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Genome-wide analyses using
multi-locus models revealed
marker-trait associations for
major agronomic traits in
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Globally, sorghum is the fifth most important cereal crop, and it is a major crop

in Ethiopia, where it has a high genetic diversity. The country’s sorghum gene

pool contributes significantly to sorghum improvement worldwide. This study

aimed to identify genomic regions and candidate genes associated with major

agronomic traits in sorghum by using its genetic resources in Ethiopia for a

genome-wide association study (GWAS). Phenotypic data of days to flowering

(DTF), plant height (PH), panicle length (PALH), panicle width (PAWD), panicle

weight (PAWT), and grain yield (GY) were collected from a GWAS panel

comprising 324 sorghum accessions grown in three environments. SeqSNP,

a targeted genotyping method, was used to genotype the panel using 5,000

gene-based single nucleotide polymorphism (SNP) markers. For marker-trait

association (MTA) analyses, fixed and random model circulating probability

unification (FarmCPU), and Bayesian-information and linkage-disequilibrium

iteratively nested keyway (BLINK) models were used. In all traits, high

phenotypic variation was observed, with broad-sense heritability ranging

from 0.32 (for GY) to 0.90 (for PALH). A population structure, principal

component analysis, and kinship analysis revealed that the accessions could

be divided into two groups. In total, 54 MTAs were identified, 11 of which were

detected by both BLINK and farmCPU. MTAs identified for each trait ranged

from five (PAWT and GY) to fourteen (PH) representing both novel and

previously identified quantitative trait loci (QTLs). Three SNPs were

associated with more than one trait, including a SNP within the

Sobic.004G189200 gene that was associated with PH and PAWT. Major

effect SNP loci, Sbi2393610 (PVE = 23.3%), Sbi10438246 (PVE = 35.2%),

Sbi17789352 (PVE = 11.9%) and Sbi30169733 (PVE = 18.9%) on chromosomes

1, 3, 5 and 9 that showed strong association signals for PAWD, DTF, GY and

PALH, respectively, were major findings of this study. The SNP markers and

candidate genes identified in this study provide insights into the genetic control
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of grain yield and related agronomic traits, and once validated, the markers

could be used in genomics-led breeding.
KEYWORDS

candidate gene, genome wide association study, linkage disequilibrium, population
structure, quantitative trait locus, sorghum
1 Introduction
Globally, sorghum [Sorghum bicolor (L.) Moench] is the fifth

most important cereal crop in terms of both production and

acreage (FAOSTAT, 2020). Due to its high adaptability to

diverse environments, drought tolerance, low input

requirements, and high nutritional value, sorghum is

considered a vital food security crop (Awika and Rooney,

2004; Dykes, 2019; Jankowski et al., 2020; Abreha et al., 2022).

It has various interesting characteristics, including its C4

photosynthesis pathway, drought tolerance, and a relatively

small genome that makes it a model crop for cereal genomics

(Mullet et al., 2014). The first whole-genome sequence of

sorghum was first released in 2009 (Paterson et al., 2009) and

the latest version (version 3.1.1) has a genome size of 732.2 Mega

base pairs (Mb) (McCormick et al., 2018). Publicly available

sorghum genomic sequences provide opportunities for the

development of informative molecular markers for different

applications, including genome-wide association analyses for

the identification of genomic regions associated with complex

traits (Girma et al., 2019).

Ethiopia is a center of origin and diversity of sorghum (De

Wet and Harlan, 1971), and the Ethiopian sorghum gene pool

has been widely used for enhancing desirable traits, such as

drought tolerance, resistance to ergot disease and green bugs,

and high lysine content (Singh and Axtell, 1973; Borrell et al.,

2000; Wu et al., 2006). The gene pool comprises a genetically

diverse germplasm that exhibits wide variation in grain yield and

other major phenotypic traits such as days to flowering, plant

height, biomass, and inflorescence architecture (Amare et al.,

2015; Girma et al., 2019; Enyew et al., 2021). The use of such

diverse germplasm widely adapted to both biotic and abiotic

stresses is essential to understanding the genetics of the target

trait variations.

Genome-wide association study (GWAS) is an efficient

method to discover genomic regions associated with traits of

interest and has been successfully implemented in various crops,

including maize (Cui et al., 2016), rice (Zhong et al., 2021),

wheat (Alemu et al., 2021) and sorghum (Girma et al., 2019). In

GWAS, differentiating true associations from false-positive

marker-trait association (MTA) caused by population
02
structure and kinship has been a major challenge (Kaler et al.,

2020). Consequently, a number of statistical models have been

developed in order to control these spurious marker-trait

associations, including a single-locus mixed linear model

(MLM) that incorporates these two confounding factors into

the analysis as covariates (Price et al., 2006). Nonetheless, this

model may lead to false-negative MTAs as result of overfitting,

possibly resulting in missed opportunities to uncover loci

associated with desirable traits (Liu et al., 2016). To overcome

such a false-negative MTA, multi-locus models such as fixed and

random model circulating probability unification (FarmCPU)

(Liu et al., 2016) and Bayesian-information and linkage-

disequilibrium iteratively nested keyway (BLINK) (Huang

et al., 2019) have been developed.

The FarmCPU model is a multi-locus linear mixed model

(MLMM) designed to eliminate false-positive MTAs without

compromising true associations (Liu et al., 2016), by including

multiple markers at the same time as covariates to partially

eliminate the confounding effect of markers and kinship. It

employs both the fixed-effect model (FEM) and random effect

model (REM) iteratively in order to completely remove

cofounding. Compared to other GWAS models, it provides

higher statistical power and is more computationally efficient

(Liu et al., 2016). However, FarmCPU is time inefficient when

large numbers of markers and individuals are involved.

Consequently, BLINK, which has a higher statistical power

and is more time-efficient, was recently developed. BLINK

reduces computing time by replacing random effect with fixed

effect model through approximating maximum likelihood using

Bayesian information criterion (BIC) (Huang et al., 2019).

Unlike FarmCPU, BLINK uses linkage disequilibrium (LD),

thereby removing the assumption that causal genes are evenly

distributed across the genome.

Through GWAS, multiple genomic regions associated with

different agronomic traits, including grain yield, have previously

been identified in sorghum (Morris et al., 2013; Boyles et al.,

2016; Girma et al., 2019). However, most of these studies were

based on germplasm that have gone through sorghum

improvement programs (Morris et al., 2013; Boyles et al.,

2016), which reduces the genetic diversity of the crop, as only

genotypes bearing desirable traits are selected. For example,

breeding to develop early maturing and photoperiod
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insensitive genotypes excludes late maturing and photoperiod

sensitive genotypes (Klein et al., 2008). This limits the ability to

detect genomic regions associated with traits of interest

through GWAS.

Properly planned and executed GWAS studies often reveal

novel genomic regions associated with target traits, thereby

facilitating the identification of genes that control those traits.

However, because genetic variation exists both within and

among different accessions, and genotype-by-environment

interactions (G×E) have significant effects on complex traits,

multi-environment field trials are crucial to detect stable QTLs

through GWAS and validate their robustness in diverse

germplasm (Russell et al., 2020). Therefore, this study aimed

to conduct GWAS for grain yield and other agronomic traits of

309 diverse Ethiopian sorghum landrace accessions grown

across three environments in Ethiopia. Thus, this study aimed

at conducting genome-wide association studies (GWAS) for

grain yield and other agronomic traits in sorghum, using 309

diverse Ethiopian sorghum landrace accessions, in order to

identify novel genomic regions (QTLs) associated with these

traits, in addition to confirming those already detected.

Furthermore, the study aimed to determine their genetic

diversity and population structure, as well as to locate

candidate genes within the identified genomic regions.
2 Materials and methods

2.1 Plant materials

A total of 320 landrace accessions and four accessions of

improved varieties were used in this study (Supplementary

Table 1). Among the 320 landrace accessions, 261 were

obtained from Melkassa Agricultural Research Center (MARC)

but were originally collected by Ethiopian Biodiversity Institute

(EBI) from different geographic regions across different agro-

ecological zones. The 59 remaining landrace accessions were

collected specifically for this study from farmers’ fields in areas

prone to drought in the country. The four accessions of

improved varieties (Argiti, Melkam, B35, and ESH4) are

drought tolerant and high-yielding and were provided by

MARC (Supplementary Table 1).
2.2 Field trials and phenotyping

Field trials were conducted using the 324 accessions during

the main crop-growing season in 2019 at three locations in

Ethiopia, Melkassa (MK; 8°24’N, 39°21’E), Mieso (MS; 12°9’N,

7°31’E), and Mehoni (MH; 8°41’N, 39°37’E), which represent

different agro-ecological zones (Supplementary Table 2). The

field experimental design was alpha lattice, comprising 12 blocks

with 27 plots in each block. The experiments were conducted in
Frontiers in Plant Science 03
two replications at each of the three sites. The plot size was 2.25

m2 (3 m by 0.75 m), and the seeds were planted in a single row of

3 m along the center of each plot. The plants were then thinned

out, at a seedling stage, to a spacing of 0.2 m between plants in

each plot. The recommended amount of Di-Ammonium

Phosphate (DAP) fertilizer (100 kgha-1) was applied during

planting and Urea (50 kgha-1) was applied as a side dressing

40 days after planting. Phenotypic data was collected from five

randomly selected and tagged plants in each plot for days to

flowering (DTF), plant height (PH), panicle length (PALH),

panicle width (PAWD), panicle weight (PAWT), and grain yield

(GY) (Supplementary Table 3).
2.3 Genomic DNA extraction

For DNA extraction and subsequent genotyping of the 324

accessions, seeds harvested from the five phenotyped plants in

the first replicate at the Melkasa site were used. The seeds were

planted in a greenhouse at the Department of Plant Breeding,

Swedish University of Agricultural Sciences (SLU), Sweden.

