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Abstract

Parallelization is a technique that boosts the performance of a program beyond optimizations
of the sequential algorithm. Utilizing the technique requires deep program knowledge and is
usually complex and time-consuming. Software tools have been proposed to discover parallelism
opportunities. Tools relying on static analysis follow a conservative path and tend to miss
many opportunities, whereas dynamic analysis suffers from a vast runtime overhead, often
resulting in a slowdown of 100x. In this dissertation, we present two methods that help
programmers parallelize programs. We abandon the idea of fully automated parallelization
and instead pinpoint programmers to potential parallelism opportunities in the source code.
Our first method detects data dependences using a hybrid approach, mitigating the limitations
of both static and dynamic analyses. Our second method exploits the identified dependences
to provide practical hints for parallelizing a sequential program. Data dependence analysis
can be performed statically or dynamically. Static analysis is fast, but it overestimates the
number of data dependences. Dynamic analysis records dependences that actually occur during
program execution but suffers from high runtime overhead and is also input sensitive. We have
proposed a hybrid approach that considerably reduces the overhead and does not overestimate
data dependences. Our approach first detects memory-access instructions that create statically-
identifiable data dependences. Then, it excludes these instructions from the instrumentation,
avoiding their associated overhead at runtime. We have implemented our approach in DiscoPoP,
a parallelism discovery tool, and evaluated it with 49 benchmarks from three benchmark suites
(i.e., Polybench, NPB, and BOTS) and two simulation applications (namely, EOS-MBPT and
LULESH). The median reduction of the profiling time across all programs was 76%. Additionally,
we proposed a method that uses the identified dependences to make recommendations on
how to parallelize a program with OpenMP. OpenMP allows programmers to annotate code
sections in a program with parallelization constructs. Programming with OpenMP is not easy.
Programmers need to determine which construct to insert where in the source code to maximize
performance and preserve correctness. Another task is classifying variables inside the constructs
according to their data-sharing semantics. Performing these tasks manually is complex and
error-prone. We have proposed an approach that automates these tasks. Our approach receives
as input parallel design patterns derived from the extracted data dependences and maps them
to appropriate OpenMP constructs and source-code lines. Further, it classifies the variables
within those constructs. After integrating our parallelization approach into DiscoPoP, we used
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it to parallelize our test programs. We compared their execution times with their sequential
versions. We observed a speedup of up to 1.35x for EOS-MBPT and 8x for LULESH. For the
benchmarks, we further compared our parallelizations with those generated by three state-of-
the-art parallelization tools: We produced faster codes in most cases with an average speedup
relative to any of the three ranging from 1.8 to 2.7. Also, we automatically reclassified variables
of OpenMP programs parallelized manually or with the help of these tools, reducing their
execution time by up to 29%. Moreover, we found that the inherent input sensitivity of the
dynamic dependence analysis, if running the target program with a range of representative
inputs, does not make the resulting parallel programs harder to validate than those parallelized
manually. Finally, our approach has been extended to suggest offloading suitable kernels onto
the GPU using OpenMP.

II



Kurzfassung

Parallelisierung eröffnet die Möglichkeit, die Performanz eines Programms über die Optimierung
des sequenziellen Algorithmus hinaus zu steigern. Ihre Anwendung erfordert fundierte Ken-
ntnisse des Programms und ist in der Regel sowohl komplex als auch zeitaufwendig. Um
mögliche Parallelität zu erschließen, kann auf verschiedene Softwaretools zurückgegriffen
werden. Tools, welche auf statischen Analysen basieren, parallelisieren in der Regel viel zu
konservativ, während dynamische Analysen meist enormen Laufzeit-Overhead verursachen,
wobei Verlangsamungen um das 100-fache keine Seltenheit sind. Diese Dissertation stellt zwei
Methoden vor, welche Programmierer darin unterstützt, Programme zu parallelisieren. Wir
abschieden uns von der Idee der vollautomatisierten Parallelisierung und weisen Programmierer
stattdessen auf potenzielle Parallelisierungsmöglichkeiten im Quellcode hin. Die Methoden
umfassen im Einzelnen eine hybride Datenabhängigkeitsanalyse, welche den Beschränkungen
statischer als auch dynamischer Analysen entgegenwirkt, und eine Technik, die die identi-
fizierten Abhängigkeiten nutzt, um Programmierern praktische Hinweise zur Parallelisierung
eines sequenziellen Programms zu geben. Eine Datenabhängigkeitsanalyse kann statisch oder
dynamisch durchgeführt werden. Die statische Analyse ist schnell, überschätzt jedoch die
Anzahl der Datenabhängigkeiten. Die dynamische Analyse zeichnet Abhängigkeiten auf, welche
tatsächlich während der Programmausführung auftreten, aber ist zeitaufwendig und zusätzlich
inputsensitiv. Wir haben uns daher für einen hybriden Ansatz entschieden, der den Overhead
erheblich reduziert und die Datenabhängigkeiten nicht überschätzt. Unsere Methode erkennt
zuerst Speicherzugriffsbefehle, die statisch identifizierbare Datenabhängigkeiten bilden. An-
schließend werden diese Anweisungen von der Instrumentierung ausgeschlossen und der damit
verbundene Laufzeit-Overhead vermieden. Wir haben die Methode in DiscoPoP, ein Werkzeug
zur Erkennung von Parallelität, integriert und mit 49 Benchmarks aus drei Benchmark-Suiten
(Polybench, NPB und BOTS) sowie zwei Simulationsanwendungen (EOS-MBPT und LULESH)
evaluiert. Der Median der Laufzeitreduktion über alle Programme lag bei 76%. Darüber hinaus
haben wir eine Methode vorgestellt, welche die identifizierten Abhängigkeiten verwendet, um
Parallelisierungshinweise auf OpenMP-Ebene zu liefern. OpenMP ermöglicht es Programmier-
ern, Codeabschnitte in einem Programm mit Parallelisierungskonstrukten zu annotieren. Die
Programmierung mit OpenMP ist nicht einfach. Programmierer müssen bestimmen, welches
Konstrukt in welche Quellcodezeile eingefügt werden soll, um die Leistung zu maximieren
und gleichzeitig die Korrektheit zu bewahren. Eine weitere Aufgabe besteht darin, Variablen
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innerhalb der Konstrukte gemäß ihrer Datenaustausch-Semantik zu klassifizieren. Die manuelle
Ausführung dieser Aufgaben ist komplex und fehleranfällig. Um dieses Problem zu umgehen,
haben wir einen automatischen Ansatz gewählt. Dabei werden parallele Entwurfsmuster, die von
den extrahierten Datenabhängigkeiten abgeleitet wurden, auf geeignete OpenMP-Konstrukte
und Quellcodezeilen abgebildet. Zudem werden innerhalb der Konstrukte verwendete Variablen
klassifiziert. Wir haben DiscoPoP um unseren Parallelisierungsansatz erweitert und die Aus-
führungszeit der mithilfe von DiscoPoP parallelisierten Testprogramme mit ihren sequenziellen
Versionen verglichen. Dabei konnte eine bis zu 1,35-fache Beschleunigung für EOS-MBPT
und eine 8-fache für LULESH beobachtetet werden. Bei den Benchmarks haben wir ferner
unserer Parallelisierung mit der von drei etablierten Parallelisierungswerkzeugen verglichen:
In den meisten Fällen wurde von DiscoPoP schnellerer Code erzeugt – mit einem durchschnit-
tlichen Speedup von 1,8 bis 2,7 gegenüber den anderen Werkzeugen. Darüber hinaus haben
wir Variablen von OpenMP-Programmen, die manuell oder mit Hilfe dieser Tools parallelisiert
wurden, automatisch neu klassifiziert und so die Ausführungszeiten der Programme um bis
zu 29% reduziert. Schließlich konnten wir zeigen, dass die aus der inhärent inputsensitiven
dynamischen Datenabhängigkeits-Analyse resultierenden parallelen Programme, wenn man das
ursprüngliche sequenzielle Programm mit einer Reihe repräsentativer Inputs ausführt, in der
Praxis nicht schwieriger zu validieren sind als händisch parallelisierte Programme. Schließlich
haben wir das Verfahren erweitert, um geeignete Kernels in einem Programm mit Hilfe von
OpenMP auf eine GPU auszulagern.
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1 Introduction

