class ZK+1 with the corresponding
initial values of the radius scale factor rK+1. This is achieved by selecting the nearest vector
from the remaining unused rows of a modified Hadamard matrix Z′, where the proximity
is determined on the basis of Euclidean squared distance. The initial value of the radius
scale factor for the new class is also determined by Formula (14), but taking into account
the new number of classes.

Each coordinate of the prototype of the upper hierarchical level is initialized by copying
the corresponding coordinate of one of the prototypes of the lower level, selected at random.
The initial class radius of the upper hierarchical level is determined by Formula (14), taking
into account the number of classes at this level.

When a real concept drift is recognized, prototypes of drifting classes are populated
with random numbers from the range between 0 and 1.

Diagnostic datasets are formed by sampling labeled examples which fall into their
class containers according to inference results. This is represented by step 5 and step 21
of the algorithm depicted on Figure 2. The value of loss Function (4), calculated for the
diagnostic data, is stored in the memory for comparison purposes. When a mismatch is
detected between the current value and the previously calculated value of the loss function,
fine-tuning takes place. Fine-tuning is stopped if the difference is reduced by more than
10 times.

5. Experiments

The CIFAR-10 and CIFAR-100 datasets are chosen for experimentation because the
datasets are publicly available and their images are small in size, which speeds up experi-
mental research [55,56]. Classes of the CIFAR-10 dataset can be arranged in a hierarchical
structure. For example, the first superclass (upper level class) will be the animal class, which
includes the bird, cat, deer, dog, frog, and horse subclasses. The second superclass will be
the vehicle class, which includes the airplane, automobile, ship, and truck subclasses. The
CIFAR-10 dataset consists of 50,000 training images and 10,000 test 32 × 32 color images
distributed evenly between 10 classes. The 100 classes in the CIFAR-100 are grouped into
20 superclasses at the first upper level [55]. The CIFAR-100 consists of the same number of
images as the CIFAR-10, but has 500 training images per class and 100 test images per class.

Algorithms 2022, 15, 384 15 of 24

For convenience of the analysis, for training of the base model, we will use 70% of training
data to form a dataset base, and use the remaining 30% for the additional training dataset.

In the case of the CIFAR-10 dataset, 12 prototype vectors will be used at the output of
the classifier of each section, of which 2 are used for superclass prototypes and 10 are used
for lower-level prototypes. In the case of the CIFAR-100 dataset, 120 prototype vectors will
be used at the output of the classifier of each section, respectively.

For all experiments, the chosen confidence threshold, considered sufficient to make
a decision, is T = 0.8. The training is carried out on the basis of the Adam optimizer
with a learning rate equal to 0.0003. The dimension of feature representation is set to
64 (N = 64). Default values of coefficients used in loss Function (4) are proposed as
follows: λSCE = 1.0, λCCL = 1.0, λCSD = 0.1, λFSD = 0.01, λD = 0.0001. Besides that,
semi-supervision components LSSIN and LSSOUT are used with coefficients λSSIN = 0.1 and
λSSOUT = 0.1, respectively. Preliminary training with the loss Function (2) is proposed to
be carried out on all the training data, disregarding the labels. The size of the proposed
mini-batch is 128 images.

Different model weights have different importance and varying levels of impact
on model performance. In addition, a fault in the higher bits of tensor value leads to a
greater distortion of the results than a fault in the lower bits. Similarly, the effectiveness of
adversarial attacks with the same amplitude constraint can be very different depending on
the spatial distribution of the perturbed pixels. Therefore, statistical characteristics should
be used to evaluate and compare the model’s resilience to damaged tensors or perturbed
images. The statistical characteristics are derived from a large number of experiments,
where bits and tensors for inversion are chosen randomly from a uniform distribution or
adversarial images generated by black-box optimizer with randomized evolution strategy.
For simplicity, we can consider the median (MED) value and the interquartile (IRQ) value
of the classifier’s accuracy (Acc) or precision (Prec) under perturbation and the required
number of performance recovery steps (Rec_steps), calculated after 1000 experiments.

To test the model for fault tolerance and resiliency, the TensorFI2 library is recom-
mended, which is able to emulate software and hardware failures [57]. The experiment
proposes to consider the effect of the most difficult-to-absorb type of failure—a bit-flip
injection in each layer of the model layer, with randomly selected fixed tensor fraction
(fault rate) and one randomly selected bit for inversion. Diagnostic data are added to each
model for diagnostics and recovery, together with test data at the model input.

For the ease of simulation, it is assumed that fault injection is generated anew before
feeding each training mini-batch. Diagnostic data are selected from the dataset additional
set and the data quantity is equal to the size of 128 images. The recovery process stops when
the loss function on the diagnostic data does not decrease for five consecutive iterations, or
when difference between past and present values of the loss function is less than β = 0.001.

Table 2 shows the dependency of models’ accuracy before and after recovery on fault
rate for the class and superclass hierarchical levels, regardless of which the model section’s
output is chosen as final. The table also contains the number of steps performed to recover
in each case. In all experiments, the presence of faults is detected with 100% accuracy.

Table 2 shows that a higher hierarchical classifier absorbs faults better and recovers
better on diagnostic data, although a higher hierarchical-level classifier carries less informa-
tion. This is an useful property for the mechanism of graceful degradation. At the same
time, in the presence of a single random bit-flip in 10% of the randomly selected tensors
of the deep model, the accuracy of the classifier of the lower and upper hierarchical level
did not change noticeably, which is a manifestation of the robustness property. A further
increase in the fault rate leads to a noticeable decrease in accuracy, but recovery mechanism
recovers more than half of the accuracy drop.