Soon after germination, extra seedlings were removed and

only one seedling per mother plant was maintained. The leaf

tissue of the five seedlings of each genotype was collected

together two weeks after planting, using the BioArk leaf

collection kit (LGC Biosearch Technologies). Using a punch

with a diameter of 6 mm that was provided with the kit, ten leaf

discs (2 leaf discs per plant) were sampled from each genotype

and placed in a single well of 96-well plates. Hence, a pool of leaf

tissue from five plants were used to represent each of the 324

accessions. The samples were then sent to LGC Genomics

(Berlin, Germany) where genomic DNA extraction was

conducted. The Sbeadex plant kits were used to extract high-

quality genomic DNA (https://biosearch-cdn.azureedge.net/

assetsv6/sbeadex-plant-data-sheet.pdf).
2.4 SNP selection, seqSNP assay design,
sequencing and genotype calling

The 324 sorghum accessions used in the present study were

genotyped using SeqSNP, which is an advanced targeted

genotyping by sequencing method. Genotyping was conducted

using 5,000 SNP markers used in a recently published study on

genetic diversity analysis of sorghum accessions (Enyew et al.,

2022). The source of the vast majority of the SNPs (93.7%) used

was the sorghum SNP database SorGSD (http://sorgsd.big.ac.

cn), a web portal that provides genome-wide SNP markers for

diverse sorghum genetic resources (Luo et al., 2016). The

remaining 6.3% of the SNP markers were identified by

aligning functionally annotated sorghum genes with the latest

sorghum reference genome using BLAST (Basic Local

Alignment Search Tool). The markers are somewhat evenly
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distributed across the ten sorghum chromosomes and their

descriptions can be found in the supplementary material

(Supplementary Tables 2 and 3) of Enyew et al. (2022);

https://www.frontiersin.org/articles/10.3389/fpls.2021.799482/

full#supplementary-material).

All the 5,000 markers were designed in a high-specificity

assay that does not allow off-target hits against the sorghum

reference genome, and are fully covered (two oligo probes were

used per target), as described in Enyew et al. (2022). Following

the production of the SeqSNP kit, containing the 10K high-

specificity oligo probes for the 5,000 SNPs, and the preparation

of the sequencing library, the target SNPs were sequenced on an

Illumina Nextseq 500/550 v2 system in 75 bp single read

sequencing mode. On average, the effective target SNP

coverage per sample was 365x. Following sequencing, the

quality trimmed reads were aligned to the reference genome

using Bowtie2 v2.2.3 (Langmead and Salzberg, 2012), and the

SNP genotyping pipeline was set to diploid. The variant

identification and genotype calling were done using Freebayes

v1.0.2-16 (Garrison and Marth, 2012). In accordance with the

standard genotype calling pipeline, allele counts below eight

were set to zero before genotype calling to remove SNPs

resulting from sequencing errors.
2.5 SNP data filtering and format for
data analyses

The genotype calling for the 324 sorghum accessions across

the 5,000 SNP loci resulted in 84.3% homozygous calls, 14.2%

heterozygous calls, and 1.6% missing data. Among the 5,000

SNP loci, 4,695 (86%) were polymorphic whereas 305 loci (14%)

were monomorphic across the 324 accessions. Among the 4,695

polymorphic SNP loci, 4,639 were bi-allelic whereas 56 were

multi-allelic. Further filtering of the bi-allelic loci was carried out

by eliminating 16 accessions that showed heterozygosity in more

than 50% of the loci, leaving 309 accessions for further analysis.

Among the 4,639 bi-allelic loci, those with missing data above

2%, or with minimum allele frequency (MAF) below 5%, or

heterozygosity above 17% were excluded. This resulted in 3,143

high-quality SNP loci, which were used for the analyses of the

309 sorghum accessions.

Data analyses were conducted using diploid genotypes

(instead of allele frequencies) since the software packages used

were developed for genotypic data analyses, regardless of the fact

that each accession was represented by a pool of five genotypes.

This approach was considered appropriate because the vast

majority of the loci (at least 83%) were homozygous among

the 309 accessions, indicating that the five individuals in each

accession had the same genotype at those loci. Nevertheless,

since both alleles were found at up to 17% of the loci, a genotype
Frontiers in Plant Science 04
in each pool could be homozygous or heterozygous at these loci.

The recent individual genotype-based study using these SNP

markers revealed only 6.7% (on average) heterozygotes in each

accession (Enyew et al., 2022). Thus, the individuals in each pool

are mainly homozygotes at these loci. When there is a marker-

trait association (MTA), a heterozygote may represent the

average phenotypic value of the five plants better than a

homozygote. Therefore, all loci containing both alleles were

treated as “heterozygous” for the purpose of the data analyses,

including the GWAS.

2.6 Phenotypic data analysis
Phenotypic data analysis was carried out using the Multi-

Environment Trial Analysis with R (META-R) software package

(Alvarado et al., 2020). The combined analysis of variance

(ANOVA) was conducted by incorporating genotypes,

environments, genotype-by-environment interactions (G×E),

replications, and blocks as variance components. The META-

R was used to calculate the best linear unbiased prediction

(BLUP) and to estimate the variance components using the

restricted maximum likelihood (REML) method by

implementing linear models in lmer function of lme4 package

for R. The broad-sense heritability (H2) of all traits was also

calculated using META-R.

2.7 Population structure and linkage
disequilibrium analysis

Principal coordinate analysis (PCoA) was used to determine

the population structure of the sorghum accessions using

GenAlEx 6.5 software (Peakall and Smouse, 2012). A Bayesian

clustering algorithm implemented in the STRUCTURE software

v.2.3.4 (Pritchard et al., 2000) was used to determine the degree

and pattern of population admixture. The STRUCTURE

program was run using the admixture model with burn-in

periods of 10,000 and a Markov chain Monte Carlo (MCMC)

replications of 200,000. The analysis was performed for K

ranging from two to ten, with 10 iterations at each K, to

determine the optimum number of genetic populations. The

optimum K value was predicted following the simulation

method of Evanno et al. (2005) using STRUCTURE

HARVESTER version 0.6.92 (Earl, 2012).

Genome-wide LD analysis was carried out using Trait

Analysis by Association, Evolution, and Linkage (TASSEL)

through determining the pairwise squared allele-frequency

correlations (r2) between SNP markers with sliding window of

50 SNPs. The r2 values were then plotted against physical

distance to estimate the extent of LD between pairs of loci.

The genome-wide LD decay curve line was fitted into the

scatterplot using the smoothing spline regression line to

estimate the LD decay rate as described by Hill and Weir

(1988) in R environment.
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2.8 Genome-wide association study
GWAS was performed using the statistical genetics package

Genome Association and Prediction Integrated Tool (GAPIT)

(Tang et al., 2016) within the R environment (Team R.C, 2020).

The GWAS was based on genotypic data for 3143 SNP markers

alongside phenotypic data comprising six phenological and

agro-morphological traits (DTF, PH, PALH, PAWD, PAWT

and GY) for 309 sorghum accessions. Principal component

analysis (PCA) and pairwise genetic relationship (kinship

matrix) according to VanRaden (2008) were calculated

through the pipeline implemented in GAPIT. The principal

components and the kinship matrix were used to control the

population and family structure for GWAS. Two multi-locus

GWAS models, BLINK (Bayesian-information and Linkage-

disequilibrium Iteratively Nested Keyway) (Huang et al., 2019)

and FarmCPU (Fixed and random model Circulating

Probability Unification) (Liu et al., 2016) were used to

identify significant SNPs for the six traits. The P-value

threshold of 0.05 with Bonferroni correction (0.05/number of

markers) was used to determine the significant associations for

each trait as implemented in GAPIT. Manhattan and QQ plots

were generated using the R package qqman (Turner, 2014).

The physical map positions of all significant SNPs were

determined by aligning their reference sequences to a

sorghum reference genome v3.1.1 (McCormick et al., 2018)

using JBrowse (Skinner et al., 2009) in Phytozome v12.1

(Goodstein et al., 2012) in order to explore annotated genes

within each QTL region.
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3 Results

3.1 Phenotypic variation and heritability
of traits

Large phenotypic variations were observed among the

sorghum accessions used in the field trials across three

locations for the six phenotypic traits (Figure 1 and Table 1).

DTF varied from 76 to 138 days with a mean of 108 days whereas

PH varied from 118 to 366 cm with a mean of 272 cm. PALH

varied from 11 to 38 cm with a mean of 21 cm, PAWD varied

from 6 to 19 cm with an average value of 10 cm. The PAWT for

the accessions ranged from 82 to 137 g with a mean of 105 g. The

average GY was 78 g, while individual accessions produced 62 to

101 g grain (Figure 1). The broad-sense heritability (H2) was

high for DTF (0.88), PH (0.85), PALH (0.90), and PAWD (0.81),

whereas it was moderate for PAWT (0.37) and GY

(0.32) (Figure 1).

