
MICRO-CRACK CHARACTERIZATION FOR METAL-ON-METAL 

HIP IMPLANT OF TEXTURED SURFACE USING 

ELECTRICAL DISCHARGE MACHINING

NOR LIYANA SAFURA BINTI HASHIM

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Biomedical Engineering)

School of Biomedical Engineering and Health Sciences 

Faculty of Engineering 

Universiti Teknologi Malaysia

DECEMBER 2020



DEDICATION

Special dedicated to:

My beloved husband, Muhammad Nabil bin Mohd Warid 

My beloved daughter, Nuraa Maisara binti Muhammad Nabil 

My dear father, Hashim bin Ibrahim 

My dear mother, Halimah binti Abu Nasir 

My dear father-in-law, Mohd Warid bin Hussin 

My dear mother-in-law, Wan Kamaliah binti Wan Ahmad 

And all my dear family members.

For always being with me through my good and hard time, support me with
everything that they can.

iv



ACKNOWLEDGEMENT

Alhamdulillah. Thanks Allah for endowing me with health, strength and 
patience to complete my PhD journey. I trust that without Allah and people around me 
I would not be able to submit this thesis.

During completing this research, I was in contact with many people, 
researchers, academicians, and practitioners. They have contributed towards my 
understanding and thoughts. I am heartily thankful to my main supervisor, Assoc. Prof. 
Dr. Azli bin Yahya and Dr. Muhamad Noor bin Harun as my co-supervisor for their 
continuously encouragement, guidance, advice and motivational support from the 
early of my research.

Being a student together with other commitments is challenging for me. I owe 
so much to my devoted husband, Muhammad Nabil for his unconditional love, 
understanding, motivational support and taking care of our daughter, Nuraa Maisara 
during my critical time. They both were always be my motivation. I also very grateful 
to have dad and mom, Hashim and Halimah, my father and mother-in-law, Mohd 
Warid and Wan Kamaliah, all my family members and in-law members for not giving 
up on me, gave a constant motivational supports in various way that they could and 
always be my inspiration. Without them, I trust that this journey would be more 
challenging for me.

I am also indebted to other technical staff in School of Biomedical and Health 
Science, Faculty of Engineering and University Laboratory Universiti Teknologi 
Malaysia (UTM), Librarians at UTM for their cooperation and assistance through this 
research.

My sincere appreciation also extends to all my colleagues, Nazriah, Ade 
Erawan, Kartiko, Trias, Razak, Azhar, Dana and others that not being mentioned here 
who provided me with kind help, friendship and support directly, or indirectly at 
various occasions throughout my study. Very much appreciated to Nazriah for her 
generosity and willingness to always be my loyal listener especially regarding to the 
research.

I also wish to express my sincere appreciation to Ministry of Education for 
sponsorship during my study through MyBrain15 programme as well as Research 
Management Center (RMC) UTM for approval and supporting of all the activities 
sponsorship.

v



ABSTRACT

In hip implant, it has been proven that surface texturing which is also known 
as dimples can improve the lubrication performance and reduce friction. However, 
little attention is paid to the effect of textured surface by assessing the crack formation 
on the dimple areas. This research focuses on the formation of cracks on dimple edges 
during manufacturing process using electrical discharge machining (EDM) as higher 
stress is produced in this area. The crack formation then was observed during 
operational use of metal-on-metal (MoM) hip implant in the case that the dimples 
parameters are not fully optimized. For dimple manufacturing on a S45C mild steel 
material, machining angles was varied at 50°, 70° and 90° using developed workpiece 
positioning system in this research. The pulse currents were set at 1 A, 2 A and 3 A. 
Cracks formed on the dimple edge after the machining were observed using Scanning 
Electron Microscope (SEM) and measured in terms of its length. Then, nine dimples 
were machined on the samples of acetabular cup part using the chosen EDM 
parameters. Friction screening on the hip implant samples with femoral head of 28 mm 
diameter and radial clearance of 30 pm was carried out using four-ball bearing 
machine. The loads varied up to 250 N, 500 N and 1000 N representing the loading 
gait in the hip joint. The formation of cracks on the dimple edges for each load was 
then observed. The experimental results showed that when lowest current 1A was 
applied, the micro-cracks total length appeared during EDM process increased 
substantially. For MoM hip implant, it was found that the optimal setting for the EDM 
machining was 3 A at 90° machining angle, taking into account the curved hip implant 
surface. However, more than 50% of the cracks formed during machining were 
removed after loading due to surface grooving. It is suggested that it is suitable to 
machine the dimples on the hip implant surface using EDM in terms of crack 
formation. While new cracks formed after the loading were found to be far more 
dominant than the original cracks due to EDM machining. The cracks were found to 
be much wider and longer especially with the imposition of the maximum load of 1000 
N. The contribution of this study is on the effect of crack formation on hip implant 
improvement, as well as providing basic data of textured surface in hip implant. This 
is because the crack formed can cause wear and friction which can lead to wear fatigue 
in hip implant thus shorten lifespand its lifespan.
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ABSTRAK

