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ABSTRACT

Children with autism are known for their difficulties in social interaction, communication, and behaviour characteristics. 
Hence, this study proposed to develop a markerless-based gait method for anomaly gait detection in children with autism 
spectrum disorder (ASD). Firstly, a depth sensor is used during walking gait data collection of the 23 ASD children and 30 
typical healthy developing (TD) children. Further, these walking gait data are divided into the Reference Joint (REF) and 
Direct Joint (DIR) features. For each type, five sets of features are derived that represents the whole body, upper body, lower 
body, the right and left side of the body. The three classifiers used to validate the effectiveness of the proposed method are 
Naïve Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Results showed that the highest 
accuracy, precisely 94.22%, is achieved using the ANN classifier with DIR1 gait features representing the whole body. The 
highest sensitivity and specificity obtained are 94.49% and 93.93% accordingly. In addition, the proposed markerless 
model using the DIR1 gait features and the ANN as classifier also outperformed previous studies that have utilised the 
marker-based model. This promising result showed that the proposed method could be used for early intervention for the 
ASD group. The markerless-based gait technique also has fewer experiment protocols, thus causing the ASD children to feel 
more comfortable. 
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INTRODUCTION

Screening and diagnosis of ASD are based on the 
criteria categorised by several problems, including the 
communication, learning process, and social skill as 
listed in The Diagnostic and Statistical Manual of Mental 
Disorder, fifth edition (DSM-5) (S. J. Spence et al. 2004). 
Unfortunately, there is no specific indicator to detect the 
disorder related to the motor impairment and any altered 
gross movement function in children with ASD motor. To 
the extent of our knowledge, there is no cure for this type 
of deficit (E. I. de Bruin et al. 2015 & M. S. Nadeem et 
al. 2020). Numerous studies have discussed movement 
and sensory disturbances (C. Armitano et al. 2020 & H. L. 
Miller et al. 2019) unbalanced movement, especially during 
walking (J.D. Eggleston et al. 2018). This is because gait 
characteristics or features may potentially be used as an 
early indicator in detecting gait abnormality among ASD 
children (L. Gong et al. 2020, C. Z. C. Hasan et al. 2018 
& J.D. Eggleston et al. 2020). Thus, gait analysis can be a 
promising method for analysing the gait behaviours in ASD 
children. Note that several techniques were developed for 
gait monitoring purposes. For example, inertia sensors were 
attached to ASD participants’ feet, legs, arm, pelvis, and 

thoracic spine to capture the gait kinematics features and 
analyse the age groups’ gait symmetry (Y. Li et al. 2021). 
In another study, a plantar pressure mat was placed in the 
middle of the carpet to measure the foot-ground interaction 
and gait characteristics (L. Gong et al. 2020). The marker-
based approach includes an optoelectronic system with 
synchronisation between the electronic devices. Here the 
system produced the three-dimensional (3D) model from the 
trajectories of the markers (M. Leo et al. 2017) and the floor-
sensor as the third-party equipment from the optoelectronic 
gait system as reported in (J.S. Dufek et al. 2017, S. Ilias et 
al. 2016, M. Calhoun et al. 2011).

Conversely, the markerless-based technique is markers 
free and usually involved algorithms development (M. Nieto-
Hidalgo et al. 2016). Cocchi et al. (2017) used the depth 
sensor to estimate the sagittal joints kinematics of children 
with cerebral palsy, followed by validation of kinematic 
features versus marker-based measurements. Meanwhile, 
M. Nieto-Hidalgo et al. (2015) used dynamic parameters
from the heel-strike and toe-off events based on algorithms
developed using the side view of subjects’ walking. Results
attained showed a success rate of more than 90% accuracy.
Further, spatiotemporal parameters such as stride time, step
length, step time and double support time were derived
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based on the body points output from the depth sensor in 
gait assessment of children with cerebral palsy as discussed 
by C. C. Barreira et al. (2020). Conversely, K Jun et al. 
(2020) reported method developed by dividing the skeletal 
data into different groups to identify the unimportant joints 
that contributed to low impact in classification for five types 
of pathological gait.

One of the main challenges in gait analysis research 
is during the data acquisition stage (K. Pope et al. 2020). 
Since most of the data acquisition process was performed in 
the laboratory environment, children with ASD might lose 
focus or confront anxiety due to the unfamiliar laboratory 
environment. ASD children must wear tight-fitting clothes, 
and sensors or reflective markers must be attached to their 
clothes or body during data acquisition and experiment 
(B.O. Lim et al. 2016). Despite the abnormal gait associated 
with ASD, many uncertainties exist concerning this complex 
neurological disorder (O. Manicolo et al. 2021). More studies 
need to be conducted in analysing the gait features of the 
ASD subjects by employing the gait features and computer 
vision intelligence techniques (K. Pope et al. 2020). It is 
hypothesised that a suitable gait method can be proposed 
as a possible gait monitoring technique to support the early 
diagnosis of ASD gait, which is more apt for ASD children 
known for their difficulties in behavioural characteristics. 

Therefore, this study aims to propose and develop 
markerless-based gait features for anomaly gait detection in 
children with ASD. The potential gait features will be used 
to classify the gait of ASD versus TD group. Here, Artificial 
Neural Network (ANN), Naïve Bayes Classifier (NBC) and 
Support Vector Machine (SVM) are used to validate the 
accuracy of the gait features. In addition, this study aims 
to address challenges in gait analysis based on markerless-
based gait techniques. New insights on ASD are proposed, 
possibly to help determine the degree of deficits specificity 
and the development of valuable tools that can be used to 
analyse the walking gait of ASD children.

METHODOLOGY

This section elaborates the overall methodology used in this 
work. As shown in Figure 1, the proposed method comprises 
four phases: data acquisition, pre-processing, gait features 
representation, and classification. 