The analysis of variance (ANOVA) revealed that genotypes,

environments, and G×E had significant effects on phenotypic

variation, except that environments had no effect on PH and

PWAD (Table 1). Phenotypic variation due to genotypes was

higher for DTF, PH, PALH and PAWD compared to that of

G×E and environments. In the case of PAWT and GY,

environments had higher effects than genotypes and G×E on

the phenotypic variation (Table 1). For combined environments,

a normal frequency distribution was observed for the traits,

including grain yield (Supplementary Figure 1).
FIGURE 1

Descriptive statistics and broad-sense heritability of the six phenotypic traits for the sorghum accessions grown at three locations. MIN,
Minimum; MAX, Maximum; H2, Broad-sense heritability in percent; DTF, Days to flowering; PH, Plant height in cm; PALH, Panicle length in cm;
PAWD, Panicle width in cm; PAWT, Panicle weight in g; GY, Grain yield in g.
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3.2 Population structure and
linkage disequilibrium

The admixture model-based population genetic structure of the

309 sorghum accessions was inferred using STRUCTURE software.

The analysis of the STRUCTURE output using STRUCTURE

HARVESTER program (Earl, 2012), which implements DK
method of Evanno et al. (2005) showed that the highest DK value

was attained at K = 2, indicating that two genetic populations

represent the sorghum accessions used in this study (Supplementary

Figure 2). In this analysis, 121 accessions (39%) were assigned to

cluster-I (population one) while 188 accessions (61%) were assigned

to cluster-II (population two). As shown in the STRUCTURE plot,

some individual accessions possessed alleles inherited from both

genetic populations (Figure 2A). Furthermore, the principal

coordinate analysis (PCoA) revealed a population stratification
Frontiers in Plant Science 06
among the accessions used in agreement with the results obtained

with STRUCTURE analyses (Figure 2B). The kinship analysis

clustered the sorghum accessions in to two distinct groups in

agreement with the results of STRUCTURE (Figure 3).

The mean linkage disequilibrium for the ten chromosomes is

quite similar, with an r2 value ranging from 0.09 to 0.12 with an

overall average of 0.11 (Table 2). LD was significant, on average,

for 50% (71,611) of the marker pairs (mean r2 = 0.2; p ≤ 0.01)

(Table 2). On average, 35% (24,798) of the significant pairs were

physically linked (r2 > 0.2) having an r2 value 0.42. The highest

and lowest number of marker pairs that showed significant LD

(p ≤ 0.01) were recorded on Chromosome 3 (8,938; r2 = 0.21)

and chromosome 7 (5,309; r2 = 0.19) (Table 2). Among the

significant marker pairs, those on chromosome 8 had the

strongest LD (mean r2 = 0.22), while those on chromosome 5

had the weakest LD (mean r2 = 0.18) (Table 2). Detailed
A

B

FIGURE 2

Graphical display of the population structure for 309 sorghum accessions analyzed using genotypic data of 3,143 SNP markers with MAF > 5%.
(A) Population genetic structure plot of the sorghum accessions for K = 2, and (B) PCoA scatter plot depicting the clustering pattern of the 309
individual accessions, with population one (P1) and population two (P2) comprising 121 and 188 accessions, respectively.
TABLE 1 Combined analysis of variance for grain yield and other target traits for sorghum accessions grown at three locations.

Source DTF PH PALH PAWD PAWT GY

s2GEN 151.01*** 1817.60*** 44.21*** 8.16*** 253.61*** 135.05***

s2 G×E 45.61*** 389.83*** 6.06*** 1.49*** 805.56*** 531.78***

s2ENV 126.86*** 27.18ns 9.18** 0.36ns 1560.13*** 753.07**
fronti
*** Significant at 0.001 significance level; ** Significant at 0.01 significance level; ns, not significant; GEN, Genotype; ENV, Environment; DTF, Days to flowering; PH, Plant height; PALH,
Panicle length; PAWD, Panicle width; PAWT, Panicle weight; GY, Grain yield. s2GEN, genotypic variance; s2G×E, genotype-by-environment interaction variance; s2E, environmental
variance.
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information regarding the relationship between r2 values and

physical distances can be found in Supplementary Table 4. At

the genome level, the r2 value was 0.11, and the decay curve of

the LD began at r2 value of 0.48 and reached half-decay at

0.23. The decay curve of the LD intersected the half-decay line at

a distance of 449 kb (Figure 4).
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3.3 Marker-trait association for the six
target traits

The marker-trait association analysis using genome-wide

SNP markers was performed using two different multi-locus

models, BLINK and farmCPU, which identified 39 and 26 SNP

loci with significant association with one or two of the six traits

studied, respectively. Among the significantly associated SNP

loci, 11 were identified by both models (Table 3). Furthermore,

three of the SNP loci were associated with two different traits,

which means that a total of 51 SNP loci (Table 3) were associated

with one or more traits. The Manhattan plots, which graphically

display the GWAS outputs are provided in Figure 5 and

Supplementary Figure 3. The corresponding QQ plots showed

that the observed and expected P-values for the vast majority of

SNPs are matching, with a clear deviation of the observed values

from the expected close to the right end of the plot, suggesting a

realistic positive association between the SNPs and the traits

(Figure 5 and Supplementary Figure 3). Hence, the GWAS

results are reliable and false negative results are less likely. The

map positions of the SNPs associated with the traits, in Sorghum

bicolor reference genome v3.1.1, enabled the identification of

genes harboring those SNPs. The characteristics of those SNPs

and the effects they have on their genes were presented in

Supplementary Table 5.
3.3.1 Days to flowering (DTF)
In the genome-wide association study, a total of 12 SNPs

with significant associations with days to flowering were

identified, through either the BLINK model or farmCPU

model, or both (Table 3). These markers are distributed across
TABLE 2 A summary of the results of linkage disequilibrium (LD) analyses among SNP marker pairs, including the number of significant marker
pairs for each chromosome.

Chr Total
number of

pairs

Average r2

for all pairs
D in
Mbp

Number of
significant
pairs*

Average r2 for all
significant pairs

D in
Mbp

Number of
PLP(r2>0.2)

**

D in
Mbp

Average
r2 for PLP

Complete
LD (r2 = 1)

1 14680 0.11 6.4 7728 (53) 0.20 5.83 2568 (33) 4.80 0.43 59

2 15119 0.11 6.0 7690 (51) 0.21 5.34 2844 (34) 4.42 0.42 72

3 17967 0.11 5.1 8938 (50) 0.21 4.63 3072 (34) 4.04 0.42 64

4 14675 0.11 5.7 7425 (51) 0.2 5.95 2630 (35) 6.96 0.41 68

5 14370 0.09 6.1 6579 (46) 0.18 5.68 2120 (32) 5.00 0.39 43

6 13465 0.11 5.1 6897 (51) 0.21 5.13 2465 (36) 4.91 0.43 80

7 11131 0.10 7.1 5309 (48) 0.19 6.81 1726 (33) 6.96 0.4 59

8 12072 0.12 6.3 6121 (51) 0.22 7.44 2281 (45) 9.20 0.44 52

9 14039 0.11 5.1 7022 (50) 0.21 5.04 2388 (34) 4.60 0.44 102

10 15721 0.11 4.8 7902 (50) 0.2 4.82 2704 (34) 4.50 0.42 49

T/M 143239 0.11 5.8 71611 (50) 0.20 5.67 24798 (35) 5.54 0.42 648
Chr, Chromosome; D, Physical distance, Mbp, Mega base pairs; PLP, Physically linked pairs; T/M, Total/Mean; Significant marker pairs, P < 0.01; * Numbers in the brackets are the
percentage of the total number of marker-pairs; ** Numbers in the brackets are the percentage of the number of significant marker pairs.
FIGURE 3

A heat map of kinship matrix illustrating the genetic relationship
between 309 sorghum accessions as revealed based on 3143 high
quality SNPs with MAF > 5%. The accessions were grouped into
two major clusters. The histogram in the color key depicts the
number of coefficient values within the corresponding color bar.
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all chromosomes, except chromosomes 4 and 9. Two of the

markers were identified through both BLINK and farmCPU

models on chromosome 1 (sbi318688; position 8066218 bp) and

chromosome 3 (sbi10438246; position 60811994) (Table 3;

Figure 5, and Supplementary Figure 3). The phenotypic

variance of the trait explained by the significant SNPs ranged

from 0.9 to 35% (Table 3). The marker sbi10438246 on

chromosome 3, identified by both models, accounted for the

highest percentage of the variance in DTF (35%; the strongest

MTA signal) (Table 3). Box plots depicting the effects of the alleles

at this locus for this trait are shown in Figure 6A. The SNP, a

missense variant that alters serine versus tyrosine, is located within

the coding sequence (CDS) of the gene Sobic.003G271700, which

codes for a protein of unknown function.

The second major effect marker (a missense mutation on

chromosome 5), accounting for 9.9% of the DTF variance, is

located within gene Sobic.005G147700, which codes for extensin-

2-like protein (Table 3 and Supplementary Table 5). The SNP

sbi24678469 and sbi982537 are DTF-associated markers present

within the coding sequences of the genes Sobic.008G052000 and

Sobic.001G230700, respectively. These genes encode fatty acid

amide hydrolase, and RING finger and E3 ubiquitin-protein

ligase MIEL1. For Sobic.001G230700 the most significant hit

(homologue) in rice is RING finger and CHY zinc finger

domain-containing protein 1, which has been shown to be

involved in the regulation of seedling development and flowering

time. Sobic.007G109800 (containing snp_sb042060813825)

encodes late embryogenesis abundant protein D-34 (a seed

maturation protein), which is involved in seed development and
Frontiers in Plant Science 08
maturation, as well as response to biotic stress. Other genes

containing the DTF-associated SNP markers include white-brown

complex homolog protein 11, ATP binding microtubule motor

family protein, phototropic-responsive NPH3 family protein and

tetratricopeptide repeat (TPR)-like superfamily protein, and

phototropin 1 (phot1) (Supplementary Table 5).

