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Abstract 35 

Methane (CH4), one of the key long-lived atmospheric greenhouse gases, is primarily produced from 36 

organic matter. Accordingly, net primary production of organic matter sets the boundaries for  CH4 37 

emissions. Plants, being dominant primary producers, are thereby indirectly sustaining most global 38 

CH4 emissions, albeit with delays in time and with spatial offsets between plant primary production 39 

and subsequent CH4 emission. In addition, plant communities can enhance or hamper ecosystem 40 

production, oxidation, and transport of CH4 in multiple ways, e.g., by shaping carbon, nutrient, and 41 

redox gradients, and by representing a physical link between zones with extensive CH4 production in 42 

anoxic sediments or soils and the atmosphere. This review focuses on how plants and other primary 43 

producers influence CH4 emissions with the consequences at ecosystem scales. We outline 44 

mechanisms of interactions and discuss flux regulation, quantification, and knowledge gaps across 45 

multiple ecosystem examples. Some recently proposed plant-related ecosystem CH4 fluxes are 46 

difficult to reconcile with the global atmospheric CH4 budget and the enigmas related to these fluxes 47 

are highlighted. Overall, ecosystem CH4 emissions are strongly linked to primary producer 48 

communities, directly or indirectly, and properly quantifying magnitudes and regulation of these links 49 

are key to predicting future CH4 emissions in a rapidly changing world.  50 

  51 
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1. Introduction 52 

Methane (CH4), one of the most important greenhouse gases (GHGs), is currently under scrutiny 53 

because of its high global warming potential in combination with uncertainties in the CH4 budget 54 

(Kirschke et al., 2013; Saunois et al., 2020). Major sources of atmospheric CH4 are both 55 

anthropogenic and natural and include extraction and handling of fossil fuels, combustion processes, 56 

landfills, ruminants, rice cultivation, and emissions from wildfires. Other key CH4 sources are 57 

wetlands, marine- and freshwater environments (lakes, reservoirs, ponds, and streams) (Saunois et 58 

al., 2020). The two main CH4 sinks are considered to be upland soil microbial methane oxidation (ca. 59 

10%), and abiotic atmospheric oxidation (ca. 90%). Terrestrial upland vegetation has also been 60 

suggested to be important for atmospheric CH4 exchange, although not always being mentioned in 61 

global CH4 budgets (Carmichael et al., 2014). 62 

 63 

The atmospheric CH4 levels have sharply increased since pre-industrial times, but in contrast to the 64 

other long-lived GHGs (carbon dioxide and nitrous oxide), the increase has been irregular with 65 

variable growth rates among years and decades for reasons not yet fully understood (Dlugokencky et 66 

al., 2011). Several non-exclusive explanations for this variability have been proposed and one of 67 

them emphasise the potentially important role of wetland emissions (Nisbet et al., 2014; Lan et al., 68 

2021). Moreover, the recent discovery of large CH4 emissions from inland waters, including lakes, 69 

ponds, reservoirs, and running water environments,  resulted in a situation where the atmospheric 70 

CH4 growth rates are considerably smaller than expected from global emissions derived by summing 71 

estimated contributions from various sources, referred to as a mismatch between global top-down 72 

and bottom-up CH4 emission estimates, respectively (Kirschke et al., 2013; Saunois et al., 2020). The 73 

temporal irregularities in atmospheric CH4 growth rates and the mismatch between top-down and 74 

bottom-up flux estimates jointly highlight the current knowledge gaps regarding CH4 emission rates 75 

and source attribution. Although emission uncertainties exist for all types of fluxes, the large biogenic 76 

ecosystem CH4 fluxes, both natural and related with land use, have been considered the most 77 

uncertain (Saunois et al., 2020).  78 

 79 

It was recently suggested that up to half of the global CH4 emissions depend on fluxes from wet 80 

ecosystems, including various types of wetlands, lakes, ponds, reservoirs, running water, ocean and 81 

coastal areas, and rice cultivation (Rosentreter et al., 2021). These fluxes are closely linked to 82 

mechanisms controlled by plant communities in or upstream of the aquatic environment. Regardless 83 

of where in the landscape CH4 fluxes occur, primary production sets the boundaries for overall 84 

carbon cycling, and thereby for the CH4 production, and plants are the main primary producers in 85 
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most ecosystems. In other words, the net ecosystem production by plants or other primary 86 

producers is a major indirect factor regulating ecosystem CH4 production.  87 

 88 

Human land use, including increased anthropogenic input of nutrients to ecosystems, as well as 89 

climate change, profoundly impacts plant communities around the world. There is already evidence 90 

of changes in growing season lengths, net primary productivity, plant biomass stocks, and plant 91 

community composition, exemplified by observations of global greening (Piao et al., 2020). There are 92 

also specific observations of rapid changes of e.g., aquatic macrophyte distribution in the arctic that 93 

can cause large perturbations of ecosystem CH4 emissions (Andresen et al., 2017). Consequently, a 94 

better understanding of present and future CH4 emissions is dependent on improved knowledge 95 

about plant community dynamics and particularly of the links between plant communities and 96 

ecosystem CH4 fluxes. 97 

 98 

This review will first briefly summarize key processes controlling ecosystem CH4 emissions, which is 99 

needed as a background for the subsequent discussion on how plants influence ecosystem CH4 100 

fluxes. The aims are to (1) provide fundamental understanding on how plants play multiple important 101 

roles for ecosystem CH4 emissions, and (2) give examples from selected ecosystem types. The words 102 

“emission” and “flux” are used in similar contexts to make the language more varied, but with an 103 

important distinction: “Emission” is unidirectional and regards flux to the atmosphere, while “flux” is 104 

omnidirectional and regards transport from one location to another in any direction.  105 

 106 

 107 

2. Fundamental processes shaping ecosystem CH4 emissions 108 

2.1 CH4 production 109 

Biogenic CH4 is a major final degradation product from anaerobic organic matter decomposition, 110 

formed by methanogenic Archaea where or when alternative terminal electron acceptors such as 111 

nitrate, manganese (IV), iron (III), and sulfate are low in abundance (Segers, 1998; Garcia et al., 112 

2000). Freshwater aquatic systems, and some saline systems where salinity is caused by high 113 

carbonate levels, have low availability of such alternate electron acceptors, and anoxic CH4 114 

production can be extensive throughout all parts of the sediment or water saturated soils devoid of 115 

molecular oxygen (O2) (Bastviken, 2022). In marine systems, anoxic CH4 production is dominant 116 

deeper in the sediments, at depths where the alternative electron acceptors have been depleted by 117 

other organic matter degradation processes. CH4 production in anoxic waters are rarely considered 118 

and substantial anoxic CH4 production seems largely associated with sediments, soils, or particle-rich 119 

fluids (Bastviken, 2022). 120 
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 121 

In addition to the anoxic CH4 production, CH4 formation can occur under oxic conditions. Stress on 122 

foliage from incoming light including ultraviolet radiation, rising temperature, and physical injury, has 123 

been reported to trigger oxic CH4 formation associated with terrestrial vegetation – in many cases 124 

from non-enzymatic processes and with suggested influence from reactive oxygen species and with 125 

variability among plant species (Liu et al., 2015; Martel and Qaderi, 2017; Ernst et al., 2022). In 126 

addition, oxic CH4 formation in surface water has been attributed to e.g., cyanobacterial 127 

photosynthesis with methylphosphonates and trimethylamine as precursors in surface lake water 128 

(Bižić et al., 2020). Overall, anoxic CH4 production is believed to dominate while the magnitudes of 129 

the oxic production may be considerable but are still uncertain (Carmichael et al., 2014; Günthel et 130 

al., 2019; Peeters et al., 2019). 131 

 132 

2.2 CH4 oxidation 133 

The oxidation of CH4 in ecosystems is primarily performed by microbes, while plants can substantially 134 

influence where conditions are suitable for this microbial CH4 oxidation and the extent to which CH4 135 

can bypass oxidation (discussed in Sections 2.3 and 3 below after describing fundamentals about the 136 

oxidation process here). Microbial oxidation of CH4 is a source of energy and carbon to 137 

microorganisms in habitats where CH4, being the most reduced organic compound, co-exists with 138 

suitable electron acceptors. CH4 oxidizing bacteria (MOB) are phylogenetically diverse (Smith and 139 