Nowadays, multicore processors exist in all types of computer systems, ranging from smart
phones and laptops to supercomputers. They provide the capability to exploit parallelism, a
technique that divides a large computation into smaller chunks to execute them on multiple
cores at the same time. It is the only option left to software developers to boost the performance
of programs after they have exhausted optimizing the sequential algorithm.
To utilize the technique, programmers need to develop parallel applications or identify

parallelism opportunities in sequential programs. Developers tend to write sequential programs.
Also, they need to obtain deep knowledge about a program to parallelize it. Obtaining the
knowledge is hard for legacy codes. Therefore, the opportunity to discover parallelism, in many
cases, is left to parallelizing tools.
Many tools detect parallelism by analyzing data and control dependences in a program.

They can be categorized in two groups, namely, static and dynamic, based on how they extract
data dependences. Tools that rely on the compilation information are too conservative; they
may overestimate the number of dependences because they lack runtime information such as
the value of pointers and array indices. In practice, these techniques are confined to trivial
loops or functions that follow certain conditions and cannot analyze programs with an arbitrary
structure.
Dynamic analysis techniques have been proposed with the goal to overcome the limitations

of the compiler-based methods. They capture data dependences that actually occur during the
program execution and identify parallelism opportunities based on the extracted dependences.
These methods, however, have a huge profiling overhead, often a slowdown of 100x.
In this dissertation, we present two methods that help programmers parallelize programs.

The methods abandon the idea of fully automated parallelization and instead pinpoint pro-
grammers to likely parallelism opportunities in the source code. We discuss the state-of-the-art
parallelizing tools in Chapter 2 before we present the methods. Chapter 3 gives the overview of
our first method, which is a hybrid approach to detect data dependences. Unlike the purely
static methods, the hybrid approach does not overestimate the number of data dependences
and has a much lower overhead than the dynamic techniques.
Chapter 4 explains our second method: Using the extracted data dependences to recommend
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instructions for the parallelization of a program with OpenMP. While many works [2, 3] find
parallelism in the form of parallel design patterns [4], only a few utilize the detected patterns to
actually parallelize programs. With our approach, programmers only require to insert OpenMP
parallelism constructs and clause that we suggest at the source code lines that we point them to.
Moreover, we detect computational kernels in programs and offload them to the GPU to

obtain higher parallelization speedup. Chapter 5 explains the algorithms that we used to offload
the kernels and discusses the performance improvements that we achieved. In the majority of
programs, the parallelization can follow different design patterns. Programmers must decide
which pattern will yield the best parallel efficiency. Making this decision is complicated because
it depends on many parameters including the program structure and the target hardware. We
developed two methods that rank the identified patterns in a program. Chapter 6 summarizes
the details of the techniques.
Moreover, we extended the approach in Chapter 4 to detect computational kernels in

programs and offload them to the GPU. Chapter 5 explains the algorithms that we used to offload
the kernels and discusses the performance improvements that we achieved. In the majority of
programs, the parallelization can follow different design patterns. Programmers must decide
which pattern will yield the best parallel efficiency. Making this decision is complicated because
it depends on many parameters including the program structure and the target hardware. We
developed two methods that rank the identified patterns in a program. Chapter 6 summarizes
the details of the techniques. In Chapter 7, we use an example code to demonstrate the different
analyses in the framework. Finally, we conclude the thesis in Chapter 8.
In the rest of this chapter, we first explore the problems that hinder the parallelization

process and show the importance of tools that help programmers find parallelism options in
programs. Then, we explain the notion of a data dependence and its different types. Also, we
provide some background information about OpenMP, the programming interface that we use
to translate detected parallelism opportunities to instructions that programmers can utilize to
parallelize programs. Additionally, we explain DiscoPoP, a parallelism discovery tool. We have
implemented our methods in the tool. In the end, we provide a brief overview of our approach
and summarize the contributions of this thesis.

1.1 Why do we need parallelization and what are its challenges?

For many years, manufacturers relied on Moore’s law [5] to design faster computer hardware.
The law states that the number of transistors on a microchip doubles every two years. The
vendors created faster CPUs by just adding more and more transistors to the chip. By the mid
2000s, the manufacture of processors that went beyond the 3-4 Ghz range was not proven to be
economical because they consumed a prohibitive amount of electrical power [6].
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To come upwith the problem, hardwaremanufacturers introduced themulticore architecture,
which hosts multiple cores on a single chip. In recent years, the industry has made a great
success in their development. Now, multicores are present in many devices (e.g., smartphones,
laptops, and tablets) that we use frequently during the day or in larger computing resources
(i.e., supercomputers) that contribute to the quality of our lives. They provide a computing
capacity that single-core processors could never reach considering the power consumption.
However, it is not easy to exploit the computing capacity that multicores offer. Programmers
have to develop parallel programs. This is a complicated task because they should consider
many details including data and control dependences between numerous parts of the program
to avoid common concurrency bugs such as data races. Additionally, it might take them more
time and energy to parallelize a program that they have not developed because they need to
obtain deep knowledge about it.
This problem has urged researchers to invest in the production of tools that help programmers

transform a sequential program into its parallel version. An obligation is that the transformations
must preserve the semantics of the sequential program. An important pillar that holds the
semantics of the program is the set of data dependences. Therefore, all parallelism discovery
tools must identify the set of data dependences to select and apply suitable transformations.
Auto-parallelizing compilers [7, 8, 9, 10] use static methods to extract data dependences.

