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ABSTRACT

In vehicle lateral dynamic control, the handling quality or steering ability of

the vehicle is determined by the yaw rate response performances. The uncertainty

of tire cornering stiffness due to varying tire-road adhesion coefficient, µ caused by

road surfaces perturbation during cornering manoeuvre may influence the transient

performances of yaw rate response. Therefore, in this research, the enhanced control

law of robust yaw rate tracking controller using the Sliding Mode Control (SMC)

algorithm is proposed for active front steering (AFS) control strategy to improve the

yaw rate response as desired. The vehicle lateral dynamics behaviors are described

using the linear and nonlinear vehicle models. The linear 2 degree-of-freedom (DOF)

single track model is used for controller design while the nonlinear 7 DOF two-track

model is used for simulation and controller evaluations. The sliding surface of SMC

is design based on yaw rate tracking error information. The control law equation is

enhanced by integrating the uncertainty of cornering stiffness at the front wheels and

to ensure the controller stability, the Lyapunov stability theory is applied. The transient

performances and performance indices of AFS control responses are evaluated using

the step steer and single lane change cornering manoeuvres test for varying values of

µ at dry, wet and snow or icy road surfaces. The simulations results demonstrated

that the proposed enhanced control law using SMC is able to track the reference yaw

rate with similar transient response performances. The proposed enhanced control law

also provided low performance indices of ITAE and IAE compared to the conventional

control law using SMC and robust CNF control for lower value of µ at wet and

snow or icy road surface. In terms of percentage of differential performance indices,

the proposed control law has a better tracking ability of up to 58.45% compared to

two other control laws. Therefore, this research concluded that the proposed enhanced

control law using SMC has overcome the cornering stiffness uncertainty in AFS control

strategy for different road surfaces during cornering manoeuvre and this enhancement

is expected as a knowledge contribution to vehicle lateral dynamic study.
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ABSTRAK

Di dalam kawalan sisi dinamik kenderaan, kualiti pengendalian atau

keupayaan-pengemudian kenderaan ditentukan oleh prestasi sambutan kadar rewang.

Ketidaktentuan kekakuan belokan kerana pekali geseran tayar-jalan, µ yang pelbagai

dan berubah-ubah disebabkan oleh gangguan permukaan jalan semasa pengemudian

membelok boleh mempengaruhi sambutan fana kadar rewang. Oleh itu, dalam

penyelidikan ini, hukum kawalan ditambahbaik pada pengawal teguh penjejakan kadar

rewang menggunakan algoritma kawalan mod gelongsor (SMC) dicadangkan sebagai

strategi kawalan aktif stereng hadapan seterusnya menambahbaik sambutan kadar

rewang seperti yang dikehendaki. Tingkahlaku dinamik sisi kenderaan dihuraikan

dengan menggunakan model kenderaan lelurus dan tidak lelurus. Model lelurus

2 darjah kebebasan (DOF) jejak tunggal digunakan untuk merekabentuk pengawal

manakala model tidak lelurus 7 darjah kebebasan (DOF) dua-jejak digunakan

untuk simulasi dan penilaian pengawal. Permukaan gelangsar pada SMC adalah

direkabentuk berdasarkan maklumat ralat penjejakan kadar rewang dan ketidaktentuan

kekakuan belokan pada roda hadapan dimasukkan di dalam persamaan hukum kawalan

ditambahbaik dengan kestabilan dianalisis menggunakan teori kestabilan Lyapunov.

Prestasi fana dan indeks prestasi sambutan kawalan AFS dinilai menggunakan ujian

kemudi langkah dan perubahan lorong tunggal untuk pelbagai nilai µ pada jalan kering,

basah dan salji atau berais. Keputusan simulasi menunjukkan bahawa hukum kawalan

yang ditambahbaik menggunakan SMC berkeupayaan menjejak kadar rewang rujukan

dengan prestasi sambutan fana yang hampir sama. Hukum kawalan ditambahbaik yang

dicadangkan juga menunjukkan indeks prestasi ITAE dan IAE yang rendah berbanding

hukum kawalan konvensional menggunakan SMC dan kawalan teguh CNF untuk nilai

µ yang lebih rendah iaitu di permukaan jalan basah dan bersalji atau berais. Dari segi

perbezaan peratusan indeks prestasi, hukum kawalan yang dicadangkan mempunyai

keupayaan pengesanan yang lebih baik sehingga 58.45% berbanding dua hukum

kawalan yang lain. Oleh itu, disimpulkan bahawa hukum kawalan ditambahbaik yang

dicadangkan menggunakan SMC dapat mengatasi ketidaktentuan kekakuan belokan

di dalam strategi kawalan AFS untuk permukaan jalan yang pelbagai dan berubah-

ubah semasa pengemudian membelok dan penambahbaikan ini dijangkakan sebagai

sumbangan pengetahuan kepada kajian dinamik sisi kenderaan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