DATA COLLECTION

Data collection was based on 30 TD and 23 ASD subjects; 
between 5 to 12 years of age. The experimental setup for 
data acquisition purposes was held in the Human Motion 
and Gait Analysis (HMGA) UiTM Selangor. Based on the 
UiTM Research Ethics Committee (REC) approval, parents 
or guardians must complete the consent form and all the 
required information. A Kinect sensor, specifically a depth 
camera, is used to record the markerless-based gait data 
during the data acquisition stage. Table 1 tabulated the 

summary of demographic and anthropometric data for the 
two groups. In this study, 14 males and 16 females were 
recruited for the TD group. Note that this study is not focused 
on gender-based groups. 

FIGURE 1.Overall proposed methodology

TABLE 1. Summary of Demographic and Anthropometric Data for 
Both ASD and TD Groups.

Items Mean (Standard       
Deviation)

ASD Group TD Group
Gender (F:M) (2:21) (16:14)

Age (year) 8.30 (0.396) 9.03 (0.419)
Weight (kg) 32.96 (3.485) 32.49 (1.991) 
Height (m) 1.27 (0.0028) 1.32 (0.0025)

BMI (kg/m2) 19.51 (1.297) 18.22 (0.644)

On the other hand, both groups have eight months 
difference where the TD group has a mean value of 9.03 
years old and the ASD group has a mean value of 8.39 years 
old. In addition, the difference in height for both groups is 
4.9 cm, where the TD group is slightly taller than the ASD 
group, with a size mean of 1.32 m and 1.27 m, respectively. 
Meanwhile, the mean difference in weight is 0.47 kg with 
the ASD group is heavier and has higher weight; meanwhile, 
the BMI of the ASD group is higher with a difference of 1.29 
kg/m² as compared to the TD group.

Next, the Kinect sensor and camera are set at 30 Hz 
and working range of between 1.2 to 3.5 meters along 
with the horizontal field view set at 57° wide. Further, the 
sensor provided a vertical field view of 43°. The tilt motor 
system can enhance the field view by allowing the sensor 
to be tilted up or down up to 27° in either direction. During 
data acquisition, the Kinect sensor is placed at the height of 
0.5 meters from the floor and facing the walking path. For 
this device, the global coordinate system or the origin (x=0, 
y=0, z=0) is located at the centre of the IR sensor on Kinect, 
where x and y are the sensor’s left and right in the sensor’s 
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FIGURE 1. Overall proposed methodology 

Pre-processing 
- Gait cycle detection 

- Frames normalisation 
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point-of-view and z is the sensor direction facing subject’s 
while walking with 1 unit equals to 1 meter. 

For the experimental and analysis, subjects are 
requested to perform their walking task via their normal 
and comfortable walking speed without using any walking 
aid or assistance. A minimum of ten walking sessions are 
acquired from the normal group of children. For the ASD 
group, the data acquisition process is done until the walking 
gait video sequences acquired were sufficient and apt for 
analysis and, of course, with the consent and as agreed by 
their guardian. Further, the skeleton viewing and skeleton 
tracking functions are used to track the subject as the subject 
performs the walking trial. These algorithms represent the 
depth coordinates that provide detailed information of the 
twenty body skeleton points by the depth values measured 
between the camera and body. Figure 2 illustrates an example 
of an output image from the camera. Here, Figure 2(a) is 
the RGB output, Figure 2(b) is the depth sensor output, and 
Figure 2(c) is the skeleton viewing function output that 
provides the skeleton model consisting of the twenty (20) 
body points.

DATA ANALYSIS

Gait cycle detection is carried out to extract the gait features 
within the entire gait cycle. One complete gait cycle is 
described as the interval between two successive events 
during walking. For example, once the subject started 
walking via landing his right foot and completing his gait 
cycle, he would perform the same foot’s next landing. Next, 
the extracted gait cycle is normalised for each trial for the 
exact size of the frame number. Based on equation (1), the 
distance between ankles, d (a, b) is calculated to determine 
the gait cycle where a is the left ankle joint whilst b is the 
right ankle joint in x, y, and z axes, respectively. The gait 
cycle is detected by calculating the three consecutive local 
maxima (R. Sahak et al. 2017). 
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twenty body skeleton points by the depth values 
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camera. Here, Figure 2(a) is the RGB output, Figure 
2(b) is the depth sensor output, and Figure 2(c) is the 
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DATA ANALYSIS 
 
Gait cycle detection is carried out to extract the gait 
features within the entire gait cycle. One complete 
gait cycle is described as the interval between two 
successive events during walking. For example, 
once the subject started walking via landing his right 
foot and completing his gait cycle, he would perform 
the same foot's next landing. Next, the extracted gait 

cycle is normalised for each trial for the exact size 
of the frame number. Based on equation (1), the 
distance between ankles, d (a, b) is calculated to 
determine the gait cycle where a is the left ankle 
joint whilst b is the right ankle joint in x, y, and z 
axes, respectively. The gait cycle is detected by 
calculating the three consecutive local maxima (R. 
Sahak et al. 2017).  

