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Abstract

MCC, a UCT based Chess engine, was created in order to test the performance of Monte-Carlo
Tree Search for the game of Chess. Mainly by modifications that increase the accuracy of the
simulation strategy, the performance of the base implementation was improved by approxi-
mately 864 Elo. MCC performed still too bad to compete with Minimax based chess programs
or to seriously suffer from search traps.
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1 Introduction

In 1997, the chess computer Deep Blue defeated the human chess world champion Garry Kas-
parov in a match of six games (Schaeffer 2000). Since then, chess computers became yet
stronger and now exceed the performance of human players. Currently, all good computer
programs are based on the tree search algorithm Minimax (Russell & Norvig 2010, p. 165).
It was also tried to use Minimax in order to create Go programs, however, Minimax did not
yield similar good results in Go as in Chess (Gelly et al. 2012). In 2006, a new tree search
algorithm was proposed, Monte-Carlo Tree Search (Coulom 2006, Kocsis & Szepesvári 2006,
Chaslot et al. 2006), which was successfully used to create strong Go programs (Wang & Gelly
2007). Monte-Carlo Tree Search (MCTS) performs better than Minimax in the game of Go. Does
it also perform better in the game of Chess?
Although there are indicators that MCTS is not suited for the game of Chess (Ramanujan et al.
2010), this thesis tests its performance with respect to Chess and examines how modifications
to the base algorithm can improve it. For this purpose, a Chess engine based on Monte-Carlo
Tree Search is created and compared with several modifications. Some problems encountered
during these tests are illustrated on concrete chess positions. The algebraic notation1 is used to
describe the chess moves on these positions.
The remainder of this thesis is structured as follows:
Section 2 outlines previous related work. The Minimax algorithm is covered in Section 2.1, since
it is the main competitor for Monte-Carlo Tree Search in the game of Chess. Understanding the
currently best-performing algorithm helps to understand the advantages and disadvantages of
MCTS. Section 2.2 covers Monte-Carlo Tree Search - the algorithm which is of main interest
of this thesis. Additionally, several modifications of the base algorithm are explained. These
modifications led to significant improvements on different games. Section 2.3 deals with some
techniques that are currently used by chess engines and do not depend on the underlying algo-
rithm.
In Section 3 the prospects of MCTS for Chess are analyzed. For this purpose, the algorithm is
compared to Minimax search and the prospects of the different modifications are assessed with
respect to Chess.
Section 4 discusses the implementation of the MCTS Chess program MCC which was created
to further analyze the performance of Monte-Carlo Tree Search for the game of Chess. Several
versions of MCC were created in order to test the different modifications independently.
The results of these tests are presented and analyzed in Section 5.
Finally, Section 6 recaps the considerations and insights provided by this thesis.

1 see http://www.fide.com/component/handbook/?id=125&view=article
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2 Related Work

2.1 Minimax Search

Assuming best play by both players, zero-sum two-player games like Chess can be labeled either
as winning for player A, winning for player B or draw. However, if the game complexity is too
large, finding the correct label is not feasible. Therefore, heuristic evaluation functions are used
to assign a numeric value to a given game state. For instance, a positive value could indicate
that player A is assumed to be winning and a negative value could indicate that player B is
assumed to be winning. High absolute values indicate high confidence in the assumption. Such
evaluation functions can be created by using domain knowledge to evaluate different features
of the game state.
Features commonly used by Chess evaluation functions include:

• Material balance

• Piece activity

• King safety

• Pawn structure

A simple evaluation function would now calculate the weighted sum of the scores of each fea-
ture. Chess evaluation functions usually normalize the resulting score to a unit of measure
called centipawn, where an advantage of 100 centipawns should correlate to the advantage of
having an extra pawn in the middlegame. Dynamic possibilities have to be considered as well,
e.g. a player might be able to reach a better game state by force. These dynamic aspects can
hardly be identified by only examining static positional features.
Minimax Search (Russell & Norvig 2010, p. 165) is a method that deals with the dynamics of a
game state by applying the evaluation function to all states which can be reached after a given
number of moves, instead of directly applying it to the current game state. Therefore, a game
tree with a fixed depth is created and the evaluation scores are stored for each leaf node. Then
the score of the leaf nodes are propagated upwards layer-wise until a score gets assigned to the
root node. Depending on which player is to move, either the maximum or the minimum score
of its children is propagated to an inner node. The player that wants to reach a high evaluation
score is the maximizing player and the player that wants to reach a low evaluation score is the
minimizing player. Figure 1 shows the result of a Minimax Search with depth 2. Initially scores
were only assigned to the leaf nodes. As each node in the middle layer belongs to the minimiz-
ing player, the lowest score of its children was used to evaluate it. Finally, the highest score in
the middle layer was propagated to the root node.
Instead of propagating the values layer-wise, it is also possible to propagate them in a depth-
first manner. This approach has better memory-efficiency and allows for a crucial modification
called Alpha-Beta Pruning.

2.1.1 Alpha-Beta Pruning

Minimax search with Alpha-Beta pruning (Knuth & Moore 1975), also referred to as Alpha-Beta
search, leads to the same root node evaluation as Minimax search but does not necessarily need
to evaluate all leaf nodes (Russell & Norvig 2010, pp. 167-169). The basic idea of Alpha-Beta
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Player A

Player B

Player A 3.1 2.5 -0.1 2.3 -8

2.5 -0.1 -8
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Figure 1: Minimax applied to a game tree with depth 2. Player A is maximizing, player B is
minimizing.

Player A

Player B

Player A 3.1 2.5 -0.1 2.3

2.5 -0.1

2.5

2.3

Figure 2: Alpha-Beta applied to the same game tree as in Figure 1. The right-most leaf node is
not evaluated due to an α-cutoff. The value of its parent is larger than its true minimax
value, but the root node evaluation can not be affected.

pruning is as follows: Assuming that, when examining an inner node, the minimax value v i of
a move mi was already discovered. If, by examining a different move m j of that node a reply is
found that gives the opponent a better value than v i, m j can be discarded immediately without
evaluating other replies. In order to discover the minimax value of a child without evaluating
the leaf nodes that belong to other children, Alpha-Beta search needs to update the values in a
depth-first manner. It also uses two extra variables: α stores the maximum score the maximizing
player is proven to reach and β stores the minimum score the minimizing player is proven to
reach, respectively. Initially α is set to −∞ and β is set to +∞. Whenever during the search
the minimax value of a node belonging to the minimizing player is discovered and is lesser or
equal α, the evaluation of its parent node is aborted, because the maximizing player would not
choose that node - an α-cutoff occurred. Respectively, a β-cutoff occurs if the minimax value of
a node that belongs to the maximizing player is greater or equal β . Figure 2 shows the result
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of an alpha-beta search with a left-to-right depth-first search on the same game tree as in Figure
1. The right-most leaf node is not evaluated as its score can not affect the minimax value of the
root node. It is to note that good move-ordering leads to more cut-offs and cut-offs may lead to
wrong minimax values for inner nodes.

2.1.2 Iterative Deepening

Minimax search uses a game tree with fixed depth and can only provide a meaningful result af-
ter the search is completed. In order to make better use of the available game time, it is usually
combined with Iterative Deepening (Korf 1985) in the game of Chess. Iterative Deepening starts
with a low depth Minimax search and increments the depth until the algorithm is stopped. Car-
rying out several iterations of Minimax search in that manner does not produce much overhead
because the number of nodes in the game tree grows exponentially with the depth. It is also
to note that previous iterations are usually not wasted since their results can be used to reduce
the time needed for the next iteration, e.g. by move ordering in combination with Alpha-Beta
search.