Wrighton, 2019) and are well-known to be able to rapidly consume large amounts of CH4 in the 140 

presence of O2 (Bastviken, 2022). Upon oxidation, CH4 is transformed to CO2 and H2O. Similarly, other 141 

microorganisms, often found to act in syntrophic consortia, can oxidize CH4 under anaerobic 142 

conditions in the presence of e.g., nitrate, manganese (IV), iron (III), and sulfate (Kallistova et al., 143 

2017). The oxidation process is often most active where the abundance or re-supply rates of both 144 

CH4 and suitable electron acceptors are high enough, which is typically at redox transition zones in 145 

sediments, soils, or water. The ecosystem balance between CH4 production and oxidation sets the 146 

limits for how much CH4 can be emitted, and zones with microbial CH4 oxidation can act as an 147 

important biofilter preventing large amounts of emissions. It has been estimated that CH4 oxidation 148 

removes 45 to almost 100 % of the produced CH4 in lake ecosystems and 20-40% in wetland soils 149 

before emission (Whalen, 2005; Bastviken et al., 2008; Bastviken, 2022). 150 

 151 

2.3 CH4 transport processes 152 

The processes controlling CH4 transport through the ecosystems – from locations of CH4 production 153 

towards the atmosphere – determine the residence times in different ecosystem habitats (e.g. oxic 154 

and anoxic zones), and thereby the extent to which oxidation can consume CH4 before it is emitted. 155 
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Hence, the different transport processes are of great importance for overall ecosystem CH4 156 

emissions. This section therefore briefly outlines major transport types because they are important 157 

for the understanding of how plants can influence ecosystem fluxes. 158 

 159 

The movements of dissolved CH4 in soil, sediment, and surface water can occur in two fundamental 160 

ways. If there is a net water movement over significant distances, dissolved CH4 follows moving 161 

water, i.e., is transported by advection. If the movement of the water itself is small over larger 162 

distances, the transport can be better described as Fickian transport, i.e., transport of dissolved 163 

compounds from locations with higher concentrations towards locations with lower concentrations 164 

in ways that can be described by Fick’s Law (Hemond and Fechner, 2015).  165 

 166 

The Fickian transport includes molecular diffusion and eddy diffusion where turbulence eddies 167 

greatly speed up the transport rates (Hemond and Fechner, 2015). The Fickian transport rates are 168 

determined by the concentration gradient representing the change in concentration with distance, 169 

and the diffusion coefficient describing the transport rate given the physical conditions. In the 170 

absence of turbulence, the slow molecular diffusion limits transport. This can happen in deep 171 

undisturbed sediment pore waters or peats with little subsurface water flow, or across the diffusive 172 

boundary layers, including the water surface diffusive boundary layer at the water-air interface. 173 

Where there is turbulence in the water, the Fickian transport is dominated by the faster eddy 174 

diffusion, often represented by greater diffusion coefficients (Hemond and Fechner, 2015). During 175 

advective transport with the water flow, Fickian transport occur simultaneously and distribute the 176 

solutes within the flowing water volume. In sediments or soils, particles can influence this process by 177 

dispersion (Hemond and Fechner, 2015).   178 

 179 

Accordingly, CH4 produced in anoxic soils or sediments and dissolved in the pore water may move 180 

slowly by Fickian transport or faster by advection via ground water movement. When reaching the 181 

air-filled pores in soil, gas exchange occurs if the CH4 concentrations in the water and air are not at 182 

equilibrium. The CH4 exchanged into the gas phase is further transported by advection or Fickian 183 

transport at rates given by the local air movement or diffusion coefficient. In aquatic environments, 184 

solutes reaching the top of the sediment will be transported through the water column by advective 185 

transport or eddy diffusion depending on local hydrodynamic conditions. Thermo- or halocline 186 

stratifications can greatly reduce the diffusion coefficients and thereby effectively limit transport 187 

rates across such gradients. Finally, when dissolved CH4 reaches the water surface, the diffusive 188 

boundary layer at the interface between water and air is the final limiting step for the emission of 189 

dissolved CH4 to the atmosphere – often termed diffusive emission. CH4 formed under oxic 190 
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conditions in surface water, an additional source of dissolved CH4, can also be emitted via diffusive 191 

emission. 192 

 193 

The dissolved CH4 often has a relatively long residence time of CH4 in the ecosystem (days or more; 194 

(Bastviken et al., 2008) – in turn allowing anaerobic and aerobic CH4 oxidation to consume large 195 

amounts of the CH4 before being emitted. However, upon episodes of high turbulence and extensive 196 

mixing, emission by diffusive flux can be rapid. One example is water column turnover in stratified 197 

lakes, where bottom waters developed anoxia during the stratification, and therefore can store and 198 

subsequently release large amounts of CH4. In such cases the turnover generates a very steep CH4 199 

gradient across the air-water interface that can drive large and rapid emissions (Johnson et al., 2022). 200 

 201 

Because CH4 has a low solubility in water, bubbles often form in sediments and where CH4 formation 202 

rates are high enough. These bubbles will grow and if the sediments are sufficiently loose or have 203 

pore space allowing bubble migration towards the surface, and they are eventually released and 204 

rapidly rise to the atmosphere by ebullition. In many aquatic environments with open water surfaces, 205 

ebullition is a dominant flux pathway (Bastviken et al., 2004; Bastviken et al., 2011). Within such 206 

ecosystems, ebullition seems most prominent at shallow waters and/or where the sediment organic 207 

matter accumulation is high (e.g., accumulation bottoms, river/stream inlet areas, or near littoral 208 

areas with high primary productivity) (DelSontro et al., 2011; Sobek et al., 2012; Natchimuthu et al., 209 

2016). Ebullition can also be a dominant emission mechanism in peatlands (Christensen et al., 2003). 210 

Ebullition release is too rapid to be directly influenced by CH4 oxidation as the bubbles pass too 211 

quickly through the oxic sediment zone or water column, but ebullition from deep sediments can 212 

lead to substantial dissolution of CH4 from the rising bubbles into the water (McGinnis et al., 2006), 213 

and this dissolved CH4 can be oxidized as described in Section 2.2. 214 

 215 

Vascular plants represent important conduits for CH4 from the root zone to the atmosphere (Figure 216 

1). For more details about this topic please see (Vroom et al., 2022). Briefly, many plants with roots 217 

in water-saturated soils or sediments have internal gas transport systems for supplying root cells 218 

with O2 (Joabsson et al., 1999; Laanbroek, 2010). This is particularly prominent in many aquatic 219 

macrophytes with aerenchyma tissue specially adapted for gas transport. To maintain pressure, the 220 

aerenchyma tissue transports gases both downwards and upward in the plant between roots and 221 

leaf stomata, or stem lenticels on trees, where the gas is exchanged with the atmosphere. 222 

Accordingly, gases entering roots may rapidly be transported via the aerenchyma to the atmosphere 223 

(Yavitt and Knapp, 1998). At least two types of transport via plants have been suggested – molecular 224 

diffusion (passive) and convective flow (active) (Kim et al., 1998). The convective flow is driven by a 225 
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pressure gradient in the plant and the interplay between molecular flux and convective flux has been 226 

suggested responsible for diel variability in the plant-mediated fluxes (Bendix et al., 1994; Brix et al., 227 

1996; Whiting and Chanton, 1996; Kim et al., 1998; Kaki et al., 2001; Ding et al., 2004; Juutinen et al., 228 

2004; Duan et al., 2005). However, some studies over multiple day-night cycles indicate negligible 229 

diel flux variability from areas dominated by vascular plants in high-latitude wetlands (Backstrand et 230 

al., 2008; Milberg et al., 2017). Beyond the explicit diel day-night variability in the plant-mediated 231 

flux, temporal variability in CH4 flux is linked with multiple factors including temperature, light, 232 

humidity, and plant biomass (Chanton et al., 1993; Brix et al., 1996; Hirota et al., 2004; Juutinen et 233 

al., 2004; Duan et al., 2005; Kankaala et al., 2005; Wang and Han, 2005; Bergstrom et al., 2007; 234 

Milberg et al., 2017). The plant-mediated flux regulation may be strongly dependent on plant species 235 