 
𝑑𝑑(𝑎𝑎, 𝑏𝑏) =
((𝑥𝑥* − 𝑥𝑥,)- + (𝑦𝑦* − 𝑦𝑦,)- + (𝑧𝑧* − 𝑧𝑧,)-	        (1) 
 
 

Further, Figure 3(a) illustrates an example 
of gait cycle detection. Figure 3(a) shows that there 
are one to three gait cycles in one successful trial.  
Only one gait cycle was selected for each walking 
trial per subject as depicted by the two vertical 
dashed lines to avoid biased performance in the 
subsequent analysis stage. Figure 3(a) also 
illustrates the calculated distance between ankles, 
and the three consecutive local maxima are detected 
at frames 2 to 6, as marked by the two vertical 
dashed lines. The left and right ankles projection 
points in the z-axis (C. C. Barreira et al. 2020) are 
plotted and labelled as Figure 3(a), determining the 
heel strike and toe-off events. The local maxima 
represent the maximum distance peak between the 
ankle’s points. Thus, the first local maximum is the 
first occurrence of heel-strike during the initial 
contact event. The foot-off during the terminal 
stance event represents the second maximum peak. 
The third local maximum peak is the second 
occurrence of heel strike during the terminal swing 
event of the same foot.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further, Figure 3(a) illustrates an example of gait cycle 
detection. Figure 3(a) shows that there are one to three gait 
cycles in one successful trial.  Only one gait cycle was 
selected for each walking trial per subject as depicted by 
the two vertical dashed lines to avoid biased performance in 
the subsequent analysis stage. Figure 3(a) also illustrates the 
calculated distance between ankles, and the three consecutive 
local maxima are detected at frames 2 to 6, as marked by 
the two vertical dashed lines. The left and right ankles 
projection points in the z-axis (C. C. Barreira et al. 2020) 
are plotted and labelled as Figure 3(a), determining the heel 
strike and toe-off events. The local maxima represent the 
maximum distance peak between the ankle’s points. Thus, 
the first local maximum is the first occurrence of heel-strike 
during the initial contact event. The foot-off during the 

terminal stance event represents the second maximum peak. 
The third local maximum peak is the second occurrence of 
heel strike during the terminal swing event of the same foot. 

FIGURE 2. Example of images acquired from Kinect Depth 
Sensor: (a) RGB image output, (b) depth image output, and (c) 

twenty body points skeleton model output.

Next, the extracted gait cycle consists of different frames 
due to various walking speeds even though these frames are 
removed from the same subjects. Thus, the interpolation 
technique is applied to standardise and fix at the 30th frame 
for each trial (F. Sun et al. 2020). Figure 3(b) illustrates the 
output of frame normalisation. Here, the spline interpolation 
technique is used since spline interpolation is suitable to 
approximate new values within the skeletal data points (R. 
Sahak et al. 2017). As depicted in Figure 3(b), the number of 
frames before synchronisation is five, and the skeletal data 
in each frame are plotted as shown by the horizontal lines. 
Next, the number of frames for each walking trial is set at 
30 frames. After the frames are normalised, the skeletal data 
are plotted again. From Figure 3(b), the plotted skeletal data 
showed similar patterns and values upon synchronisation 
completion.  

FEATURE REPRESENTATION

As mentioned earlier, the proposed markerless-based gait 
features used in this study for anomaly gait detection of the 
ASD gait is based on the twenty skeleton joints in the three 

(1)
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Next, the extracted gait cycle consists of 
different frames due to various walking speeds even 
though these frames are removed from the same 
subjects. Thus, the interpolation technique is applied 
to standardise and fix at the 30th frame for each trial 
(F. Sun et al. 2020). Figure 3(b) illustrates the output 
of frame normalisation. Here, the spline 
interpolation technique is used since spline 
interpolation is suitable to approximate new values 
within the skeletal data points (R. Sahak et al. 2017). 
As depicted in Figure 3(b), the number of frames 
before synchronisation is five, and the skeletal data 
in each frame are plotted as shown by the horizontal 
lines. Next, the number of frames for each walking 
trial is set at 30 frames. After the frames are 
normalised, the skeletal data are plotted again. From 
Figure 3(b), the plotted skeletal data showed similar 
patterns and values upon synchronisation 
completion.   
 

FEATURE REPRESENTATION 

As mentioned earlier, the proposed markerless-
based gait features used in this study for anomaly 
gait detection of the ASD gait is based on the twenty 
skeleton joints in the three dimensional (3D) form as 
shown in Figure 4 that generated a total of 60 
skeleton joint points. The data of skeleton data can 
be divided into two types: Reference Joint features 
(REF) and Direct Joint (DIR).  
 

Refer to Table 2, for each type; five feature 
sets are derived to represent the whole body, upper 
body, lower body, the right side, and the left side of 
the subject's body, specifically DIR1, DIR2, DIR3, 
DIR 4 and DIR5 followed by REF1, REF2, REF3, 
REF4 and REF5. These features are further used to 
evaluate and verify in-depth the ability of each 
feature amongst these five sets that could 
discriminate the walking gait of these two groups, 
namely ASD and TD children.  
 

DIR GAIT FEATURES 
The DIR features are represented by the selected 
body point and the respective depth information as 
tabulated in Table 2. Figure 4(a) shows that DIR                     
Set 1 consists of 20 body points representing one set 
for the entire body. The detail of each DIR feature is 
described in Table 2. 
 

REF GAIT FEATURES 
 
Referring to Figure 4(b), REF Set 7 consists of 
features for the upper body points.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 
FIGURE 3. Example of images for (a) gait 
cycle detection as illustrated by two vertical 

dashed lines and (b) Frame normalisation 

Figure 2. Example of images acquired from 
Kinect Depth Sensor: (a) RGB image output, (b) 
depth image output, and (c) twenty body points 
skeleton model output. 

(a) 

(b) 

(c) 
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dimensional (3D) form as shown in Figure 4 that generated 
a total of 60 skeleton joint points. The data of skeleton data 
can be divided into two types: Reference Joint features 
(REF) and Direct Joint (DIR). 

Refer to Table 2, for each type; five feature sets are 
derived to represent the whole body, upper body, lower 
body, the right side, and the left side of the subject’s body, 
specifically DIR1, DIR2, DIR3, DIR4 and DIR5 followed 
by REF1, REF2, REF3, REF4 and REF5. These features are 
further used to evaluate and verify in-depth the ability of 
each feature amongst these five sets that could discriminate 
the walking gait of these two groups, namely ASD and TD 
children. 