2.2 Monte-Carlo Tree Search

Monte-Carlo methods (Meteopolis & Ulam 1949) try to estimate the solution of a given problem
by aggregating the results of random simulations. They are often applied to problems that are
infeasible to solve by deterministic algorithms. Following the same idea, random simulations
can be used to estimate the outcome of a given game state. For instance, a heuristic evaluation
function for chess positions can be constructed by performing a large number of random play-
outs from the given position and counting the number of wins for White and the number of
draws. The evaluation score can now be calculated:

score=
total reward

number of simulations

total reward= number of white wins+ 0.5× number of draws

Unlike the static evaluation function discussed in section 2.1 the simulation-based heuristic
produces a score that correlates to a winning probability. To be specific, the evaluated score
converges with increasing simulations to the winning probability of the white player, if both
players chose their moves at random. As Chess is a zero-sum game the winning probability of the
black player is the converse winning probability of the white player. Similar to an evaluation
function that is based on static features of a position, the simulation based heuristic fails to
identify the dynamic aspects of the game. For example, on positions where the side to move has
only few moves that are winning and many moves that are losing, most of the simulations would
start with a losing move resulting in low winning probabilities for the side to move, although it
has a winning position. Again, the inability of the heuristic to identify the dynamic aspects of a
position can be solved by combining it with a tree search.
Monte-Carlo Tree Search (Coulom 2006, Kocsis & Szepesvári 2006, Chaslot et al. 2006) com-
bines the simulation based heuristic with a minimax search on a gradually expanding game
tree. Initially, only the root node of the game tree - representing the current board position - is
created. Then the game tree grows by repeatedly performing the following four steps:
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1. Select: The game tree is traversed until a node is reached which is not fully expanded
yet. The branches are chosen according to a selection strategy. The selection strategy
must ensure that promising branches (i.e. those branches which led to the best results so
far) are picked more often than less promising branches. This leads to a best-first search,
which is necessary to allow convergence of the winning probability of a node towards the
winning probability of its best child. Depending on the side to move the selection strategy
prefers the move with either the maximum or the minimum winning probability, similar
to minimax search. However, the selection strategy must also prefer branches which have
been visited less often because their estimated winning probabilities have greater variance.

2. Expand: The game tree gets expanded by adding a new child to the selected node. The
child represents the resulting position, after making a legal move which was not repre-
sented in the game tree yet.

3. Simulate: Beginning from the position of the newly created node the simulation plays
random moves until a terminal game state is reached.

4. Update: For all nodes which have been visited in this iteration, including the new node, the
visit counter is incremented and the total reward is increased depending on the outcome
of the simulation.

The four steps of MCTS are illustrated in Figure 3. For better illustration, the rules of the
underlying game should allow exactly two moves for every possible game state. Hence the
selection step stops on the first node which has less than two children.

1. Select 2. Expand 3. Simulate 4. Update

Figure 3: The four steps of Monte-Carlo Tree Seach illustrated on a game with a constant branch-
ing factor of 2.

2.2.1 UCT

A selection strategy which chooses the most promising branch often enough to ensure con-
vergence without neglecting the other branches is essential for Monte-Carlo Tree Search. The
problem of finding a good trade-off between choosing the empirical best action and explor-
ing other actions is known as the exploitation-exploration dilemma in the multi-armed bandit
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problem (Auer et al. 1995). UCT (Kocsis & Szepesvári 2006) is rather a realization than a mod-
ification of Monte-Carlo Tree Search because it provides the necessary selection strategy. UCT
uses the bandit algorithm UCB1 (Auer et al. 2002) as a selection strategy:

ichosen = argmax
i∈1,...,K

(wi + C ∗

È

2 ln n

ni
) (1)

where wi is the empirical winning probability of child i, n is the number of visits of the current
node, ni is the number of visits of child i, K is the number of children of the current node and
ichosen is the chosen child. The exploration coefficient C is by default set to 1 and can be used to
steer the strategy towards more exploration (C > 1) or towards more exploitation (C < 1). UCT
is not the best selection strategy (Tesauro et al. 2010), but it is simple and was proven correct.
Therefore, it is often chosen for MCTS implementations.

2.2.2 AMAF / RAVE

Instead of using the result of a simulation only to update those nodes which were visited in the
selection or expansion step, the AMAF (Gelly & Silver 2007) modification additionally updates
some siblings of these nodes. A sibling is updated, if it could be reached by making a move from
its parent node that was played during the simulation by the corresponding side to move.
Gelly & Silver (2007) created the RAVE (Rapid Action Value Evaluation) heuristic by applying
AMAF to UCT. The updates to the siblings are less meaningful than the updates to the visited
nodes, because during the play-out the corresponding moves were played on a different game
state. Thus, the AMAF updates are maintained separately in RAVE. The RAVE value can now be
used mainly for sparsely explored nodes by adjusting the selection strategy:

ichosen = arg max
i∈1,...,K

(βi ∗wRAV E,i + (1− βi) ∗wi + C ∗

È

2 ln n

ni
) (2)

where wRAV E,i is the RAVE value of child i and βi is a weighting coefficient, that depends on the
statistics of child i. Gelly & Silver (2011) used the following formula to calculate βi:

βi =

È

kRAV E

3ni + kRAV E
(3)

where kRAV E can be set to the number of simulations at which β should be 1
2
.

2.2.3 Progressive Bias

Guiding the selection for nodes with only few visits can also be achieved by using static heuristic
functions like the one discussed in Section 2.1. Like in RAVE, the bias to the selection strategy
should decay with increasing simulations in order to allow the selection strategy to make better
use of the accumulated statistics. Progressive Bias (Chaslot et al. 2008) is a modification of
the selection strategy that incorporates a heuristic function H(n) with progressively decaying
influence:

ichosen = argmax
i∈1,...,K

(wi + C ∗

È

2 ln n

ni
+

kbias ∗H(ni)
ni

) (4)

where kbias is set suitable to the heuristic function.

9



2.2.4 Progressive Unpruning / Widening

Progressive Unpruning (Chaslot et al. 2008) and Progressive Widening (Coulom 2007) are two
very similar approaches which were invented independently. They soft prune children with bad
heuristic scores in the early phase of exploring a node and progressively "unprune" them when
the node gets better explored. Soft pruning is achieved by ignoring them in the selection step.
The nodes are unpruned in the order of their heuristic value. The number of unpruned nodes
usually grows logarithmically with the number of simulations. Progressive Unpruning prunes
the children except a fixed number of them as soon as the node is created. Progressive Widening
applies pruning to a node only after fixed number of simulations.

2.2.5 Decisive Moves

Apart from modifying the selection strategy, the performance of Monte-Carlo Tree Search can
also be improved by modifying the simulation strategy. Teytaud & Teytaud (2010) examined the
performance of a simulation strategy which always plays a direct winning move, if such a move
is available. They showed that, although additional time had to be spent for identifying winning
moves, their simulation strategy performed better than a purely random strategy in the game of
Havannah. Additionally, identifying anti-decisive moves (i.e. moves that prevent the opponent
from playing a decisive move) was demonstrated to lead to further improvements (Teytaud &
Teytaud 2010).

2.2.6 Heavy Playouts

The simulation strategy can also be improved by utilizing domain knowledge. This is usually
connected with a trade-off between simulation speed and simulation accuracy. Within this the-
sis, high accuracy of a simulation strategy should be understood as the ability of the strategy
to produce expected values that for most nodes correlate to the expected values produced by
a perfect playing strategy. Heavy playouts (Drake & Uurtamo 2007) use domain knowledge to
create more accurate simulations at the cost of simulation speed. There are many ways to create
heavy playouts. For instance, Wang & Gelly (2007) use patterns to produce sequence-like ran-
dom simulations with great success for their Go program MoGo. The patterns are used to find
interesting moves around the last played stone. If interesting moves are found, one of them is
randomly chosen and played. Only if no pattern matches, a completely random move is played.
Another form of heavy playouts was used by Winands & Björnsson (2009) for the game of Lines
of Action. They used a heuristic function to create a mixed simulation strategy which consists
of two different strategies. The simulation begins with the corrective strategy which chooses a
move with a probability according to its heuristic evaluation score. Moves that are evaluated
worse than the current position get their score artificially reduced to a fixed minimum, which is
close to zero. After a certain amount of moves the simulation switches to the greedy strategy.
The greedy strategy always plays the move with the best heuristic evaluation. Both strategies
stop as soon as a move is found that has a heuristic score above a certain threshold. In that case,
the simulation considers the corresponding side to move as winning. In their experiments the
mixed strategy performed better than the greedy strategy and the corrective strategy.