PLUTO [7] is one of the main tools that relies on the static analysis. It uses the polyhedral
model to extract data dependences and generate the parallel version of a program. Users
of PLUTO need to annotate loops that follow the constrains of the polyhedral model. Then,
PLUTO creates a mathematical representation of the loops, performs affine transformations
or more general non-affine transformations such as tiling on the representations, and finally
translates the transformed representations into equivalent, but parallelized loops. Relying on a
mathematical model to suggest parallelization, it ensures that all the possible data dependences
inside a loop are extracted. Also, it guarantees that the semantics of the loops remain unchanged
after the transformations. However, there is a long list of conditions that a loop should follow
to be eligible for the analysis with PLUTO. Hence, it is not surprising that large and complex
programs may not contain such loops.
Parallelism opportunities in a program are not limited to loops. Mercurium classifier [11]

is a static analysis tool that helps parallelizing general programming constructs like functions.
Nevertheless, compiler-based techniques may miss parallelism opportunities because they do
not know the value of pointers or array indices.
To combat the limitations of static methods, dynamic techniques execute programs to capture

data dependences at runtime. They profile every memory access in a program to find data
dependences. The slowdown of the fastest profilers is often around 100x. It means that obtaining
the set of data dependences for a program that takes some minutes to execute is around hours
or even days. Also, profilers suffer from the input sensitivity problem (i.e., missing to report
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certain data dependences such as those belonging to code sections that are not traversed during
the execution). To generate a comprehensive set of data dependences, one can profile programs
with several representative inputs. Hence, the profiling overhead is further increased.
This thesis targets the challenges that programmers face when parallelizing programs. We

first introduce an efficient approach to identify data dependences in programs. Then, we propose
a method that uses the extracted data dependences to detect parallelization opportunities and
suggest hints that programmers can use to parallelize programs.

1.2 Dependence analysis

There are many challenges to fully exploit the capabilities of multicore processors. The main
challenge is that programmers often tend to write sequential programs, demanding experts
or parallelization tools to transform the code into a parallel version. Manual parallelization
is complex and time consuming because programmers need to perform a chain of analyses,
which begins with data dependence analysis. In this Section, we explain the notion of a data
dependence and introduce the challenges of tools that identify such dependences.

1.2.1 Data dependences

A. J. Bernstein introduced a set of rules to define a data dependence [12]. Assuming two
instructions I1 and I2 in a program, then there is a data dependence between I1 and I2 if
Equation 1.1 holds:

[R(I1) ∩W (I2)] ∪ [R(I2) ∩W (I1)] ∪ [W (I1) ∩W (I2)] ̸= ϕ (1.1)

In Equation 1.1:

• R(Ii) is the set of memory addresses read by instruction Ii
• W (Ii) is the set of memory addresses written by instruction Ii
• and there is a feasible path from I1 to I2 during the execution

Depending on the order of read and write operations to a memory location, Bernstein
classifies dependences into three types:

• Flow dependence ([R(I2) ∩W (I1)] ̸= ϕ): I1 writes to a memory location which is later
read by I2.

• Anti-dependence ([R(I1) ∩W (I2)] ̸= ϕ): I1 reads a memory location before I2 writes to
the location.
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• Output dependence ([W (I1)∩W (I2)] ̸= ϕ): I1 and I2 write to the same memory location.

We explain the rules using the example code in Figure 1.1a. According to the rules, there is
a read-after-write (RAW) data dependence if two instructions read from and write to the same
memory location and the read operation happens after the write. There is a RAW dependence
on variable i because the variable is first written at line 3 and further read at line 5.

1 foo(){
2    int tmp, i, j;

3    i = 0;

4    j = 20;

5    tmp = i + j;

6    int k, m;

7    k = 1;

8    m = k + 50;

9    k = 5;  

10    return tmp;
11 }

RAW: i

RAW: j

WAR: k

WAW: k

RAW: k

(a)

RAW: i

RAW: j

RAW: k

1 foo(){
2    int tmp, i, j;

3    i = 0;

4    j = 20;

5    tmp = i + j;

6    int k1, k2, m;

7    k1 = 1;

8    m = k1 + 50;

9    k2 = 5;  

10    return tmp;
11 }

(b)

Figure 1.1: Function foo() (a), which contains all types of data dependences and (b), which
includes only RAW dependences.

Moreover, there is a WAR data dependence if the reading of a memory location happens
after writing to it. There is a WAR data dependence on variable k because the variable is read
at line 8 and is written 9. Finally, a WAW data dependence occurs when two instructions write
to the same memory location. In the example code, there is a WAW dependence on variable k
between lines 7 and 9.
Flow dependences are the major obstacles for parallelizing a program. Anti-dependence

and output dependence, which are also called name dependences, can be removed by renaming
the variables. Figure 1.1b shows the example code after renaming variable k, which resolves
the WAW and WAR dependences.
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Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {

        Real_t dtdvov = dvovmax / 
                                   (FABS(domain.vdov(indx)) + 
                                    Real_t(1.e-20)) ;

        if ( dthydro_tmp > dtdvov ) {

              dthydro_tmp = dtdvov ;

              hydro_elem = indx ;
        }
}

Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {

        Real_t dtdvov = dvovmax / 
                                   (FABS(domain.vdov(indx)) + 
                                    Real_t(1.e-20)) ;

        if ( dthydro_tmp > dtdvov ) {

              dthydro_tmp = dtdvov ;

              hydro_elem = indx ;
        }
}

Iteration i Iteration i + 1

RAW: 
dthydro_tmp

Figure 1.2: The inter-iteration dependence on variable dthydro_tmp.