Dir Gait Features

The DIR features are represented by the selected body      
point and the respective depth information as tabulated in 
Table 2. Figure 4(a) shows that DIR Set 1 consists of 20 
body points representing one set for the entire body. The 
detail of each DIR feature is described in Table 2.

Ref Gait Features

Referring to Figure 4(b), REF Set 7 consists of features for 
the upper body points. 

FIGURE 3. Example of images for (a) gait cycle detection 
as illustrated by two vertical dashed lines and (b) Frame 

normalisation

FIGURE 4. Example of illustrations for (a) selected body point for 
DIR Set 1 and (b) selected distance for REF Set 7.

FIGURE 5. Example of attributes concatenation 
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TABLE 2. Description for DIR and REF Type 
Feature 
 

Description (Body Point) 

DIR1 Set for the full-body by choosing the entire 
body points in the x, y, and z axes (1 to 20) 

DIR2 
Set for the upper body and extracted by 
selecting the body points on the upper 
body in the x, y, and z axes (2 to 12) 

DIR3 

Set for the lower body and extracted by 
selecting the body points on the lower 
body in the x, y, and z axes (1, 2, and 13 to 
20) 

DIR4 

Set for the right sides of the body and 
extracted by selecting the body points on 
the right side in the x, y, and z axes (1 to 4, 
9 to 12 and 17 to 20) 

DIR5 

Set for the left side of the body and 
extracted by selecting the body point on 
the left side in the x, y, and z axes (1 to 8 
and 13 to 16) 

REF6 

Set for the full-body and extracted by 
calculating the distance between the 
reference joint to all body joints 
(Reference point to point 5 to 20) 

REF7 

Set for the upper body and extracted by 
calculating the distance between the 
reference joint to the joint’s points on the 
upper body (Reference point to point 5 to 
12) 

REF8 

Set for the lower body and extracted by 
calculating the distance between the 
reference joint to the joint’s points on the 
lower body (Reference point to point 13 to 
20) 

REF9 

Set for the right sides of the body and 
extracted by calculating the distance 
between the reference joint to the joint’s 
points on the right side (Reference point to 
point 9 to 12 and 17 to 20) 

REF10 

Set for the left side of the body and 
extracted by calculating the distance 
between the reference joint to the joint’s 
points on the left side (Reference point to 
point 5 to 8 and 13 to 16) 

 
The REF features are represented by the distance 
feature based on the distance between the reference 
joint located at the middle hip (Point 1) and the other 
selected body joint computed using Euclidean 
distance as in equation (1). The detailed description 
of each REF feature is as in Table 2.  

Next, frames of each set feature are 
arranged vertically concatenated. The purpose of the 
concatenation is to adapt the input properties for the 
classification stage. The output of each trial has a 
dimension of p x 1, where p is the total attributes or 
variables in each sample or walking trial. The 
examples of the attributes concatenation for Set 1 

(a) 

(b) 
FIGURE 4. Example of illustrations for (a) 
selected body point for DIR Set 1 and (b) 

selected distance for REF Set 7. 

FIGURE 5. Example of attributes concatenation  

Jurnal Kejuruteraan 34(5) 2022: xxx-xxx 
https://doi.org/10.17576/jkukm-2022-34(5)-25 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TABLE 2. Description for DIR and REF Type 
Feature 
 

Description (Body Point) 

DIR1 Set for the full-body by choosing the entire 
body points in the x, y, and z axes (1 to 20) 

DIR2 
Set for the upper body and extracted by 
selecting the body points on the upper 
body in the x, y, and z axes (2 to 12) 

DIR3 

Set for the lower body and extracted by 
selecting the body points on the lower 
body in the x, y, and z axes (1, 2, and 13 to 
20) 

DIR4 

Set for the right sides of the body and 
extracted by selecting the body points on 
the right side in the x, y, and z axes (1 to 4, 
9 to 12 and 17 to 20) 

DIR5 

Set for the left side of the body and 
extracted by selecting the body point on 
the left side in the x, y, and z axes (1 to 8 
and 13 to 16) 

REF6 

Set for the full-body and extracted by 
calculating the distance between the 
reference joint to all body joints 
(Reference point to point 5 to 20) 

REF7 

Set for the upper body and extracted by 
calculating the distance between the 
reference joint to the joint’s points on the 
upper body (Reference point to point 5 to 
12) 

REF8 

Set for the lower body and extracted by 
calculating the distance between the 
reference joint to the joint’s points on the 
lower body (Reference point to point 13 to 
20) 

REF9 

Set for the right sides of the body and 
extracted by calculating the distance 
between the reference joint to the joint’s 
points on the right side (Reference point to 
point 9 to 12 and 17 to 20) 

REF10 

Set for the left side of the body and 
extracted by calculating the distance 
between the reference joint to the joint’s 
points on the left side (Reference point to 
point 5 to 8 and 13 to 16) 

 
The REF features are represented by the distance 
feature based on the distance between the reference 
joint located at the middle hip (Point 1) and the other 
selected body joint computed using Euclidean 
distance as in equation (1). The detailed description 
of each REF feature is as in Table 2.  

Next, frames of each set feature are 
arranged vertically concatenated. The purpose of the 
concatenation is to adapt the input properties for the 
classification stage. The output of each trial has a 
dimension of p x 1, where p is the total attributes or 
variables in each sample or walking trial. The 
examples of the attributes concatenation for Set 1 

(a) 

(b) 
FIGURE 4. Example of illustrations for (a) 
selected body point for DIR Set 1 and (b) 

selected distance for REF Set 7. 