2.2.7 Monte-Carlo Solver

Monte-Carlo Solver (Winands et al. 2008) is used to prove the game-theoretical value of a node
if such a prove is feasible. The game-theoretical value of a leaf node is obviously already proven
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if it corresponds to a terminal game state. Monte-Carlo Solver only proves game-theoretical wins
and losses. A node is proven winning if at least one of its children are proven losing. A node
is proven losing if all of its children are proven winning. A node gets its rewards assigned to
+∞ or −∞ if it is proven winning or losing, respectively. The update mechanism is modified to
deduce the game-theoretical value of a node from the rewards of its children, if such a deduction
is possible. This modification also led to an improvement of playing strength in the game Lines
of Actions due to faster convergence to game theoretical values (Winands et al. 2008).

2.3 Chess Engine Programming

Figure 4: Different move sequences can lead to the same chess position.

Current state-of-the-art chess programs also apply several techniques that are not specific
to the underlying Iterative Deepening Alpha-Beta algorithm. As some of these led to critical
improvements in playing strength, they should be considered for MCTS based chess players as
well.

• Bitboards: A bitboard (Adel’son-Vel’skii et al. 1970) is a data structure that is commonly
used for representing chess positions. Bitboards use only a single bit for every square of the
board. Hence, for every piece type and every color an own bitboard is required. Additional
bitboards are often used, e.g. in order to mark blocked squares or attacked squares. This
data representation allows move generation by using binary operations on the bitboards
which is significantly faster than using nested loops.

• Transposition Tables: In the game of Chess, different move sequences can lead to the same
chess position. For instance, 1.e4 e5 2.Nf3 Nc6 3.Bc4, 1.e4 e5 2.Bc4 Nc6 3.Nf3, 1.e3
e6 2.e4 e5 3.Nf3 Nc6 4.Bc4 and many other move sequences lead to the same position as
illustrated in Figure 4. Different move sequences which lead to the same position are called
transpositions in Chess. By sharing the evaluation score of a node with its transpositions
significantly less nodes have to be evaluated. Alpha-beta based chess programs usually
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use transposition tables (Breuker et al. 1977) to share information among transpositions -
most notably the program MackHack by Greenblatt et al. (1967) which was the first chess
program to use transposition tables. A hash function is used to calculate the index of the
corresponding table entry for a position.

• Endgame Tablebases: Chess endgames with only few pieces left can be solved by a retro-
grade analysis beginning with all possible mating positions for a given material constella-
tion (Bellman 1965). The results of the analyses of every material constellation with N
pieces on the board can be used to create a N -piece endgame tablebase. Such tablebases
can be queried to quickly obtain the correct evaluation of all chess positions with N pieces.

• Static Exchange Evaluator: If a piece is attacked and defended multiple times, the side to
move has to decide whether it is in its interest to capture the piece or not. Regarding only
the material implications, the least valuable attacker should always be used for a capture.
A Static Exchange Evaluator (SEE) is an algorithm that examines all sequences of captures
on a given square (Maynard Smith & Michie 1961). It determines the material gain or
loss for the side to move assuming that both sides make the best decisions regarding only
those captures on the given square. The Static Exchange Evaluator can also be used on
non-capturing moves. In that case the returned score is either negative or zero.

12



3 Prior Assessment of Monte-Carlo Tree Search for Chess

3.1 Benefits

Monte-Carlo Tree Search has three main benefits:

• MCTS does not depend on a heuristic evaluation function. Hence, besides the game rules
which need to be known for move generation and evaluation of terminal game states, no
domain knowledge is required to construct a MCTS based game player. This makes the al-
gorithm particularly interesting for general game playing and games for which insufficient
domain knowledge is available to construct good heuristic functions.

• MCTS is anytime. Whenever the algorithm gets stopped, it can suggest a move by making
use of all completed iterations. This is important because game playing programs usually
have limited time to choose a move.

• MCTS is best-first. Monte-Carlo Tree Search is a best-first search because the most promis-
ing nodes are most explored - the game tree grows asymmetrically. It is desirable to spend
most time in evaluating promising moves, as they are most important for evaluating the
current position.

Assessing the usefulness of these benefits with respect to Chess it is first to note that although
Monte-Carlo Tree Search does not need heuristic evaluation functions, incorporating domain
knowledge may lead to significant improvements, e.g. by Heavy Playouts. Furthermore, current
Alpha-Beta based chess engines demonstrate that heuristic evaluation functions can be used to
beat even the best human chess players. As good heuristics exist and would probably be used
anyway by strong MCTS based chess programs, the benefit of not requiring them is negligible.
The anytime property of Monte-Carlo Tree Search is more likely to be useful for chess pro-
grams. Although, Alpha-Beta search with Iterative Deepening makes also use of all completed
iterations, the time which is needed per iteration grows exponentially. However, this benefit
is probably not telling as well because chess players can usually ration their time. Alpha-Beta
based players therefore prefer to stop the search before starting a new iteration, if that iteration
is unlikely to be completed due to time limitations.
Traversing the game tree in best-first order is the most promising benefit of Monte-Carlo Tree
Search with respect to Chess. Whether the simulation strategy leads to the desired asymmetrical
tree structure depends on the consistency of the strategy. Within this thesis, high consistency
of a simulation strategy should be understood as the ability of the strategy to converge to ap-
proximately equal winning probabilities for any node and its best child. A simulation strategy
with high accuracy has also high consistency. Whether random or pseudo-random simulations
are consistent in Chess has yet to be determined.

3.2 Drawbacks

The MCTS approach also has potential drawbacks compared to Minimax search:

• Search traps occur if a player is able to improve his position by a combination of moves
that includes at least one seemingly bad move. An example of such a search trap in Chess
is given in Figure 5: The move 1.Nxe5 utilizes a well-know chess trap, which is called
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the Légal Trap. By playing that move White allows Black to capture the white queen by
1...Bxd1, which gives Black a large advantage in material. Therefore, 1.Nxe5 might look
like a very bad move at first glance. However, after finding out that Black gets mated by
force, if White continues with 2.Bxf7+ Ke7 3.Nd5#, it becomes obvious that Black should
not capture the queen and instead accept the loss of a pawn by playing 1...dxe5 2.Qxg4.
This example highlights an aspect of Chess which is important for the evaluation of the
best-first search of MCTS: Some good moves seem very bad until a specific continuation is
discovered. The influence of search traps for MCTS has already been examined for Chess
by Ramanujan et al. (2010). They discovered that shallow search traps occur often in
the game of Chess and that UCT needs significantly more iterations to identify them than
Minimax search. Their results can be explained by the nature of Monte-Carlo Tree Search:
Best-first search spends little computation time for evaluating the trap move as long as
the concrete winning continuation is not fully discovered. As only little time is spent for
exploring the trap move, many iterations are required to discover the correct continuation -
a vicious circle. In contrast to MCTS, Minimax search with Iterative Deepening is a breadth
first search and is therefore able to identify search traps much quicker.

Figure 5: Example of a search trap.