Algorithms 2022, 15, 384 16 of 24

Table 2. A comparison of the accuracy under fault injection and required number of performance
recovery steps.

Dataset Fault Rate
MED (Acc)

Under Fault
Injection

MED (Acc)
After

Recovery

MED (Acc)
for

Superclass
Level

Under Fault
Injection

MED (Acc)
for

Superclass
Level
After

Recovery

MED
(Rec_Steps)

MED
(Rec_Steps)

for
Superclass

Level

CIFAR-10 0.0 0.993 - 0.980 - - -
CIFAR-10 0.1 0.985 0.991 0.975 0.979 12 12
CIFAR-10 0.2 0.932 0.976 0.930 0.961 29 21
CIFAR-10 0.3 0.852 0.971 0.870 0.932 32 32
CIFAR-10 0.4 0.801 0.921 0.790 0.914 49 54
CIFAR-10 0.5 0.713 0.882 0.730 0.893 63 71
CIFAR-10 0.6 0.532 0.851 0.721 0.881 81 80
CIFAR-100 0.0 0.890 - 0.970 - - -
CIFAR-100 0.1 0.879 0.889 0.962 0.970 35 25
CIFAR-100 0.2 0.871 0.881 0.961 0.970 55 51
CIFAR-100 0.3 0.790 0.880 0.926 0.961 59 50
CIFAR-100 0.4 0.600 0.870 0.910 0.958 62 64
CIFAR-100 0.5 0.551 0.851 0.890 0.929 70 71
CIFAR-100 0.6 0.357 0.758 0.665 0.910 80 77

It is also noticed that as the fault rate increases, the number of recovery iterations
increases. The IRQ of the calculated accuracy values does not exceed 0.05, and the IRQ of
the recovery step number does not exceed 9. At the same time, the difference in the number
of classes in the CIFAR-10 and CIFAR-100 datasets did not have a significant impact on the
behavior of the classifier.

To test the model for resilience to noise and adversarial attacks, it is suggested not
to rely on the specific features of the model architecture and learning algorithm, such
as gradients. Testing instead would be based on black-box attacks. In this case, we will
consider two types of attacks that give the most divergent results—one/few pixels for
“strong” attacks and all pixels for “slight” attacks. The formation of both attacks will be
implemented on the basis of the covariance matrix adaptation evolution strategy (CMA-ES)
search algorithm [58]. For the first type of attacks, the constraint on the perturbation
amplitude (th) is set by the L0-norm and for the second by the L∞-norm.

Table 3 shows the dependence of the model accuracy and precision on the perturbed
test data with different maximum perturbation amplitudes (th), according to the L0 and L∞
norms for the upper and lower hierarchical levels, respectively.

Table 3 shows that the upper hierarchical level absorbs perturbations from adversarial
attacks better, while the accuracy decreases more under the influence of L∞ attacks. Analysis
of the accuracy values shows that the trained classifier is quite robust to the attacks with
a maximum amplitude of th = 1. The sharpest decline in accuracy occurs for th > 3.
Analysis of the precision values shows that an increase in the level of perturbation mainly
leads to an increase in the number of reject decisions, rather than false positives. The high
precision can be regarded as one of the forms of graceful degradation.

The recovery of performance under adversarial perturbations takes place continuously
through semi-supervised learning. The queue of the last labeled data can be updated
by active learning mechanisms. The perturbed dataset, with 10% labeled and 90% un-
labeled examples, is used to simulate active learning mechanism. Table 4 shows the
dependence of the number of tuning steps (Rec_steps) required to recover at least 95%
pre-perturbation performance.

Algorithms 2022, 15, 384 17 of 24

Table 3. A comparison of the accuracy under adversarial perturbations.

Dataset
Threshold for
Perturbation

Level

MED (Acc)
on Perturbed

Test Data

MED (Acc)
for Superclass

Level on
Perturbed Test Data

MED (Prec)
on Perturbed

Test Data

MED (Prec)
for Superclass

Level on
Perturbed Test Data

L0-
Attack

L∞-
Attack

L0-
Attack

Linf-
Attack

L0-
Attack

Linf-
Attack

L0-
Attack

Linf-
Attack

CIFAR-10 0 0.981 0.981 0.995 0.995 0.981 0.981 0.995 0.995
CIFAR-10 1 0.975 0.967 0.980 0.970 0.979 0.978 0.991 0.991
CIFAR-10 2 0.941 0.853 0.965 0.881 0.978 0.977 0.991 0.990
CIFAR-10 3 0.851 0.762 0.880 0.811 0.977 0.975 0.989 0.984
CIFAR-10 4 0.831 0.744 0.875 0.771 0.977 0.974 0.985 0.980
CIFAR-10 5 0.801 0.711 0.871 0.741 0.963 0.955 0.985 0.979
CIFAR-10 6 0.781 0.680 0.841 0.711 0.950 0.949 0.973 0.970
CIFAR-100 0 0.890 0.890 0.970 0.970 0.930 0.930 0.980 0.980
CIFAR-100 1 0.885 0.883 0.970 0.967 0.930 0.926 0.978 0.971
CIFAR-100 2 0.881 0.880 0.942 0.941 0.910 0.910 0.972 0.968
CIFAR-100 3 0.833 0.829 0.910 0.900 0.905 0.900 0.970 0.941
CIFAR-100 4 0.741 0.745 0.902 0.871 0.898 0.889 0.960 0.941
CIFAR-100 5 0.692 0.701 0.820 0.812 0.891 0.884 0.920 0.905
CIFAR-100 6 0.642 0.603 0.780 0.750 0.890 0.883 0.820 0.831

Table 4. A comparison of the required number of performance recovery steps.