FIGURE 5. Example of attributes concatenation  
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TABLE 2. Description for DIR and REF Type

Feature Description (Body Point)

DIR1 Set for the full-body by choosing the entire body 
points in the x, y, and z axes (1 to 20)

DIR2
Set for the upper body and extracted by selecting the 
body points on the upper body in the x, y, and z axes 
(2 to 12)

DIR3
Set for the lower body and extracted by selecting the 
body points on the lower body in the x, y, and z axes 
(1, 2, and 13 to 20)

DIR4
Set for the right sides of the body and extracted by 
selecting the body points on the right side in the x, y, 
and z axes (1 to 4, 9 to 12 and 17 to 20)

DIR5
Set for the left side of the body and extracted by 
selecting the body point on the left side in the x, y, 
and z axes (1 to 8 and 13 to 16)

REF6
Set for the full-body and extracted by calculating the 
distance between the reference joint to all body joints 
(Reference point to point 5 to 20)

REF7

Set for the upper body and extracted by calculating 
the distance between the reference joint to the joint’s 
points on the upper body (Reference point to point 
5 to 12)

REF8

Set for the lower body and extracted by calculating 
the distance between the reference joint to the joint’s 
points on the lower body (Reference point to point 
13 to 20)

REF9

Set for the right sides of the body and extracted by 
calculating the distance between the reference joint 
to the joint’s points on the right side (Reference point 
to point 9 to 12 and 17 to 20)

REF10

Set for the left side of the body and extracted by 
calculating the distance between the reference joint 
to the joint’s points on the left side (Reference point 
to point 5 to 8 and 13 to 16)

The REF features are represented by the distance feature 
based on the distance between the reference joint located at 
the middle hip (Point 1) and the other selected body joint 
computed using Euclidean distance as in equation (1). The 
detailed description of each REF feature is as in Table 2. 

Next, frames of each set feature are arranged ver-
tically concatenated. The purpose of the concatenation is to 
adapt the input properties for the classification stage. The 
output of each trial has a dimension of p x 1, where p is the 
total attributes or variables in each sample or walking trial. 
The examples of the attributes concatenation for Set 1 and 
Set 6 are as illustrated in Figure 5. Table 3 tabulates the de-
scription of the total body points. 

TABLE 3. Description of number of body points and number of 
variables for DIR and REF features

Feature Total body points 
per frame

p (Vertical 
concatenated)

DIR1 20 x 3 1800
DIR2 11 x 3 990
DIR3 10 x 3 900
DIR4 12 x 3 1080
DIR5 12 x 3 1080
REF6 16 x 1 480
REF7 8 x 1 240
REF8 8 x 1 240
REF9 8 x 1 240
REF10 8 x 1 240

Note that for Set 1 to Set 5, the selected body points are multiplied 
by three as in Figure 5 because these sets consist of depth 
information specifically in the x, y, and z axes.  On the other hand, 
for Set 6 to Set 10, the selected distances are multiplied by one 
because the distance is calculated based on the x, y, and z axes 
between the two body joints. These features are arranged vertically 
concatenated for each trial via frame by frame. Hence, each set 
of features has a dimension of p by 300 after combining the trials 
concerning its group. 

Gait Classification

Upon identifying the gait feature, the next stage is to 
assess the efficacy of the markerless-based gait features 
for anomaly gait detection in ASD children based on the 
two categories, namely DIR and REF sets. Each dataset is 
classified and evaluated using three types of classifiers: the 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM), Naïve Bayes Classifier (NBC). The classifier’s 
output is set as either ASD or TD groups. The target for the 
ASD group is ‘0’, and the TD Group is ‘1’. A 10-fold cross-
validation method is applied to estimate the generalization 
error of each classifier.

Support Vector Machine (SVM) As Classifier

SVM is a linear classifier that aims to classify features by 
determining the finest hyperplane. The best hyperplane for 
SVM is the most significant margin separating the features 
between different classes (N. M. Tahir et al. 2007). This 
is obtained by balancing the margin maximization using 
regularization parameter C. However, not all data are linearly 
separable in the actual application and can be separated 
using the hyperplane. Thus, for non-linear problems, soft 
margins and kernel functions have been introduced. The 
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kernel’s role is to transform the input data into the required 
form in suitable feature space for separating the hyperplane. 
Here, the linear, radial basis function along with the 
polynomial kernels are utilised as the kernel functions. The 
kernel functions are used to compute the xj and xk in V (xj, 
xk) where j and k are the observations in predictor data, x as 
tabulated in Table 4.

TABLE 4. Kernel function of SVM

Kernel 
Function

Mathematical Formula

Linear V(xj,xk) = xj’ xk

RBF V(xj,xk) = exp (-γ‖ xj - xk ‖²)
where γ is the width of RBF kernel

Polynomial V(xj,xk) = (1 + xj’ xk)
dp

where dp is the degree of polynomial

Naïve Bayes (NB) As Classifier

NB classifier is a supervised algorithm based on Bayesian 
learning algorithm derived from decisions of probabilistic 
classification. The algorithm uses the Bayes theorem and 
naively presumes the entire predictors are independent 
considering each class value. This conditional independence 
assumption is seldom applicable in real or practical 
applications, and because of this, it is characterised as 
Naive. Conversely, in various controlled classification 
problems, the algorithm tends to learn rapidly. According to 
Bayesian Theorem, the probability of a data predictor is as 
in equation (2):
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Feature 
Total body 
points per 
frame 

p (Vertical 
concatenated) 

DIR1 
 

20 x 3 1800 

DIR2 
 

11 x 3 990 

DIR3 
 

10 x 3 900 

DIR4 
 

12 x 3 1080 

DIR5 
 

12 x 3 1080 

REF6 
 

16 x 1 480 

REF7 
 

8 x 1 240 

REF8 
 

8 x 1 240 

REF9 
 

8 x 1 240 

REF10 8 x 1 240 
   

Note that for Set 1 to Set 5, the selected body points 
are multiplied by three as in Figure 5 because these 
sets consist of depth information specifically in the 
x, y, and z axes.  On the other hand, for Set 6 to Set 
10, the selected distances are multiplied by one 
because the distance is calculated based on the x, y, 
and z axes between the two body joints. These 
features are arranged vertically concatenated for 
each trial via frame by frame. Hence, each set of 
features has a dimension of p by 300 after combining 
the trials concerning its group.  
 