• Move generation speed is a decisive factor in Monte-Carlo Tree Search, as - in contrast
to Minimax search - it is not only required for creating the game tree but also during
simulation. MCTS was used successfully for creating Go programs. However, in the game
of Go move generation is almost as simple as finding empty intersection, whereas it is more
complicated in the game of Chess. Chess pieces are actually moved. Therefore, not only
the target square has to be considered but also the initial square of the piece as well as all
squares that are traversed (except for knight moves). Furthermore, Chess has six different
piece types which move all differently. Especially pawn moves are quite intricate because
they do not capture in the same way as they move. Additionally, en-passant captures,
castling and pawn double steps are exceptional moves which are only legal under certain
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conditions. Finally it must be checked for every move whether it leaves the own king in
check.
While, by utilizing Bitboards, move generation turned out fast enough to enable Minimax
based players to perform very well in Chess, it is an open question whether it is fast enough
to enable MCTS based players to perform similarly well.

• The accuracy of random simulations is another important factor that influences the per-
formance of Monte-Carlo Tree Search. The winning probability of a random or pseudo-
random strategy has usually a different expected value than the winning probability of a
perfect playing strategy. Technically, even with the worst simulation strategy MCTS would
still converge to the correct evaluation because the simulation strategy becomes irrelevant
as soon as the game tree is fully expanded. However, because it is usually infeasible to
fully expand the game tree, a simulation strategy with low accuracy is likely to lead to bad
evaluations. It should be noted that MCTS is able to compensate for several nodes which
have inaccurate expected values, because only one simulation is started per node. Never-
theless a certain degree of accuracy is required in order to produce reasonable evaluations
within limited time. Whether random simulations have sufficient accuracy in the game of
Chess has yet to be investigated.

3.3 Assessments of modifications

The performance of MCTS based game players is usually significantly increased by applying
several modifications to the base algorithm. Therefore, when assessing the prospects of MCTS
for Chess these modifications should not be ignored.

• AMAF and especially RAVE proved useful in the game of Go. In Go, many moves that are
played during the simulation are also available at the start of the simulation. In the game
of Chess, the pieces are moved around during the simulation. Hence, they occupy differ-
ent squares and have different moves available. Consequently, Chess does not suit well
for RAVE and similar AMAF modifications. Whether RAVE estimates in Chess are good
enough to provide verifiable improvements is also questionable. However, such assess-
ments seem unnecessary as, for the reason stated earlier, RAVE is most likely no significant
improvement anyway.

• Progressive Bias, Progressive Widening and Progressive Unpruning use heuristic evaluation
functions to guide the selection strategy for nodes that have not been visited often enough
to provide meaningful winning probabilities. As heuristic functions proved very powerful
for Minimax players in Chess, it is interesting to combine them with MCTS as well. Biasing
the selection strategy towards promising nodes accelerates the convergence of winning
probabilities. For these reasons, Progressive Bias, Progressive Widening and Progressive
Unpruning are promising modifications with respect to Chess.

• Identifying decisive moves in order to always play them during the simulation paid of in the
game of Havannah (Teytaud & Teytaud 2010). It was already noted that move generation
in Chess is expensive compared to many other games. If the simulation strategy is able
to generate a random move, without needing to generate all possible moves, identifying
decisive moves might become too costly. However, if the simulation strategy generates all
moves anyway, identifying decisive moves produces little overhead, because checking the
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resulting positions for mate can be done fast by using Bitboards. Decisive Moves might then
even be faster than using a purely random strategy due to shorter simulations. Additionally,
shorter simulations should generally improve the simulation accuracy. If no extra move
generations are required Decisive Moves is a promising modification with respect to Chess.

• Heavy playouts turned out to be vital for many MCTS based game player, e.g. MoGo
(Wang & Gelly 2007). Sequence-like random simulations similar to those used by MoGo
are promising for Chess as well. By looking for good replies to the previous move, the sim-
ulation strategy might become much more accurate and consistent. Although patterns can
also be used in Chess, different approaches might be suited better. Creating sequence-like
moves in Chess is however little explored, if at all.
It seems again reasonable to make use of the fact, that strong heuristic functions are avail-
able for the game of Chess. Winands & Björnsson (2009) showed that simulations based
on evaluation functions can increase the performance of MCTS. It might be even a better
approach to use heuristic functions that are able to directly suggest good candidate moves.
This would be more efficient than evaluating all positions which arise after making a move
and then choosing a move that leads to a position with a good evaluation.
Improving the accuracy of simulations was vital for other games and is probably vital for
Chess as well. It is, however, an open question how the accuracy should be improved with
respect to Chess.

• Although Monte-Carlo Solver led to an improvement in the game Lines of Actions (Winands
et al. 2008) it should be primarily seen as a modification that aims at proving game-
theoretical values. Whether such proofs can be used for significant improvements depends
on the concrete implementation of the game player. It should be stressed, that Monte-Carlo
Solver is only able to prove a forced mate, if all variations that lead to a mate have already
been discovered. MCTS converges very quickly towards the correct winning probabilities,
once the relevant variations for proving a win or a loss are discovered. The speed gained by
marking such nodes as winning or losing and accounting for these marks in the selection
strategy is therefore negligible. It is to note, that the difficulty of identifying search traps
remains. Nevertheless, it is convenient to be able to prove a forced mate in the game of
Chess as more meaningful output is possible. It should also be easy to calculate the mating
distance by modifying the update mechanism in order to additionally count the distance
to mate. Monte-Carlo Solver is an interesting modification with respect to Chess, because
it can provide for more meaningful output.

Some techniques that are often used in state-of-the-art Minimax chess programs were described
in Section 2.3. As these techniques do not require Minimax search, it is tempting to use them
for MCTS based chess players as well.

• Bitboards are used by Minimax based chess players to quickly identify features of a chess
position, most notably the available moves. As fast move generation is vital for Monte-
Carlo Tree Search, it makes sense to utilize Bitboards for MCTS based chess programs.
It should be emphasized, however, that MCTS only requires a single random move for
the simulation strategy, whereas Minimax has to generate all legal moves. This could be
exploited by first generating only pseudo-legal moves, i.e. moves which are not tested
against whether they leave the own king in check. Then one of the pseudo-legal moves
could be randomly chosen and tested. If the move is legal, it can be played immediately. If
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it is not legal, it is removed from the set of pseudo-legal moves and the algorithm repeats
by choosing another pseudo-legal move. It would be even faster to randomly choose a
piece and generate only the moves of that specific piece. This approach, however, would
not choose every move with the same probability, which could affect the accuracy of the
simulation.

• Transpositions are very common in the game of Chess. As the same chess position can
be reached by different move sequences, several different nodes in the MCTS game tree
correspond to the same position without sharing any information. Saffidine et al. (2011)
showed that sharing information between those nodes by building a directed acyclic graph
instead of a tree can lead to improvements for several different games.

• Endgame tablebases make it possible to quickly obtain the correct evaluation for chess
positions with only limited number of pieces. Minimax based chess programs can use an
endgame tablebase to deduce perfect play for such positions, but they can hardy make
use of it, if too many pieces are still on the board. MCTS, however, can query the table-
base not only for endgame positions within the game tree but also for endgame positions
which are encountered during simulations. Endgame tablebases can therefore shorten the
simulations which leads to an increased accuracy. If the time spent for querying the table-
base is less than the time saved by shorter simulations the use of endgame tablebases can
additionally increase the simulation speed. Consequently, endgame tablebases might be
beneficial for MCTS not only when evaluating endgame positions but already in the very
beginning of a chess game.