Nowadays, a vehicle play a very important role as a means of transportation to

travel from one place to another place. For daily activities, the ground vehicle such as

car passenger is becomingmain necessary in human life. One of the essential aspects of

ground vehicle is its dynamics control to ensure the vehicle ismoving in a stable and safe

condition. The vehicle dynamics control may be divided into 3 types of control action

i.e. longitudinal control, lateral control and vertical control [1–4]. Conventionally, the

longitudinal control which closely related to the vehicle acceleration, speed and braking

are controlled by the driver via throttle and brake paddle. For the lateral control, the

handling or steer-ability is accomplished via the driver’s steering wheel while for the

vertical motion, the suspension actuator will influence the ride comfort of the vehicle.

The lateral force that exists in vehicle dynamicmotion has a significant influence

to the vehicles handling and lateral stability. During cornering manoeuvre, a proper

handling of the vehicle is necessary so that the driver can control the vehicle to follow

the road path. In the vehicle handling and stability issues, steering control by the driver

is crucial as it will determine the direction of the vehicle and its yaw motion’s stability.

In taking a cornering, the vehicle could skidding and drifting out from the path

depending on the vehicle’s speed and tire-road friction coefficient, µ. In this condition,

an average driver may exhibit panic reactions where he/she is inappropriate to control

the steering in an effective manner. This situation could lead the vehicle to become

unstable and cause an accident. There are two common situations of unstable vehicle

called understeer and oversteer conditions as depicted in Figure 1.1. If the µwere small

or if the vehicle speed were too high, then the vehicle would be unable to follow the

nominal motion required by the driver where it would instead travel on a trajectory of
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Figure 1.1: Understeer and oversteer of cornering manoeuvre [1]

larger radius (smaller curvature), as shown in the upper curve. This circumstances is

known as understeer condition. On the other hand, the lower curve shows the trajectory

that the vehicle would follow in response to a steering input from the driver if the road

surface were dry and had a high µ. In this oversteer condition, the high µ is able to

provide the lateral force required by the vehicle to go through the curved road. In the

case of oversteer, on a constant radius turn, the steer angle will have to decrease as the

vehicle’s speed will be increased. If the µ is very small, it might not be possible to

entirely achieve the nominal yaw rate motion that would be achieved by the driver on a

road surface with high µ . In this case, the yaw stability control system would partially

succeed by making the vehicle’s yaw rate closer to the expected nominal yaw rate, as

shown by the middle curve. In this case known as neutral steer, on a constant radius

turn, no change in the steering angle is required. To avoid the above circumstances, the

lateral dynamics control has become a major concern among vehicle researchers and

manufacturers to provide an active safety feature of vehicle handling. With this feature,

it could assist the driver to keep the vehicle stable on the desired path and prevent from

drifting out of the road as shown in the middle curve of Figure 1.1. As an active safety

2
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Figure 1.2: Yaw stability control system for vehicle lateral dynamic control

features of the car passenger is becomes important, this research is emphasize on the

vehicle handling to improve the lateral dynamics control.

According to [1–4], there are three types of lateral dynamics control has been

investigated and developed by researchers in academics and automotive industry i.e. a

yaw stability control system, lane departure warning system (LDWS) and lane keeping

system (LKS). Compared to LDWS and LKS which required a special hardware and

software in the vehicle and also extra devices on the road, a yaw stability control system

is purely based on the vehicle kinematics and dynamics. Hence, a yaw stability control

system is becoming a favourite approach for vehicle lateral dynamics control. To design

an effective yaw stability control system, it is essential to determine themain elements of

the control system. These elements may consist of control objectives, vehicle dynamic

models, active chassis control and control strategies as depicted in Figure 1.2. A yaw

stability control objectives are deeply concerned with the vehicle’s yaw rate and the

side slip angle. Controlling an actual yaw rate close to the desired yaw rate response

means improving the handling of the vehicle. As discussed in [3, 5], the improvement

of vehicle handling is achieved by reducing the yaw-rate error between the actual yaw

3



rate and the desired yaw rate based on the driver’s steering input. On the other hand,

the control of side-slip angle close to steady state condition’s value means maintain

the lateral stability of the vehicle. Thus, by keeping the yaw rate close to the nominal

motion of driver’s intended and vehicle side-slip angle as steady state condition, a yaw

stability control system could improve the handling and lateral stability performances

during taking a cornering manoeuvre.