Dalam bidang implant pinggul, telah dibuktikan bahawa tekstur permukaan 
yang juga dikenali sebagai lubang dapat meningkatkan sifat-sifat tribologi dan 
mengurangkan geseran. Namun begitu, terlalu sedikir perhatian diberikan kepada 
kesan tekstur permukaan ini dengan melihat kepada penghasilan retak. Penyelidikan 
ini fokus kepada penghasilan retak pada kawasan di pinggir lubang semasa proses 
pemesinan menggunakan mesin EDM kerana kawasan ini merupakan kawasan yang 
mempunyai tekanan yang tinggi. Penghasilan retak mikro juga diperhatikan semasa 
penggunaan operasi implan pinggul Metal-on-Metal, MoM sekiranya parameter 
lubang tidak optimum sepenuhnya. Bagi menghasilkan lubang, sudut pemesinan 
diubah kepada 50°, 70° dan 90° menggunakan sistem kedudukan EDM yang telah 
dibina. Arus yang digunakan diubah dari 1 A, 2 A dan 3 A. Retak yang terbentuk 
selepas pemesinan diperhatikan menggunakan Mikroskop Pengimbasan Elektron 
(SEM) dan dianalisis dari segi panjangnya. Kemudian, sembilan lubang kecil dimesin 
pada beberapa sampel bahagian acetabular implan pinggul menggunakan parameter 
EDM yang menghasilkan parameter EDM yang terpilih. Pemeriksaan geseran juga 
dilakukan pada sampel implan pinggul dengan diameter kepala femoral sebesar 28mm 
dan pelepasan jejarian 30 pm menggunakan penguji galas bebola. Beban yang 
digunakan diubah sehingga 250 N, 500 N dan 1000 N mewakili beban yang 
ditanggung oleh pinggul. Pembentukan keretakan di permukaan dan pinggir lubang 
bagi setiap beban diperhatikan. Daripada kajian ini, didapati kejadian retak menjadi 
bertambah teruk dari segi jumlah dan panjang retak apabila arus paling rendah iaitu 1 
A digunakan. Untuk aplikasi implant pinggul, didapati tetapan yang optimum untuk 
pemesinan EDM adalah menggunakan 3 A dan sudut 90 ° dengan mengambil kira 
permukaan melengkung pada permukaan implan. Walau bagaimanapun, lebih 
daripada 50% retak yang dibentuk semasa pemesinan terhakis dan tidak kelihatan lagi 
selepas ujian pemeriksaan geseran. Ini menunjukkan bahawa pemesinan EDM sesuai 
digunakan untuk memesin lubang pada permukaan implan pinggul. Manakala retak 
baru yang didapati wujud selepas beban dikenakan adalah lebih dominan berbanding 
retak asal disebabkan oleh pemesinan EDM. Retak yang terhasil lebih panjang dan 
lebar apabila berat 1000 N dikenakan. Penyelidkan ini menyumbang kepada 
pengetahuan dan memberikan data asas penghasilan retak dalam bidang tekstur 
permukaan untuk penambahbaikan yang selanjutnya. Ini kerana retak yang terhasil 
menyebabkan permukaan implan semakin haus seterusnya memendekkan lagi jangka 
hayat implan.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Human hip joint is a ball and socket joint, consisting of a femoral head and 

acetabular cup that connects the lower limb to the pelvic girdle. It is designed to 

accommodate a wide range of movements while transmitting large dynamic loads 

involved in many daily human activities. Therefore, hip joint is expected to function 

well throughout human life. It has the risk of diseases such as osteoarthritis, 

rheumatoid arthritis, and trauma, for which certain conditions may require these 

natural bearings to be replaced with artificial ones which are also called hip implants 

[1]. Implant replacement surgery of hip joint consists of joint substitution with an 

implant that can recreate the articulatory function [2].