(Armstrong and Armstrong, 1991; Chanton and Whiting, 1996; Joabsson et al., 1999). However, there 236 

are also observations of similar long-term mean emissions per m2  from nearby plant species, 237 

suggesting little importance of specific species for long-term mean areal fluxes (Milberg et al., 2017). 238 

Additionally, transport of CH4 via tree stems has relatively recently been demonstrated to be 239 

important (Barba et al., 2019). 240 

 241 

Overall, plant mediated emissions allow CH4 formed in sediments to bypass pore water or water 242 

column oxidation before emission. This type of transport can dominate CH4 emissions in habitats 243 

with emergent aquatic macrophytes (Juutinen et al., 2003; Larmola et al., 2004; Bergstrom et al., 244 

2007; Pangala et al., 2017). There are indications of a possible trade-off with reduced ebullition from 245 

areas with substantial plant-mediated emission (Noyce et al., 2014; Aben et al., 2022). 246 

 247 

3. Mechanisms by which plants can influence ecosystem CH4 emission 248 

Terrestrial and aquatic plants and other primary producers can stimulate CH4 emissions in many ways 249 

at ecosystem scales (Figure 1). Examples include: 250 

+ Primary production provides the primary substrates for both anoxic and oxic CH4 formation 251 

in most environments. For e.g., wetland and standing water environments, higher CH4 252 

emissions are commonly observed under conditions and locations with higher primary 253 

production (see examples in Section 4 below).   254 

+ Plants can provide favourable sites for CH4 formation inside or on the plants themselves 255 

(Covey and Megonigal, 2019). At the larger scale the foliage of vegetation (both terrestrial 256 

and aquatic) represents a large surface area for abiotic CH4 production (Keppler et al., 2006; 257 

Carmichael et al., 2014). 258 

+ Plant communities in aquatic environments contribute to trapping of particulate organic 259 

matter to the sediment where stands of plants reduce turbulence (Braskerud, 2001; Duarte 260 
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et al., 2013; Bodmer et al., 2021; Work et al., 2021) increasing the potential for sediment CH4 261 

production   262 

+ Plant mediated transport by rooted vascular plants substantially enhance emissions by 263 

speeding up transport and reducing exposure to CH4 oxidation (Vroom et al., 2022).  264 

 265 

Plants can also hamper CH4 emissions in several ways: 266 

− Rooted vascular plants transport O2 down to the root zone leading to O2 leakage into the 267 

sediment or soil, which can favour CH4 oxidation there and reduce emissions (King et al., 268 

1998).  269 

− Plants, including trees and mosses, can offer large surface areas for CH4 oxidizing 270 

microorganisms in ecosystems (Sundh et al., 1995; Basiliko et al., 2004; Kip et al., 2010; 271 

Sundqvist et al., 2012; Stępniewska et al., 2018). 272 

− Dense floating vegetation can also trap bubbles temporarily before they reach the 273 

atmosphere, which increases the CH4 residence time in the system, favouring CH4 oxidation 274 

(Bartlett et al., 1988; Kosten et al., 2016; Oliveira Junior et al., 2021).  275 

− Dense aquatic vegetation stands can influence turbulence and thereby the transport of 276 

dissolved CH4 towards and across the atmospheric interface in several ways. Dense floating 277 

macrophyte populations can reduce the wind-induced turbulence in the water, in turn 278 

reducing gas exchange rates, and increasing the potential for oxidation before emission 279 

(Kosten et al., 2016; Oliveira Junior et al., 2021). Diel differences in temperature between 280 

open water and floating plant mats, together with basin scale water movements, can cause 281 

lateral advection so that dissolved gases from vegetated areas are exported and emitted 282 

elsewhere (Amaral et al., 2022). In flooded forests, where winds are also reduced, 283 

turbulence-driven gas exchange rates can be regulated by a combination of shear from wind-284 

driven water movements induced outside the forest and from convection associated with 285 

nocturnal cooling (MacIntyre et al., 2019). Accordingly, dense aquatic vegetation can not 286 

only influence gas exchange directly, but also the relative importance of different processes 287 

regulating transport and emissions of dissolved CH4 (Oliveira Junior et al., 2021). 288 

 289 

Other plant effects on fluxes can be logically inferred or hypothesized although hitherto seemingly 290 

not being studied or quantified: 291 

o Roots of aquatic macrophytes may stabilize sediments, preventing the release of sediment 292 

bubbles and reducing ebullition rates.  293 
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o In dryer environments, transpiration by rooted vegetation can lower the soil water level, 294 

increasing the depth of the aerated CH4 oxidation zone in the upper soil – reducing 295 

emissions.  296 

 297 

Further studies are needed to fully explore the quantitative importance of these potential plant-298 

related effects on CH4 emissions across different ecosystems. 299 

 300 

****FIGURE 1 NEAR HERE**** 301 

 302 

 303 

4. Interactions between vegetation and CH4 emission in example ecosystems 304 

4.1 General primary producer influences on ecosystem CH4 cycling 305 

Given the many and complex processes by which plants influence ecosystem carbon fluxes as 306 

outlined in Section 3 above and in Figure 1, it is difficult to quantitatively assess the total plant 307 

contributions to total CH4 flux, and such knowledge is missing in many ecosystems. Accordingly, the 308 

sections below should be seen as attempts to integrate existing conceptual knowledge with available 309 

scattered quantitative information on the importance of plants for CH4 fluxes in example ecosystems 310 

(some of them illustrated in Figure 2).  311 

 312 

Common to all ecosystems is that primary productivity controls the availability of substrates for CH4 313 

production over time. Increasing amounts of evidence indicate that CH4 production and emissions 314 

are stimulated by the production of labile organic matter and by high primary production (Whiting 315 

and Chanton, 1993; Bellisario et al., 1999; King and Reeburgh, 2002; King et al., 2002; Backstrand et 316 

al., 2008; Bastviken et al., 2008; Davidson et al., 2015; West et al., 2015; Grasset et al., 2018; Kuhn et 317 

al., 2021; Aben et al., 2022). The link between primary production and CH4 production and emission 318 

can be delayed (example at the end of Section 4.4 below), and for full consideration integration 319 

across long enough time periods is necessary. The indirect influence of plant communities on CH4 320 

fluxes has been acknowledged in many ecosystem models where ecosystem primary productivity 321 

proxies are used as an important emission driver (Wania et al., 2013). 322 

 323 

Several links between whole-ecosystem carbon cycling and CH4 have been made for lakes, ponds, or 324 

wetlands, including: 325 

- Anaerobic CH4 production was estimated to 13% of primary production (Rudd and Taylor, 1980) 326 

and 20-56% of organic matter respiration across multiple ecosystems (Capone and Kiene, 1988; 327 
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Kuivila et al., 1988; Bédard and Knowles, 1991; Mattson and Likens, 1993; Boon and Mitchell, 328 

1995; Hamilton et al., 1995; Ford et al., 2002). 329 

- Oxic CH4 oxidation can be similar to primary production rates during limited time periods in 330 

aquatic ecosystems (Rudd and Taylor, 1980; Kankaala et al., 2006). 331 

- The production of CH4 oxidizing bacteria was found to be 0.3 to >10 % of primary productivity 332 

and their biomass constituted 1.4 to 41% of total bacterial biomass in lakes of different types 333 

(Utsumi et al., 1998; Bastviken et al., 2003; Eller et al., 2005; Sundh et al., 2005).  334 

- CH4 emissions have been reported to correspond to 24-37% of summer productivity in a small 335 

shallow hypereutrophic lake (Strayer and Tiedje, 1978), and plant-mediated CH4 fluxes from 336 

stands of Typha sp. and Cladium jamaicense in the Everglades were 3-14% of net ecosystem 337 

production (Chanton et al., 1993).  338 

Collectively, these findings illustrate the large general importance of plant primary production for 339 

CH4 production, and a large quantitative importance of CH4 in relation to overall carbon cycling in 340 

aquatic ecosystems. 341 

 342 

Aerobic CH4 production associated with surfaces of terrestrial upland vegetation or litter has been 343 

comprehensively reviewed (Carmichael et al., 2014; Liu et al., 2015). Experimental studies observed 344 