3.3.2 Plant height (PH)
In this study, the highest number of significant MTA was

identified for plant height. In total, 14 SNPs with significant

association with plant height were identified by BLINK and

farmCPU models (Table 3, Figure 5 and Supplementary

Figure 3). Both BLINK and farmCPU identified four significant

markers on chromosomes 3, 4, 6, and 8. The percentage of

phenotypic variance explained by these markers ranged from

1.6% (on chromosome 6) to 6.3% (on chromosome 3) (Table 3).

The effects of alleles on PH at sbi7769289 locus that accounted for

the highest phenotypic variance (6.5%) and highest MTA signal are

shown with box plots (Figure 6B). Additionally, four markers were

identified only by BLINK on chromosomes 1, 5, and 7, explaining

phenotypic variance ranging from 0.7 (chromosome 1) to 4.6%

(chromosome 7) (Table 3 and Figure 5). Similarly, six significant

markers, on chromosomes 1, 3, 6, 9, and 10 were identified only by

the farmCPU model, explaining phenotypic variance ranging from

0.8 (on chromosome 9) to 6.8% (on chromosome 10) (Table 3 and

Supplementary Figure 3).

All markers with significant association with PH were located

within genes (Supplementary Table 5). The two genic SNP markers

that had the largest effects on PH, on chromosome 3 at 11Mb (PVE
FIGURE 4

The scatter plot of genome-wide linkage disequilibrium (LD) decay determined based on the r2 values of the marker pairs. The red curve line is the
smoothing spline regression model fitted to LD decay. The horizontal blue line is the half decay r2 value of the genome (r2 = 0.23), whereas the
vertical green line is the genetic distance between markers in bp (448 kb) at the intersection between the half decay and the LD decay curve.
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TABLE 3 List of significant markers associated with agronomic traits from genome-wide association analysis of 309 sorghum accessions using
3143 SNPs with MAF greater than 0.05.

Trait SNP Alleles Chr Position MAF P.value FDR PVE (%) Model

DTF sbi318688 G/A 1 8066218 0.26 4.14E-06 0.002842 2.26 farmCPU

5.89E-09 9.26E-06 1.45 BLINK

sbi982537 G/T 1 22275540 0.12 1.03E-05 0.004032 2.38 farmCPU

sbi4023260 G/C 2 13293723 0.43 2.07E-07 0.000217 2.09 BLINK

sbi10226120 A/G 3 56322246 0.29 9.58E-06 0.004032 3.58 farmCPU

sbi10372954 T/C 3 59472033 0.13 2.24E-06 0.002345 0.91 farmCPU

sbi10438246 C/A 3 60811994 0.06 7.88E-11 2.48E-07 23.95 farmCPU

9.32E-10 2.93E-06 35.23 BLINK

sbi17364528 T/G 5 61608548 0.07 3.24E-07 0.000255 9.89 BLINK

sbi17966906 C/A 6 1001235 0.29 5.84E-06 0.003064 1.83 BLINK

snp_sb001000704585 A/T 6 48682625 0.32 9.37E-06 0.004032 1.00 farmCPU

snp_sb042060813825 A/G 7 39653062 0.07 2.05E-06 0.002345 2.59 farmCPU

sbi24678469b C/G 8 5242533 0.09 1.51E-06 0.00095 3.97 BLINK

sbi30754782 G/T 10 9494280 0.26 4.52E-06 0.002842 1.96 farmCPU

PH sbi62970 C/T 1 1495213 0.11 1.45E-05 0.0046 4.35 farmCPU

sbi194467 G/A 1 4778713 0.40 8.41E-06 0.0033 0.71 BLINK

sbi7769289 C/T 3 10836535 0.08 1.20E-05 0.004207 3.11 farmCPU

2.70E-10 4.25E-07 6.32 BLINK

sbi7901589 A/G 3 13494213 0.38 1.85E-06 0.0012 6.32 farmCPU

sbi13732034a C/T 4 54108806 0.19 1.91E-07 0.000201 2.21 farmCPU

1.47E-06 0.000923 3.21 BLINK

sbi17260778 G/A 5 59844243 0.42 1.89E-06 0.0010 2.46 BLINK

sbi20359577 C/T 6 48007508 0.13 3.56E-06 0.0016 1.75 farmCPU

sbi20792384 G/T 6 57704110 0.31 1.29E-12 4.05E-09 1.62 farmCPU

1.77E-10 4.25E-07 1.43 BLINK

sbi24138103 G/T 7 59997937 0.12 1.15E-06 0.0009 1.59 BLINK

sbi24291993 T/C 7 63300346 0.13 2.46E-06 0.0011 4.58 BLINK

sbi24668980 G/A 8 5053406 0.09 2.56E-06 0.001343 3.77 farmCPU

5.97E-07 0.000627 1.28 BLINK

sbi30188088 C/G 9 56601353 0.19 2.76E-07 0.0002 0.79 farmCPU

sbi30546176 C/T 10 5270775 0.11 7.45E-06 0.0029 1.55 farmCPU

sbi30645260 A/G 10 7303004 0.06 4.02E-08 0.0001 6.75 farmCPU

PALH sbi3208134 C/T 1 78277352 0.09 2.26E-09 7.10E-06 5.44 farmCPU

1.30E-10 4.01E-07 9.62 BLINK

sbi7353016 G/A 3 1905405 0.10 1.54E-05 0.006929 4.03 BLINK

sbi7686697 A/G 3 9057564 0.42 2.69E-06 0.00141 2.47 BLINK

sbi21359653 A/G 7 8646573 0.36 2.55E-10 4.01E-07 11.25 BLINK

sbi24678469b C/G 8 5242533 0.09 2.67E-07 0.000228 3.24 BLINK

sbi30118348 T/A 9 54963433 0.34 5.18E-07 0.000326 1.74 BLINK

sbi30169733 A/T 9 56240567 0.26 1.41E-06 0.002214 2.87 farmCPU

2.89E-07 0.000228 18.91 BLINK

PAWD sbi2029574 G/T 1 52905292 0.20 6.67E-06 0.005249 4.80 farmCPU

2.43E-08 2.55E-05 0.44 BLINK

sbi2393610 A/T 1 59685990 0.07 9.96E-08 0.000313 10.42 farmCPU

2.01E-13 6.33E-10 23.31 BLINK

sbi3026667 T/C 1 73774042 0.21 2.59E-11 0.005249 4.51 BLINK

sbi3655489 A/T 2 6615133 0.30 6.97E-07 0.002386 1.45 BLINK

sbi6496334 G/T 2 59698705 0.22 1.90E-06 0.002902 1.34 BLINK

(Continued)
Frontiers in P
lant Science
 09
 fronti
ersin.org

https://doi.org/10.3389/fpls.2022.999692
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Enyew et al. 10.3389/fpls.2022.999692
= 6.3%) and 10 at 7Mb (PVE = 6.8%) (Table 3) were located within

the genes, Sobic.003G119600 and Sobic.010G085400, respectively.

Sobic.003G119600 encodes zinc finger and C3HC4 type domain-

containing protein while Sobic.010G085400 encodes K-box region

and MADS-box transcription factor family protein. These genes

play a significant role in various physiological and cellular processes

including transcription, signal transduction, recombination, plant

growth, and vegetative and reproductive developments

(Supplementary Table 5). Sobic.001G017500 (encoding

hydroxysteroid dehydrogenase), and Sobic.009G223500 (encoding

F-box family protein), which are known for their role in plant

vegetative and reproductive growth and development, contain

significant SNPs associated with PH. Similarly, Sobic.006G111800

(encoding ARM repeat superfamily protein), Sobic.006G235400

(encoding protein kinase superfamily protein), and

Sobic.010G066100 (encoding phototropic-responsive NPH3

family protein) also had significant markers associated with PH.

These genes are involved in the regulation of growth and

development, stress signaling, and phototropin 1 signaling

(Supplementary Table 5).

3.3.3 Panicle length (PALH)
The GWAS identified seven SNPs with significant association

to PALH across five different chromosomes (1, 3, 7, 8 and 9)

(Table 3; Figure 5, and Supplementary Figure 3), and all of them

are located within genes (Supplementary Table 5). Two of these

SNP markers were identified by both farmCPU and BLINK

models, and explained 9.6% (sbi3208134; on chromosome 1)

and 18.9% (sbi30169733; on chromosome 1) of the phenotypic
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variance of PALH (Table 3). The sbi3208134 is located within

Sobic.001G516100, which encodes BR-signaling kinase 1 while

sbi30169733 is located within Sobic.009G218450, which encodes

P-glycoprotein 11, MDR-like ABC transporter (Table 3 and

Supplementary Table 5). The other five markers (located on

chromosomes 3, 7, 8 and 9) were detected only by BLINK

model, and accounted for up to 11.3% of the total phenotypic

variance of the trait. The genes harboring these SNPs encode for

proteins of different functions (Supplementary Table 5). Among

these genes, Sobic.009G199900 (on chromosome 9) contains the

sbi30118348, which encodes phosphatidylethanolamine binding

protein (PEBP), which is an important factor in regulating

flowering in response to photoperiod.

3.3.4 Panicle width (PAWD)
The GWAS analyses detected eleven SNPs with significant

association with PAWD (Table 3; Figure 5 and Supplementary

Figure 3). Three of these SNPs: sbi2029574 and sbi2393610 (on

chromosome 1), and sbi8085609 (on chromosome 3) were

detected by both BLINK and farmCPU. Among them,

sbi2393610, which accounted for 23.3% of the variation in

PAWD, is located within the Sobic.001G310300 gene that

encodes glutathione S-transferase F11. Whereas, sbi8085609,

which accounted for 10.9% of the variation in PAWD, is

located in Sobic.003G154800 that encodes protein of unknown

function (DUF594) (Table 3 and Supplementary Table 5).