Dataset
Threshold for
Perturbation

Level

MED (Rec_Steps) MED (Rec_Steps)
for Superclass Level IRQ (Rec_Steps) IRQ (Rec_Steps)

for Superclass Level

L0-
Attack

L∞-
Attack

L0-
Attack

L∞-
Attack

L0-
Attack

L∞-
Attack

L0-
Attack

L∞-
Attack

CIFAR-10 1 12 18 10 13 1 2 2 2
CIFAR-10 2 21 29 20 21 1 1 3 3
CIFAR-10 3 32 45 31 35 2 3 2 5
CIFAR-10 4 39 50 39 42 3 3 4 4
CIFAR-10 5 50 68 41 44 2 6 3 7
CIFAR-10 6 91 111 59 52 4 5 5 6
CIFAR-100 1 34 37 20 22 3 3 4 4
CIFAR-100 2 39 41 42 42 5 3 3 4
CIFAR-100 3 45 45 44 45 4 5 5 5
CIFAR-100 4 46 49 49 50 2 4 4 4
CIFAR-100 5 68 71 70 70 6 5 5 6
CIFAR-100 6 100 99 80 85 7 6 5 7

Table 4 shows that relatively little perturbed labeled data, in combination with un-
labeled perturbed data, are enough to recover performance and to obtain robustness to
a given type and level of perturbation. The CIFAR-100 dataset requires slightly more
iterations of performance recovering in comparison to the CIFAR-10 dataset. It may be
caused by a large number of class neighbors in the constrained feature space.

The emergence of a new class can be regarded as one of the concept drift subtypes,
since the boundaries between classes must be changed. To test the ability to adapt to the
emergence of new classes, the model should be trained on an incomplete set of classes
and then trained model shoud be fine-tune on labeled samples of previously excluded
classes. Testing the ability to adapt to concept drifts should be carried out by submitting
a sample of classes, the labels of which are swapped, to fine-tune the trained model.
Successful adaptation implies performance recovery, i.e., an achievement of at least 95%
of the pre-perturbation performance. Adaptation stops if accuracy does not improve for
10 consecutive steps (mini-batches). It is assumed that the real concept drift will be detected
automatically when labeled samples from the dataset base with modified labels are added

Algorithms 2022, 15, 384 18 of 24

to the training mini-batch, which will then be included in the queue of the last labeled
data. The threshold for detecting the real concept drift is set to 50 samples of one class in a
container of another class.

Table 5 shows the worst results of the adaptation speed of the lower hierarchical level
of the classifier among the results for all concept drift combinations.

Table 5. Performance recovery rates after adding new classes or mutual class drift at the lower
hierarchical level.

Perturbation
Number of Steps for Training
from Scratch

Number of Steps for Supervised Recovery
(Maximum Value among Experiments)

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Add one new class 2400 2800 33 38
Add two new classes 2400 3000 56 62
Real concept drift between pair of classes 2800 3000 73 75
Real concept drift between three classes 2800 3200 95 97

Table 5 shows that performance recovery after the appearance of new classes occurs
quickly, requiring up to 56 steps (tuning mini-batches) with the CIFAR-10 dataset, and up
to 62 steps with the CIFAR-100 dataset. However, it took up to 95 steps with the CIFAR-10
dataset and 97 steps with the CIFAR-100 dataset to achieve performance recovery after
the real concept drift. The IRQ of table values is less than 8. In other words, it takes more
than 32 times less steps (mini-batches) for performance recovery than it does to learn from
scratch. The behavior of the algorithm on both datasets is similar, but the CIFAR-100 case
requires slightly more iterations for training and recovering.

6. Discussion

The proposed model of the classifier has a multi-section structure designed to imple-
ment adaptive calculations and increase the generalization capabilities of the model due to
self-knowledge distillation. Accuracy under perturbation and a recovery speed should be
compared for a model, which uses outputs of intermediate sections with a model using
only last output (at the last model’s layer) to identify the influence of the multi-section
structure on the resilience of the model.

Conceptually, the resilient classifier can be built from modules with different micro-
architectures. The system’s property of resilience should be nevertheless preserved owing
to the proposed macro-architecture and training method. However, in the problem of
classification analysis, along with the convolutional building blocks, the transformer build-
ing blocks have become widespread. Therefore, it is interesting to consider the behavior
of the proposed classifier with a backbone based on the well-known blocks of the Swin
transformer [55]. In addition, the conventional approach to building the classification head
of the model is to use the dense layer and Softmax output normalization. Therefore, it is
worth checking how the replacement of the prototype classifier with the dense layer will
affect the classifier’s resilience.

Table 6 shows a comparison between the models, using the outputs of individual
sections and the model which only uses a single output at the last layer in light of their
accuracy under perturbation by taking into account the different ways of implementing the
backbone and classifier head. Table 7 shows a comparison of recovery speed depending on
the above modifications. For simplicity, only the CIFAR-10 dataset and two different types
of perturbations are used—fault injection with a fault_rate = 0.3 and adversarial L∞ attack
with threshold = 3. The IRQ of accuracy values from Table 6 does not exceed 0.03, and the
IRQ of the number of recovery steps from Table 7 does not exceed 5.

Algorithms 2022, 15, 384 19 of 24

Table 6. A comparison of the accuracy under perturbation for the modified model.