Although hip replacement has been recognized as the most successful 

treatment for hip joint diseases, it still shows some drawbacks. It is shown statistically 

that not all implant devices can survive in the long run in which they need to be revised 

[3]. The most common causes of revision are repetitive dislocation, mechanical failure 

such as wear and tear, loosening and also infection. Over the years, many research 

have been conducted to investigate and improve the performance of the implant 

devices and prolong its lifespan, especially in improving the tribology performance in 

terms of material and bearing design [4,5]. Tribology is a study of wear, friction and 

lubrication of a joint. In order to reduce wear and friction that occur in hip implant, 

lubrication activities must be presented. However, there was no enough room or space 

for lubricant to be sustained into the space between the acetabular cup and femoral 

head of the implant devices [6]. Therefore, many previous researchers hve shown their 

interest in studying the effect sof textured surface machining on hip implant joints to 

improve lubrication in the implant devices [7,8].
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Surface texturing is a well-defined identical feature of discrete dimples or 

grooves on a surface. With a lot of research that have focused on reducing wear on hip 

implants by improving the bearing design and bearing materials, some studies 

investigate the effects of performance using surface texturing approach [2,9-11]. 

Surface texturing, which is also known as a hole, oil-pocket, dimple, or cavity, is a 

feasible method for contact performance enhancement in terms of load-carrying 

capacity, film thickness, friction, and wear. Various simulation models have been 

developed to explain the phenomena of tribology for a textured surface. There are 

several benefits of surface texturing on lubrication performance [12]. The 

hydrodynamic effect in which the flow approaching the dimple can increase the 

pressure, thus generating an additional load-carrying capacity [13]. Surface texturing 

also has the secondary lubrication effect which acts as the regime of mixed lubrication 

[14]. In this case, the textured surface acts like a reservoir where fluid is trapped in the 

textured region. It can be considered as a secondary source of lubricant in reducing 

friction. The trapped fluid can prevent direct contact between surfaces, hence reducing 

the risk of wear. Finally, the textured features can capture any wear debris formed, 

which can reduce abrasive wear between the contact surfaces [15].

To fabricate textured surfaces, there are many machining techniques that can 

be used such as laser surface texturing (LST), computer numerical control (CNC) 

micro drilling, CNC ultrasonic, chemical etching, electrochemical machining (ECM) 

and electrical discharge machining (EDM). However, due to the limitations of certain 

machining techniques such as surface defects that offer direct contact machining with 

CNC drilling, poor fatigue properties after ECM machining in which some of them 

require high cost for complex machining. It can be seen that EDM is of great interest 

in the current research scenarios for surface modifications of metallic biomedical 

applications [16,17]. Therefore, this research will utilize electrical discharge 

machining (EDM) technique. EDM is a non-traditional precision machining process 

that removes electrically conductive materials into the desired shape in terms of spark 

energy. It is a non-contact process in which there is no physical contact between the 

electrode and the workpiece. This can help eliminate mechanical stresses, chatter, and 

minimize vibration during the machining process, producing better surface finish and 

accuracy.
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Recently, many studies have been conducted to investigate the improvement 

of EDM performance. EDM process involves many parameters. They can be divided 

into two categories, namely electrical parameters, such as pulse on time, pulse of time 

and supply voltage and the non-electrical parameters, such as dielectric type, tool 

material, and flushing type. The performance parameters typically measured in EDM 

are material removal rate (MRR), tool wear rate (TWR), machining time, and surface 

quality [18,19]. Surface quality is determined by the surface roughness of the 

machined materials, the formation of white layer thickness, and also the formation of 

crack. Most cracks caused by EDM are in micro-crack scale. Micro-crack is one of the 

common problems occurred during the machining process and is discussed among 

researchers [20, 23].

In addition to the formation of cracks due to the manufacturing, cracks can also 

occur due to the use of device in operation under certain loads and conditions. Crack 

is an unwanted feature that commonly occurs in engineered parts. It significantly 

reduces the material’s ability to withstand loads. It usually starts small and continues 

to grow during operational use. During sliding between two metal surfaces, the forced 

contact between them can produce deformation and extension of microscopic cracks. 