Among the remaining eight markers, seven (on

chromosomes 1, 2, 3, 5, 6 and 8) were detected only by

BLINK and one (on chromosome 3) was detected only by
TABLE 3 Continued

Trait SNP Alleles Chr Position MAF P.value FDR PVE (%) Model

sbi8085609 C/G 3 16868775 0.07 5.49E-06 0.005249 2.19 farmCPU

6.07E-06 0.002386 10.93 BLINK

sbi10162413 T/C 3 55078201 0.25 1.35E-05 0.000438 0.94 BLINK

sbi10836055 T/C 3 70604368 0.19 4.19E-06 2.55E-05 6.37 farmCPU

sbi17331791 G/C 5 61061450 0.21 5.14E-07 0.004239 1.57 BLINK

sbi20777395 A/G 6 57341190 0.18 2.29E-06 6.33E-10 2.05 BLINK

sbi24445033 G/T 8 1016470 0.27 8.30E-06 4.08E-08 2.23 BLINK

PAWT sbi13732034a C/T 4 54108806 0.19 1.46E-06 0.002048 5.91 BLINK

sbi17687423 T/C 5 67739573 0.08 3.04E-07 0.000956 7.01 BLINK

sbi21079990 A/G 7 2945057 0.36 1.95E-06 0.002048 1.65 BLINK

sbi21265823 T/C 7 6671420 0.30 1.50E-05 0.026887 8.03 farmCPU

sbi30583046c C/G 10 6047480 0.50 1.01E-05 0.00798 2.69 BLINK

GY sbi3833 T/C 1 80269 0.2 5.43E-06 0.005837 3.10 BLINK

sbi17653919 G/C 5 67092426 0.1 1.59E-05 0.012496 3.12 BLINK

sbi17789352 G/A 5 69674648 0.2 3.13E-06 0.009845 11.49 farmCPU

snp_sb001001045636 A/G 10 5151950 0.1 5.57E-06 0.005837 6.69 BLINK

sbi30583046c C/G 10 6047480 0.5 1.00E-06 0.003155 7.23 BLINK
fronti
MAF, Minor allele frequency; Chr, chromosome; PVE, Phenotypic variance explained; FDR, False discovery rate; PH, Plant height; DTF, Days to flowering; PALH, Panicle
length; PAWD, Panicle width; PAWT, Panicle weight; GY, Grain yield. Favorable alleles are given in bold. SNP associated with more than one trait are shown in bold, and those
sharing a superscript are the same.
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farmCPU. The phenotypic variance of the trait explained by

these SNPs ranged from 0.9 to 6.4% (Table 3). These include

SNPs within genes encoding appr-1-p processing enzyme

family protein (Sobic.003G215900), RNA-binding family

protein (Sobic.005G145400), S-locus lectin protein kinase

family protein (Sobic.006G229100), protein kinase family

protein with leucine-rich repeat domain (Sobic.001G273500),

and magnesium transporter 4 (Sobic .003G395600)

(Supplementary Table 5).
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3.3.5 Panicle weight (PAWT)
The GWAS analyses detected five SNPs that were significantly

associated with PAWT, explaining 1.7 to 8.0% of its phenotypic

variance (Table 3, Figure 5 and Supplementary Figure 3). Four of

these markers (on chromosomes 4, 5, 7 and 10) were identified by

BLINKmodel whereas onemarker (on chromosome 7) was detected

by farmCPU model. The SNP marker sbi21265823 (on

chromosome 7), which accounted for 8.0% of the PAWT

phenotypic variance, is located within the Sobic.007G033500 gene,
A

B

D

E

F

C

FIGURE 5

The Manhattan and QQ plots from BLINK-based GWAS analyses of 309 Ethiopian sorghum accessions using 3143 genome-wide SNP markers,
revealing markers with significant association (P-value threshold of 0.05 with Bonferroni correction) with the traits targeted in this study. (A) DTF,
Days to flowering; (B) PH, Plant height; (C) PALH, Panicle length, (D) PAWD, Panicle width, (E) PAWT, Panicle weight, and (F) GY, Grain yield. The
horizontal red and green lines represent P-value threshold of 0.01 and 0.05 with Bonferroni correction, respectively.
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which encodes a protein of unknown function (Supplementary

Table 5). Among the remaining four markers, sbi17687423 (on

chromosome 5), which accounted for 7% of the phenotypic variance

of PAWT, is located within the Sobic.005G194000 gene, which

encodes for a protein of unknown function. Whereas, sbi13732034

(on chromosome 4), which explained 5.9% of the phenotypic

variance of PAWT, is located within the Sobic.004G189200 gene,

which encodes for F-box domain and kelch repeat containing

protein (Table 3 and Supplementary Table 5).

3.3.6 Grain yield (GY)
GWAS identified five SNPs significantly associated with GY

(Table 3, Figure 5 and Supplementary Figure 3). BLINK model

identified four of these markers (on chromosomes 1, 5 and 10)

whereas farmCPU model identified one marker (on

chromosome 5). The percentage of phenotypic variance

explained by these markers ranged from 3.1% (sbi3833 and

sbi17653919; on chromosomes 1 and 5, respectively) to 11.5%

(sbi17789352 on chromosome 5). The SNP marker sbi17789352

is located within the Sobic.005G209900 gene, which codes for

protein of unknown function. The two SNP markers on

chromosome 10, explained 6.7% (snp_sb001001045636) and

7.2% (sbi30583046) of the variation in grain yield. The

SNP sbi30583046 is located within the coding sequence of the

Sobic.010G074100 gene. This gene codes for a pentatricopeptide

repeat (PPR) superfamily protein that plays a role in
Frontiers in Plant Science 12
physiological processes contributing to plant growth and

development (Table 3 and Supplementary Table 5).
4 Discussion

4.1 Phenotypic variation

Genome-wide association mapping is a powerful method that

facilitates the eventual identification of genes regulating traits of

interest, whose efficiency are dependent on the genetic variation

within the germplasm used as association panels. In this study, high

phenotypic variation was observed within the Ethiopian sorghum

accessions used as GWAS panel (as revealed by descriptive

statistics) for each of the six target traits. Similarly high

phenotypic variation was reported in previous studies on

Ethiopian sorghum landrace accessions (Girma et al., 2019;

Enyew et al., 2021). Hence, the sorghum landraces used for this

study had a sufficiently high phenotypic variation that makes them

suitable for use as GWAS panel as well as for selecting genotypes

with desirable traits for use in sorghum breeding programs.

The influence of environments and G×E were lower on DTF,

PH, PALH, and PAWD, indicating a predominant contribution

of genotypic variation to the high phenotypic variation in these

traits. On the other hand, the contribution of genotypic variation

to the phenotypic variation of PAWT and GY was low. For these
A B

FIGURE 6

Boxplots of high signal SNPs (sbi10438246 and sbi7769289) showing the effects of their alleles on (A) days to flowering (DTF) and (B) plant
height (PH), respectively, generated based on the best linear unbiased predictor analysis of the combined phenotypic data from the three
locations. Statistical significance for differences between alleles in the 309 sorghum genotypes was determined using the Tukey’s HSD (honestly
significant difference) test. The different letters in the box plot indicates the significance difference among the mean P < 5% level.
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traits, the vast majority of the phenotypic variation was due to

the variances of environment and G×E, of which environment

was a dominant factor. This was shown by a significantly lower

broad-sense heritability of PAWT and GY as compared to that

of DTF, PH, PALH, and PAWD. The high heritability for DTF,

PH, and PALH and moderate heritability for GY were also

reported in previous studies on sorghum (Amare et al., 2015;

Zhao et al., 2016; Habyarimana et al., 2020; Luo et al., 2020).

Overall, the large variation of the evaluated sorghum accessions

and moderate to high broad-sense heritability of the traits

suggest the significance of these genetic resources both for

crop improvement through breeding as well as for the

identification of genes regulating these traits.
4.2 Linkage disequilibrium

Identifying the pattern of LD is crucial to design association

studies and molecular breeding strategies (Thornsberry and Buckler,

2003). To characterize the LD decay in this study, LD was calculated

at chromosome and genome levels using the SNP data from the 309

sorghum accessions. In this study, the average r2 value was 0.11 at

the genome level. The LD started decaying at r2 value of 0.48 and

reached its half-decay value (r2 = 0.23) by 448 kb. The LD decay

curve intersected with the half-decay at a distance of 448 kb. These

LD decay estimates are similar to the previously published value

within 500 kb in sorghum (Marla et al., 2019). However, the

estimates are higher than previously published values of r2 < 0.1

within 150 kb (Morris et al., 2013) and 100 kb (Bouchet et al., 2012).

The average r2 in each sorghum chromosomes have similar rate of

LD decay, between 0.09 and 0.12 which is in agreement with

previous studies on sorghum (Wang et al., 2013; Hu et al., 2019).
4.3 Genome-wide associations and
candidate gene identifications for
agronomic traits

In this study, two multi-locus GWAS models were used for

GWAS to overcome the limitations arising from using single-locus

models (Liu et al., 2016; Li et al., 2018a). The multi-locus models

avoided the confounding effects of population structure by

including kinship and principal components in the GWAS

models. The QQ plots also confirmed that the power of the

models to detect true marker-trait associations was high. In total,

51 MTAs were identified in this study with the number of MTAs

for each trait ranging from five (for PAWT andGY) to 14 SNPs (for

PH). Among the significant SNPs, 11% explained over 10% of the

phenotypic variation of the corresponding traits. Whereas, 31% of

the SNPs explained over 5% of the phenotypic variation of the

corresponding traits. The significant markers together accounted

for 25.3% (for PAWT) to 67.7% (for DTF). Therefore, sorghum

could be improved significantly by pyramiding favorable alleles
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using the marker-assisted selection (MAS) approach using the

MTAs identified for each trait.