Are the Outputs
of Intermediate
Sections Taken
into Account?

Perturbation

MED (Acc) after Perturbation

Backbone Based on
ResNet Blocks

Backbone Based on
Swin Transformer Blocks

Prototype-Based
Classifier Head

Dense Layer-Based
Classifier Head

Prototype-Based
Classifier Head

Dense Layer-Based
Classifier Head

True Fault injection
(fault_rate = 0.3) 0.852 0.831 0.849 0.841

False Fault injection
(fault_rate = 0.3) 0.802 0.792 0.810 0.800

True
Adversarial

L∞ attack
(threshold = 3)

0.762 0.712 0.782 0.722

False
Adversarial

L∞ attack
(threshold = 3)

0.723 0.685 0.754 0.709

Table 7. A comparison of the required number of performance recovery steps for the modified model.

Are the Outputs
of Intermediate
Sections Taken
into Account?

Perturbation

MED (Rec_Steps)

Backbone Based on
ResNet Blocks

Backbone based on
Swin Transformer Blocks

Prototype-Based
Classifier Head

Dense Layer-Based
Classifier Head

Prototype-Based
Classifier Head

Dense Layer-Based
Classifier Head

True Fault injection
(fault_rate = 0.3) 25 45 55 95

False Fault injection
(fault_rate = 0.3) 151 277 240 297

True
Adversarial

L∞ attack
(threshold = 3)

41 83 95 173

False
Adversarial

L∞ attack
(threshold = 3)

270 450 403 489

Tables 6 and 7 show that all the considered modifications are not superior to the
proposed options in Figure 1. However, the accuracy of the classifier and the speed of
performance recovery are noticeably higher if the intermediate outputs of the model are
used. At the same time, the Swin transformer blocks provide slightly higher accuracy
values compared to the ResNet blocks, especially under the influence of adversarial attacks.
However, recovering the performance of the classifier with backbone based on Swin
transformer blocks requires more tuning steps compared to the usage of ResNet blocks.

Similarly, the effects of cutting off the outputs of intermediate sections on recovery
speed after the influence of concept drifts should be considered. Table 8 shows the worst re-
sults of the adaptation speed of the lower hierarchical level of the classifier among the results
for all perturbing combinations, in the case of the cut-off outputs of intermediate sections.

Tables 5 and 8 show that using the outputs of all sections of the model increases the
speed of performance recovery by more than 20%; as such, it requires 20% less labeled data
to achieve the same result.

It is assumed that as the multi-sectional model architecture is trained, its computa-
tional efficiency of inference is improved by saving resources on simple examples without
perturbations. Figure 3 shows the dependence of the ratio of the average time spent in
the adaptive mode Tadap to the time of inference across the entire network Tfull on the

Algorithms 2022, 15, 384 20 of 24

number of training mini-batches from CIFAR-10 (Figure 3a), the maximum amplitude of
the adversarial L∞ attack (Figure 3b), and the fault_rate (Figure 3c).

Table 8. Performance recovery rates after adding new classes or mutual class drift at the lower
hierarchical level with the cut-off outputs of intermediate sections.

Perturbation
Number of Steps for Training

from Scratch
Number of Steps for Supervised Recovery

(Maximum Value among Experiments)

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Add one new
class 3600 5600 41 47

Add two new
classes 2600 4600 68 72

Real concept drift between pair of classes 3600 4600 88 88
Real concept drift between three classes 3600 4800 130 145

Algorithms 2022, 15, x FOR PEER REVIEW 22 of 26

(a) (b)

(c)

Figure 3. Dependence of the average time ratio in the adaptive mode to the time of inference across

the entire network on the factor of influence: (a)—number of training mini-batches; (b)—the maxi-

mum amplitude of the adversarial attack L∞; (c)—the fault_rate.

7. Conclusions and Future Work

A new image classifier model is proposed. The proposed model has a multi-section

structure with a hierarchy of optimized class prototypes and hyperspherical class bound-

aries, which provides adaptive computation, perturbation absorption, and graceful deg-

radation.

A new training method, which combines self-knowledge distillation, the maximiza-

tion of compactness of class distribution and interclass gap, the discretization of feature

representations, and consistency regularization, is proposed. The applied loss function

assembled from its constituent parts in a particular way depending on the result of per-

turbation detection and the presence of a new labeled and unlabeled data is presented.

Consistency regularization makes it possible to utilize both labeled and unlabeled data to

obtain a robust model and to implement continuous adaptation.

Experimental results obtained from the Cifar10 and Cifar100 datasets show that the

proposed approach provides high robustness to adversarial attacks with a maximum am-

plitude of perturbation equal to 1 and robustness to the presence of a single random bit-

flip in 10% of the randomly selected tensors of the deep model. An increase in the level of

adversarial perturbation mainly leads to an increase in the number of reject decisions,

rather than false positives which represent a form of graceful degradation. A comparative

analysis between the different class hierarchy levels shows that the upper level of class

hierarchy is characterized by a higher level of robustness. It is a useful property for the

implementation of graceful degradation mechanism under the influence of fault injection

and adversarial attacks.

Replacing the classification head based on prototypes with a dense layer as well as

replacing ResNet blocks with Swin transformer blocks preserved the system property of

resilience, but in many aspects led to a reduced absorption of perturbations and a reduced

Figure 3. Dependence of the average time ratio in the adaptive mode to the time of inference
across the entire network on the factor of influence: (a)—number of training mini-batches; (b)—the
maximum amplitude of the adversarial attack L∞; (c)—the fault_rate.