• A Static Exchange Evaluator might also be useful for Monte-Carlo based chess programs,
e.g. by replacing the heuristic evaluation function for Heavy Playouts. In the simulation
strategy many blunders can be avoided by avoiding moves with negative SEE values. By
preferring moves with positive SEE values bad moves of the opponent are also punished
more often. This might increase the accuracy of the simulation strategy. It is to note, that
a Static Exchange Evaluator is usually considerably faster than a heuristic evaluation func-
tion2.
Evaluation functions that include several features of a position are more suitable for cre-
ating strong chess programs than evaluation functions that only consider material bal-
ance. For that reason, chess programs use the Static Exchange Evaluator only to assist the
feature-based heuristic evaluation function (e.g. for move ordering) which is responsible
for the actual evaluation of the leaf nodes in the Minimax game tree. For the same reason,
a simulation strategy that choses its moves according to a heuristic evaluation function
might play stronger than a simulation strategy based on SEE values. However, it should
not be wrongly concluded that the stronger strategy is also more accurate. Experiments by
Gelly & Silver (2007) showed that an objectively stronger simulation strategy may lead to
worse performance in UCT even when the speed of the strategies are comparable. Silver &
Tesauro (2009) identified the balance of a simulation strategy as the correct measurement
for its accuracy. They argue that a badly playing strategy would still lead to the correct
evaluation, if the errors of one player are compensated by the errors of the other player.
Therefore, using a Static Exchange Evaluator instead of the heuristic evaluation function
might not only increase the simulation speed but also the simulation accuracy.

2 like the one sketched in section 2.1
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3.4 Summary

Best-first search is the main benefit of MCTS compared to Minimax search with respect to Chess.
The inability to identify search traps is, however, a consequence of this search order and might
hinder the creation of a strong chess program based on MCTS.
Several modifications to MCTS that were successfully used for other games are promising for
Chess, too. Especially modifications that use heuristic evaluation functions are well suited for
MCTS based Chess programs. The only unpromising modification assessed within this thesis is
AMAF/RAVE. Algorithm independent techniques that are used with great success in top rated
chess programs are also promising for MCTS based Chess programs. Monte-Carlo Tree Search
might even be able to make better use of Endgame Tablebases than Minimax search.
The decisive factors for the performance of the algorithm are the accuracy of the simulation
strategy as well as the speed of move generation.

4 MCC - A Monte-Carlo Chess Engine

4.1 Base implementation

We implemented a Monte-Carlo based chess engine, MCC, in order to test the performance
of Monte-Carlo Tree Search for Chess. MCC is based on the strong open source Alpha-Beta
chess engine Stockfish3, which is written in C++. By using one of the strongest available chess
engines, we could make use of its fast move generation based on Bitboards, its heuristic eval-
uation function, its Static Exchange Evaluator as well as other sophisticated implementations.
In uci.cpp, we replaced the call to the Iterative Deepening Alpha-Beta search by a call to our
UCT search which was implemented in uctSearch.cpp. The pseudo-codes of the most important
functions can be found in the Appendix. The structure of the main function in uctSearch.cpp is
given in Algorithm 7.1. A very simple time management is used by assigning a fixed fraction of
the remaining clock time for deciding on the next move. We do not store positions within the
game tree for memory efficiency.
The four steps of Monte-Carlo Tree Search were implemented in the class that represents the
tree nodes, montecarlotreenode.cpp. The pseudo-code of our implementation of the selection
step is given in Algorithm 7.2. We used the UCT formula as described in Formula 1 in Sec-
tion 2.2.1.
Our implementation of the expansion step is shown in Algorithm 7.3. The moves are expanded
in the same order as they are generated.
Algorithm 7.4 shows our simulation strategy. When assessing the usefulness of Bitboards in
Section 3.3 it was noted that generating all legal moves is not the most efficient way, if only one
random move is required. However, we decided to generate all moves nevertheless by using
Stockfish’s Move Generator, because this is less error-prone. This work focuses on the general
prospects of Monte-Carlo Tree Search applied to Chess, hence improvements which only in-
crease the speed of iterations are less significant for this thesis. The impact of such modification
can always be estimated by providing extra evaluation time.
Our update procedure is straightforward and uses recursion. For the sake of completeness, it is
illustrated in Algorithm 7.5.

3 obtainable from: http://www.stockfishchess.com/
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4.2 Modifications

We also implemented several modifications to the base algorithm in order to test their perfor-
mance in respect to Chess. Before explaining these modifications we should give our reasons
for not implementing some of the discussed modifications:

• AMAF/RAVE was assessed as unpromising for Chess in Section 3.3. Extracting additional
information from the simulations is an interesting idea and AMAF based modifications
might very well lead to some improvements in the game of Chess, too. However, for the
reasons given earlier, it is rather unlikely that these improvements are deciding.

• Even so Progressive Widening and Progressive Unpruning are interesting modifications in
respect to Chess, we did not test them as they are similar to Progressive Bias. We preferred
to test Progressive Bias, because its implementation is less time-consuming.

• We did also not make use of transpositions. Sharing information between transpositions
would certainly improve the performance of MCC, if done in a sensible way. However,
identifying transpositions and handling them correctly involves considerable changes to
the source code. Additionally, such modifications have the same effects as increasing the
speed of iterations.

4.2.1 Modifications to the simulation strategy

The assessment has shown that the accuracy of the simulation strategy is the deciding factor for
the performance of MCTS for Chess. We test three different ways to increase the accuracy of the
simulation strategy: Heavy Playouts, Endgame Tablebase and Decisive Moves.

• Heavy Playouts: There are many ways to create Heavy Playouts. The pattern-based ap-
proach by Wang & Gelly (2007) and the mixed strategy by Winands & Björnsson (2009)
were already described in Section 2.2.6. We use an ε-greedy policy (Sutton 1995) by play-
ing the best evaluated move with probability 1− ε and a random move with probability
ε. For this purpose, we created two modifications to our chess program: MCC_HPEVAL,ε
uses Stockfish’s heuristic evaluation function to identify the best move. MCC_HPSEE,ε uses
Stockfish’s Static Exchange Evaluator. With ε = 1 both modifications behave exactly like
unmodified MCC; with ε= 0 both modifications are completely deterministic. Gelly & Sil-
ver (2007) showed that the performance of a simulation strategy may drop if it becomes
too deterministic.

• Endgame Tablebase: How Endgame Tablebases might be useful to increase the accuracy
of a simulation strategy was already outlined in Section 2.3. We use the open source
Gaviota Endgame Tablebase4 to stop the simulations as soon as the Endgame Tablebase can
be queried. This modification uses tb-probe.cpp as an adapter to call the Gaviota Endgame
Tablebase API.

• Decisive Moves: Teytaud & Teytaud (2010) demonstrated that identifying decisive moves
paid of in the game of Lines of Actions. We test their idea in respect to Chess by testing
for every move that gives check, whether the resulting position is mate or not. If a mate
was found, the corresponding move is played. Only if no mate was found a move is chosen
randomly.

4 obtainable from: https://sites.google.com/site/gaviotachessengine/Home
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4.2.2 Further modifications

Additional to modifications that aim at increasing the simulation accuracy, we also test a modi-
fication to the selection strategy (Progressive Bias) and a game theoretical modification (Monte-
Carlo Solver).

• Progressive Bias: If a node was only visited a few times, its winning probability gives
only little information about the strength of the corresponding move. Therefore, we apply
Progressive Bias by storing for every node the result of Stockfish’s heuristic evaluation
function of that node and by modifying the selection strategy according to Formula 4 in
Section 2.2.3. We do not test Progressive Bias in combination with the Static Exchange
Evaluator. The SEE rates all non-capturing moves equal if they do not allow captures
on the target square and would therefore have less influence on the selection strategy.
Additionally, the speed improvement of SEE over the heuristic function has little influence
on the speed of iterations, because we calculate the score only once per iteration.