4.3.1 Days to flowering
The Maturity (Ma) loci (Ma1-Ma6) have been shown to

regulate sorghum flowering time (Quinby and Karper, 1953;

Rooney and Aydin, 1999). The Ma1 locus represent the

Sobic.006G057866 gene located on chromosome 6, which

encodes pseudo-response regulator protein 37 (PRR37). This gene

has a significant effect on flowering time by controlling floral

inhibitors and activators (Murphy et al., 2011). Ma2 represents

the Sobic.002G302700 gene located on chromosome 2, which

encodes a SET and MYND (SYMD) domain-containing lysine

methyl transferase (Casto et al., 2019). Both Ma3 and Ma5 are

located on chromosome 1 and represent the Sobic.001G394400 and

Sobic.001G087100 genes, respectively. These genes encode

phytochrome B (Childs et al., 1997) and phytochrome C (Yang

et al., 2014), respectively. Ma6 represents Sobic.006G004400 gene

located on chromosome 6, which encodes Ghd7, a CONSTANS,

CO-like, and TOC1 (CCT)-domain protein (Murphy et al., 2014).

The gene for the Ma4 locus has not yet been identified.

Among 12 SNP loci identified as being associated with DTF in

this study, seven are located in close proximity with previously

identified marker loci for the same trait (Supplementary Table 6).

For example, the sbi982537 marker on chromosome 1 (at position

22.3 Mb) is in close proximity with the previously reported

marker loci located at 21.5 Mb (Ritter et al., 2008) and 23.1 Mb

(Kong et al., 2018), suggesting that they might refer to the same

QTL. As sbi982537 is located within the CDS (causing missense

mutation) of Sobic.001G230700, which codes for RING finger and

CHY zinc finger domain-containing protein 1, it could be a

potential candidate gene behind the QTL these markers share.

The map position of sbi982537, however, is 15.5 Mb and 45.7 Mb

away fromMa3 and Ma5 loci, respectively, making it unlikely that

they are associated. In contrast, sbi318688 is located only 1.3 Mb

from a well characterized maturity loci Ma5 (Sobic.001G087100),

at position 6.7 Mb on chromosome-1 (Yang et al., 2014), which

suggests that they may be associated. There is also a possibility

that the Sobic.001G105400 gene containing sbi318688 is

responsible for the phenotypic variation since its orthologue

plays an important role in pollen development and seed set in

rice (Zhang et al., 2020).

In this study, three SNP loci located close to one another on

chromosome 3 (56.3 Mb to 60.8 Mb) were found to be associated

with DTF, and it is possible that they refer to the earlier identified

QTL (Kong et al., 2018). This QTL region contains the sbi10438246

(located at position 60.8 Mb) that explained over a third (35.2%) of

the phenotypic variation in DTF. This SNP is a missense mutation

within the Sobic.003G271700 gene that encodes a protein of

unknown function. It is therefore imperative to conduct further

research to determine whether this gene or another gene nearby is

responsible for the phenotypic variation the SNP explained. The

SNP snp_sb001000704585 locus (a missense mutation) on
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chromosome 6 explaining 1% of the variation in DTF is located

within the Sobic.006G120000 gene that encodes the phototropic-

responsive NPH3 family protein, which is known to play important

roles in photo-signaling in addition to phototropism (Christie et al.,

2018), suggesting that it may be causal. Similarly, the sbi24678469

locus located at 52.4 Mb on chromosome 8 was co-localized with

the previously identified QTLs (Zhao et al., 2016; Kong et al., 2018).

The snp_sb042060813825 locus on chromosome 7 at

position 39.7 Mb represents a novel QTL for DTF, as no MTA

for this trait has been identified in this genomic region in

previous studies. This SNP locus is located within the

Sobic.007G109800 gene, which encodes for a protein referred

to as seed maturation protein or late embryogenesis abundant

protein D-34. The gene is involved in the regulation of seed

maturation (Hundertmark and Hincha, 2008), and is probably

behind the variation in DTF explained by this SNP locus.

Another SNP locus, sbi17364528, at 61.6 Mb on chromosome

5 was located about 10 Mb away from the previously identified

locus for DTF (Zhao et al., 2016). This SNP locus (a missense

mutation) is located within the Sobic.005G147700 gene, which

encodes a protein of unknown function. As the SNP explained

9.9% of the variation in DTF, it represents a major QTL, while

the gene is likely a novel locus that regulates flowering time in

sorghum. Similarly, an SNP locus at 13.3 Mb on chromosome 2

was located about 54 Mb away from the previously identified

well-known maturity locus (Ma2) (Zhao et al., 2016).
4.3.2 Plant height
Sorghum possesses four major genomic loci that control plant

height, known as dwarfing loci (Dw1-Dw4) (Quinby and Karper,

1953), of which Dw1, Dw2, and Dw3 have been characterized.

Dw1 encodes a putative membrane protein (Sobic.009G230800),

which has a role in controlling cell proliferation of internodes

(Hilley et al., 2016; Yamaguchi et al., 2016). Dw2 encodes a

protein kinase (Sobic.006G067600), which regulates the length

of stem internodes (Hilley et al., 2017). Dw3, which encodes a

phosphoglycoprotein of the adenosine triphosphate-binding

cassette (ABC) transporter superfamily (Sobic.007G163800),

plays an important role in auxin transport (Multani et al.,

2003). Dw4 has been mapped to chromosome 4 (Li et al., 2015),

but the gene behind this locus has not been identified yet.

Additionally, a fifth dwarfing locus (Dw5) has recently been

reported (Chen et al., 2019).

In this study, an SNP locus (sbi30188088) at 56.6 Mb on

chromosome 9 showed a significant association with plant height.

This locus is located only ca 3 Mb from the major dwarfing locus,

Dw1, which lies at 59.6 Mb (Hilley et al., 2016; Yamaguchi et al.,

2016). Nevertheless, it is unlikely that this SNP refers to Dw1,

considering its minor effect on the variation in PH. Two recent

GWAS on sorghum identified SNPs associated with plant height

at 56.6 and 56.5 Mb (Habyarimana et al., 2020; Luo et al., 2020),

which are co-localized with sbi30188088. Moreover, sbi30188088
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is located within the Sobic.009G223500 gene, which encodes an F-

box family protein that has known role in ethylene and gibberellic

acid signaling (Dill et al., 2004) as well as acting as auxin receptors

in Arabidopsis to regulate the stability of indole 3-acetic acid

(IAA) proteins (Kepinski and Leyser, 2005). Therefore, it is likely

that Sobic.009G223500 is a gene behind the PH variation

explained by sbi30188088.

Several linkage mapping and GWAS identified loci

associated with plant height on chromosome 6 between 42.2 to

61.5 Mb (Wang et al., 2012; Morris et al., 2013; Burks et al., 2015;

Zhang et al., 2015; Kong et al., 2018; Habyarimana et al., 2020).

In the present study, two SNP loci located at positions 48.0 Mb

and 57.7 Mb were identified in this genomic region although

their effect on the phenotype was low (below 2%). Considering

their low effect and large distance (6-15 Mb) from the Dw2 locus

located at 42.2 Mb on this chromosome, which encodes a protein

kinase that regulates stem internode length (Hilley et al., 2017), it

is unlikely that the SNPs refer to Dw2. Nevertheless, these SNPs

are the result of missense mutations in the Sobic.006G111800

and Sobic.006G235400 genes, which encode ARM repeat and

protein kinase, respectively. It is possible that these mutations

are causal for the variation in PH associated with these SNPs.

The sb042060843522 locus associated with PH is within

Sobic.007G165200 gene on chromosome 7 (at 60.0 Mb), which

is only about 1.6 Mb away from the Dw3 gene. It is also co-

localized with the previously identified QTL on chromosome 7

at 59.6 Mb in the Ethiopian sorghum landrace (Girma

et al., 2019).

The SNP locus for PH, sbi13732034, which is located at 54.1

Mb on chromosome 4, is in close proximity with a PH associated

locus (at 52.6 Mb) reported by (Zhang et al., 2015). Although the

exact location and the gene behind it are yet to be confirmed, the

Dw4 locus has been mapped close to the end of chromosome 4

(Li et al., 2015). It is unlikely that sbi13732034 refers to Dw4, as

its impact on PH variation is quite small (3.2%), and their map

positions are quite different. However, sbi13732034 is located

within the Sobic.004G189200 gene, which encodes F-box

domain and kelch repeat containing protein. As discussed

above, this protein has a known role in ethylene and

gibberellic acid signaling (Dill et al., 2004) and auxin receptors

in Arabidopsis (Kepinski and Leyser, 2005), and it is possible

that it is an underlying gene for the variation explained

by sbi13732034.

Two SNP loci (sbi7769289 and sbi7901589) located at

positions 10.8 and 13.5 Mb on chromosome 3 were found to

be associated with PH in this study. None of previously

identified loci for PH was mapped to this genomic region.

Considering the fact that the map distance between the two

SNPs is 2.7 Mb, they may refer to the same gene, as both

explained 6.2% of the observed phenotypic variation. The SNPs

are located within the genes Sobic.003G119600 and

Sobic.003G139200, respectively. Sobic.003G119600 encodes

RING/U-box superfamily protein, zinc finger, C3HC4 type
frontiersin.org

https://doi.org/10.3389/fpls.2022.999692
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Enyew et al. 10.3389/fpls.2022.999692
domain containing protein which is involved in plant growth

and development (Wu et al., 2014), and it is possible that it is the

gene behind the variation observed. Another novel major effect

SNP locus (sbi30645260) located within the Sobic.010G085400

gene (at 7.3 Mb) on chromosome 10 was also identified for PH.