CH4 production on upland plants that if extrapolated would result in > 200 Tg CH4 per year (up to 36% 345 

of the total global CH4 budget), while other experiments showed much smaller or negligible 346 

production (Carmichael et al., 2014). Most of this information rely on small-scale incubation studies 347 

and field-scale observations of associated fluxes are rare. Given the large vegetation and litter 348 

surface area, potential associated ecosystem fluxes could be important as discussed further in 349 

Section 4.6 below. Other interactions between terrestrial upland vegetation includes the supply 350 

organic substrates for microbial CH4 production in soil. However, most of this upland soil CH4 may be 351 

oxidized in aerated top soils (Saunois et al., 2020), unless high soil moisture lead to emissions (Lohila 352 

et al., 2016) or lateral export with soil and ground water lead to emissions in recipient streams 353 

(Natchimuthu et al., 2017; Lupon et al., 2019).  354 

 355 

There can be important, yet complex interactions between plants and temporal variability of CH4 356 

emissions. There is growing support for a positive exponential relationship between ecosystem CH4 357 

emissions and temperature (Yvon-Durocher et al., 2014; Aben et al., 2017). This temperature 358 

regulation interacts with supply rates of organic substrates for CH4 production from plant primary 359 

production, and with the other plant effects on CH4 dynamics, including availability of plant-mediated 360 

transport pathways (Figure1). Accordingly, there can be plant-induced enhancement of ecosystem 361 

CH4 emissions in synergy with the direct temperature effect, by increased plant productivity, 362 
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biomass, or prolonged plant growing seasons (Andresen et al., 2017). For example, synergies 363 

between nutrient additions and temperature treatments have been confirmed in experimental 364 

studies with submerged or floating macrophytes (Elodea candansis, Potamogeton crispus, 365 

Ceratophyllum demersum, Myriophyllum spicatum, and Azolla filiculoides) (Davidson et al., 2018), 366 

and in some cases plant productivity and composition effects have been found more important for 367 

CH4 emissions than temperature changes (Davidson et al., 2015; Davidson et al., 2018; Aben et al., 368 

2022). Another study in less productive nitrogen limited boreal lakes found weak influence of whole 369 

lake nitrogen additions on CH4 emissions (Klaus et al., 2018), indicating that the importance of plant-370 

effects versus effects of other factors for CH4 emissions may differ among ecosystem types. 371 

 372 

****FIGURE 2 NEAR HERE**** 373 

 374 

4.2 High latitude wetlands 375 

In high latitude wetlands, the water table position and nutrient status determine the plant 376 

community composition that then affects CH4 flux through influence on production, oxidation, and 377 

transport as has been comprehensively discussed in earlier reviews on wetland methane emissions 378 

(Bartlett and Harriss, 1993; Bubier and Moore, 1994; Blodau, 2002; Whalen, 2005; Lai, 2009; 379 

Bridgham et al., 2013; Abdalla et al., 2016; Kuhn et al., 2021). Early studies on CH4 fluxes showed the 380 

correlation between water table position and daily flux, where water tables near the surface had the 381 

highest emissions and correlated with vegetation composition and moss types (Bubier, 1995). 382 

Further research demonstrated the role of vascular plants in controlling CH4 emissions from high 383 

latitude wetlands by influencing both substrate availability through recent photosynthates, oxidation 384 

and the transport pathways (Joabsson et al., 1999). However, time lags between photosynthesis and 385 

CH4 production as well as the storage of CH4 in sediments can mask the relationship between primary 386 

productivity and emissions, which may become clearer when integrated over seasonal to annual time 387 

scales (Blodau, 2002).  388 

 389 

Recent syntheses have shown that broader wetland classes can be used to predict fluxes because 390 

these capture the mean water table position and dominant vegetation types (Olefeldt et al., 2013; 391 

Turetsky et al., 2014; Treat et al., 2018; Kuhn et al., 2021). The major classes have been defined 392 

broadly as freshwater marshes, fens with sedges and mosses, and bogs with Sphagnum mosses 393 

(Table 1). CH4 emissions are variable within and across these classes, with highest emissions from 394 

marshes, followed by fens and bogs, respectively (Table 1). The presence of permafrost is also a key 395 

control on CH4 emissions; emissions from permafrost wetlands are on average 60% lower than 396 

northern wetlands without permafrost (Treat et al., 2018). Coastal tidal-influenced and saline 397 
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marshes have generally been considered separately but observations are limited for many northern 398 

regions (Poffenbarger et al., 2011). Other northern ecosystems such as upland tundra and boreal 399 

forests can also emit CH4 (Lohila et al., 2016; Zona et al., 2016). While these wetland or land cover 400 

classes show considerable variability within each class, likely because these classes include the 401 

variability among the plot and community scale vegetation composition discussed above, these are 402 

useful categories because there are significant differences in CH4 flux among them (Table 1). 403 

Furthermore, often they can be distinguished with some success from remote sensing observations 404 

or machine learning analysis (Webster et al., 2018; Matthews et al., 2020; Olefeldt et al., 2021). Until 405 

now, uncertainties in the distribution of different wetland types and water bodies have prevented 406 

comparisons between high latitude emissions from models that prescribe wetland emissions based 407 

on area coverage (Melton et al., 2013) and observations (Olefeldt et al., 2013; Turetsky et al., 2014; 408 

Treat et al., 2018; Kuhn et al., 2021). 409 

 410 

Temperature provides another broad control on CH4 flux across high latitude wetlands by controlling 411 

the timing and length of the growing season (also influenced by radiation) and by influencing the soil 412 

temperature. Generally, annual CH4 fluxes increase with annual temperature in wetlands (Delwiche 413 

et al., 2021), with temperate wetlands having higher annual emissions (median: 13.3 g CH4 m-2 yr-1) 414 

than similar types of wetlands in boreal (7.2 g CH4 m-2 yr-1) or Arctic regions (6.2 g CH4 m-2 yr-1; (Treat 415 

et al., 2018). This is likely due to the direct influence of temperature on rates of microbial CH4 416 

production (Dunfield et al., 1993; Yavitt et al., 1997; Treat et al., 2015), but also the indirect effects of 417 

vegetation productivity. In northern soils where freezing is common, peak temperatures in soils lag 418 

peak air temperatures. This causes a delay in peak CH4 emissions relative to the peak season GPP 419 

that can range from nearly simultaneous to as much as 60 days (Delwiche et al., 2021). Due to these 420 

warm soil temperatures into the fall, as well as CH4 storage in sediments, emissions outside of the 421 

growing season can account for a substantial portion (13-47%) of annual emissions (Treat et al., 422 

2018). Thus, even in the absence of vegetation activity, CH4 emissions can occur in northern wetlands 423 

(Mastepanov et al., 2008; Zona et al., 2016). 424 

 425 

Questions remain about the response of CH4 flux in northern wetlands to disturbance, including 426 

permafrost thaw, fire, flooding, and other extreme events, such as excessive heat and drought. 427 

However, there are only a few sites with long enough records of CH4 fluxes to be able to discern 428 

these types of events, and due to lag times between production and emission, measurements should 429 

continue beyond the growing season into the shoulder seasons and winter. 430 

 431 

4.3 Rice paddies 432 
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Rice probably represents the plant genus responsible for most plant-mediated CH4 emissions. Rice 433 

field emissions are estimated to be 24-40 Tg CH4 yr-1 (Bridgham et al., 2013; Saunois et al., 2020). The 434 

CH4 production in rice paddies is stimulated by the release of labile organic matter synthetized by 435 

photosynthesis via the roots. More than 50% of the rice CH4 emission is generated from the root 436 

exudates or decomposed plant material (Lu and Conrad, 2005). Rice production demands the 437 

establishment and maintenance of flooded conditions that reduce the presence of oxygen and other 438 

electron acceptors (e.g., nitrate or sulfate) favouring CH4 production. The high sediment CH4 439 

production rates result in high CH4 emissions via rice aerenchyma to the atmosphere, bypassing the 440 

sediment oxic-anoxic interface. 441 

 442 

Most of the global production of rice happens at lower latitudes where the temperatures and also 443 

CH4 production rates are high (Fernando, 1993), and the rice paddies act as landscape emission 444 

hotspots. Considering that CH4 production is positively correlated with temperatures (Yvon-Durocher 445 

et al., 2014), increasing global temperatures may trigger an increase in overall rice-mediated CH4 446 

fluxes. Furthermore, given the predicted increase in global world population from the present 8 to 447 