The crack growth due to cyclic loading is called fatigue crack growth. When the crack 

grows until it reaches a critical size, failure will occur. Repeated cyclic loading cause 

crack to propagate, leading to the formation of particles. Some of them removed from 

the surface as wear particles. They are one of the main causes of most implant failure, 

which must be avoided or at least reduced [24, 25].

1.2 Problem Statement

Surface engineering is a field that deals with the surface of solid matter to 

achieve superior performance and durability. This includes surface texturing, a proven 

approach that can improve the tribological properties of mechanical components. It 

can also reduce friction by providing micro-hydrodynamic bearings, enhancing load 

support and acting as a reservoir for lubricant [12;[26][27]. Textured surface studies 

on hip implant have been extensively researched by many researchers [8]. Most of the

3



studies focus on experimental works to investigate the mechanism of surface texturing 

in improving lubrication performance by reducing wear and friction [28]. Studies using 

computational modelling have also been conducted to determine the optimum 

parameters of surface texturing that can increase film thickness and hydrodynamic 

pressure on the contacted surfaces on hip implants [29][30]. From previous studies, it 

can be concluded that it is difficult to determine an optimal texture design for hip 

implant since it is highly dependent on the type of contact and operating conditions. 

Besides that, the manufacturing and fabrication processes of the dimple are among the 

factors that can determine the role of surface texturing approach.

Electrical Discharge Machining (EDM) method to fabricate surface texture 

will be applied in this research as it has more advantages in micro-machining 

compared to other conventional machining methods. This is due to the ability of EDM 

to improve the surface properties of implants, whose healing time is shortened, and 

bone formation increases. This has been proven in many research that EDM can 

provide better potential surface for osteoblastic cell attachment [16]. However, the use 

of EDM for surface modification of biomaterials is limited due to fatigue performance 

which can still result in high surface roughness and one of the drawbacks in EDM is 

that the machined area is exposed to crack formation during the machining process 

which can decrease the fatigue performance of the biomedical implant devices [31].

During machining, a white layer (also known as recast layer) filled with carbon 

will form from the molten material that is not removed. The layer is heated to the point 

of the molten state but not hot enough to be forced into the gap through flushing. A 

rapid heating and cooling in EDM machining will produce considerable stress in the 

recast layer and once the magnitude of this stress exceeds the yield stress of the recast 

layer, micro-cracks will form [32]. The presence of micro-cracks in EDM is usually in 

the size of a white layer and extends perpendicular to the analysed surface, rarely 

penetrating the recast layer. Some research indicate that the micro-crack formation in 

EDM machining is best presented and measured in terms of average crack length and 

surface crack density (SCD) [33].
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Previous studies in EDM investigated the effects of related parameters on the 

crack formation, such as pulse current, electrode material, and dielectric type and 

flushing system. They conclude that pulse on time and peak current lead to an increase 

in heat conditions causing the length of the crack to expand. In this study, the effect of 

machining angle on crack formation is investigated because of the curved nature of 

hip implant surface. This is because to date, no research on the effects of machining 

angles on the formation of cracks in EDM is conducted. In hip implant applications, 

to produce a consistent depth and diameter, the dimples will be machined 

perpendicular to the acetabular cup surface to standardize the position of the micro pit

[34]. Therefore, the EDM in this study will be equipped with a jig as the workpiece 

positioning system. The jig will allow the EDM to machine the dimples from various 

angles, including perpendicular to the curved surface of the hip implant.

In terms of the use of hip implant in operational conditions, the performance 

of dimples should also be accessed. This is because the crack formation and the 

repeated cyclic loading can cause small particles to be generated between the sliding 

contacts, which can lead to secondary wear [24] that may shorten the lifespan of the 

hip implant devices. As mentioned before, there are many studies conducted in 

tribology performance of the textured surface of hip implant, which include the film 

thickness, hydrodynamic pressure, and friction coefficient. However, little attention is 

paid to the effects of textured surface on the devices by evaluating the crack formation 

of the textured curved surface of the hip implant. This is because not all surface 

texturing will give the desired effect. Some may improve, but others may worsen the 

surface contact performance. Hence, in this research study, performance tribology test 

will be conducted to investigate the effects of dimple machining to the friction 

coefficient, as well as the formation of cracks on metal-on-metal (MoM) hip implant. 