Inter-iteration dependences

The parallelization of loops has a substantial impact on the performance of a program because
loops take a large amount of the program execution time. Inter-iteration dependences are
a specific class of dependences that hinder the parallelization of loops. Listing 1.1 shows a
hotspot loop in function CalcHydroConstraintForElems() from LULESH benchmark [13]. The
loop contains an inter-iteration dependence on variable dthydro_tmp. We use Figure 1.2 to
demonstrate the inter-iteration dependence. The figure shows two example iterations of the
loop. If the condition at line 8 is true in iteration i, then variable dthydro_tmp is written at line
9. A data dependence happens when the variable is read at line 8 in iteration i+1.

Listing 1.1: A hotspot loop in LULESH. The loop contains an inter-iteration data dependence.

1 for (Index_t i = 0 ; i < length ; ++i) {
2 Index_t indx = regElemlist[i] ;
3

4 if (domain.vdov(indx) != Real_t(0.)) {
5 Real_t dtdvov = dvovmax /
6 (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;
7

8 if ( dthydro_tmp > dtdvov ) {
9 dthydro_tmp = dtdvov ;
10 hydro_elem = indx ;
11 }
12 }
13 }
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1.2.2 Control dependences

int a, i, num = 100;

int b[ num ];

printf( "Enter a value:");

scanf("%d", &a);

i = 0

i < num

a == 1

b[i] = 1;b[i] = b[i - 1];

return 0;

i++;

int main()

True

True False

False

Figure 1.3: A program which contains two execution paths.

Control dependences determine the execution order of the instructions. Instruction A
depends on instruction B if the result of executing A determines whether or not instruction B
should be executed. Figure 1.3 shows the control flow graph (CFG) of a program which has
two different execution paths. Depending on the value of a, which is determined at runtime by
users, the condition evaluates to true or false. As shown in the figure, the execution will traverse
the left path if a is set to 1. Otherwise, the right execution path will be visited at runtime.

1.2.3 Static vs. dynamic data-dependence analysis

Many tools have been developed that identify data and control dependences in a program.
These tools can be categorized into two groups, depending on how they extract the dependences,
namely: static and dynamic methods. Figure 1.4 shows the relationship between the data
dependences that static and dynamic analyses obtain. To better understand the relation shown
in the figure, consider the example in Listing 1.2.
Listing 1.2: Code example that illustrates the limitations of static data-dependence analysis.

1 for(i = 0; i < n; i++){
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SA P DA

Figure 1.4: The relation between static and dynamic data dependences. SA contains data
dependences that static analysis cannot rule out. P includes data dependences
that occur in practice with the set of all possible inputs of a program. DA contains
data dependences identified via dynamic analysis with a limited set of inputs.

2 b = a[ f(i) ];
3 a[ g(i) ] = c;
4 }

Depending on the return values of functions f() and g(), there may be a data dependence
between lines 2 and 3 arising from array a. Static analysis cannot not rule out data dependences
in such cases. In fact, to be on the safe side, it conservatively assumes that there is a data
dependence. Dynamic approaches, on the other hand, take the opportunity to investigate if a
data dependence actually appears in practice with given inputs. As we increase the diversity
of inputs, the set of data dependences identified by dynamic analysis may become larger and
larger, approximating the set of possible data dependences, as depicted in Figure 1.4.

Input sensitivity problem

Dynamic methods profile memory accesses in a program to find data dependences. Input
sensitivity is the probability to obtain inconsistent sets of data dependences when running the
program with different input sets. There are many works that address the input sensitivity
problem [14, 15]. They suggest that data dependences in code sections which are subject to
parallelization do not change substantially with different inputs. Loops and recursive functions
are two major programming constructs in which most of the execution time of a program is
spent. These constructs often iterate over the elements of sequence containers (e.g., arrays,
vectors, or matrices). The inputs to many scientific programs often determine the dimension
or size of the containers in addition to the values of elements. Listing 1.3 shows the most
time-consuming code section from program 2mm [16]. In this code, the matrices A, B, and C
are multiplied and the result is added to matrix D. The inputs of 2mm are:

• The size of the matrices, which are _PB_NI, _PB_NJ, and _PB_NK
• The data type of the elements which can be int, float, or double
• The values of the matrix elements
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Listing 1.3: Hotspot loop in program 2mm. The set of data dependences remains consistent
with different inputs.

1 /* D := alpha*A*B*C + beta*D */
2 for(i = 0; i < _PB_NI; i++)
3 for(j = 0; j < _PB_NJ; j++)
4 {
5 tmp[i][j] = SCALAR_VAL(0.0);
6 for(k = 0; k < _PB_NK; ++k)
7 tmp[i][j] += alpha * A[i][k] * B[k][j];
8 }
9 for(i = 0; i < _PB_NI; i++)
10 for(j = 0; j < _PB_NL; j++)
11 {
12 D[i][j] *= beta;
13 for(k = 0; k < _PB_NJ; ++k)
14 D[i][j] += tmp[i][k] * C[k][j];
15 }

We observe that inputs to the program change neither the instructions that access the
memory nor their execution order. Thus, a data-dependence profiler reports the same set of
data dependences in this hotspot every time it runs the program with different inputs.
Listing 1.4 shows a program in which the set of data dependences change with different

inputs. In the program, either the if or the else parts of the conditional block are visited during
execution, depending on the value of variable a, which is set by the users of the program.
Considering that programmers might choose the same value for variable a, it never enters both.
In this case, the profilers do not report a complete set of data dependences.

Listing 1.4: A programwith multiple execution paths. Profiling the programwith different inputs
generates different sets of data dependences.

1 int main(){
2 int a, i, num = 100, b[ num ];
3 printf( "Enter a value:"); scanf("%d", &a);
4 for(i = 0; i < num; i++){
5 if(a == 1){
6 b[i] = 1;
7 } else{
8 b[i] = b[i - 1];
9 }
10 }
11 return 0;
12 }

To minimize the risk of missing dependences, state-of-the-art tools [2, 17] run a program
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with a range of representative inputs and consider all dependences that occur. Therefore,
programmers require to know which execution paths in the program are not visited at runtime
with the provided inputs. Code coverage analysis [18] is a technique that keeps track of the
paths that are visited at runtime. Programmers can use the technique to find the paths that are
not executed with the given inputs and run the program with another set of inputs to traverse
the unexecuted paths.
The code coverage technique does not solve the input sensitivity problem completely. We use

Listing 1.5 to explain the limitation of the technique. In the listing, there is a single execution
path that is visited during the execution with the provided inputs. The set of data dependences,
however, might differ in different executions of the program. For example, there is a data
dependence between lines 11 and 12 on array b if the return values of functions foo() and bar()
are equal in one iteration of the loop. In another execution of the program, it is possible that the
return values are never equal and the profiler does not record a data dependence on variable b.
Therefore, the profiler misses certain data dependences in the loop.
We conclude that parallelism discovery based on dynamic dependences presents a viable

alternative to static methods in those cases where the latter are too rigid or too conservative.
Of course, the risk of missing dependences cannot be fully eliminated, but we argue later in
Section 4.3.1 that the validation effort is not higher than with manual parallelization, while
saving substantial time through automatic selection of parallelization opportunities and their
guided implementation.