>10 billion by 2100 (Ezeh et al., 2012), the growing demand for food will likely increase rice paddy 448 

cultivation and increase CH4 fluxes from rice paddies in the future. 449 

 450 

Several management approaches have been tested in order to minimize the CH4 emissions from rice 451 

paddies, with the application of gypsum and phosphogypsum, and the application of sulfate with N 452 

fertilizer (e.g., ammonium sulfate) being the most common practices (Liu et al., 2018). Sulfate 453 

reduction is an anaerobic process energetically more favourable than methanogenesis and therefore 454 

sulfate addition decreases CH4 production and emissions without affecting the rice growth or yield. 455 

Other strategies have focused on management of the flooding regime or straw amendment 456 

(Belenguer-Manzanedo et al., 2022). Genetic modifications have also been successful in regulating 457 

CH4 emissions, e.g., the addition of a transcription barley gene SUSIBA2 to experimental rice strains, 458 

promoted a shift in rice carbon flow decreasing its CH4 emissions (Su et al., 2015). A decrease in 50% 459 

CH4 emission with the SUSIBA2 japonica and SUSIBA2 indica rice types have been reported, due to a 460 

decrease in organic carbon to the soil, without decreasing rice yield (Du et al., 2021). We do not 461 

intend to claim that genetic modified rice strains should indiscriminately replace non-modified rice 462 

types, given that this controversial topic is out of the scope of this study. More relevant in the 463 

frameworks of this review is that these findings exemplify how plant physiology and genetic traits of 464 

plant communities can influence ecosystem CH4 cycling. 465 

 466 

4.4 Lakes, reservoirs, and ponds 467 
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Substrates for CH4 production in lakes, reservoirs, and ponds (standing water systems collectively 468 

referred to as lentic waters) include input organic matter from plant primary production in upstream 469 

catchments and littoral zones, and from phytoplankton and periphyton production. The catchment 470 

organic matter contributions can fuel substantial CH4 emission also in systems with low internal 471 

primary production. Positive relationships between in-system primary productivity (aquatic plants, 472 

periphyton, and phytoplankton supplying the most labile organic material) and CH4 production have 473 

also been suggested (Bastviken et al., 2008; Duc et al., 2010; Davidson et al., 2015; West et al., 2015; 474 

Grasset et al., 2018). 475 

 476 

Most available CH4 emission measurements from lentic ecosystems consider fluxes from the open 477 

water surface, where diffusive flux and ebullition dominates. From a mechanistic point of view, such 478 

emissions are not directly linked to primary productivity or CH4 production rates, and instead 479 

represent a balance between multiple processes, including CH4 production, different transport 480 

pathways, and CH4 oxidation. However, for reservoirs, a recent meta-analysis found a clear 481 

relationship between such open water fluxes and chlorophyll-a levels, representing a proxy for in-482 

system phytoplankton primary productivity (Deemer and Holgerson, 2021). If the recently suggested 483 

oxic surface water CH4 production is primarily linked with planktonic photosynthesis, this adds a 484 

direct link between phytoplankton metabolism and CH4 emissions (Bižić et al., 2020; Günthel et al., 485 

2020). A whole-lake experiment where the primary producers were 13C-labelled by adding 13C-486 

bicarbonate to two lakes provides relevant information to evaluate this possibility. The experiment 487 

showed that the dissolved surface water CH4 responded most strongly to the 13C addition 488 

approximately one month after the 13C signal reached the particulate organic carbon (Bastviken et 489 

al., 2008). This indicates a delayed link between dissolved CH4 and lake primary production (Figure 3). 490 

Accordingly, this whole-lake C tracer experiment points towards the importance of the longer, 491 

indirect link between primary production and epilimnetic CH4 via anoxic sediment CH4 production, 492 

rather than direct, oxic surface water CH4 production linked to photosynthesis in the studied small 493 

lakes. However, conditions may differ among systems and the debate about the ecosystem 494 

implications of oxic surface water CH4 production (Günthel et al., 2019; Peeters et al., 2019; 495 

Hartmann et al., 2020) requires additional consideration. 496 

 497 

****FIGURE 3 NEAR HERE**** 498 

 499 

Littoral zones include areas with submerged, floating-leaved (rooted or non-rooted), and emergent 500 

vegetation. Few field studies have focused on submerged macrophytes but their potential 501 

importance was recently highlighted (Hilt et al., 2022), and experimental studies with submerged 502 



16 
 

plants have indicated high importance for system CH4 dynamics and emissions in interaction with 503 

nutrient concentrations (see Section 4.1) (Davidson et al., 2015; Davidson et al., 2018; Aben et al., 504 

2022). Free-floating plants can also have important effects on CH4 fluxes by providing substrates for 505 

CH4 production while also influencing CH4 transport, as outlined in Section 3 and being detailed 506 

elsewhere (Kosten et al., 2016; Oliveira Junior et al., 2021). In a field study of a tropical floodplain 507 

lake, open water fluxes within 0-20 m of dense floating macrophyte populations (Eichhornia sp.) was 508 

shown >2-fold greater than from areas being > 45 m away from such vegetation belts with no depth 509 

difference among locations (Peixoto et al., 2015). This indicates substantial local contributions of 510 

decaying plant biomass for ebullition. 511 

 512 

A number of field studies in littoral zones have focused on emissions from emergent vascular aquatic 513 

macrophytes (Juutinen et al., 2003; Larmola et al., 2004; Bergstrom et al., 2007). Littoral flux 514 

measurements and regulation seem largely consistent with wetland observations (see sections 2.3 515 

and 4.2 above). It has been suggested that the littoral zones with plant mediated fluxes can 516 

contribute a large share of the total flux (the sum of vegetated and open water fluxes) if the 517 

vegetated area is extensive enough. Littoral vegetated zones contributed 66-77% of the ice-free 518 

period integrated CH4 fluxes from three Finnish lakes (Juutinen et al., 2003). In a Canadian lake, a 519 

detailed study showed that 26% of the area covered by emergent macrophytes contributed 80% of 520 

the mean daily CH4 flux during the ice-free season, and that 34% of the flux from the vegetated area 521 

was emitted via plant mediated flux while 62% was emitted by ebullition among the plants 522 

(Desrosiers et al., 2022). This study also showed that plant community composition was important 523 

for determining the predominant flux pathway. 524 

In some cases, littoral plant-mediated CH4 emissions are large enough to create CH4 flux gradients 525 

along lake shores (Figure 4). Recent airborne imaging spectroscopy has identified hot spot zones 526 

within 40 m from standing water, possibly indicating the importance of combined emissions from 527 

open water and littoral zones (Elder et al., 2020). Recent mapping of >4500 arctic-boreal lakes 528 

showed that the area with emergent vegetation comprised 16% of the lake area and including CH4 529 

fluxes from this area was suggested to increase estimates of total lake CH4 emissions by 18-25% 530 

(Kyzivat et al., 2022). One challenge is ensuring that regional scaling of CH4 fluxes does not double-531 

count lake littoral zones as both a part of the lake CH4 emission estimate and as a part of the wetland 532 

CH4 emission estimate. 533 

 534 

The issue of double-counting CH4 emissions from lakes and wetlands are further discussed elsewhere 535 

(Thornton et al., 2016). Fundamentally, this is a question about matching land cover categories with 536 

flux measurements. There may be a mismatch between the traditional definition of lakes including 537 
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their littoral zones versus a more “methanocentric” land cover categorization based on underlying 538 

mechanisms and regulation. The latter leads to a potential conclusion that all vegetated aquatic 539 

environments – also in lakes, ponds, and reservoirs – are better categorized as wetlands of different 540 

types, while open water, being more easily distinguished by remote sensing and being dominated by 541 

other CH4 flux pathways and other flux regulation, represents another main land cover category. 542 

Such a methanocentric land cover categorization may have many advantages for CH4 emission 543 

extrapolation but require replacing traditional ecosystem definitions with land cover categories 544 

based on predominant biogeochemical processes. Overall, littoral zones require additional attention 545 

to properly quantify lentic CH4 emissions, and efforts developing a clear distinction of how all CH4 546 

emitting land cover types are classified and combined with the most relevant flux observations are 547 

critically needed (Kuhn et al., 2021; Olefeldt et al., 2021). 548 

 549 

****FIGURE 4 NEAR HERE**** 550 

 551 

Most examples above from lentic systems indicates that presence of plants increases CH4 emissions. 552 