• Monte-Carlo Solver: Similar to the approach by Winands et al. (2008) we mark proven
winning nodes by setting their total rewards to a high value and proven losing nodes by
setting their total rewards to a high negative value. However, we do not use a constant
value, Cprov enWin, for all proven winning nodes and its negative −Cprov enWin for all proven
losing nodes. Instead, we calculate the total reward of a proven node depending on its
shortest proven distance to mate, x , and therefore use Cprov enWin(x) and −Cprov enWin(x),
respectively, with

Cprov enWin(x) = Cprov enWin(0)− x (5)

and Cprov enWin(0) being a fixed high value.
This allows us to prove the shortest distance to mate by using a different update strategy
if a terminal game state was detected. The additional update strategy is only called if
the expanded node of the current iteration is already mate. The method is sketched in
Algorithm 4.1:
The total reward of a winning node is only overwritten if a quicker win was not already
discovered (line 3-5). If the current node is losing, its parent node is winning (line 11-14).
If the current node is winning things are a bit more complicated: If the parent node is
not fully expanded (line 14-17) or one of the siblings is not proven losing (line 21-24) we
switch to the normal update strategy. Otherwise, we identify the child of the parent node
that has the longest distance to mate (line 27-29), increment its distance to mate (line
32-36) and use this value to update the (losing) parent node (line 37).
Additionally, the regular update function was modified to prevent it from updating the
total rewards of proven winning or losing nodes. The selection strategy was modified to
play proven winning moves with very high probability and to play proven losing moves
with very low probability.
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Algorithm 4.1 montecarlotreenode.cpp
1: function UPDATEPROVENGAMESTATE(sideToMove, value)
2: v isi ts← v isi ts+ 1
3: if not (sideToMov eWins(sideToMov e, v alue) and abs(totalValue > v alue)) then
4: totalValue← v alue
5: end if
6:

7: if has no parent then
8: return
9: end if

10:

11: if sideToMov eLoses(sideToMov e, v alue) then
12: parent.updateProv enGamestate(other(sideToMov e), v alue)
13: return
14: end if
15:

16: if parent is not fully expanded then
17: continueWithNormalU pdate(v alue)
18: return
19: end if
20:

21: f ar thest Loss← totalValue
22: for all sibl ing ∈ sibl ings do
23: if not sideToMov eWins(sideToMov e, sibl ing.totalValue) then
24: continueWithNormalU pdate(v alue)
25: return
26: end if
27: if abs(sibl ing.totalValue)< abs( f ar thest Loss) then
28: f ar thest Loss← sibl ing.totalValue
29: end if
30: end for
31:

32: if f ar thest Loss > 0 then
33: f ar thest Loss← f ar thest Loss− 1
34: else
35: f ar thest Loss← f ar thest Loss+ 1
36: end if
37: parent.updateProv enGameState(other(sideToMov e), f ar thest Loss)
38: end function
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5 Evaluation

5.1 Base implementation

The performance of unmodified MCC was very bad. It was actually so bad that comparisons
to Alpha-Beta based engines are uninspiring as unmodified MCC would be no match for - even
mediocre - Minimax implementations. The tree growth of MCC is almost symmetrical, indicating
that the engine has severe difficulties to distinguish between very good and very bad moves. An
inability to distinguish between winning and losing moves was also observable in games of self-
play: Pieces were often moved to squares where the opponent could capture them with huge
advantage - but too often it did not make use of such opportunities.

5.1.1 Draws

Figure 6: An endgame with king and queen against king

In order to better understand why the evaluation of good moves is often close to the evalua-
tion of bad moves the influence of draws should be discussed. Draws are much more common
in Chess than in the game of Go and in many clearly winning endgame positions the winning
side needs to find the correct strategy in order to convert its advantage to a win.
Figure 6 shows a simple endgame where White has a king and a queen and Black only has a
king. White is clearly winning as he is able to use both his pieces to first force the black king to
the edge of the board and then mate it there. By following this plan, delivering mate is easy and
can be demonstrated by chess beginners. What are the prospects of a random strategy to reach
a mate in this position? In order to answer this question we performed a million simulations
starting from the position in Figure 6. The overwhelming majority of these simulations ended
in a draw. Only in 4988 simulations - about half a percent of all simulations - White was able
to deliver a mate, leading to a winning probability of 50,2494%. The low winning probability is
not surprising given the fact that by chance the black king must move to an edge while by chance
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White must approach the black king with his own king and then by chance must play the mating
queen move - all within fifty moves. The difficulties of the random simulation to deliver mate
directly affect the evaluations of Monte-Carlo Tree Search which are almost always, except for
rare cases, close to 50%.
One might argue, that these winning probabilities still correlate to the correct winning proba-
bilities of the white player. However, it can be shown that this is not always the case.

Figure 7: Famous study by Richard Réti. White is able to draw.

Figure 7 shows a famous endgame study by chess grandmaster Richard Réti. White is able to
reach a drawn endgame by using the path g7-f6-e5 to simultaneously approach his own pawn
and the promotion squares of the black pawns. The intrinsics of this endgame are not important
for our considerations. However it should be stated that only by starting with 1.Kg6 White is
able to defend a draw. A modified version of our base implementation, MCC_Combined3pc,
which will be examined in Section 5.2, required in several tests always about two minutes to
find 1.Kg6. Afterwards we repeated the tests with the following modification to the algorithm:
Whenever a simulation ended in a draw, the result was discarded and the simulation was re-
peated. Only if after six simulations no win for either side was found, the algorithm continued
as normal by updating the corresponding nodes with 0.5 - the value for a draw. It is needless to
say that disregarding simulations in such a way is by no means efficient and reduces the speed
of the iterations significantly. Interestingly, however, this modification was able to find 1.Kg6
within 10 seconds - much faster than MCC_Combined3pc. This observation can be explained
under the assumption that the simulations on the positions arising after 1.Kg6 are less likely to
falsely result in a draw than the simulations on the positions arising after a different first move
(e.g. 1.Kg4). Repeating the simulations in the described manner has more effects on positions
where the simulation is more likely to falsely result in a draw than on positions where the sim-
ulation is less likely to falsely result in a draw. Therefore the winning probability of 1.Kg6 was
reduced less than the winning probabilities of other first moves. The described modification was
only used to illustrate the effects of the affinity of the random simulation to end in a draw and is
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not suited to increase the overall performance. However, as it is likely that random simulations
in Chess more often falsely result in a draw than falsely result in a win or loss, it is tempting to
weight draws less than wins. Xie & Liu (2009) weighted latter simulations higher by updating
their results as if multiple simulations were performed with the same result.
The effects of using their update modification in order to weight differently depending on the
simulation result have not yet been explored.

5.1.2 Accuracy

MCC’s bad differentiations between good and bad moves indicate a low accuracy of the sim-
ulation strategy. We already showed on endgames that the affinity of the random strategy to
reach drawn positions reduces its accuracy. However, the accuracy of a simulation strategy is
affected by every move decision during the play-out and not only those made in the endgame.
As MCC does not value material advantages high enough, it is interesting to see how material
advantages influence the outcome of the simulation. We demonstrate that the features of a posi-
tion that are usually good indicators for the evaluation of a position (e.g. material balance) are
dominated in random simulations by other features that would be irrelevant for the outcome
of a game between two reasonable players. UCT was modified for this demonstration so that it
does not expand any nodes besides the root node. Therefore, all simulations begin after making
one move in the root position. We used at least fifteen minutes per move giving rise to over
three million iterations on our test system. Although, this is not enough to provide highly accu-
rate estimates of the expected winning probabilities of the random simulation strategy and the
winning probabilities should therefore be treated with some respect, they are accurate enough
for our purpose.

Figure 8: The starting position of our demonstration on the accuracy of the simulation strategy.
White already has a winning advantage.