Listing 1.5: A program in which the set of data dependences differ in different executions.

1 int foo(int n){
2 return rand() % n;
3 }
4 int bar(int n){
5 return rand() % n;
6 }
7 int main(){
8 int a, i, n = 100, w, v, b[ n ]; time_t t;
9 srand((unsigned) time(&t));
10 for(i = 0; i < n; i++){
11 w = b[foo(n)];
12 b[bar(n)] = v;
13 }
14 return 0;
15 }
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1.3 OpenMP programming paradigm

OpenMP is a programming paradigm that supports the parallelization of programs. It provides
simple-to-use parallel constructs and clauses. Programmers only require to decide which
OpenMP constructs to insert at which source code lines to parallelize it. Also, they need to
classify the variables that emerge inside the constructs according to the OpenMP data-sharing
semantics. Most constructs are compiler directives, which modern compilers, including gcc,
clang, and icc, support. Programmers need to include the suitable compilation flags in the
compile command to compile an OpenMP program.
OpenMP follows a fork-join model for the execution of parallel programs. Figure 1.5a shows

a sample code which contains multiple tasks. A master thread starts executing the program.
If the flags are not provided, the constructs are ignored and the program runs sequentially.
Figure 1.5b depicts the sequential execution of the code in Figure 1.5a. Providing the flags, the
OpenMP system creates a team of threads when it encounters a parallel construct.
Figure 1.5c demonstrates the parallel execution of the program. In the figure, multiple

threads are forked when the master thread reaches task A. Upon the completion of task A,
the threads join and the execution continues only with the master thread. Similarly, multiple
threads execute tasks C and E while the master thread is the only thread that runs task D.

1.3.1 Parallelization constructs

OpenMP supports constructs for the parallelization of structured blocks: A set of instructions in
a code section that has a single entry point and one exit point. In the following subsections,
we provide some information about three constructs that we use to guide programmers to
parallelize programs.

Worksharing loop

The worksharing-loop construct parallelizes canonical loops. Listing 1.6 shows the structure of
a canonical loop. Table 1.1 shows the attributes of the loop in the listing in addition to a brief
description for each attribute.
OpenMP does not support constructs for loops that do not follow the canonical form. However,

there are optimizations that transform certain non-canonical loops to the canonical form [19].

Listing 1.6: The structure of a loop in the canonical form.

1 for (init-expr; test-expr; incr-expr){
2 structured code block
3 }
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#pragma omp parallel for private(i, j) shared(A, NI, NJ) num_threads(3)
for(int i = 0; i < NI; i++)
    for (j = 0; j < NJ; j++)
        A[i][j] = ((i * (j + 2) + 2) % NJ) / (5 * NJ);

alpha = 100;

#pragma omp parallel for private(i) shared(A, NI, NJ) reduction(+:sum) num_threads(5)
for(i = 0; i < N; i++)
    sum += A[i][0];

sum *= alpha

#pragma omp parallel for private(i, j) shared(A, B, N) num_threads(3)
for (i = 0; i < NI; i++)
     for (j = 0; j < NJ; j++)
        B[i][j] = A[i][j] * sum;

A

C

D

E

B

(a)

A B C D E
master thread

(b)

master thread

Thread 1

Thread 2

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

A

B

C

D

E

(c)

Figure 1.5: An example code (a) that includes multiple code regions. The master thread exe-
cutes the regions sequentially (b) and in parallel with multiple threads (c).

Task

The OpenMP tasking model facilitates the parallelization of programs beyond loops. The task
construct was introduced in OpenMP v3.0. Before the time, programmers were not able to
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Table 1.1: The attributes of a canonical loop.
Attribute Description
init-expr var = lb

test-expr var relational-op b
b relational-op var

incr-expr

++var or var++
- -var or var- -
var += incr or var -= incr
var = var + incr or var = incr + var or var = var - incr

var
A variable whose type can be signed or unsigned integer.
In C, the variable can be of a pointer type.
In C++, the variable can be of a random access iterator type.

relational-op <, <=, >, >=

lb and b Loop invariant expressions. The type of lb or b should be
compatible with the type of var.

incr A loop invariant expression. The type of incr should be integer.

implement certain types of parallelism easily and efficiently. Figure 1.6 demonstrates the concept
of the OpenMP tasking model based on the Fibonacci() function. The master thread starts
the execution of the program with Function main() at line 12. Once the execution reaches
the parallel construct at line 15, the OpenMP runtime environment creates a team of threads
to execute the code embraced by the construct. The master construct at line 16 instructs the
OpenMP environment that only the master thread should execute the function call at line 17.
The master thread then creates tasks when executing the task constructs at lines 5 and 7 in
function fib(). As the figure shows, the pool of tasks is populated with the tasks that create
new tasks recursively. However, the execution of the tasks are deferred; they can be executed
without any order at any time. The taskwait construct at line 9 commands the OpenMP runtime
system to synchronize all threads. Finally, the master thread takes control of the execution and
it runs the print instruction at line 18.
Programmers can enforce the OpenMP runtime system to execute tasks in a certain order

using the depend clause. Table 1.2 shows four different scenarios to define the execution order
of tasks when we need to preserve data dependences. Also, the table contain a brief description
of each scenario.

Taskloop

The taskloop construct parallelizes a structured block that contains canonical loops. Unlike the
worksharing-loop, taskloop construct generates tasks for the iterations of the loop and schedules
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Figure 1.6: The OpenMP tasking model.

them for execution.