GAIT CLASSIFICATION 
 

Upon identifying the gait feature, the next stage is to 
assess the efficacy of the markerless-based gait 
features for anomaly gait detection in ASD children 
based on the two categories, namely DIR and REF 
sets. Each dataset is classified and evaluated using 
three types of classifiers: the Artificial Neural 
Network (ANN), Support Vector Machine (SVM), 
Naïve Bayes Classifier (NBC). The classifier's 
output is set as either ASD or TD groups. The target 
for the ASD group is '0', and the TD Group is '1'. A 
10-fold cross-validation method is applied to 
estimate the generalization error of each classifier. 
 

Support Vector Machine (SVM) as classifier 
SVM is a linear classifier that aims to classify 
features by determining the finest hyperplane. The 
best hyperplane for SVM is the most significant 
margin separating the features between different 
classes (N. M. Tahir et al. 2007). This is obtained by 
balancing the margin maximization using 
regularization parameter C. However, not all data 
are linearly separable in the actual application and 
can be separated using the hyperplane. Thus, for 
non-linear problems, soft margins and kernel 
functions have been introduced. The kernel's role is 
to transform the input data into the required form in 

suitable feature space for separating the hyperplane. 
Here, the linear, radial basis function along with the 
polynomial kernels are utilised as the kernel 
functions. The kernel functions are used to compute 
the xj and xk in V (xj, xk) where j and k are the 
observations in predictor data, x as tabulated in 
Table 4. 
 
 

 
NAÏVE BAYES (NB) AS CLASSIFIER 

 
NB classifier is a supervised algorithm based on 
Bayesian learning algorithm derived from decisions 
of probabilistic classification. The algorithm uses 
the Bayes theorem and naively presumes the entire 
predictors are independent considering each class 
value. This conditional independence assumption is 
seldom applicable in real or practical applications, 
and because of this, it is characterised as Naive. 
Conversely, in various controlled classification 
problems, the algorithm tends to learn rapidly. 
According to Bayesian Theorem, the probability of 
a data predictor is as in equation (2): 
 

𝑃𝑃(𝑐𝑐|𝑥𝑥) =
𝑃𝑃(𝑥𝑥|𝑐𝑐) ∗ 𝑃𝑃(𝑐𝑐)

𝑃𝑃(𝑥𝑥)  

 
Using the theory, the probability of x is happening, 
given that c has occurred, where P(c│x) is the 
posterior probability of class (c, target) given the 
data or predictor (x, attributes). Conversely, P(c) is 
the prior probability of a class, P(x│c) is the 
probability of predictor given by the class, and P(x) 
is the probability of the predictor. The assumption 
made here is that the predictors or features x are 
independent; that is, the presence of one particular 
feature does not affect the other. Hence it is called 
naïve (H. Bakhta et al. 2009). For classification 
purposes, the probability distribution function is 
used to model the data using kernel density 
estimation or Gaussian distribution. The two 
categories of probability distribution functions are 
kernel density estimation along with Gaussian 
distribution. The mean and standard deviation of 
each class's training data is computed, and the NBC 
estimates a separate normal distribution for each.  
 
ARTIFICIAL NEURAL NETWORK (ANN) AS CLASSIFIER 

 

TABLE 4. Kernel function of SVM 
Kernel 
Function 

Mathematical Formula 

Linear V(xj,xk) = xj’ xk 

 
RBF V(xj,xk) = exp (-γǁ xj - xk ǁ²) 

where γ is the width of RBF kernel 
 

Polynomial V(xj,xk) = (1 + xj’ xk)dp 

where dp is the degree of polynomial 
 

Using the theory, the probability of x is happening, 
given that c has occurred, where P(c│x) is the posterior 
probability of class (c, target) given the data or predictor 
(x, attributes). Conversely, P(c) is the prior probability 
of a class, P(x│c) is the probability of predictor given by 
the class, and P(x) is the probability of the predictor. The 
assumption made here is that the predictors or features x 
are independent; that is, the presence of one particular 
feature does not affect the other. Hence it is called naïve 
(H. Bakhta et al. 2009). For classification purposes, the 
probability distribution function is used to model the data 
using kernel density estimation or Gaussian distribution. 
The two categories of probability distribution functions are 
kernel density estimation along with Gaussian distribution. 
The mean and standard deviation of each class’s training 
data is computed, and the NBC estimates a separate normal 
distribution for each. 

Artificial Neural Network (ANN) As Classifier

ANN emulates the human brain’s learning process that can 
solve problems involving complex and nonlinear data. The 
ANN architecture comprises the input, hidden, and output 

layers. ANN performs its processing by accepting input, x, 
multiplied by a set of weights, w. Then, the neurons will 
non-linearly transform the sum of the weighted inputs 
using an activation function into an output value, y, as 
shown in equation (3) (S. Ilias et al. 2016). Sometimes b, 
a bias regarded as weight is also added to the network. The 
network will continuously adjust the parameters to achieve 
the tolerable desired output.
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ANN emulates the human brain's learning process 
that can solve problems involving complex and 
nonlinear data. The ANN architecture comprises the 
input, hidden, and output layers. ANN performs its 
processing by accepting input, x, multiplied by a set 
of weights, w. Then, the neurons will non-linearly 
transform the sum of the weighted inputs using an 
activation function into an output value, y, as shown 
in equation (3) (S. Ilias et al. 2016). Sometimes b,            
a bias regarded as weight is also added to the 
network. The network will continuously adjust the 
parameters to achieve the tolerable desired output. 
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For this study, ANN with three-layer feed-forward 
architecture with Scaled Gradient Conjugate as the 
training algorithm and tan-sigmoid (tansig) transfer 
function is utilised for both the hidden and output 
layer. 
 