Figure 3 confirms that the hypotheses that the average inference time decreases when
the degree of network training increases and the average inference time increases when the
amplitude of the adversarial attack and the frequency of faults increase.

Thus, the proposed classifier can absorb a certain level of perturbations; detect samples
outside the training distribution and the concept drift; and provide graceful degradation,
recovery, and performance improvement. It also performs better than the conventional
approach. It is very important to assure resilience to cyber attacks and the fault tolerance of

Algorithms 2022, 15, 384 21 of 24

UAV-based intelligent systems to monitor severe accidents of critical infrastructure objects,
such as NPPs [59], and delivering services for smart cities [60].

As a disadvantage of the proposed approach can be considered, there is a need to use
additional queues for diagnostic, labeled, and unlabeled last processed data. There are also
no mechanisms to measure of resilience and directly to improve classifier performance. If
there is an improvement, it can be seen as a side effect of performance recovery.

7. Conclusions and Future Work

A new image classifier model is proposed. The proposed model has a multi-section
structure with a hierarchy of optimized class prototypes and hyperspherical class boundaries,
which provides adaptive computation, perturbation absorption, and graceful degradation.

A new training method, which combines self-knowledge distillation, the maximiza-
tion of compactness of class distribution and interclass gap, the discretization of feature
representations, and consistency regularization, is proposed. The applied loss function
assembled from its constituent parts in a particular way depending on the result of per-
turbation detection and the presence of a new labeled and unlabeled data is presented.
Consistency regularization makes it possible to utilize both labeled and unlabeled data to
obtain a robust model and to implement continuous adaptation.

Experimental results obtained from the Cifar10 and Cifar100 datasets show that the
proposed approach provides high robustness to adversarial attacks with a maximum
amplitude of perturbation equal to 1 and robustness to the presence of a single random
bit-flip in 10% of the randomly selected tensors of the deep model. An increase in the level
of adversarial perturbation mainly leads to an increase in the number of reject decisions,
rather than false positives which represent a form of graceful degradation. A comparative
analysis between the different class hierarchy levels shows that the upper level of class
hierarchy is characterized by a higher level of robustness. It is a useful property for the
implementation of graceful degradation mechanism under the influence of fault injection
and adversarial attacks.

Replacing the classification head based on prototypes with a dense layer as well as
replacing ResNet blocks with Swin transformer blocks preserved the system property of
resilience, but in many aspects led to a reduced absorption of perturbations and a reduced
speed of adaptation. Although Swin transformer blocks provided slightly better robustness
in perturbing effects, the speed of adaptation of the obtained classifier is noticeably slower.
In all experiments, the accuracy of the classifier and the speed of performance recovery are
noticeably higher if the intermediate outputs of the model are used.

Experimental results also demonstrate that the proposed algorithm takes more than
32 times less steps (mini-batches) to recover the performance after adding the new class or
the real concept drift between two or three classes than it does to retrain from scratch. At
the same time, taking into account the outputs of intermediate sections allow the adaptation
to be sped up by more than 20%.

It has been experimentally proven that the proposed approach allows resources (time)
to be saved when processing simple samples under normal conditions and increases
computational resource allocation to improve the reliability of decisions when exposed
to perturbations.

The practical significance of the research derives from a new methodological basis for
the development of resilient algorithms for classification image analysis under conditions
of adversarial attacks, faults, and concept drifts.

Future research should focus on the development of criteria, models, and methods for
measuring and certifying the resilience of image classifiers. Special attention should also be
paid to the question of providing a tradeoff between the classifier performance without
perturbations and the level of model resilience under perturbation. This can be useful for
the development of meta-learning algorithms aimed to provide an affordable resilience of
image classifiers.

Algorithms 2022, 15, 384 22 of 24

Author Contributions: Supervision and conceptualization: V.K.; methodology: V.K. and V.M.; model
and algorithm design: V.M.; software, visualization, and validation: S.P. and A.M.; writing—original
draft: V.M. and V.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The CIFAR-10 and CIFAR-100 datasets presented in this study are
openly available in [23] and can be found here https://www.cs.toronto.edu/~kriz/cifar.html,
accessed on 17 September 2022. The ILSVRC2012 dataset can be found here http://image-net.
org/challenges/LSVRC/2012/index, accessed on 17 September 2022.

Acknowledgments: The authors appreciate the scientific society of the consortium and, in particular,
the staff of the Department of Computer Systems, Networks, and Cybersecurity (DCSNCS) at
the National Aerospace University “KhAI” and the Laboratory of Intellectual Systems (LIS) of
the Computer Science Department at the Sumy State University for invaluable inspiration, hard
work, and creative analysis during the preparation of this paper. In addition, the authors thank
the Ministry of Education and Science of Ukraine for the support to the LIS in the framework of
research project no 0122U000782—“Information technology for providing resilience of artificial
intelligence systems to protect cyber-physical systems” (2022–2024) and the support of project No
0122U001065—“Dependability assurance methods and technologies for intellectual industrial IoT
systems” (2022–2023) implemented by the DCSNCS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eigner, O.; Eresheim, S.; Kieseberg, P.; Klausner, L.; Pirker, M.; Priebe, T.; Tjoa, S.; Marulli, F.; Mercaldo, F. Towards Resilient

Artificial Intelligence: Survey and Research Issues. In Proceedings of the IEEE International Conference on Cyber Security and
Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 1–7. [CrossRef]

2. Olowononi, F.; Rawat, D.; Liu, C. Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine
Learning Security to Securing Machine Learning for CPS. IEEE Commun. Surv. Tutor. 2021, 23, 524–552. [CrossRef]

3. Dymond, J. Graceful Degradation and Related Fields. A Review for Applied Research Centre at the Alan Turing Institute.
Available online: https://eprints.soton.ac.uk/455349/ (accessed on 22 June 2021).

4. Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-Learning in Neural Networks: A Survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 5149–5169. [CrossRef] [PubMed]

5. Parisi, G.; Kemker, R.; Part, J.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw.
2019, 113, 54–71. [CrossRef] [PubMed]

6. Fraccascia, L.; Giannoccaro, I.; Albino, V. Resilience of Complex Systems: State of the Art and Directions for Future Research.
Complexity 2018, 2018, 3421529. [CrossRef]

7. Madni, A. Affordable Resilience. Transdiscipl. Syst. Eng. 2017, 133–159. [CrossRef]
8. Zhang, L.; Bao, C.; Ma, K. Self-Distillation: Towards Efficient and Compact Neural Networks. IEEE Trans. Pattern Anal. Mach.

Intell. 2021, 44, 4388–4403. [CrossRef] [PubMed]
9. Marquez, E.; Hare, J.; Niranjan, M. Deep Cascade Learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5475–5485. [CrossRef]

[PubMed]
10. Leslie, N.S. A useful taxonomy for adversarial robustness of Neural Networks. Trends Comput. Sci. Inf. Technol. 2020, 5, 37–41.

[CrossRef]
11. Xie, C.; Wang, J.; Zhang, Z.; Ren, Z.; Yuille, A. Mitigating Adversarial Effects Through Randomization. In Proceedings of the

International Conference on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1–16. [CrossRef]
12. Makarichev, V.; Lukin, V.; Illiashenko, O.; Kharchenko, V. Digital Image Representation by Atomic Functions: The Compression

and Protection of Data for Edge Computing in IoT Systems. Sensors 2022, 22, 3751. [CrossRef]
13. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations Against Deep Neural

Networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2016; pp.
582–597. [CrossRef]

14. Srisakaokul, S.; Zhong, Z.; Zhang, Y.; Yang, W.; Xie, T.; Ti, B. MULDEF: Multi-model-based Defense Against Adversarial Examples
for Neural Networks. arXiv 2018, arXiv:1809.00065.

15. Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. PixelDefend: Leveraging Generative Models to Understand and Defend
against Advers arial Examples. In Proceedings of the International Conference on Learning Representations, Vancouver, QC,
Canada, 30 April–3 May 2018; pp. 1–20. [CrossRef]

https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/challenges/LSVRC/2012/index
http://image-net.org/challenges/LSVRC/2012/index
http://doi.org/10.1109/CSR51186.2021.9527986
http://doi.org/10.1109/COMST.2020.3036778
https://eprints.soton.ac.uk/455349/
http://doi.org/10.1109/TPAMI.2021.3079209
http://www.ncbi.nlm.nih.gov/pubmed/33974543
http://doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
http://doi.org/10.1155/2018/3421529
http://doi.org/10.1007/978-3-319-62184-5_9
http://doi.org/10.1109/TPAMI.2021.3067100
http://www.ncbi.nlm.nih.gov/pubmed/33735074
http://doi.org/10.1109/TNNLS.2018.2805098
http://www.ncbi.nlm.nih.gov/pubmed/29993618
http://doi.org/10.17352/tcsit.000017
http://doi.org/10.48550/arXiv.1711.01991
http://doi.org/10.3390/s22103751
http://doi.org/10.1109/SP35280.2016
http://doi.org/10.48550/arXiv.1710.10766

Algorithms 2022, 15, 384 23 of 24

16. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative
Models. arXiv 2018, arXiv:1805.06605.

17. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples. arXiv 2018, arXiv:1802.00420.

18. Kwon, H.; Lee, J. Diversity Adversarial Training against Adversarial Attack on Deep Neural Networks. Symmetry 2021, 13, 428.
[CrossRef]

19. Laermann, J.; Samek, W.; Strodthoff, N. Achieving Generalizable Robustness of Deep Neural Networks by Stability Training. In
Proceedings of the 41st DAGM German Conference, Dortmund, Germany, 10–13 September 2019; pp. 360–373. [CrossRef]

20. Jakubovitz, D.; Giryes, R. Improving DNN Robustness to Adversarial Attacks using Jacobian Regularization. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 1–16. [CrossRef]

21. Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the IEEE Symposium on
Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–6. [CrossRef]

22. Shu, X.; Tang, J.; Qi, G.-J.; Li, Z.; Jiang, Y.-G.; Yan, S. Image Classification with Tailored Fine-Grained Dictionaries. IEEE Trans.
Circuits Syst. Video Technol. 2018, 28, 454–467. [CrossRef]

23. Deng, Z.; Yang, X.; Xu, S.; Su, H.; Zhu, J. LiBRe: A Practical Bayesian Approach to Adversarial Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 972–982.
[CrossRef]

24. Abusnaina, A.; Wu, Y.; Arora, S.; Wang, Y.; Wang, F.; Yang, H.; Mohaisen, D. Adversarial Example Detection Using Latent
Neighborhood Graph. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 10–17 October 2021. [CrossRef]

25. Carrara, F.; Becarelli, R.; Caldelli, R.; Falchi, F.; Amato, G. Adversarial Examples Detection in Features Distance Spaces. In Physics
of Solid Surfaces; Springer: Berlin/Heidelberg, Germany, 2019; pp. 313–327. [CrossRef]

26. Carlini, N.; Wagner, D. Adversarial Examples Are Not Easily Detected. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 3–14. [CrossRef]

27. Yang, S.; Luo, P.; Change Loy, C.; Shum, K.W.; Tang, X. Deep representation learning with target coding. In Proceedings of the
AAAI15: Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January2015; pp. 3848–3854.