1.3.2 Data-sharing attribute clauses

All variables inside OpenMP constructs (e.g., worksharing-loop or task) should be classified.
There are many rules in OpenMP that define the data-sharing semantics of variables. We cate-
gorize the semantics into three groups: default, explicitly determined, or implicitly determined.
A default data-sharing attribute cannot be changed. For example, the default attribute

of loop indices is always private. With the explicit attribute, programmers can express the
data-sharing attribute of variables using the supported data-sharing clauses. OpenMP supports
many clauses including shared, private, firstprivate, and lastprivate. If a variable is classified as
shared, it means that all threads can access the memory location of the variable, read its value
or write a new value into the location. If a variable is mentioned in the private clause, every
thread will have an isolated copy of the variable. The firstprivate clause ascertains that each
thread will have its own copy of a variable and the value of the variable is initialized to the
value prior to the construct. If a variable is mentioned in a lastprivate clause, then OpenMP
thread management guarantees that the value of the variable after the construct is equal to
the private version of whichever thread that executes the final iteration in a worksharing-loop
construct or the last section in the section construct. The lastprivate clause is available only for
the worksharing-loop construct.
OpenMP allows the implicit classification of variables in the constructs too. All variables

which are not classified explicitly in worksharing-loop construct will be classified as shared
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Table 1.2: Preserving different types of data dependences between two tasks with OpenMP
depend clause.

Type of data
dependence Example Description

RAW

omp task depend( out: x )
x = foo()
omp task depend( in: x )
bar(x)

Function bar() reads the value that is
generated in the first task, which contains
Function foo(). Therefore, the second task (i.e.,
function bar()) executes after function foo().

RAW omp task depend( inout: x )
x = foo(x)

Function foo() writes a value to variable x.
This value is used in another call to function
foo(). Hence, instances of function foo() will
execute sequentially.

WAR

omp task depend( in: x )
foo(x)
omp task depend( out: x )
x= bar()

The first task, which executes function foo(),
reads a value which the second task (i.e.,
function bar()) updates. Thus, the second
task should execute after the first task to
prevent overwriting the initial value.

WAW

omp task depend( out: x )
x = foo()
omp task depend( out: x )
x = bar()

Both tasks (i.e., Functions foo() and bar()
write to variable x. The set of depend
clauses indicates that the value produced
by function foo() should be overwritten
by the value generated by function bar().

implicitly. In the task construct, the unclassified variables are considered as firstprivate by
default.

1.4 Parallel design patterns

In the field of parallel computing, design patterns have been introduced to identify and express
parallelism on different levels, ranging from the decomposition of an abstract computational
problem down to the selection of specific parallel programing constructs.
Design patterns simplify the parallelization of programs and provide programmers with

reusable solutions for the parallelization problem; reducing the probability of producing parallel
programs that contain common concurrency bugs such as deadlocks and data races. Many
researchers address the identification of parallel design patterns in sequential programs. Mattson
et al. [4] andMcCool et al. [20] collected numerous design patterns, including DOALL, reduction,
pipeline, and task parallelism. Here, we explain some of the patterns briefly.
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1.4.1 Doall

The doall pattern exists in a loop that does not have an loop-carried dependence. We already
explained this type of data dependence in Section 1.2.1. Iterations of a doall loop can execute
in parallel to each other.

1.4.2 Reduction

A reduction pattern exists in loops with a specific type of inter-iteration dependence. Listing 1.7
shows an example loop that contains the reduction pattern.

Listing 1.7: A loop containing the reduction pattern.

1 int i, N = 1000, sum = 0;
2 int a[N];
3 for(i = 0; i < N, i++)
4 sum += a[i];

Variable sum in the loop creates an inter-iteration data dependence and thus, the iterations
of the loop cannot execute independently. However, the data dependence can be resolved
using a temporary variable. Figure 1.7 depicts the parallelization process of the loop using the
temporary array tmp_sum. First, the iteration space of the loop is partitioned based on the
number of threads. Each partition is assigned to a thread, which adds the values of the array
elements in its partition and saves the result in tmp_sum. Further, the master thread adds the
results in the tmp_sum to obtain the final value and stores the value in variable sum.
OpenMP offers a reduction clause in the worksharing-loop and taskloop constructs. Program-

mers are required to mention the reduction variable and operation to parallelize the reduction
pattern. The runtime system of OpenMP hides the procedure to resolve the inter-iteration data
dependence from the programmers.

1.4.3 Geometric decomposition

The geometric decomposition pattern, which is sometimes referred to as the single program
multiple data (SPMD) pattern, exists in code sections where the same set of instructions performs
computations on a huge amount of data. To fulfill the computations faster, one can partition
the data and run the instructions over each partition in parallel. Generally, the partitions can
overlap. Figure 1.8 shows a partitioning of the data with overlapping as well as non-overlapping
partitions. The read and write accesses in overlapping partitions should be protected to avoid
data race conditions.
Huda et al. [2] presented an approach that detects the geometric decomposition pattern

with no overlapping partitions. The approach reports geometric decomposition pattern in a
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a

Thread 1 Thread 2 Thread 3 Thread 4

tmp_sum

sum

Figure 1.7: The parallelization of a loop that follows the reduction pattern.

function if the following conditions hold:

• All child loops of the function are either doall or reduction
• All child loops of all functions which are directly called inside the function are either doall
or reduction

1.4.4 Pipeline

In the pipeline pattern, a large task is divided into a sequence of subtasks that can execute
independently. The subtasks are usually called pipeline stages. Figure1.9 shows a sample code
that contains the pipeline pattern.
As shown in the code, each row of variable matrix is copied into array a at each iteration of

(a) (b)

Figure 1.8: The partitioning of data in the geometric decomposition pattern. The partitions
may (a) overlap or (b) not overlap.
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the loop. Then, function compute() performs some calculations on array a. Finally, the result is
stored in variable output. Functions read(), compute(), and write() create a pipeline of tasks
that can execute in parallel (i.e., the computations on a row can execute in parallel to reading a
new row of the matrix).

read compute write

matrix

1

2
...

M i

void foo()
{

int i, j, M,N;
int matrix[M][N]
for(i = 0; i < M; i++){

a = read(matrix[i]);
compute(a);
write(output, a);

}
}

output

1

2
...

M

a

Figure 1.9: Function foo() contains a pipeline pattern. Functions read(), compute(), and write()
create the stages of the pipeline.