TUNE HYPERPARAMETERS FOR CLASSIFICATION 
 

In this study, hyperparameters are evaluated and 
tested to fit the algorithm's performance to the 
dataset. The evaluations from each classifier model 
are performed using a grid search approach to select 
the optimal classifier model. The hyperparameters 
for each classifier are as tabulated in Table 5. 
 

TABLE 5. Hyper-parameters 
Classifier Hyper-

parameter 
Variable/Value 

SVM Kernel C (C ϵ 0.001, 0.01, 0.1, 1, 
10, 100 and 1000) for 
linear kernel; 
C and γ (γ ϵ 0.1, 1 and 10) 
for RBF kernel; 
C and dp (dp ϵ 2, 3 and 4) 
for polynomial kernel 

 
NB Probability 

distribution 
Kernel density 
distribution. 
Normal distribution. 

 
ANN Hidden 

neurons 
hn (hn varied from 1 to 50 
with an increment of 5) 

 
 

RESULTS AND DISCUSSION 
 

This section discusses the classification and 
performance of each set of features based on each 
classifier. For performance measure, the accuracy 
(Acc) is defined as a reflection of actual value or the 
ability of a measurement to be correct. On the other 
hand, sensitivity (Sens) is defined by the correct 
classification of the ASD in the ASD group, whilst 
specificity (Spec) is determined by the correct 

classification of the TD in the TD group. Table 6 
tabulated the classifier performances for DIR and 
REF feature sets. Firstly, with SVM as classifier 
using all three kernels as tabulated in Table 4, 
experimental results showed that the highest 
accuracy for linear kernel is only at 86.83% accuracy 
using DIR Set 1, while for the polynomial kernel, the 
highest accuracy is at 88% using DIR Set 2. RBF 
Kernel showed the highest accuracy amongst these 
three kernels for DIR and REF feature sets with 
generalization parameter C=10. Hence, the RBF 
kernel is further used to compare with ANN and NB 
classifiers. As for the ANN classifier, the most 
optimum epoch is at 1000 with a scaled conjugate 
gradient as the training algorithm. In addition, for 
the NB classifier, kernel distribution showed higher 
accuracy than the normal distribution. Hence kernel 
distribution is chosen for the NB classifier. From 
Table 6, the ANN classifier attains the highest 
accuracy at 94.22% for the DIR Set 1 gait feature 
that represents by the set of body points for the full 
body whilst the highest accuracy for the REF feature 
is at 89.98% based on Set 6, which is the set of 
distance for the entire body.  

Similarly, the highest sensitivity and 
specificity are from the same sets, precisely 94.49% 
and 93.93% for Set 1 and 90.95% and 89.05% for 
Set 6. As for the SVM classifier, the highest 
accuracy achieved is at 92.17% for the DIR Set 2 
gait feature that represented the body points for the 
upper body, whilst for the REF feature; Set 6 
surpassed others with 91.67% accuracy along with 
sensitivity and specificity at 89.30% and 94.32% 
respectively. Conversely, the NB classifier showed 
the lowest accuracy compared to ANN and SVM 
classifiers. Set 1 and Set 6 only attained an accuracy 
of 78.83% and 72.50%, respectively, compared to 
other sets. On the other hand, set 1 achieved 
maximum sensitivity and specificity at 85.02% and 
74.50%, respectively. However, set 6 only achieved 
maximum specificity at 69.56% and set 10 with a 
sensitivity of 76.59%. Overall, the ANN classifier 
outperformed the other two classifiers, specifically 
the SVM and NB, with NB as the lowest accuracy 
rate based on the computed performance measures.  
 

TABLE 6. Performance measures (%) using 
ANN, SVM and NB as classifier 

                                     Classifier ANN 
Feature Set Acc Sens Spec 
DIR 1 94.22 94.49 93.93 

2 91.78 92.88 90.73 
3 93.17 93.83 92.51 
4 91.90 92.81 91.02 
5 93.28 93.41 93.15 

REF 6 89.98 90.95 89.05 
7 81.65 84.24 79.42 
8 84.72 84.68 84.75 
9 87.80 87.92 87.67 
10 83.15 84.90 81.56 

                                 Classifier SVM 

For this study, ANN with three-layer feed-forward 
architecture with Scaled Gradient Conjugate as the training 
algorithm and tan-sigmoid (tansig) transfer function is 
utilised for both the hidden and output layer.

Tune Hyperparameters For Classification

In this study, hyperparameters are evaluated and tested to fit 
the algorithm’s performance to the dataset. The evaluations 
from each classifier model are performed using a grid 
search approach to select the optimal classifier model. The 
hyperparameters for each classifier are as tabulated in Table 
5.

TABLE 5. Hyper-parameters

Classifier Hyper-parameter Variable/Value
SVM Kernel C (C ϵ 0.001, 0.01, 0.1, 1, 10, 

100 and 1000) for linear kernel;

C and γ (γ ϵ 0.1, 1 and 10) for 
RBF kernel;

C and dp (dp ϵ 2, 3 and 4) for 
polynomial kernel

NB Probability 
distribution

Kernel density distribution.