The gene ontology (GO) analysis of this gene revealed that it is

associated with four GO terms. In the molecular function (MF)

GO class, it is annotated as RNA polymerase II cis-regulatory

region sequence-specific DNA binding (GO:0000978), and

DNA-binding transcription factor activity, RNA polymerase

II-specific (GO:0000981_MF). Under biological process (BP)

GO class, it is annotated as regulation of transcription by RNA

polymerase II (GO:0006357), and transcription by RNA

polymerase II (GO:0006366). This candidate gene encodes

MADS-box transcription factor family protein, which is

known to be involved in the regulation of flowering time in

Arabidopsis (Michaels and Amasino, 1999), vegetative and root

growth (Zhang et al., 2018), as well as other functions, such as

floral organ development (Dreni and Zhang, 2016). Further

study may shed light as to whether it is involved in the

regulation of plant height in sorghum.

4.3.3 Inflorescence architecture
In this study, significant SNP loci for panicle length were

identified on chromosomes 1, 3, 7, 8 and 9. Previous linkage

mapping and GWAS in sorghum detected MTA for panicle length

on all chromosomes (Supplementary Table 6). This study

identified three major effect SNP loci (sbi3208134, sbi21359653,

and sbi30169733) on chromosome 1 at 78.2 Mb (PVE = 9.7%),

chromosome 7 at 8.6 Mb (PVE = 11.2%), and chromosome 9 at

56.2 Mb (PVE = 18.9%) that showed strong association signals for

panicle length. These SNPs are located within the genes

Sobic.001G516100, Sobic.007G075200, and Sobic.009G218450,

respectively. They encode brassinosteroid (BR) signaling kinase 1,

bifunctional purine biosynthesis protein, and P-glycoprotein 11,

MDR-like ABC transporter, respectively. The BR signaling

pathway is known to play a role in plant cell elongation and

division, tissue differentiation, organogenesis (Sakamoto et al.,

2006), and inflorescence architecture (Li et al., 2018b). In order

to determine if any of these genes are directly involved in the

regulation of panicle length in sorghum, further research is

required. Two SNP loci at 1.9 and 9.0 Mb on chromosome 3

were located in close proximity with previously reported loci at 1.8

Mb (Habyarimana et al., 2020) and 9.9 Mb (Zhao et al., 2016),

respectively. On chromosome 9, two SNP loci at 55.0 and 56.2 Mb

were found in close proximity with previously reported SNP locus

at 55.3 Mb (Habyarimana et al., 2020).

Six of the eight SNP loci with significant association with

panicle width (PAWD) were located in close proximity with the

previously reported loci associated with this trait in sorghum

(Supplementary Table 5). For instance, two major effect SNPs on

chromosome 1 at 59.7 and 73.7 Mb were co-localized with
Frontiers in Plant Science 15
previously reported SNP loci for PWAD in sorghum (Zhang

et al., 2015). The sbi2393610 at 59.7 Mb on chromosome 1 was

located about 1.4 Mb away from the previously identified locus

for PAWD (Zhang et al., 2015). This SNP is located within the

gene Sobic.001G310300, which encodes glutathione S-

transferase F11. Three GO terms were associated with this

gene under the molecular function (MF) gene ontology class.

These are glutathione transferase activity (GO:0004364), ion

binding (GO:0043168), and amide binding (GO:0042277). In

the cellular component (CC) GO class, the gene is associated

with intracellular anatomical structure (GO:0005737), and it is

likely to regulate PAWD. As the SNP explained 23.3% of the

variation in PAWD, it represents a major QTL that regulate

panicle width in sorghum. Similarly, sbi3026667 at 73.7 Mb

(PVE = 4.5) on chromosome 1 was located about 1.3 Mb away

from the previously identified locus for PAWD (Zhang

et al., 2015).

The sbi2029574 on chromosome 1 at 52.9 Mb (PVE = 4.8)

which showed a strong association signal for PAWD represents a

novel genomic region associated with this trait. The gene

containing this SNP, Sobic.001G273500, encodes a kinase

family protein with a leucine-rich repeat domain. Further

research will shed light if this gene is involved in regulating

PAWD. On chromosome 3, three SNP loci at positions 16.9, 55.1

and 70.6 Mb (PVE = 10.9, 1.0, and 6.4, respectively) were in close

proximity with previously reported QTLs for PAWD in

sorghum (Zhang et al., 2015). The sbi8085609, at 16.9 Mb on

chromosome 3 was located about 4 Mb away from the previously

identified locus for PAWD (Zhang et al., 2015). This SNP locus

(a missense mutation) is located within the Sobic.003G154800

gene, which encodes a protein of unknown function. As the SNP

explained 10.9% of the variation in PAWD, it represents a major

QTL, while the gene is likely regulates PAWD in sorghum,

which needs further investigation.

4.3.4 Panicle weight and grain yield
Previous linkage mapping and GWAS detected QTLs for

panicle weight (PAWT) on chromosomes 1, 4, 6, 7, and 9

(Supplementary Table 5). None of them, however, is located

close to the SNPs on chromosomes 4, 5, 7, and 10 that were

found to be associated with PAWT in the present study. The

sbi13732034 locus on chromosome 4, which explained 5.9% of

the variation in PAWT, is located within the Sobic.004G189200

gene. This gene encodes a protein containing F-box domains and

kelch repeats, which modulates ethylene and gibberellic acid

signaling (Dill et al., 2004), regulates leaf senescence, seed size

and number, and panicle architecture (Chen et al., 2013).

It serves as an auxin receptor (Kepinski and Leyser, 2005) in

different plant species. Therefore, Sobic.004G189200 is likely to

be one of the major genes regulating panicle weight in sorghum.

On chromosome 7, the sbi21265823 at 6.7 Mb was associated

with PAWT, which might be considered as novel region
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controlling the trait. This SNP explained 8.0% of the variation in

PAWT and is located within Sobic.007G063500 that encodes a

protein of unknown function. It is therefore important to carry

out further research to know whether this gene or another gene

nearby is responsible for the phenotypic variation the

SNP explained.

Previous association mapping studies detected several QTLs

for grain yield on all chromosomes except chromosomes 1 and 4

(Supplementary Table 5). The five SNPs on chromosomes 1, 5,

and 10 that were associated with grain yield (GY) in the present

study are distant from the previously reported QTLs for GY in

sorghum. Therefore, these SNPs probably represent novel QTLs.

The sbi17789352 locus on chromosome 5 at position 69.7 Mb

represents a novel QTL for GY since no MTA for this trait has

previously been identified in this genomic region. This SNP

explained 11.5% of the phenotypic variation in GY and located

within the Sobic.003G271700 gene that encodes a protein of

unknown function. Nevertheless, further research is required to

confirm the association between this genomic region and grain

yield, and to determine whether Sobic.003G271700 is the gene

responsible for the observed variation associated with the

SNP. The sbi30583046 locus at position 60.7 Mb on

chromosome 10 explained 2.3% and 7.2% variations in PAWT

and GY, respectively, which probably refers to a single gene that

regulates both PAWT and GY. The SNP locus (missense

mutation) is located within the gene Sobic.010G074100, which

encodes pentatricopeptide repeat (PPR) superfamily protein.

The protein has been reported to play a role in pollen

development and seed setting in rice (Zhang et al., 2020), and

pollen and organ development in Arabidopsis (Prasad et al.,

2005). Thus, it is likely that this SNP locus represents a novel

QTL that regulates PAWT and GY in sorghum, which is an

interesting finding that deserves further research.
5 Conclusion

This study used large number of Ethiopian sorghum

accessions and gene-based SNP markers to identify genomic

regions and candidate genes associated with grain yield and

agronomic traits in sorghum. The population structure analysis

revealed two genetic populations representing the sorghum

accessions studied indicating the presence of stronger genetic

relationships among individuals within each genetic population

than the overall average. A number of novel and previously

known genomic regions that are associated with the studied

traits were identified in this study. It is expected that the

identified MTAs will contribute significantly to the existing

knowledge base of sorghum genomic architecture, which will

increase the efficiency of sorghum breeding programs. Major

effect SNP loci, Sbi2393610 (PVE = 23.3%), Sbi10438246 (PVE =

35.2%), Sbi17789352 (PVE = 11.9%) and Sbi30169733 (PVE =

18.9%) on chromosomes 1, 3, 5 and 9 that showed strong
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association signals for PAWD, DTF, GY and PALH,

respectively, are major findings of this study, which need to be

further investigated. These findings provide insight into the

genetic control of grain yield and agronomic traits, and after

validation, the identified novel candidate genes may be used in

genomics-led breeding for sorghum genetic improvement.
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Alvarado, G., Rodrıǵuez, F. M., Pacheco, A., Burgueño, J., Crossa, J., Vargas, M.,
et al. (2020). META-r: A software to analyze data from multi-environment plant
breeding trials. Crop J. 8, 745–756. doi: 10.1016/j.cj.2020.03.010

Amare, K., Zeleke, H., and Bultosa, G. (2015). Variability for yield, yield related
traits and association among traits of sorghum (Sorghum bicolor (L.) moench)
varieties in wollo, Ethiopia. J. Plant Breed. Crop Sci. 7, 125–133. doi: 10.5897/
JPBCS2014.0469