1.4.5 Task parallelism

The task parallelism pattern first divides the problem into smaller partitions recursively until
the partitions are simple enough to be solved directly. Further, the solutions for the partitions
are merged to constitute the solution for the original problem. There are two major types of
tasks in a task parallelism pattern: Workers, which perform the partitioning, and barriers that
synchronize the workers and combine the results of the partitions.
Figure 1.10 demonstrates program sort from BOTS [21]. It sorts the elements of an array
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void cilksort(ELM *low, ELM *tmp, long size)
{
 ...

 cilksort(A, tmpA, quarter);

 cilksort(B, tmpB, quarter);

 cilksort(C, tmpC, quarter);

 cilksort(D, tmpD, size - 3 * quarter);

 cilkmerge(A, A + quarter - 1,
B, B + quarter - 1, tmpA);

cilkmerge(C, C + quarter - 1,
        D, low + size - 1, tmpC);

cilkmerge(tmpA, tmpC - 1,
         tmpC, tmpA + size - 1, A);

}

Barrier 2

Barrier 1

Worker 4

Worker 3

Worker 2

Worker 1

Barrier 3

cilksort
worker 1

cilksort
worker 2

cilksort
worker 3

cilksort
worker 4

cilkmerge
barrier 1

cilkmerge
barrier 2

cilkmerge
barrier 3

Input: unsorted array

Output: sorted array

Figure 1.10: The parallelization of a recursive function that follows the task parallelism pattern.

based on the merge sort algorithm. The array is first split into four partitions, which are divided
into smaller partitions subsequently until a threshold is reached. Then, each partition is passed
to the recursive function cilksort(), which sorts the elements in the partitions. Finally, function
cilkmerge() combines the sorted partitions to create the final result, which is the sorted array.

1.5 The LLVM pass framework

LLVM is a set of compiler technologies, which can be used to develop a front end for any
programming language and a back end for any instruction set architecture [22]. The LLVM pass
framework plays a vital role in the LLVM system. The framework contains a Pass class. All LLVM
passes should inherit from the Pass class by overriding the virtual methods in the Pass class.
Depending on the use case, programmers can choose among several types of passes including
module, function, and loop. The module pass enables programmers to traverse every instruction
of the source code. Function and loop passes provide virtual methods for analyzing functions
and loops, respectively.
In addition, LLVM provides static and dynamic program analyses. With a static analysis,

programmers can extract specific information from the source code without running the program.
Listing 1.8 shows an LLVM pass that counts the number of load and store instructions in a
program. To traverse an entire program, we override the runOnModule method at line 10 in
the listing. At line 13, we iterate over each function in a program. Then, the loop at line 15
visits the instructions of the functions and checks whether an instruction is a load or a store
memory-access instruction. Finally, the numbers of encountered load and store instructions
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are printed at line 21. To analyze every loop in a program, one needs to use the LoopPass and
override the runOnLoop method.

Listing 1.8: A LLVM pass that counts the number of load and store instructions in a program.

1 using namespace llvm;
2

3 namespace {
4 struct CountInsts : public ModulePass {
5 static char ID;
6 Module *ThisModule;
7 int loadCount, storeCount;
8 CountInsts() : ModulePass(ID) {}
9

10 bool runOnModule(Module &M) override {
11 loadCount = storeCount = 0;
12

13 for (Module::iterator func = ThisModule->begin(), E =
ThisModule->end(); func != E; ++func)

14 {
15 for (inst_iterator inst = inst_begin(*func); i!=inst_end(*func);

++i)
16 {
17 if(isa<LoadInst>(inst))
18 loadCount++;
19 else if(isa<StoreInst>(inst))
20 storeCount++;
21 }
22 }
23 errs() << "Count load: " << loadCount << " Count store: " <<

storeCount << ’\n’;
24 errs().write_escaped(M.getName()) << ’\n’;
25 return false;
26 }
27 };
28 } // end of anonymous namespace
29

30 char CountInsts::ID = 0;
31 static RegisterPass<CountInsts> X("countInsts", "CountInsts Pass",

false, false );
32 static RegisterStandardPasses Y(PassManagerBuilder::EP_EarlyAsPossible,
33 [](const PassManagerBuilder &Builder,
34 legacy::PassManagerBase &PM) { PM.add(new CountInsts()); });

A LLVM dynamic analysis pass is performed in two steps. We use the code in Figure 1.11
to demonstrate the steps. In the first step, the LLVM system converts the source code to its
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int main() {
    int a, b, c;

    a = 20, b = 30;
    c = a + b;

    return 0;
}

define dso_local i32 @main() #0 !dbg !7 {
entry:
  call void @__dp_func_entry(i32 16385, i32 1)
  %retval = alloca i32, align 4
  %a = alloca i32, align 4
  %b = alloca i32, align 4
  %c = alloca i32, align 4
  %0 = ptrtoint i32* %retval to i64
  call void @__dp_write(...)
  store i32 0, i32* %retval, align 4
  %1 = ptrtoint i32* %a to i64
  call void @__dp_write(...)
  store i32 20, i32* %a, align 4, !dbg !18
  %2 = ptrtoint i32* %b to i64
  call void @__dp_write(...)
  store i32 30, i32* %b, align 4, !dbg !19
  %3 = ptrtoint i32* %a to i64
  call void @__dp_read(...)
  %4 = load i32, i32* %a, align 4, !dbg !20
  %5 = ptrtoint i32* %b to i64
  call void @__dp_read(...)
  %6 = load i32, i32* %b, align 4, !dbg !21
  %add = add nsw i32 %4, %6, !dbg !22
  %7 = ptrtoint i32* %c to i64
  call void @__dp_write(...)
  store i32 %add, i32* %c, align 4, !dbg !23
  call void @__dp_finalize(i32 16423), !dbg !24
  ret i32 0, !dbg !24
}

__dp_write(...){
…
}

Source code

Step 1: LLVM IR instrumentation

Step 2: Instrumentation 
functions

__dp_read(...){
…
}

__dp_func_entry(...){
…
}

__dp_finalize(...){
…
}

EXE

Figure 1.11: The instrumentation and library functions in an LLVM dynamic analysis pass.

intermediate representation. Developers need to instrument the instructions or constructs
that they want to analyze. In the figure, load and store instructions are annotated with calls
to dp_read and dp_write functions. Then, the LLVM system generates the executable of the
program by linking the source code with the instrumentation functions.

1.6 Preliminary work
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Figure 1.12: Parallelism discovery workflow, adopted from Zhen Li et al [23].