However, in hypereutrophic aquatic systems which emit large amounts of CH4, such as agricultural 553 

dams (Grinham et al., 2018; Ollivier et al., 2019), there are observations that increased presence of 554 

vegetation can result in less nitrogen and phosphorous in the water, more dissolved oxygen, and 555 

lower methane emissions (Malerba et al., 2022). Speculated reasons could include combinations of 556 

factors mentioned above such as root zone oxygenation and trapping of bubbles along with more 557 

surfaces suitable for CH4 oxidisers, and possibly also reduced phytoplankton production if there was 558 

light competition. 559 

 560 

4.5 Amazon floodplain forests 561 

The Amazonian lowland basin forest is an example of a vast tropical floodplain forest (Melack and 562 

Hess, 2011; Hess et al., 2015). It represents a highly diverse, yet unique environment constituted by a 563 

rich mosaic of terrestrial, aquatic and transitional ecosystems subjected to seasonal and permanent 564 

waterlogging (Junk et al., 2011). The Amazon River flows 4000 km from the Andes to the Atlantic, 565 

carrying more water than any other river. The basin includes an extensive system of riverine flooded 566 

forests, which in some cases are flooded on a seasonal basis and in other cases are flooded all 567 

through the year. Hot tropical temperatures, extensive tree cover with continuous supply of fresh 568 

carbon substrates and anoxia due to flooding create favourable conditions for CH4 production and 569 

emission(Wassmann et al., 1992). Therefore, it is not surprising when this region alone is responsible 570 

for emitting ~8% (46.2±10.3 Tg CH4 yr-1) (Basso et al., 2021) of the global CH4 emissions estimated to 571 

576 Tg CH4 yr-1 (Saunois et al., 2020). 572 
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 573 

The floodplain forests experience extensive flooding, and the flooding depth and duration is linked to 574 

the type of forest (low várzea, high várzea or chavascal), location (upstream or downstream of the 575 

river) and draining catchment characteristics (Junk et al., 2011). Since the late 1980s, attempts have 576 

been made to quantify different CH4 sources of tropical floodplain forests and significant CH4 577 

emissions are reported from the flooded forest soils, floating and rooted macrophytes, aquatic 578 

sources within the flooded forest and adjoining open waters of lakes and rivers (example data in 579 

Table 1) (Bartlett et al., 1988; Devol et al., 1988; Bastviken et al., 2010; Sawakuchi et al., 2014; 580 

Barbosa et al., 2020; Barbosa et al., 2021). The trees are adapted to anoxic environment through 581 

morphological and physiological traits, including gas transport to supply root cells with O2, to survive 582 

flooding (Junk et al., 2010; Parolin and Wittmann, 2010). As other woody plants experiencing 583 

flooding, they have lenticels on the stems for such gas exchange and the gas exchange contribute to 584 

an extensive recently discovered plant mediated CH4 flux from tree stems (Gauci et al., 2010). 585 

 586 

Large seasonal variation in inundation period and areas is a key challenge to identifying the variability 587 

in space and time of CH4 emissions from the Amazon flooded forests (Barbosa et al., 2021). This is 588 

further complicated when new CH4 emissions pathways such as those from flooded trees are 589 

discovered, when regionalization of emissions from previously known CH4 sources in the Amazon 590 

basin is already a challenging task (Melack et al., 2022). In recent years, flooded trees are not only 591 

known to influence CH4 dynamics through their fresh carbon supply stimulating methanogenesis and 592 

root-zone O2 leakage stimulating CH4 oxidation - they are also known to emit CH4 (Pangala et al., 593 

2017). Further, stem flux from flooded trees were estimated to contribute nearly half the regional 594 

Amazon basin  CH4 emissions (Pangala et al., 2017). Apart from the tree-mediated flux of CH4 from 595 

the root zone to the atmosphere, enhanced by morphological adaptations in flooded trees, recent 596 

studies now  suggest that trees themselves can produce CH4 within their tree stems albeit at lower 597 

rates (Covey et al., 2012; Covey and Megonigal, 2019). 598 

 599 

CH4 emissions from 13 forested floodplains along the Amazon River in Brazil was measured, 600 

attempting to capture spatial variability (Pangala et al., 2017). The measurements were made during 601 

a single high-water event leading to uncertainty in extrapolations over time. In a recent study, tree 602 

stem CH4 emissions were reported to continue throughout all four hydrological distinct seasons 603 

(rising, flooded, receding and low water period), albeit at lower rates (Gauci et al., 2022). The study 604 

also found a strong relationship between water table depth below the surface and tree CH4 emission 605 

and highlighted that riparian floodplain margins with water table below-ground contribute an 606 

additional 2.3-3.9 Tg CH4 yr-1 to the atmosphere. Applying this to global tropical wetlands yield a non-607 



19 
 

flooded riparian tree CH4 emission estimate of 6.4 Tg CH4 yr-1 with recognition that the area-related 608 

extrapolation is uncertain (Gauci et al., 2022).  609 

 610 

While studies so far suggest CH4 emissions from the floodplain forest are significant, the variability 611 

and regulation remains largely unknown, including the extent to which the spatial variability is driven 612 

by soil dynamics, climate, flooding regime, or tree species traits. For instance, white-water (carrying 613 

sediments from the Andes), clear-water (draining the ancient shields) and black-water (draining 614 

white sand areas and soils with humic substances) are known to emit different quantities of CH4 615 

(Pangala et al., 2017), thereby greatly influencing the rates and overall regional annual CH4 estimates 616 

in synergy with ecosystem processes including plant influences on CH4 fluxes (Figure 1). The nutrients 617 

associated with water types strongly determine the floodplain forest ecology and species 618 

composition. While studies in other forested wetlands highlight a link between tree traits and tree 619 

CH4 flux (Barba et al., 2019; Covey and Megonigal, 2019), the Amazonian flooded forest tree species 620 

influence on CH4 flux remains unclear. 621 

 622 

In recent years there has been a renewed threat to Amazon forests from the expansion of cattle 623 

ranching, low-productivity agriculture, dams, mining, fire, deforestation and intensified flooding and 624 

prolonged dry period, changing the face of the flooded forests at an alarming rate. How CH4 625 

emissions, particularly from flooded trees, respond to such change is still unclear. Amazonian tree 626 

mortality rates are already increasing in many intact forests and Amazonian forest species 627 

composition has been affected by flooding and recent droughts. The mortality of wet-affiliated 628 

Amazonian tree genera has increased in places where the dry season has intensified (Aleixo et al., 629 

2019) or where the hydrology was changed by damming (Assahira et al., 2017). Such changes may 630 

have profound impact on the CH4 dynamics from flooded forests and on future tropical CH4 631 

emissions. 632 

 633 

4.6 Vegetation-related CH4 emissions in other forests 634 

Beyond the Amazon floodplain, the number of CH4 flux measurements from tree stems growing on 635 

temperate and tropical peatlands, in upland forest ecosystems and in riparian forests has been 636 

increasing. Temperate ecosystems growing in both riparian lowland ecosystems and peatlands have 637 

demonstrated CH4 emissions from both ash trees (Fraxinus mandschuria; (Terazawa et al., 2007), 638 

alder (Alnus glutinosa; (Gauci et al., 2010; Pangala et al., 2015) and birch (Betula pubescens; (Pangala 639 

et al., 2015). All trees tended to demonstrate a decrease in stem emissions with distance from the 640 

forest floor as found in many other studies of wetland tree emissions. The two species birch and 641 

alder measured in a UK alder carr ecosystem, tended to operate differently in terms of their seasonal 642 
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CH4 emissions with birch giving a large range of emissions depending on season of up to ~200 µg m-2 643 

hr-1 in summer and as low as ~50 µg m-2 hr-1 in winter. This is in contrast to alder, where emissions 644 

ranged between ~100 µg m-2hr-1 in winter and around ~180 µg m-2 hr-1 in summer (Pangala et al., 645 