Awika, J. M., and Rooney, L. W. (2004). Sorghum phytochemicals and their
potential impact on human health. Phytochemistry 65, 1199–1221. doi: 10.1016/
j.phytochem.2004.04.001

Borrell, A. K., Hammer, G. L., and Douglas, A. C. (2000). Does maintaining
green leaf area in sorghum improve yield under drought? i. leaf growth and
senescence. Crop Sci. 40, 1026–1037. doi: 10.2135/cropsci2000.4041026x

Bouchet, S., Pot, D., Deu, M., Rami, J.-F., Billot, C., Perrier, X., et al. (2012).
Genetic structure, linkage disequilibrium and signature of selection in sorghum:
lessons from physically anchored DArT markers. PloS One 7, e33470. doi: 10.1371/
journal.pone.0033470

Boyles, R. E., Cooper, E. A., Myers, M. T., Brenton, Z., Rauh, B. L., Morris, G. P.,
et al. (2016). Genome-wide association studies of grain yield components in diverse
sorghum germplasm. Plant Genome. 9, 2. doi: 10.3835/plantgenome2015.09.0091

Burks, P. S., Kaiser, C. M., Hawkins, E. M., and Brown, P. J. (2015). Genomewide
association for sugar yield in sweet sorghum. Crop Sci. 55, 2138–2148. doi: 10.2135/
cropsci2015.01.0057

Casto, A. L., Mattison, A. J., Olson, S. N., Thakran, M., Rooney, W. L., and
Mullet, J. E. (2019). Maturity2, a novel regulator of flowering time in sorghum
bicolor, increases expression of SbPRR37 and SbCO in long days delaying
flowering. PloS One 14, e0212154. doi: 10.1371/journal.pone.0212154

Chen, J., Xin, Z., and Laza, H. (2019). Registration of BTx623dw5, a new
sorghum dwarf mutant. J. Plant Regist. 13, 254–257. doi: 10.3198/
jpr2018.09.0058crgs

Chen, Y., Xu, Y., Luo, W., Li, W., Chen, N., Zhang, D., et al. (2013). The f-box
protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic
phenotypes, including leaf senescence, in rice. Plant Physiol. 163, 1673–1685.
doi: 10.1104/pp.113.224527

Childs, K. L., Miller, F. R., Cordonnier-Pratt, M.-M., Pratt, L. H., Morgan, P. W.,
and Mullet, J. E. (1997). The sorghum photoperiod sensitivity gene, Ma3, encodes a
phytochrome b. Plant Physiol. 113, 611–619. doi: 10.1104/pp.113.2.611

Christie, J. M., Suetsugu, N., Sullivan, S., and Wada, M. (2018). Shining light on
the function of NPH3/RPT2-like proteins in phototropin signaling. Plant Physiol.
176, 1015–1024. doi: 10.1104/pp.17.00835

Cui, Z., Luo, J., Qi, C., Ruan, Y., Li, J., Zhang, A., et al. (2016). Genome-wide
association study (GWAS) reveals the genetic architecture of four husk traits in
maize. BMC Genom. 17, 1–14. doi: 10.1186/s12864-016-3229-6
De Wet, J., and Harlan, J. (1971). The origin and domestication ofSorghum
bicolor. Econ. Bot. 25, 128–135. doi: 10.1007/BF02860074

Dill, A., Thomas, S. G., Hu, J., Steber, C. M., and Sun, T.-P. (2004). The
arabidopsis f-box protein SLEEPY1 targets gibberellin signaling repressors for
gibberellin-induced degradation. Plant Cell 16, 1392–1405. doi: 10.1105/
tpc.020958

Dreni, L., and Zhang, D. (2016). Flower development: the evolutionary history
and functions of the AGL6 subfamily MADS-box genes. J. Exp. Bot. 67, 1625–1638.
doi: 10.1093/jxb/erw046

Dykes, L. (2019). Sorghum phytochemicals and their potential impact on human
health. Methods Mol. Biol. 1931, 121–140. doi: 10.1007/978-1-4939-9039-9_9

Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for
visualizing STRUCTURE output and implementing the evanno method. Conserv.
Genet. Resour. 4, 359–361. doi: 10.1007/s12686-011-9548-7

Enyew, M., Feyissa, T., Carlsson, A. S., Tesfaye, K., Hammenhag, C., and Geleta,
M. (2022). Genetic diversity and population structure of sorghum (Sorghum bicolor
(L.) moench) accessions as revealed by single nucleotide polymorphism markers.
Front. Plant Sci. 12, 799482. doi: 10.3389/fpls.2021.799482

Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., and Carlsson, A.
S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot
and cluster analysis for grain yield and other agronomic traits in sorghum
(Sorghum bicolor l. moench). PloS One 16, e0258211. doi: 10.1371/
journal.pone.0258211

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters
of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14,
2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x

Food and Agriculture Organization of the United Nations (FAO) (2020). Rome,
Lazio, Italy. https://www.fao.org/faostat/en/#data/QCL

Garrison, E., and Marth, G. (2012). Haplotype-based variant detection
from short-read sequencing. arXiv . arXiv:1207.3907. doi: 10.48550/
arXiv.1207.3907

Girma, G., Nida, H., Seyoum, A., Mekonen, M., Nega, A., Lule, D., et al. (2019).
A large-scale genome-wide association analyses of Ethiopian sorghum landrace
collection reveal loci associated with important traits. Front. Plant Sci. 10, 691. doi:
10.3389/fpls.2019.00691

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al.
(2012). Phytozome: a comparative platform for green plant genomics.Nucleic Acids
Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944

Habyarimana, E., De Franceschi, P., Ercisli, S., Baloch, F. S., and Dall’agata, M.
(2020). Genome-wide association study for biomass related traits in a panel of
sorghum bicolor and S. bicolor× s. halepense populations. Front. Plant Sci. 11, 1796.
doi: 10.3389/fpls.2020.551305

Hilley, J., Truong, S., Olson, S., Morishige, D., and Mullet, J. (2016).
Identification of Dw1, a regulator of sorghum stem internode length. PloS One
11, e0151271. doi: 10.1371/journal.pone.0151271

Hilley, J. L., Weers, B. D., Truong, S. K., Mccormick, R. F., Mattison, A. J.,
Mckinley, B. A., et al. (2017). Sorghum Dw2 encodes a protein kinase regulator of
stem internode length. Sci. Rep. 7, 1–13. doi: 10.1038/s41598-017-04609-5

Hill, W., and Weir, B. (1988). Variances and covariances of squared linkage
disequilibria in finite populations. Theor. Popul. Biol. 33, 54–78. doi: 10.1016/0040-
5809(88)90004-4
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2022.999692/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.999692/full#supplementary-material
https://doi.org/10.1007/s00425-021-03799-7
https://doi.org/10.1007/s00425-021-03799-7
https://doi.org/10.3389/fgene.2021.661742
https://doi.org/10.1016/j.cj.2020.03.010
https://doi.org/10.5897/JPBCS2014.0469
https://doi.org/10.5897/JPBCS2014.0469
https://doi.org/10.1016/j.phytochem.2004.04.001
https://doi.org/10.1016/j.phytochem.2004.04.001
https://doi.org/10.2135/cropsci2000.4041026x
https://doi.org/10.1371/journal.pone.0033470
https://doi.org/10.1371/journal.pone.0033470
https://doi.org/10.3835/plantgenome2015.09.0091
https://doi.org/10.2135/cropsci2015.01.0057
https://doi.org/10.2135/cropsci2015.01.0057
https://doi.org/10.1371/journal.pone.0212154
https://doi.org/10.3198/jpr2018.09.0058crgs
https://doi.org/10.3198/jpr2018.09.0058crgs
https://doi.org/10.1104/pp.113.224527
https://doi.org/10.1104/pp.113.2.611
https://doi.org/10.1104/pp.17.00835
https://doi.org/10.1186/s12864-016-3229-6
https://doi.org/10.1007/BF02860074
https://doi.org/10.1105/tpc.020958
https://doi.org/10.1105/tpc.020958
https://doi.org/10.1093/jxb/erw046
https://doi.org/10.1007/978-1-4939-9039-9_9
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.3389/fpls.2021.799482
https://doi.org/10.1371/journal.pone.0258211
https://doi.org/10.1371/journal.pone.0258211
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://www.fao.org/faostat/en/#data/QCL
https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.3389/fpls.2019.00691
https://doi.org/10.1093/nar/gkr944
https://doi.org/10.3389/fpls.2020.551305
https://doi.org/10.1371/journal.pone.0151271
https://doi.org/10.1038/s41598-017-04609-5
https://doi.org/10.1016/0040-5809(88)90004-4
https://doi.org/10.1016/0040-5809(88)90004-4
https://doi.org/10.3389/fpls.2022.999692
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Enyew et al. 10.3389/fpls.2022.999692
Huang, M., Liu, X., Zhou, Y., Summers, R. M., and Zhang, Z. (2019). BLINK: a
package for the next level of genome-wide association studies with both individuals
and markers in the millions. GigaScience 8, giy154. doi: 10.1093/gigascience/giy154

Hundertmark, M., and Hincha, D. K. (2008). LEA (late embryogenesis
abundant) proteins and their encoding genes in arabidopsis thaliana. BMC
Genom. 9, 1–22. doi: 10.1186/1471-2164-9-118

Hu, Z., Olatoye, M. O., Marla, S., and Morris, G. P. (2019). An integrated
genotyping-by-sequencing polymorphism map for over 10,000 sorghum
genotypes. Plant Genome 12, 180044. doi: 10.3835/plantgenome2018.06.0044

Jankowski, K. J., Sokólski, M. M., Dubis, B., Załuski, D., and Szempliński, W.
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