We start the demonstration at the position given in Figure 8 which could be reached from the
starting position by 1.e4 Nf6 2.e5 c5 3.exf6. The second black move was a blunder that al-
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lowed White to gain a material advantage which can be safely assumed as winning. Therefore,
we would expect winning probabilities larger than 50%. The evaluations led to the follow-
ing continuation: 3...gxf6(49.81%) 4.g4(50.02%) d5(49.78%) 5.f4(49.81%) Bxg5(49.33%)
6.Qxg4(49.96%). The numbers in the brackets show the estimated expected winning proba-
bility of the white player for the position reached after the corresponding move. We stop our
demonstration after White won the second piece with 6.Qxg4. The final position is given in
Figure 9.

Figure 9: The final position of our demonstration of the accuracy of the simulation strategy.
Although black lost a second piece, random simulations from this position still favor
black slightly.

Although White should have a winning advantage in all positions that were encountered during
the demonstration, the random simulation strategy favors Black in all positions beside the one
reached after 4.g4. We spent over three hours in evaluating 6.Qxg4 and its winning probability
should be very close to its expected value. White won a knight and a bishop for two pawns and
there should be no doubt that its material advantage is decisive. Yet the random strategy favors
Black slightly. The reasons for the bad evaluations are difficult to grasp due to the high game
complexity. However, after observing several randomly played games from the final position
we identified an important feature of the position: The positioning of the white queen. From
g4 it can reach several squares where it can be captured. Especially, the option of moving to
the square d7 is a major drawback of White’s position because by playing Qd7+ black is forced
to win the material. Such options would not affect the evaluation of a game that is played by
reasonable players.
UCT would need to explore a position very deeply in order to eventually overcome the affects
of such features of the position. As the inaccuracy of the random simulation strategy consis-
tently steers the selection strategy towards bad branches, UCT is unable to build the desired
asymmetrical tree structure.
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5.2 Modifications

This section presents the results of the experiments on the performance of our modifications.
We used round-robin tournaments of blitz chess with five minutes clock time per side for all our
tests. The free tool BayesElo5 by Rémi Coulom was used to calculate the Elo differences relative
to the base implementation and their 0.95 confidence intervals. Elo ratings are used to rate the
skill of chess players. Higher Elo ratings indicate better chess players. A player with an Elo
rating that is by 200 points better than the rating of its opponent is supposed to score 75%.

5.2.1 Heavy Playouts

We tested our ε-greedy Heavy Playouts with the heuristic evaluation function (MCC_HPEVAL,ε)
and the Static Exchange Evaluator (MCC_HPSEE,ε) independently as described in Section 4.2.1.
For both variants we played 300 games in a round-robin tournament in order to determine
the performance for different ε-values. Table 1 shows the performance of MCC_HPEVAL,ε for
different values of ε. The corresponding likelihoods of superiority are given in Table 2.

Rank Program Elo games score
1 MCC_HPEVAL,0.6 153±62 100 62.5
2 MCC_HPEVAL,0.4 151±60 100 62.5
3 MCC_HPEVAL,0.2 110±62 100 55
4 MCC_HPEVAL,0.8 26±60 100 42.5
5 MCC_HPEVAL,0 5±61 100 39
6 MCC 0±61 100 38.5

Table 1: Performance of different ε-values for MCC_HPEVAL,ε

ε 0.6 0.4 0.2 0.8 0 1
0.6 51 85 99 99 99
0.4 48 85 99 99 99
0.2 14 14 98 99 99
0.8 0 0 1 70 74
0 0 0 0 29 55
1 0 0 0 25 44

Table 2: Likelihoods of superiority for different ε-values for MCC_HPEVAL,ε

By using Heavy Playouts with the heuristic evaluation function the performance of MCC could
be increased. The best performance could be reached by using the random strategy and the
greedy strategy with about equal probability. In this case the Elo rating of the Heavy Playouts
modification is by about 150 points better than the base implementation. If the probability of
playing according to the greedy strategy is too low, the modification does not make enough use
of the heuristic evaluation function. If the probability of the playing according to the greedy
strategy is too high, the modification becomes too deterministic. For ε = 0.4 and ε = 0.6 the

5 http://remi.coulom.free.fr/Bayesian-Elo/
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modification is with a probability of 99% superior to the extreme cases of ε= 0 or ε= 1.
The performance of MCC_HPSEE,ε for different values of ε is shown in Table 3. The correspond-
ing table of the likelihoods of superiority is given in Table 4.

Rank Program Elo games score
1 MCC_HPSEE,0.4 332±63 100 61.5
2 MCC_HPSEE,0.6 324±61 100 60.5
3 MCC_HPSEE,0.2 326±64 100 60
4 MCC_HPSEE,0 270±63 100 52
5 MCC_HPSEE,0.8 260±61 100 51
6 MCC 0±77 100 15

Table 3: Performance of different ε-values for MCC_HPSEE,ε

ε 0.4 0.2 0.6 0 0.8 1
0.4 56 57 93 96 99
0.2 43 51 90 94 99
0.6 42 48 90 94 99
0 6 9 9 60 99
0.8 3 5 5 39 99
1 0 0 0 0 0

Table 4: Likelihoods of superiority for different ε-values for MCC_HPSEE,ε

The performance gains by using the Static Exchange Evaluator turn out to be larger than
the gains reached by using the heuristic evaluation function. All tested values for ε could sig-
nificantly improve upon the performance of the base implementation - even the deterministic
variation.

5.2.2 Endgame Tablebase

We created two variants of the Endgame Tablebase modification: MCC_GT B3pc uses a 3-piece
Endgame Tablebase and MCC_GT B4pc uses a 4-piece Endgame Tablebase. As we are not inter-
ested in the performance gained by the direct usage of the tablebase, both variants completely
ignore the tablebase if the position corresponding to the root node has less than eight pieces.
Therefore both variants are not likely to make use of the tablebase at the very beginning of
a simulation. A total number of 150 games was played in a round-robin tournament be-
tween MCC_GT B3pc, MCC_GT B4pc and the base implementation MCC . The resulting Elo
estimates are shown in Table 5. The likelihoods of superiority are given in Table 6. Although,
MCC_GT B4pc is with a probability of about 95% superior to the base implementation the max-
imum likelihood Elo difference is small.
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Rank Program Elo games score
1 MCC_GT B4pc 56±55 100 58
2 MCC_GT B3pc 13±55 100 47.5
3 MCC 0±55 100 44.5

Table 5: Performance of the Endgame Tablebase modifications compared to the base
implementation

Program MCC_GT B4pc MCC_GT B3pc MCC
MCC_GT B4pc 91 95
MCC_GT B3pc 8 65
MCC 4 34

Table 6: Likelihoods of superiority for the Endgame Tablebase modifications and the base
implementation

5.3 Comparison of the different modifications

We compared the different modifications in our main experiment. We did not test the Endgame
Tablebase modification and the Monte-Carlo Solver modification independently because they do
not provide significant performance gains. However we did test a combination of all our modifi-
cations, MCC_Combined which uses the 4-piece Endgame Tablebase (and makes full use of it),
our Monte-Carlo Solver implementation, Heavy Playouts with a Static Exchange Evaluator and
ε = 0.4, Decisive Moves and Progressive Bias. By combining Monte-Carlo Solver with a 4-piece
Endgame Tablebase support MCC_Combined is able to play 4-piece endgames perfectly. The
other participants in the main experiment are MCC , MCC_Decisiv eMov es, MCC_HPSEE,0.4
and MCC_progressiv eBias. MCC_Combined and MCC_progressiv eBias use kbias = 0.001
to limit the influence of the heuristic function on the selection strategy. Prior tests have shown
that this value is low enough to ensure that all children are selected several times but still high
enough to provide measurable performance gains.
The results of the tournament is given in Table 7. MCC_Combined won all games, ex-
cept for one that it lost to MCC_HPSEE,0.4. The best performance of a single modifica-
tion was shown by MCC_Decisiv eMov es which even performed better than MCC_HPSEE,0.4.
MCC_progressiv eBias did also improve upon the unmodified UCT player MCC and was
ranked fourth.