2015) suggesting differences in the CH4 transport mechanisms from soil to emission, between the 646 

tree species. More controlled mesocosm experiments with alder saplings gave further insights into 647 

factors controlling the size of emissions (Pangala et al., 2014) with pore water CH4 concentrations 648 

and stem lenticel density exhibiting a major control over emissions. 649 

 650 

Further controls over tree stem emissions have been found for Southeast Asian peat swamp forests 651 

where a large range of CH4 fluxes measured from 10 peatland tree species (zero to ~200 µg m-2 hr-1) 652 

seemed to be controlled by wood specific density (with the higher the wood density, the lower the 653 

emission), soil pore water CH4 concentrations and stem diameter (Pangala et al., 2014). Cumulatively, 654 

emissions from tree stems in these ecosystems, as with those from the Amazon floodplain, 655 

dominated ecosystem emissions when scaled. This is in contrast to emissions from trees in 656 

neotropical peatlands in Panama where trees contributed ~30% of total ecosystem emissions where 657 

factors such as species identity, stem diameter, water level and soil temperature explained much of 658 

the observed variance in tree stem emission (Sjögersten et al., 2020). Fluxes, were, however larger 659 

than those from SE Asian peat swamps with individual stem fluxes, particularly near the stem base in 660 

the range 1-30 mg m-2 d-1. While palm emissions in these Panamanian peat swamps tended to be 661 

negligible, confining tree-stem emissions solely to hard wood trees, in Peruvian peatlands palm 662 

stems tended to emit substantial quantities of CH4 (Soosaar et al., 2022). 663 

 664 

In upland ecosystems, trees inhabit areas of lower water availability given free draining soils and 665 

substrates and so there is less soil CH4 being produced in relatively sparse anaerobic microsites. That 666 

said, emissions are still observed, particularly at the stem bases (30 cm above the forest floor) in 667 

Panamanian upland trees where emissions at around ~100 µg m-2 hr-1 were comparable to those 668 

observed in Borneo peat swamps and temperate alder carr. Other results, tend to conflict with some 669 

trees demonstrating some emission, but with no clear vertical pattern of exchange and with high 670 

variability (Pitz et al., 2018; Barba et al., 2019; Barba et al., 2021) though net uptake has been 671 

observed in other studies (Machacova et al., 2021; Gauci et al., 2022). 672 

 673 

While trees are clearly capable of emitting soil-derived CH4 at their stem bases, uptake of CH4 further 674 

up the tree stem has been suggested (Jeffrey et al., 2020; Gauci et al., 2022). In parallel, there is a 675 

growing literature regarding abiotic oxic CH4 production at plant and litter surfaces generating 676 

emissions (reviewed by (Carmichael et al., 2014; Liu et al., 2015). This literature is based on 677 
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observations of CH4 release from plant tissue enclosed in CH4-free vials or chambers. Mechanisms 678 

are discussed and plant produced molecules with detachable methyl groups are potential precursors. 679 

The CH4 release seem enhanced by UV-light, increasing temperature, reactive oxygen species and 680 

other types of plant stress. Measured CH4 production rates are often low in absolute numbers in the 681 

experimental settings but scaling to large plant surface areas results in global emission estimates in 682 

the order of 8 – 176 Tg CH4 yr-1 (Carmichael et al., 2014; Liu et al., 2015) to a large extent from 683 

forests, or 1-31% of the global CH4 emissions (using a global top-down estimate of 576 Tg CH4 yr-1; 684 

Table 1). Because of the high uncertainty in extrapolation of small-scale incubation studies and 685 

limited field scale observations, this flux was not yet specifically considered in recent global CH4 686 

budgets (Saunois et al., 2020), and large emissions from aerobic CH4 production on plants and forests 687 

are challenging to reconcile with in-situ observations at present. There may be some bias in in-situ 688 

flux measurements if not properly capturing UV- effects, but top-down inversion estimates based on 689 

atmospheric concentration gradients in space and time should capture all emissions. Hence, overall 690 

tree and vegetation emissions at ecosystem scales remain enigmatic and represent an important 691 

challenge to constrain and predict the global CH4 budget. 692 

 693 

4.7 Coastal ecosystems 694 

Globally, vegetated coastal areas including salt marshes, mangroves and seagrass meadows are 695 

estimated to emit 3.6 to 6.2 Tg CH4 yr-1, with the highest fluxes observed in salt marshes followed by 696 

mangroves and seagrass meadows (Table 1) (Al-Haj and Fulweiler, 2020; Rosentreter et al., 2021). As 697 

previously described in other environments, the roots can transport CH4 from the sediments directly 698 

to the atmosphere bypassing the CH4 oxidation in the sediments. In an Australian mangrove, tree 699 

emissions from pneumatophores (roots growing upwards into the air for gas exchange increasing 700 

root system O2 access) accounted for ~ 26% of the mangrove emissions (Jeffrey et al., 2019). 701 

Although no direct evidence of plant-mediated emissions from seagrass have been found in the 702 

literature, it has been suggested that dead seagrass or detached parts deposited in the sediment can 703 

provide methylated compounds that can sustain CH4 production for a long time (Schorn et al., 2022). 704 

As in other freshwater environments, plants and cyanobacteria have a key role as suppliers of 705 

organic matter. A main difference from freshwater environments is that coastal environments tend 706 

to be sulfate-rich areas, and sulfate-reducing microorganisms outcompete methanogens for organic 707 

substrates limiting CH4 production (Oremland and Polcin, 1982; Schorn et al., 2022). Zhuang et al 708 

(2018) observed that methylotropic methanogenesis contributed to 43-87% of the total CH4 709 

production in the sulfate reduction zone at the top layer of the sediment, and the remaining 710 

produced by hydrogenotrophic methanogenesis. The lower layers of the sediment, where sulfate 711 

was depleted, 67-98% of the CH4 was produced by hydrogenotrophic methanogenesis. Acetoclastic 712 
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methanogenesis contributed a maximum of 31% of the CH4 production in organic-rich sediment 713 

(Zhuang et al., 2018). Due to the thicker sediment redox gradient where sulfate metabolism 714 

dominates, CH4 production is confined to deeper sediment layers than in freshwaters. Therefore, 715 

plant mediated CH4 emissions in coastal areas may be more extensive via plants with deeper roots. 716 

Despite this limitation, methylotropic methanogenesis can still maintain significant CH4 production, 717 

sustaining a sediment-water flux of approximately 1.7 mg CH4 m-2 d-1 in seagrass sediments (Schorn 718 

et al., 2022). Coastal environments are estimated to account for up to ~1% of the global CH4 budget 719 

and contribute more than 60% of the marine CH4 emission (Al-Haj and Fulweiler, 2020). 720 

 721 

Sulfate reduction is  associated with anaerobic oxidation of CH4 (AOM), which can significantly 722 

influence the fluxes of CH4 from the sediment to the water column in coastal areas (Egger et al., 723 

2018). In addition to AOM, rooted plants transport oxygen to the root zone and sediment, where 724 

aerobic methane oxidation can occur. Fluxes from deforested mangroves and cut seagrass indicate 725 

an increase in CH4 emissions that was attributed to cessation of the O2 transport and oxidation in the 726 

sediment (Giani et al., 1996). 727 

 728 

As in any other aquatic ecosystem, plants have a major role as source of organic substrates. 729 

Therefore, CH4 emissions from coastal environments may increase with intensified land-use and 730 

eutrophication of coastal areas leading to greater primary production and organic matter sediment 731 

load (Rosentreter et al., 2021). 732 

 733 

 734 

5. Conclusions and need for future studies 735 

Overall, primary production is indirectly the foundation for all contemporary non-fossil CH4 736 

emissions, corresponding to approximately 80 % of the annual atmospheric CH4 budget, or 431-671 737 