The vehicle models that described the behaviour of lateral dynamic is necessary

in yaw stability control system. An appropriate linear and nonlinear vehicle model

with tire dynamics models for controller design and simulation will be reviewed and

determined. To analyze the yaw stability control, the planar vehicle models in lateral

and longitudinal motions which neglected the pitch and roll motions could be utilised.

According to [1–4], a yaw stability control system could be implemented via

active chassis control that based on braking and/or steering actuator. In the differential

braking or active torque distribution which utilize the brake actuator, a yaw stability

control is achieved based on direct yaw moment control principle where the required

yaw moment is generated by the controller to track the desired yaw rate response and

side-slip angle. In active steering control, a steering wheel angle that commanded by

the driver is modified by adding corrective steering angle from the designed controller.

Nowadays, research on direct yaw moment control based on braking system has been

established and already available in modern vehicles. Therefore, active steering control

studies are preferred and becomes popular research topics among researcher.

Active steering control is effective for steady state condition of driving i.e. the

tire dynamics is exhibit as a linear characteristics during low to mid range of vehicle

lateral acceleration. The early works on active steering control has been implemented

in [6–8]. In active steering control, the driver steer angle is modified by added with

corrective steer determined by controller in order to track the desired yaw rate. In

general, active steering control can be categorised into active front steering (AFS)

control, active rear steering (ARS) control and four wheel active steering (4WAS)

control. Modern car passenger is usually fitted with front wheel steering actuator

system, therefore the AFS control is more attracted in active steering control compared

4



to two others. In AFS control, the main objective is to ensure the designed controller

is able to track the desired yaw rate produce by the reference model. It is required

that the actual yaw rate has fast response and good tracking capability in following

the desired response. By keeping the vehicle yaw rate close to the nominal motion of

driver’s intended, AFS control could improve the handling quality of the vehicle during

cornering manoeuvre.

There are numerous control strategies has been explored in yaw stability control

system studies. In order to achieve the control objectives, a particular control algorithm

is formulated and applied such as classical proportional-integral-derivative control,

linear quadratic control, static state feedback control, model predictive control, fuzzy

logic control, composite nonlinear feedback control and few others. Although all

these control schemes performed very well for tracking the desired yaw response, their

designed purpose are not to cater the perturbation and disturbance especially in real

driving conditions.

One of the perturbation that may exist during driving the road vehicle is various

road surfaces such as dry, wet and snow or icy road. Therefore, there are various

value of tire-road friction coefficient, µ and its also varying according to the changes

of actual road surfaces along the driving path. According to the vehicle dynamics

studies, the various value of µmake the vehicle cornering stiffness becomes uncertainty

when the vehicle in cornering manoeuvre. To overcome the uncertainty due to this

circumstances, robust control algorithms are proposed such as internal model control,

optimal guaranteed cost coordination control, H∞ control, quantitative feedback control,

sliding mode control, µ-synthesis control and robust CNF control. To determine an

appropriate robust control algorithm for AFS control, these previous control strategies

and algorithms are reviewed and analysed in Chapter 2. From the literature review and

analysis, these control algorithm does not design to overcome the deviation of cornering

stiffness uncertainty when the value of µ is varying from one value to another i.e. when

the road surface is suddenly changed. Therefore, this research gap has motivated this

research to propose an enhanced AFS control law.
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1.2 Problem Statement

The handling quality of ground vehicle depends on the performances of yaw

rate response. To ensure a good and better handling quality, a vehicle should have a fast

response and minimum oscillation towards the steady state motion. On various road

surfaces condition that directly contact with the tires may influence the tire forces and

vehicle lateral dynamics during corneringmanoeuvre. The tire-road friction coefficient,

µwhich depends on road surface condition are ranged between from 0.1 to 1 may cause

the uncertainty of tire cornering stiffness where an actual tire cornering stiffness and

lateral tire forces are depending on this value of µ. Consequently, the various of µ

and uncertainty of cornering stiffness will influence the transient performances of yaw

rate response and affect the handling quality of the vehicle. Therefore, a robust yaw

rate tracking controller is necessary to improve the transient performances of yaw rate

response and enhanced the handling quality.