It is expected that cracks will be formed at positions with higher stress. Based on a 

finite element analysis (FEA) study, high stress position is located at the dimple edges

[35].
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Crack studies are important as cracks on the dimple edges can be the main 

source of the formation of wear particles and can cause fatigue and implant failure. 

This research will provide fundamental data in the field to improve the study of hip 

implants. This is to ensure that the future research can focus more on the manufacturing 

of the dimples. This research is expected to provide clearer idea on the factors 

contributing to the crack formation on a textured surface of MoM hip implant and 

which type of crack is more pronounced, either due to EDM or operational use of the 

hip implant itself.

Overall, this research will cover the following research questions:

(a) Can the applied pulse current used in EDM and machining angle of the dimple 

affect the crack formation on a workpiece?

(b) How to machine a standard-sized dimple on a curved surface of the acetabular 

cup?

(c) Can dimple machining improve the friction coefficient of the articulating 

surface?

(d) What is the effect of dimple machining on crack formation?

6



1.3 Objectives

This research aims to investigate the behaviour of cracks caused by EDM and 

to identify whether high load conditions will result in significant micro-crack growth 

or crack formation on the EDMed textured surface of MoM hip implant. This aim will 

be achieved through the following objectives:

(a) To investigate the effects of different machining angles and EDM pulse

currents on the crack formation on dimple edges using a customized jig as 

workpiece positioning system.

(b) To evaluate the effects of applied load with reference to the crack formation on

the EDMed dimples.

(c) To classify the types of new cracks formed on the EDMed dimples edge after

loading.

1.4 Hypothesis

There are three hypotheses made for this research which are as follows:

(a) Different angles of machining by EDM will have different effects on crack 

formation.

(b) A new crack will form after several loading cycles applied to the bearing 

devices on the dimple edges, the location with the highest stress point.

(c) Surface texturing will reduce friction coefficient, but cracks can still form on 

the dimple edges.

7



1.5 Scope and Limitation

The scopes of this research are as follows:

(a) This research is conducted on metal-on-metal (MoM) hip implant application, 

using S45C mild steel material head of 28 pm in diameter and 30 pm of 

clearance.

(b) The parameters that are varied during machining using developed EDM 

available are pulse current (1 A, 2 A, and 3 A) and machining angles (50°, 70°, 

and 90°).

(c) The crack analysis is performed on the original EDMed dimple surfaces, which

does not undergo any treatment process such as polishing or coating, after

machining.

(d) The observation of the cracks using SEM is conducted only on the dimple edge

of the contacted surface between femoral head and acetabular cup by 

measuring crack length in image j software and measured using edge crack 

density (ECD).

1.6 Significances and Original Contributions of This Study

It is known that surface texturing can enhance tribology performance in sliding 

contact by reducing its friction and wear. However, in the manufacturing aspect, it is 

still not clear whether dimple formation on implant devices will be beneficial or cause 

a contradicting effect on the devices in the long term. It seems that crack formation 

also needs to be taken into consideration in texture surface for hip implant but studies 

on it are still found to be few. Therefore, this research will investigate the effects of 

dimple machining and the effects of operational use of the MoM hip implant on the 

crack formation. The findings in this research will provide significant findings on 

crack formation for future work such as for simulation to estimate the life of hip with 

surface texturing and to determine the best method for machining of dimples on the 

hip implant surface. This is because, to date, research is still of interest among

8



researchers and still being conducted to find the best method or strategy to prlong the 

life of implants.

1.7 Thesis Structure and Organization

This thesis consists of 5 chapters. Chapter 1 presents the introduction of this 

research, which includes the research background and highlights the research gap. This 

chapter consists of background of the study, statement of problem, objectives of the 

study, scope of the study, and significance of the study. Chapter 2 reviews previous 

literature on human hip, hip implant, EDM, surface texturing and tribology experiment 

in a hip implant. Chapter 3 on the other hand provides a detail explanation of the 

overall methodology used in this research study. Chapter 4 discusses the findings 

found from the experimental works conducted in this study. Findings of the crack 

formation, as well as the analysis, are further discussed in this chapter. Last but not 

least, the conclusion of the findings is presented in Chapter 5. The limitations and 

recommendations for future work are also highlighted in this chapter.
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