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Abstract. This research examined the critical flow over an uneven bump using forced 
Korteweg-de Vries (fKdV) model. The forced KdV model containing forcing term which 
represent an uneven bump is solved using Homotopy Analysis Method (HAM).  HAM is a 
semi-analytic technique whereby its solution contains a series of approximated solution in 
which it converges immediately to the exact solution. A particular HAM solution is chosen 
with an appropriate convergence parameter by referring to horizontal line segment. The 
convergent HAM solution depicts that waves only exhibited over the sloping region and no rise 
of waves found on flat part of bottom topography. 

1.  Introduction 
Water propagation over an obstacle is a vital problem in fluid mechanics. Since 80’s, generation of 
solitary waves by seabed topography has gained attention since the experimental research [1,2]. 
Forced waves and the existence of wave trains for the solutions of same size moving ahead of the 
bottom topography were found numerically [3]. Linear theory usually used to explain over the wave 
when the flow is not critical. Solutions of linear theory applicable to cases such as subcritical or 
supercritical cases. Linear solutions usually fails at criticality condition as the energy is unable to 
propagate away from the obstacle [4]. Thus it is important to find a model to investigate the wave 
profile at critical flow. 

One of suitable model is forced Korteweg-de Vries (fKdV) equation which identified as suitable 
model to study the free surface flow over a flatten bump. Standard form of forced KdV equation is 
given [5], 

3

3

η η η ηαη β∂ ∂ ∂ ∂ ∂
+ ∆ + + =

∂ ∂ ∂ ∂∂
f

t x x xx
                                                (1) 

with                                                 2
0 03 / 2 ,  / 6α β= =c h ch  and / 2.= −f cz                                   (2) 

where η(x,t) refers to the water elevation, z(x,t) represents the solid bottom, h0 is the constant mean 
water depth, c is the long wave speed with g is acceleration due to gravity, and Δ represents critical 
parameter. 
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Forced KdV equation incorporated with variety of forcing term have been studied in the past years 
[6-8]. Forced KdV model admits external forcing disturbances when the surface pressure and bottom 
topography are entirely equivalent [9]. The effect of forcing length on wave amplitude was also 
studied over the years [11]. Zhang and Zhu [12] presented a nonlinear theory for different ranges of 
Froude numbers varying from subcritical, transcritical and supercritical. Zhang and Chwang [13] 
studied the generation of solitary waves at the critical velocity on different bottom topographies. 
Transcritical flow using fKdV model where numerical and asymptotic analytical solutions have shown 
upstream and downstream flows [4]. 

The Homotopy Analysis Method (HAM) introduced by Liao [14] is an analytical method to solve 
nonlinear partial differential problems. HAM has greater flexibility in the selection of a proper set of 
base functions for the solution and a much simpler way in the control of the convergence rate and 
region compared to perturbation approach [15-17]. This analytical technique does not have restriction 
of non-perturbation methods, such as Lyapunov's artificial small parameter method, the δ-expansion 
method and Adomian's decomposition method [18]. The analytical technique also has been applied 
successfully in many nonlinear problems in engineering and sciences [19] such as nonlinear 
progressive waves [20], free oscillations of positively damped systems with algebraically decaying 
amplitude [21], free oscillations of self-excited systems [22] and similarity boundary layer equations 
[23]. The HAM is applied to obtain the solitary solution of KdV equation and it shows excellent 
agreement with the exact solution [24]. Solutions of fKdV equation can only be obtained by numerical 
or perturbation series [25-27]. Recently, fKdV model with a specific choice of forcing term is 
successfully solved using HAM [28-29]. Analytical approximate solution for the fKdV model on 
critical flow over hole shaped bottom topography been investigated [30]. Recently, fKdV equation 
resemble critical flow over an inclination plane is solved using HAM [31]. 

Flow over a flatten bump is determined using shallow water fKdV model and it is solved using 
HAM. Objective of this research is (a) to describe the flatten obstacle (b) to find analytical 
approximate solution for fKdV model which incorporates flatten bump (c) to describe flow over the 
bump physically and discuss the new findings. It is found that HAM solution elaborated the flow of 
water over flatten bump. The bump is found to generate upstream and downstream flows. The bump 
also creates a uniform depth wave over the forcing region. 

2.  Forced Korteweg-de Vries and Bottom Topography 
The standard form of fKdV equation of (1) rewritten as 

( ) ( ) ( )2( ) / 3 / 2 ( ) ( ) / 6 ( ) / 2ϕ ϕ ϕ ϕ′ ′ ′′′ ′+ ∆ − − =o o ot c h x h x f x                              (3) 
where φ(x,t) refers to the water elevation, f(x) is the forcing term in which it represent the bottom 
topography, h0 is the constant mean water depth, c is the long wave speed with g is acceleration due to 
gravity, and Δ represents critical parameter. 

Critical parameter can be classified into three which are transcritical (Δ≈0), subcritical (Δ<0) and 
supercritical (Δ>0). In this work, transcritical flow is considered.  

3.  Homotopy Analysis Method 
We attempt to solve equation (3) for the 0∆ ≈ .Generalizing equation (3), then 

3

3 0ϕ ϕ ϕ ϕα β λϕ σ ϖ∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂∂
f

t x x xx
               (4) 
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21 3 1 1,  1 1,  ,   and .