Based on the literature review analysis, the sliding mode control (SMC) is

identified as a robust control algorithm that posses simplest designed procedures i.e.

two steps only which are design the sliding surface and design the control law. On

top of that, it has robustness properties to the uncertainties due to any perturbations in

the system or external disturbances. There are numerous research studies in vehicle

dynamics control especially yaw stability control system has applied and improved this

robust control algorithm. Therefore, the SMC is examined for the AFS control strategy

in this research. In the previous AFS control researchworks that implemented the SMC,

the control law designed to only accommodate the cornering stiffness uncertainty for

the fixed or dedicated value of µ for a particular road surface. In real driving conditions,

the varying of µ i.e. road surface condition is changed from one to another suddenly

during a cornering manoeuvre is unexpected. The deviation of cornering stiffness

uncertainty due to this circumstances is not considered in previous AFS control law

designed.

To ensure the proposed enhancedAFS control law could overcome this problem,

the effect of tire cornering stiffness uncertainty is evaluates with various value of µ

i.e. for dry, wet and icy/snow road surface conditions. These three road conditions are
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considered as a classical assumption that implemented in previous studies. To extend the

effectiveness of yaw rate tracking controller capability, a sudden or immediate changes

of µ is conducted for four different circumstances in this research. The proposed

enhanced AFS control law is evaluated for the changes of dry to wet road surface, wet

to dry road surface, wet to snow/icy road surface and snow/icy to wet road surface.

This analysis which is never carried out in AFS control strategy is considered as a new

analysis in AFS control studies.

1.3 Research Objectives

The main goal of this research is to enhance the lateral dynamics and handling

quality of the vehicle. Specifically, this research embarks with the following objectives:

i. To improve the yaw rate response performances of AFS controlled vehicle

ii. To design an enhanced AFS control law using the sliding mode control (SMC)

algorithm under various and varying road surface conditions.

iii. To implement the proposed enhanced AFS control law and evaluate the yaw

rate responses under various and varying road surface conditions.

1.4 Scope of Works

To achieve an above objectives, this research are implemented within the scopes

of work as follows;

i. The 7 degree-of-freedom (DOF) two track nonlinear model is used to simulate

a full vehicle model while the linear 2 DOF single track model is utilized

for the controller design. For the lateral motion analysis, the vehicle models

are assumed moving on planar motion with constant speed while roll and

pitch motions are neglected as assumed and analyzed by other prominent

researchers in vehicle dynamics studies [1–3]. For validation purpose, the
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responses of 7DOF vehicle model are compared with CarSim vehicle model

i.e. the commercial software of vehicle dynamics as conducted in [9] and other

research works.

ii. The vehicle parameters are taken from the [9] which is based on sedan car of

Ford Taurus GL.

iii. The front wheel steer angle input of AFS control is only up to 2 degree for low

to mid range of lateral acceleration.

iv. The propose enhance control law for AFS control strategy is focus on vehicle

yaw rate as a control objective with the vehicle side slip is assumed not exceed

the bounded value.

v. Only the front tire cornering stiffness is treated as uncertainty of vehicle

parameters due to varying road surface conditions as its effected the

performances of yaw rate response.

vi. The controller design and evaluation is conducted in fully computer simulation.

The vehiclemodels and controller design are established usingMatlab/Simulink

environment.

vii. Two controller gains of SMC are taken from previous research in [10, 11].

The AFS control law designed in this research is re-visited and improvised as

enhanced AFS control law.

viii The proposed enhanced control law is evaluate, compared and analyzed with

conventional control and CNF robust control.

1.5 Thesis Organization

This thesis is organized in five chapters. Chapter 1 briefed the research

background and motivation, problem statement, research objectives, scope of works

and thesis structure.

Chapter 2 reviews the vital elements for a yaw stability control system design i.e.

the yaw control objectives, vehicle dynamic models, active chassis control and control
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strategies with the focus on identifying suitable criteria to improve the performances

of yaw rate response in AFS control. The fundamental of robust control of SMC to

achieve the control objective are also reviewed in this chapter.

In Chapter 3, the AFS control design methodology which consists of vehicle

dynamic models, test manoeuvres and enhanced control law design procedure are

discussed. The linear 2 DOF single track model for controller design and 7 DOF

nonlinear two track model for controller evaluation are presented and explained. The

design procedures of enhanced AFS control law for robust yaw rate tracking controller

using the sliding mode control (SMC) are detailed in this chapter.

In Chapter 4, the results of AFS control simulations obtained are presented. The

steers input, vehicle model validations with CarSim software and the vehicle’s yaw rate

responses of proposed enhanced control law are comparedwith the conventional control

law and robust CNF control are discussed and analysed. The transient performances

of yaw rate response and the performance index of ITAE and IAE are evaluated and

analysed for various and varying road surface conditions.

Finally, Chapter 5 concludes this research work, research contributions and

recommend some future works that can be further investigated.
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