28. Moskalenko, V.; Zaretskyi, M.; Moskalenko, A.; Korobov, A.; Kovalsky, Y. Multi-stage deep learning method with self-supervised
pretraining for sewer pipe defects classification. Radioelectron. Comput. Syst. 2021, 71–81. [CrossRef]

29. Moskalenko, V.; Moskalenko, A. Neural network based image classifier resilient to destructive perturbation influences—
Architecture and training method. Radioelectron. Comput. Systems. 2022, 3, 95–109. [CrossRef]

30. Silva, S.; Najafirad, P. Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey. arXiv 2020,
arXiv:2007.00753.

31. Huang, K.; Siegel, P.H.; Jiang, A. Functional Error Correction for Robust Neural Networks. IEEE J. Sel. Areas Inf. Theory 2020,
267–276. [CrossRef]

32. Jang, M.; Hong, J. MATE: Memory- and Retraining- Free Error Correction for Convolutional Neural Network Weights. J. Lnf.
Commun. Converg. Eng. 2021, 19, 22–28. [CrossRef]

33. Hoang, L.-H.; Hanif, M.A.; Shafique, M. TRe-Map: Towards Reducing the Overheads of Fault-Aware Retraining of Deep Neural
Networks by Merging Fault Maps. In Proceedings of the 24th Euromicro Conference on Digital System Design (DSD), Palermo,
Italy, 1–3 September 2021; pp. 434–441. [CrossRef]

34. Li, W.; Ning, X.; Ge, G.; Chen, X.; Wang, Y.; Yang, H. FTT-NAS: Discovering Fault-Tolerant Neural Architecture. In Proceedings of
the 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January 2020; pp. 211–216.
[CrossRef]

35. Valtchev, S.Z.; Wu, J. Domain randomization for neural network classification. J. Big Data 2021, 8, 1–12. [CrossRef]
36. Volpi, R.; Namkoong, H.; Sener, O.; Duchi, J.; Murino, V.; Savarese, S. Generalizing to unseen domains via adversarial data

augmentation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC,
Canada, 2–8 December 2018; pp. 1–11. [CrossRef]

37. Xu, Q.; Yao, L.; Jiang, Z.; Jiang, G.; Chu, W.; Han, W.; Zhang, W.; Wang, C.; Tai, Y. DIRL: Domain-Invariant Representation
Learning for Generalizable Semantic Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto,
CA, USA, 22 February–3 March 2022; pp. 2884–2892. [CrossRef]

38. Museba, T.; Nelwamondo, F.; Ouahada, K. ADES: A New Ensemble Diversity-Based Approach for Handling Concept Drift. Mob.
Inf. Syst. 2021, 2021, 5549300. [CrossRef]

39. Tang, J.; Shu, X.; Li, Z.; Qi, G.-J.; Wang, J. Generalized Deep Transfer Networks for Knowledge Propagation in Heterogeneous
Domains. ACM Trans. Multimedia Comput. Commun. Appl. 2016, 12, 1–22. [CrossRef]

40. Shu, X.; Qi, G.-J.; Tang, J.; Wang, J. Weakly-Shared Deep Transfer Networks for Heterogeneous-Domain Knowledge Propagation.
In Proceedings of the 23rd ACM International Conference on Multimedia–MM ’15, Brisbane Australia, 26–30 October 2015;
pp. 35–44. [CrossRef]

41. Achddou, R.; Di Martino, J.; Sapiro, G. Nested Learning for Multi-Level Classification. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2815–2819. [CrossRef]

http://doi.org/10.3390/sym13030428
http://doi.org/10.1007/978-3-030-33676-9_25
http://doi.org/10.48550/arXiv.1803.08680
http://doi.org/10.1109/ISCC50000.2020.9219587
http://doi.org/10.1109/TCSVT.2016.2607345
http://doi.org/10.1109/CVPR46437.2021.00103
http://doi.org/10.1109/ICCV48922.2021.00759
http://doi.org/10.1007/978-3-030-11012-3_26
http://doi.org/10.1145/3128572.3140444
http://doi.org/10.32620/reks.2021.4.06
http://doi.org/10.32620/reks.2022.3.07
http://doi.org/10.1109/JSAIT.2020.2991430
http://doi.org/10.6109/jicce.2021.19.1.22
http://doi.org/10.1109/DSD53832.2021.00072
http://doi.org/10.1109/ASP-DAC47756.2020.9045324
http://doi.org/10.1186/s40537-021-00455-5
http://doi.org/10.5555/3327345.3327439
http://doi.org/10.1609/aaai.v36i3.20193
http://doi.org/10.1155/2021/5549300
http://doi.org/10.1145/2998574
http://doi.org/10.1145/2733373.2806216
http://doi.org/10.1109/ICASSP39728.2021.9415076

Algorithms 2022, 15, 384 24 of 24

42. Castellani, A.; Schmitt, S.; Hammer, B. Task-Sensitive Concept Drift Detector with Constraint Embedding. In Proceedings of the
IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 4–7 December 2021; pp. 1–8. [CrossRef]

43. Yu, H.; Zhang, Q.; Liu, T.; Lu, J.; Wen, Y.; Zhang, G. Meta-ADD: A meta-learning based pre-trained model for concept drift active
detection. Inf. Sci. 2022, 608, 996–1009. [CrossRef]