2 6 2
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                  (5) 

Consider the constant mean water depth, 0h =1, wave speed, 9.81≈ =oc gh , maximum height of 

topography chosen, 0.1=mf  and forcing term, ,
2
−

=
zf where  

8

exp[ ] 1
4

= − −m
xz f . Below is the sketch 

of the bottom topography, z. 
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From HAM,  

( ) ( )01– , ;  , , ,( ) [ ( ) ] [ ( ]; )ϕ ϕ ϕ− = oq x t q x t qC x t x t qN                           (6) 
we use  

( )0
1 (1 si, n[ ])
4

ϕ = +x t x                                (7) 

as the initial guess and 
, ;, ; ( )[ ( ) ] ϕϕ ∂

=
∂



x t qx t q
t

                                 (8) 

as the auxiliary linear operator satisfying 
[ ] 0= g                                     (9) 

where g is constant. 
Considering 

( ), 1=x t                                       (10) 
3

3
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and the mth-order deformation problem     
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with  
( ,0) 0 for 1ϕ = >m x m                               (13) 

 

4.  HAM Solution of Critical Flow 
Wolfram Mathematica Version 10 was used to solve the forced KdV equation. HAM solution of 
equation (3) is obtained at 5th-order approximation. The solution is  

( ) ( ) ( ) ( )0 1 5....., , , .... . ,. .ϕ ϕ ϕ ϕ= + + +x t x t x t x t                (14) 

( )
8 8 8

8
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5 6 2
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      (15) 

Figure 1   Bottom Topography, z for   
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The value of Co is determined by plotting the derivatives of ϕ for a fixed point of x and time, t. It is 
to ensure the convergence of the HAM solution. Figure 2 shows the Co- curves at 5th order 
approximation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is pointed out that the valid region of Co lies on the horizontal line segment. The permissible 

convergence interval of HAM solution is at Co= - 4. HAM solution has been re-modified by adding a 
coefficient, Κ  so that the solution presents the promising wave patterns that suits real water flow 
scenario.  

( )* ,ϕ ϕ= ΚSol x t                                 (16) 
This explains that the HAM solution contains a series of solution and Co -values should be chosen 

accurately to achieve a reasonable solution. Perhaps, this is a new technique found in analyzing HAM 
solution. The following figures 3 and 4 are obtained by using equation (15) and equation (16) with a 
coefficient value, of 1510−Κ = and o 4= −C .  

Figure 3 depicts the flow of water waves over a flatten bump at t = 3. The bottom line over in 
Figure 3 represents the seabed topography which has height of 0.1 units from 1 1− ≤ ≤x . The 
inclination (positive slope) of sea bed topography is at vicinity of 1.= −x The declination (negative 
slope) of bump falls at 1.=x Both inclination and declination of bump can be observed by looking at 
the bottom line in Figure 3. Figure 4 depicts the water wave profile across the flatten bump over the 
period of 2.5 3≤ ≤t . 

Initial guess function chosen in the analytical method is a sinusoidal function. This is to ensure 
wave travels from left to right and it is not concentrated at the centre of origin. Based on the shape of 
topography, it can be seen that sea bed is entirely flattening except these two-sloping regions which 
positive and negative slope. Waves patterns reveals that waves only exhibit over forcing vicinity. On 
the positive sea bed, it is found to have 3 peaks of waves and which 2 of them are identical. The 
centric waves of upstream peaked at height of 0.5 units. This proved that the waves profile reacted 
towards the sloping region. Forced Korteweg-de Vries (fKdV) is a model inclusive of nonlinearity and 
dispersion. Many researches attempted the solution of fKdV by reduction its dispersion order. In this 
research, fKdV were solved without reducing its order. The nonlinearity is very strong at the sloping 
part. This is shown by multi-solitary waves over the sloping region.  

 

Figure 2 The -curves according to the 5th order approximation. Dashed Point: 

, Solid Line:  and Dashed Line:  
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There is no excitement of waves over the centric part of flatten bump. No evidence found here that 

disturbance occurs over flat part of bump which agreed with Grimshaw et. al, 2007 [4]. Water wave 
rise again at the downstream part over the negative slope. There are 2 high and 2 small waves exhibits 
over the sloping region. But the height of highest peak is not similar with the peaked waves at the 
upstream. This means, the water waves over downstream is smaller in height with the upstream waves. 
This is a sign of depression which were similarly found in Grimshaw et. al, 2007 [4]. Nonlinearity of 
waves at the downstream is weaker compared to the upstream waves. Grimshaw et. al, 2007 [4] and 
Zhang et. al, 2001 [13] concluded that upstream and downstream wave trains generated by transcritical 
flow over an obstacle could be generated by separate process.  This shows waves radiated upstream 
strongly and since no activity found in middle, waves move with a weaker downstream. Downstream 
nonlinearity is found to be weak and it could be an act of dispersion. This provide evidence that higher 
order forced KdV model could be a key to reduce the nonlinearity of waves. The outcome of this 
research has good agreement with Samuel Shen, 1993 [7] where the forced KdV admits solitons 
generated periodically and radiated upstream at transcritical regime. 

 
 

             Figure 3 Wave Profile of HAM solution for equation (16) at t = 3. 

                Bottom line: bump, z and Upper line: water elevation, ( ,3)xϕ  

Figure 4 Wave Profile of HAM solution corresponds 
with distance and time for equation (16)  



International Conference on Mathematical Sciences (ICMS 2020)
Journal of Physics: Conference Series 1770 (2021) 012042

IOP Publishing
doi:10.1088/1742-6596/1770/1/012042

6

 
 
 
 
 
 

5.  Conclusion 
In this work, forced Korteweg-de Vries (fKdV) model been used to examined transcritical flow over a 
flatten bump which consist of positive and negative sloping regions. An appropriate flatten bump is 
analysed using the forcing term over fKdV model. An analytic approximate solution is obtained by 
solving fKdV model. The HAM solution shows water waves exhibit over positive and negative 
sloping region. The result depicts when water flows over the bump its radiated strong upstream, no 
activity on flatten bump and finally water flows downstream and exhibit weaker waves which is due to 
dispersion effect. It can be concluded that the effect of dispersion cannot be neglected although the 
effect is found to be weak. 
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