Rank Program 1 2 3 4 5 score
1 MCC_Combined - 25.0-0.0 24.0-0.1 25.0-0.0 25.0-0.0 99/100
2 MCC_Decisiv eMov es 0.0-25.0 - 16.5-8.5 21.5-3.5 21.0-4.0 59/100
3 MCC_HPSEE,0.4 1.0-24.0 8.5-16.5 - 16.5-8.5 20.5-4.5 46.5/100
4 MCC_progressiv eBias 0.0-25.0 3.5-21.5 8.5-16.5 - 16.5-8.5 28.5/100
5 MCC 0.0-25.0 4.0-21.0 4.5-20.5 8.5-16.5 - 17.0/100

Table 7: final table of the main experiment.
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The corresponding Elo estimates relative to the base implementation are shown in Table 8.
By combing all our modifications we were able to increase the performance by approximately
864 Elo. MCC_Combined encountered only five 4-piece endgames in all its matches and has
comparable iteration speed to the unmodified version. Therefore we conclude that its increased
performance was primarily achieved by using a more accurate simulation strategy. However,
although, we were able to increase the performance of MCC significantly, our final version,
MCC_Combined, still does not stand a chance against Minimax based competitors. The likeli-
hoods of superiority are shown in Table 9.

Rank Program Elo games score
1 MCC_Combined 864±186 100 99
2 MCC_Decisiv eMov es 336±77 100 59
3 MCC_HPSEE,0.4 229±73 100 46.5
4 MCC_progressiv eBias 85±72 100 28.5
5 MCC 0±75 100 17

Table 8: Elo estimates according to the results of the main experiment.

Rank Program 1 2 3 4 5
1 MCC_Combined 99 99 99 100
2 MCC_Decisiv eMov es 0 98 99 99
3 MCC_HPSEE,0.4 0 1 99 99
4 MCC_progressiv eBias 0 0 0 97
5 MCC 0 0 0 2

Table 9: Likelihoods of superiority for the main experiment.
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6 Conclusion

Although Monte-Carlo Tree Search - and especially UCT - has great success in the game of Go,
the algorithm is commonly considered to be unpromising for the game of Chess. This thesis was
written in order to challenge this assumption. For this purpose, the chess program MCC was
created and used to actually test the performance of the UCT algorithm in its simplest form with
respect to Chess. For the same purpose, several possible enhancements to the algorithm were
examined and tested.
Early assessments revealed that the main benefit of MCTS, namely the best-first search order,
involves with its main drawback: The inability to identify search traps quickly. These assess-
ments also indicate that without a simulation strategy that is accurate enough to lead to an
asymmetrical tree growth the problem of identifying search traps is not encountered.
The tests with unmodified MCC show that a random simulation strategy in Chess is not suffi-
ciently accurate to make use of the best-first search or to examine the problem of search traps. In
order to better grasp the reasons for the bad accuracy of random playouts, it was demonstrated
that the outcome of the playout mainly depends on positional features that a irrelevant for the
outcome of a game that is played between reasonable players. It was also demonstrated, that
the random playout has difficulties to deliver mate and therefore often falsely ends in a draw
which does actually lead to worse accuracy. It was therefore proposed to reduce the weight of
simulations that resulted in a draw.
With the aim of increasing the simulation strategy, ε-greedy Heavy Playouts and Decisive Moves
were tested and a modification that uses Endgame Tablebases was proposed and tested. Ad-
ditionally, Progressive Bias was tested and a modification of Monte-Carlo Solver that is able to
prove the shortest mating distance was proposed and successfully used.
By combining all these modification the performance of MCC was increased by approximately
864 Elo points. The better part of these gains was reached by the Decisive Moves modification
and by an ε-greedy Heavy Playout that used a Static Exchange Evaluator instead of the heuris-
tic evaluation function. Although it was demonstrated that Endgame Tablebases can indeed
increase the overall accuracy of the simulation strategy, the improvements by this modification
were slim. The significant increase of playing strength that was reached by combining all im-
provements did still not suffice to compete with Alpha-Beta based chess programs or to examine
the influences of search traps.
Nevertheless, this does not imply that combining MCTS and Chess is a dead end. Several ways
to improve upon MCC were addressed, e.g. transposition tables or faster move generation.
Additionally the improvements to the simulation strategy that were tested on MCC were of a
relatively simple nature. More sophisticated ways to increase the simulation accuracy would
most likely lead to further significant improvements. Once a sufficiently accurate simulation
strategy is found, the problem of search traps can be tackled. The conclusion that the problem
of identifying search traps quickly is inherent in the best-first search of MCTS does not imply
that it can not be coped with. Alpha-Beta search is unable to provide good results at anytime
- yet by combining it with Iterative Deepening search it is currently the most successful tree
search algorithm with respect to Chess. Might a similar approach be effective for Monte-Carlo
Tree Search, too?
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7 Appendix

Algorithm 7.1 uctSearch.cpp
function UCT(Position rootPos, Time remainingTime)

StopRequest ← f alse
star tT ime← cur rentT ime
thinkingT ime← remainingT ime/t imeRate
root ← new MonteCarloTreeNode()
while StopRequest = false do

selec ted ← root.selec t(rootPos)
ex panded ← selec ted.ex pand(rootPos)
resul t ← ex panded.simulate(rootPos)
ex panded.update(resul t)
i terat ions← i terat ions+ 1
if i terat ions%1000= 0 then

StopRequest ← poll_ f or_stop(star tT ime, thinkingT ime)
end if

end while
return root.most_v isi ted_child()

end function
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Algorithm 7.2 montecarlotreenode.cpp
function SELECT(Position rootPos)

cur rentPos← getCurrentPosi t ion(rootPos)
blackToMov e← cur rentPos.isBlackToMov e()
cur ← this
chosen← this
bestVal ←−1
while cur.hasChild ren() do

if cur.isNotFull yEx panded then
return cur

end if
for all child ∈ cur.child ren do

winningRate← (child.totalValue/child.v isi ts)
if blackToMove then

winningRate← 1−winningRate
end if
uctVal ← winningRate+ sqr t(2 ∗ log(cur.v isi ts)/child.v isi ts)
if uctVal ≥ bestVal then

bestVal ← uctVal
chosen← child

end if
end for
cur rentPos.make_mov e(chosen.lastMov e)
blackToMov e← not blackToMov e
cur ← chosen

end while
return cur

end function

Algorithm 7.3 montecarlotreenode.cpp
function EXPAND(Position rootPos)

cur rentPos← getCurrentPosi t ion(rootPos)
if cur rentPos.isMateOrDraw() then

return this
end if
av ailableMov es← generate_mov es(cur rentPos)
if childen.size() = av ailableMov es.size() then

return this
end if
return createAndAddChild(av ailableMov es[child ren.size()])

end function
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Algorithm 7.4 montecarlotreenode.cpp
function SIMULATE(Position rootPos)

cur rentPos← getCurrentPosi t ion(rootPos)
while cur rentPos.isMateOrDraw() = f alse do

av ailableMov es← generate_mov es(cur rentPos)
index ← getRandomNumber() mod av ailableMov es.size()
cur rentPos.make_mov e(av ailableMov es[index])

end while
if cur rentPos.whiteWon() then

return 1
end if
if cur rentPos.blackWon() then

return 0
end if
return 0.5

end function

Algorithm 7.5 montecarlotreenode.cpp
function UPDATE(double value)

totalValue← totalValue+ v alue
v isi ts← v isi ts+ 1
if parent then

parent.update(v alue)
end if

end function
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