44. Javaheripi, M.; Koushanfar, F. HASHTAG: Hash Signatures for Online Detection of Fault-Injection Attacks on Deep Neural
Networks. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), Munich, Germany,
1–4 November 2021; pp. 1–9. [CrossRef]

45. Li, J.; Rakin, A.S.; He, Z.; Fan, D.; Chakrabarti, C. RADAR: Run-time Adversarial Weight Attack Detection and Accuracy Recovery.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February
2021; pp. 790–795. [CrossRef]

46. Wang, C.; Zhao, P.; Wang, S.; Lin, X. Detection and recovery against deep neural network fault injection attacks based on
contrastive learning. In Proceedings of the 3rd Workshop on Adversarial Learning Methods for Machine Learning and Data
Mining at KDD, Singapore, 14 August 2021; pp. 1–5.

47. Girau, B.; Torres-Huitzil, C. Fault tolerance of self-organizing maps. Neural Comput. Appl. 2020, 32, 17977–17993. [CrossRef]
48. Wang, Z.; Chen, Y.; Zhao, C.; Lin, Y.; Zhao, X.; Tao, H.; Wang, Y.; Khan, L. CLEAR: Contrastive-Prototype Learning with Drift

Estimation for Resource Constrained Stream Mining. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April
2021; pp. 1351–1362. [CrossRef]

49. Margatina, K.; Vernikos, G.; Barrault, L.; Aletras, N. Active Learning by Acquiring Contrastive Examples. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021;
pp. 1–14. [CrossRef]

50. Chen, Y.; Wei, C.; Wang, D.; Ji, C.; Li, B. Semi-Supervised Contrastive Learning for Few-Shot Segmentation of Remote Sensing
Images. Remote Sens. 2022, 14, 4254. [CrossRef]

51. Caccia, M.; Rodríguez, P.; Ostapenko, O.; Normandin, F.; Lin, M.; Caccia, L.; Laradji, I.; Rish, I.; Lacoste, A.; Vazquez, D.;
et al. Online fast adaptation and knowledge accumulation (OSAKA): A new approach to continual learning. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020;
pp. 16532–16545.

52. Dovbysh, A.; Shelechov, I.; Khibovska, J.; Matiash, O. Information and analytical system for assessing the compliance of
educational content specialties cyber security with modern requirements. Radioelectron. Comput. Syst. 2021, 1, 70–80. [CrossRef]

53. Konkle, T.; Alvarez, G. A self-supervised domain-general learning framework for human ventral stream representation. Nat.
Commun. 2020, 13, 491. [CrossRef]

54. Verma, G.; Swami, A. Error correcting output codes improve probability estimation and adversarial robustness of deep neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, QC, Canada, 8–14 December
2019; pp. 8646–8656.

55. Wu, J.; Tian, X.; Zhong, G. Supervised Contrastive Representation Embedding Based on Transformer for Few-Shot Classification.
J. Phys. Conf. Ser. 2022, 2278, 012022. [CrossRef]

56. Doon, R.; Rawat, T.K.; Gautam, S. Cifar-10 Classification using Deep Convolutional Neural Network. In Proceedings of the IEEE
Punecon, Pune, India, 30 November–3 December 2018; pp. 1–5. [CrossRef]

57. Li, G.; Pattabiraman, K.; DeBardeleben, N. TensorFI: A Configurable Fault Injector for TensorFlow Applications. In Proceedings
of the IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Charlotte, NC, USA, 15–18
October 2018; pp. 1–8. [CrossRef]

58. Kotyan, S.; Vargas, D. Adversarial robustness assessment: Why in evaluation both L0 and L∞ attacks are necessary. PLoS ONE
2022, 17, e0265723. [CrossRef]

59. Sun, Y.; Fesenko, H.; Kharchenko, V.; Zhong, L.; Kliushnikov, I.; Illiashenko, O.; Morozova, O.; Sachenko, A. UAV and IoT-Based
Systems for the Monitoring of Industrial Facilities Using Digital Twins: Methodology, Reliability Models, and Application. Sensors
2022, 22, 6444. [CrossRef]

60. Kharchenko, V.; Kliushnikov, I.; Rucinski, A.; Fesenko, H.; Illiashenko, O. UAV Fleet as a Dependable Service for Smart Cities:
Model-Based Assessment and Application. Smart Cities 2022, 5, 1151–1178. [CrossRef]

http://doi.org/10.1109/SSCI50451.2021.9659969
http://doi.org/10.1016/j.ins.2022.07.022
http://doi.org/10.1109/ICCAD51958.2021.9643556
http://doi.org/10.23919/DATE51398.2021.9474113
http://doi.org/10.1007/s00521-018-3769-6
http://doi.org/10.1145/3442381.3449820
http://doi.org/10.48550/arXiv.2109.03764
http://doi.org/10.3390/rs14174254
http://doi.org/10.32620/reks.2021.1.06
http://doi.org/10.1038/s41467-022-28091-4
http://doi.org/10.1088/1742-6596/2278/1/012022
http://doi.org/10.1109/PUNECON.2018.8745428
http://doi.org/10.1109/ISSREW.2018.00024
http://doi.org/10.1371/journal.pone.0265723
http://doi.org/10.3390/s22176444
http://doi.org/10.3390/smartcities5030058

	Introduction
	Motivation
	Objectives and Contribution

	The State-of-the-Art
	Classification Model Design
	Principles
	Architecture

	Training Method Design
	Principles
	Stages

	Experiments
	Discussion
	Conclusions and Future Work
	References