Tg CH4 yr-1 including fluxes from agriculture, forestry, other land use, biomass burning, and from the 738 

waste sector (Saunois et al., 2020; bottom-up fluxes 2008-2017 used). In addition, plants can 739 

influence the extent and dynamics of ecosystem CH4 fluxes in many ways (Figure 1). Importantly, 740 

plant communities respond rapidly to environmental change. Therefore, adequate understanding 741 

and predictions of relevant plant community features are key to adequate assessments of future 742 

landscape CH4 emissions. To approach such understanding, improved quantitative knowledge on CH4 743 

fluxes from plant habitats under varying conditions are needed. This leads to several demands on 744 

future ecosystem-level research of vegetation-related CH4 fluxes including: 745 

• All CH4 sources and sinks associated with vegetation need to be properly identified and 746 

quantified, and fluxes with different regulation need to be distinguished. 747 
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• Flux variability should be examined across spatial and temporal scales of relevance for local 748 

habitat/vegetation communities to distinguish short-term local variability from long-term 749 

large-scale trends. 750 

• Comprehensive long-term ecosystem CH4 flux assessments are needed, simultaneously 751 

quantifying plant-related emissions and other major types of emissions, along with careful 752 

characterization of properties and processes in studied ecosystems that can provide 753 

regulatory or predictive understanding. This should be done at sites representative of 754 

different vegetation types, to support dynamic ecosystem scale modelling of CH4 flux. 755 

• Tropical ecosystems need increased scientific attention, given their great importance for 756 

contemporary and future CH4 emissions. 757 

• For flux extrapolation, more accurate areal distributions of key ecosystems and habitats 758 

based on criteria optimized for estimating CH4 emissions is needed. This includes, e.g., 759 

distinguishing different types of vegetated wetlands, such as the respective areas of bogs, 760 

fens and marshes in precise and dynamic ways that capture changes over time (Melack and 761 

Hess, 2022). 762 

 763 

Addressing these key knowledge gaps effectively would greatly benefit from improvements in the 764 

methodologies to assess greenhouse gas emissions, vegetation dynamics, and potential driver 765 

variables at high resolution across landscapes (Bastviken et al., 2022). Because plant communities 766 

can change quickly in response to land use, hydrology, and climate, an appropriate understanding of 767 

present and future plant community dynamics are essential to predict CH4 emissions in a rapidly 768 

changing world.  769 
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Table 1. Examples of net CH4 emission ranges observed in ecosystem habitats with different primary producer communities. Flux denotes range as 
measured by min-max or IQR (interquartile range). Global CH4 budget estimates are provided at the lower part of the Table to enable easy comparisons. 

Biome and 
ecosystem 

Habitat  Flux range (mg CH4 m-2 
d-1)  

Global flux (Tg CH4 yr-1) 
(seasonally integrated) 

References 

High-latitude 
wetlands 

Bog1  -4.3 - 278; 7 - 57 (IQR) 9 (permafrost region) (Bao et al., 2021; Kuhn et al., 2021; Treat et al., 2021) 
Fen2  -30 - 371; 20 - 107 (IQR) 21.5 (permafrost region) 
Marsh3  -38 - 761; 71 - 200 (IQR) 2.6 (permafrost region) 

Rice fields   25-38 (Saunois et al., 2020) 
Lakes, 
reservoirs, 
and ponds 

Open water emission 0.1 - 2497; 9 - 153 (IQR) 31 - 73 Measured fluxes: (Rosentreter et al., 2021). Seasonally 
integrated global flux; (Johnson et al., 2021; Johnson et 
al., 2022). 

Littoral with emergent 
plants 

8 - 1392 6 - 154  (Juutinen et al., 2003; Kankaala et al., 2003; Juutinen et 
al., 2004; Duan et al., 2005; Bastviken et al., 2011; 
Milberg et al., 2017; Kyzivat et al., 2022)  

Tropical 
floodplain 
forests 

Global flooded tree flux  37.1 (stem flux) (Pangala et al., 2017; Gauci et al., 2022) 
Non-flooded tree flux  6.4 (stem flux)  (Gauci et al., 2022) (Gauci et al., 2022) 
Amazonian flooded forest 1 - 6504 (stem m2) 12.7 - 21.1 (stem flux)  (Pangala et al., 2017; Gauci et al., 2022) (Gauci et al., 

2022) 
 Aquatic diffusive flux 2.5 - 50.5  (Barbosa et al., 2020) (data from flooded forest only) 
 Aquatic ebullition 45 - 168  (Barbosa et al., 2021) (data from flooded forest only) 

(Barbosa et al., 2020) 
(Barbosa et 
al., 2021) 

Amazon aquatic total flux 36 - 617  9.7 ± 5.2  (Pangala et al., 2017) (Amazon flooded forest) 

Global 
forests 

Stem flux in upland and 
wetland forests 

-14 - 6504 (stem m2) 60 (Covey and Megonigal, 2019) 

 Abiotic CH4 production on 
plant and litter surfaces 

 8-176 (Carmichael et al., 2014; Liu et al., 2015) 

Coastal 
vegetation 

Mangroves -1.1 - 1169 1.5 - 4.0 (Al-Haj and Fulweiler, 2020; Rosentreter et al., 2021).  
Salt marshes -1.5 - 1510 1.1 - 2.0 
Seagrass meadows 0.02 - 6.4 0.5 - 1.0 

Global CH4 flux estimates for 2008-2017 extracted from Saunois et al. (2020) for comparison 
Flux category Tg CH4 yr-1 (mean and range; bottom-up estimates unless otherwise noted) 
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Total global emissions (top-down)   576 [550–594] (Saunois et al., 2020) 
 
 
 
 
 
 
 
 

Total global emissions (bottom-up)  737 [594–881] 
- Fossil fuel production and use  128 [113–154] 
- Agriculture and waste  206 [191–223] 
- Biomass and biofuel burning  30 [26–40] 
- Wetlands   149 [102–182] 
- Other natural emissions (total)  222 [143–306] 
 Freshwater  159 [117–212] 
 Biogenic open ocean and coastal 6 [4–10] 

1Ombrotrophic; low productivity; Sphagnum-dominated. 2Variable hydrological connectivity and productivity; Sphagnum, sedges, shrubs. 3Minerotrophic, high productivity; 
emergent macrophytes, sedges, often in standing water. 4Based on estimates of 10 Tg CH4 yr-1 or 21% of open water emissions (see references). 
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Figure 1. Examples of how plants and other primary producers can influence terrestrial and aquatic 

ecosystem CH4 fluxes. The colours on numbers and arrows represent CH4 production (brown), 

transport (blue), oxidation (grey), and source of organic substrate (green). Plant drawings are generic 

to vascular non-woody and woody plants but are intended to represent all primary producers, 

although not all illustrated mechanisms are relevant for non-vascular plants. This figure represents a 

simplification (for a more extensive list of mechanisms and their global implications please see e.g., 

Carmichael et al., 2014; Liu et al., 2015; Bodmer et al., 2021). 
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Figure 2. Examples of ecosystems where plant influences are important for total net CH4 emissions: 

A) Lentic open water (lakes, ponds, and reservoirs) and freshwater marsh, bog, and fen ecosystems 

along a hydrological gradient characteristic of higher latitudes; B) upland forests; C) floodplain forests 

and wetlands exemplifying lower latitudes; D) coastal vegetated areas (salt marshes, mangroves, and 

seagrass meadows); E) rice fields. See Figure 1 and text for illustration of mechanisms by which the 

plant communities influence CH4 fluxes in the respective ecosystems. 
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Figure 3. Results from a whole-lake experiment where 13C-labelled sodium bicarbonate were added 

to the epilimnion to act as 13C tracer of primary production in the ecosystem (Pace et al., 2004). The 

shaded area denotes the time period of 13C addition. The response of epilimnetic particulate organic 

carbon (POC; including phytoplankton) and CH4 is shown and were offset in time. Black squares and 

open triangles are Paul and Peter Lake, respectively, Wisconsin, USA. Results illustrate a clear but 

delayed link between recent primary production and dissolved CH4 in a whole-lake context. 

(Modified from Bastviken et al., 2008.) 
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Figure 4. Image of a lake shore with a hyperspectral camera optimized for sensitive detection of CH4 

(Gålfalk et al., 2016). Panel A shows the visible light image of the scene and Panel B shows mean CH4 

mixing ratio along each line of sight from the camera to the background. The wind comes from the 

lake towards the shore which moves emitted CH4 towards the lower parts of the image. Some CH4 

emissions from the outer reed belts (Phragmites australis) are visible via slightly elevated nearby 

mixing ratio with a somewhat patchy appearance depending on local wind mixing. Larger CH4 

emissions from the near-shore sedge vegetation are clearly visible. For methods behind the imaging, 

see Gålfalk et al., (2017). 

 