Normal distribution.
ANN Hidden neurons hn (hn varied from 1 to 50 with 

an increment of 5)

RESULTS AND DISCUSSION

This section discusses the classification and performance 
of each set of features based on each classifier. For 
performance measure, the accuracy (Acc) is defined as a 
reflection of actual value or the ability of a measurement to 
be correct. On the other hand, sensitivity (Sens) is defined 
by the correct classification of the ASD in the ASD group, 
whilst specificity (Spec) is determined by the correct 
classification of the TD in the TD group. Table 6 tabulated 
the classifier performances for DIR and REF feature sets. 
Firstly, with SVM as classifier using all three kernels as 
tabulated in Table 4, experimental results showed that 
the highest accuracy for linear kernel is only at 86.83% 

(2)

(3)
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accuracy using DIR Set 1, while for the polynomial kernel, 
the highest accuracy is at 88% using DIR Set 2. RBF Kernel 
showed the highest accuracy amongst these three kernels 
for DIR and REF feature sets with generalization parameter 
C=10. Hence, the RBF kernel is further used to compare 
with ANN and NB classifiers. As for the ANN classifier, the 
most optimum epoch is at 1000 with a scaled conjugate 
gradient as the training algorithm. In addition, for the NB 
classifier, kernel distribution showed higher accuracy than 
the normal distribution. Hence kernel distribution is chosen 
for the NB classifier. From Table 6, the ANN classifier 
attains the highest accuracy at 94.22% for the DIR Set 1 gait 
feature that represents by the set of body points for the full 
body whilst the highest accuracy for the REF feature is at 
89.98% based on Set 6, which is the set of distance for the 
entire body. 

Similarly, the highest sensitivity and specificity are 
from the same sets, precisely 94.49% and 93.93% for Set 1 
and 90.95% and 89.05% for Set 6. As for the SVM classifier, 
the highest accuracy achieved is at 92.17% for the DIR Set 
2 gait feature that represented the body points for the upper 
body, whilst for the REF feature; Set 6 surpassed others 
with 91.67% accuracy along with sensitivity and specificity 
at 89.30% and 94.32% respectively. Conversely, the NB 
classifier showed the lowest accuracy compared to ANN and 
SVM classifiers. Set 1 and Set 6 only attained an accuracy of 
78.83% and 72.50%, respectively, compared to other sets. 
On the other hand, set 1 achieved maximum sensitivity and 
specificity at 85.02% and 74.50%, respectively. However, 
set 6 only achieved maximum specificity at 69.56% and set 
10 with a sensitivity of 76.59%. Overall, the ANN classifier 
outperformed the other two classifiers, specifically the 
SVM and NB, with NB as the lowest accuracy rate based on 
the computed performance measures. 

TABLE 6. Performance measures (%) using ANN, SVM and NB    
as classifier

                                     Classifier ANN

Feature Set Acc Sens Spec
DIR 1 94.22 94.49 93.93

2 91.78 92.88 90.73
3 93.17 93.83 92.51
4 91.90 92.81 91.02
5 93.28 93.41 93.15

REF 6 89.98 90.95 89.05
7 81.65 84.24 79.42
8 84.72 84.68 84.75
9 87.80 87.92 87.67
10 83.15 84.90 81.56

                                 Classifier SVM

DIR 1 87.83 82.15 95.95
2 92.17 91.21 93.17
3 88.67 87.18 90.27
4 90.17 88.49 91.98
5 90.33 87.81 93.21

REF 6 91.67 89.30 94.32
7 83.00 83.22 82.78
8 85.83 86.19 85.47
9 89.33 87.82 90.97
10 84.67 85.37 83.98

                                 Classifier NB

DIR 1 78.83 85.02 74.50
2 78.00 84.14 73.12
3 77.17 83.82 72.70
4 78.00 84.14 73.72
5 77.33 84.17 72.77

REF 6 72.50 76.47 69.56
7 71.33 77.11 67.58
8 63.67 67.08 61.38
9 68.83 72.87 66.00
10 70.83 76.59 67.12

The ANN classifier attained the highest accuracy is at 
94.22%, as achieved by the ANN classifier in this study, 
and outperformed other marker-based models that utilised 
ANN as classifiers (C.Z.C. Hasan et al. 2018 & S. Ilias et al. 
2016). This finding suggests that the DIR Set 1 gait feature 
is suitable to be used as a potential gait feature to support 
the early diagnosis of ASD gait since the proposed method 
does not require any protocol experiments. The proposed 
markerless-based technique has fewer experimental 
protocols than the marker-based technique, which is more 
accommodating and more comfortable, especially for ASD 
children. Thus, the gait features can be extracted without 
contact with the subject. Recall that in this study, a single 
depth camera is used. Therefore, future studies could utilise 
multiple depth cameras at different locations to provide 
more multi-views to extract more significant gait features.

CONCLUSION

In conclusion, the gait classifications based on three 
classifiers, namely ANN, SVM and NB, are evaluated and 
validated in classifying two feature sets, namely DIR and 
FIR. Results showed that the ANN model classifies the continue ...

... continued
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markerless-based gait feature between the ASD and TD 
group with the highest accuracy at 94.22% using DIR Set 1, 
representing the full-body based on extraction by selecting 
all body points in x, y, and z axes. Additionally, this feature 
set can classify the ASD group based on the sensitivity value 
achieved as 94.49% and the TD group with a specificity 
of 93.93%. However, the NB classifier is not apt for these 
feature sets. This quantitative proposed gait features and the 
classifier-based approach may help the medical practitioners 
to discriminate walking gait features into significant 
gait types that could assist them in performing an initial 
diagnosis related to gait abnormalities. Findings from this 
work are beneficial for future applications in facilitating 
appropriate therapeutic interventions for ASD children that 
need therapies and post-therapy monitoring in the field of 
pathological gait. This study used a single camera view to 
investigate the kinematic features based on the cosine rule. 
Hence for future work, multiple camera views could be 
analysed using kinematic features from the anatomical plane 
by comparing the relative orientations of the two segments 
and using the spatial-temporal and kinetic features based on 
the markerless-based gait technique.
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