The methods that we present in this thesis are built on top of DiscoPoP [23]. Figure 1.12
shows the workflow of DiscoPoP, which contains three major components: A computational
units analysis, a data dependence profiler, and a parallel pattern detection. As the first step

21



of the workflow, the source code is statically decomposed into so-called computational units
(CUs) [24]. CUs are short pieces of code without appreciable parallelization at the thread level.
The CU analysis is a LLVM static pass. Afterwards, a low-overhead profiler [25] determines data
dependences with representative program input vectors. This includes dependences that stretch
over multiple files. The profiler is implemented as an LLVM dynamic analysis pass. Finally, a
matching procedure [2, 3] is used to identify possible design patterns in the graph which is
formed of the CUs as vertices and the dependences between them as edges. This internal data
structure of DiscoPoP is called program execution tree (PET), henceforth briefly referred to as
execution tree or simply tree if the context allows. Figure 1.13 shows an example. It is called a
tree because it reflects the execution flow of the program like a call tree. Its nodes can be of the
following types: function, loop, conditional block, or CU. Function, loop, and conditional-block
nodes have CUs that lexically appear inside them as children. The tree is annotated with
dependences that exist among the CUs, including both data and control dependences. Because
of these dependences, which connect its nodes beyond mere parent-child relationships, the tree
exhibits properties of both a tree and a more general graph.

Program
1 - 427

Function
45 - 107

Loop
15 - 40

Loop
87 - 105

Tree node CU
Data

dependence

else
72 - 83

if
65 - 71

Conditional block
64 - 85

Figure 1.13: An example execution tree. Nodes appear within the given line numbers in the
source code.
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1.6.1 Signature-based profiling

Data-dependence profilers need to record all memory accesses in a program to obtain data
dependences. The number of memory accesses even in a small program (e.g., containing a loop
which iterates over the elements of an array) can reach billions easily. The data-dependence
profiler of DiscoPoP maintains memory consumption using signatures. A signature is a data
structure that maps the unlimited number of memory accesses to a limited number of states at
the cost of false positives [26].
The ratio of false positives depends on the number of memory locations which are referenced

in a program and the size of the signature. If a program contains large arrays or many variables,
then it is likely to have a greater false positive rate. Allocating large signatures, which still
complies with the limitations of contemporary personal computers, DiscoPoP reports a negligible
false positive rate [25].

1.6.2 Representation of data dependences

DiscoPoP uses the sample in Figure 1.14 to represent the identified data dependences. It writes
a data dependence as a triple <sink, type, source>. type is the dependence type (i.e.,
RAW, WAR, or WAW). Because they are irrelevant to parallelization and, strictly speaking, do
not even constitute a dependence according to the definition given in Section 1.2.1, most data-
dependence profilers do not profile read-after-read (RAR) dependences, which is why DiscoPoP
does not report them either. sink and source are the source code locations of the later
and the earlier memory access, respectively. sink is specified as a pair <fileID:lineID>,
while source is specified as a triple <fileID:lineID|variableName>. DiscoPoP assigns
a unique fileID to each file in a program.

1.7 Approach overview

We have implemented our methods in DiscoPoP. The overall workflow and the precise relation-
ship between our approaches and DiscoPoP is sketched in Figure 1.15, where our contributions
appear highlighted. In the following subsections, we explain our methods briefly.

1.7.1 Accelerating data-dependence profiling

Data-dependence profilers have high runtime overhead, which is caused by profiling every
memory access in the program. Many optimizations such as parallelizing the data-dependence
profiler itself [27, 25] and skipping repeatedly executed memory operations [28] have been
proposed to lower the overhead. Taking a fundamentally different route, we introduce a hybrid
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1 1:60 NOM {RAW 1:60|i} {WAR 1:60|i}
2 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}
3 1:64 NOM {RAW 1:60|i}
4 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1} {WAR 1:67|temp2}
5 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2} {RAW 1:67|temp1}
6 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}
7 1:70 NOM {RAW 1:67|temp1}
8 1:74 NOM {RAW 1:41|block}
9 1:78 NOM {WAW 1:51|dihydral}
10 1:80 NOM {WAW 1:55|tepo}
11 7:43 NOM {RAW 7:40|local_var} {RAW 7:42|i28} {RAW 7:43|local_var} {RAW

7:210|global_array} {WAR 7:43|local_var}
12 7:95 NOM {RAW 7:60|global_var} {RAW 7:94|i162} {RAW 7:95|global_var} {RAW

7:210|global_array} {WAR 7:95|global_var}

Figure 1.14: A fragment of data dependences that DiscoPoP extracted from a sequential pro-
gram.

approach [29] to data-dependence analysis. The approach exploits static analysis tools to
extract data dependences in loops that follow the constraints of the polyhedral model [30]
and profiles only memory accesses outside those loops. This reduces the profiling overhead
significantly, but only for programs containing such loops. Additionally, we concentrate on static
data dependences between accesses to scalar variables—across the entire source code, inside
and outside loops. We first identify the memory instructions that belong to these dependences.
Then, we run our dependence profiler, but without instrumenting these instructions, allowing
the profiler to skip them at runtime and avoid their associated overhead. Eliminating instructions
that can belong to all types of loops (e.g., polyhedral, canonical, or non-canonical) or functions
(e.g., recursive or non-recursive), our approach is able to reduce the profiling overhead for a
wide range of programs. We have evaluated our approach with 49 benchmarks from three
benchmark suites (i.e., Polybench [16], NPB [31], and BOTS [21]) and two computer simulation
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Figure 1.15: The relation between DiscoPoP and our approach. The dark boxes show our
contribution.
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applications (namely, EOS-MBPT and LULESH [13]). The evaluation results show our approach
increases the accuracy of the profiler to extract data dependences. Also, we reduced the profiling
time of all programs by at least 43%, with a median of 76% across all the programs.

1.7.2 Enhancing the degree of parallelization automation

Here, our goal is to find parallelization opportunities based on the identified data dependences.
We use OpenMP to guide programmers about how to parallelize programs. An important step
during the parallelization with OpenMP is selecting the right constructs (e.g., worksharing
loop or task) and inserting them at the right position into the program. The goal is to achieve
maximum speedup without violating correctness. Usually, the decision where to insert which
construct is made by the programmer without tool support [32, 33, 34, 7, 8, 11, 35], which is
time consuming and error prone. Another step during OpenMP parallelization is the classification
of variables that appear inside a construct according to their data-sharing semantics. OpenMP
defines a default attribute for each variable, but this might not always be correct or the most
efficient choice. Therefore, programmers should reconsider the default. This process is tedious,
considering the large number of variables that can potentially appear in a construct. We have
proposed a novel approach that automatically selects appropriate OpenMP constructs, fits them
into the code, and classifies variables used in their dynamic extent. We leverage DiscoPoP pattern
detection [2] in that we identify components of a pattern in the code and map them onto an
OpenMP construct. We determine the memory access pattern of variables belonging to each
construct from the acquired data dependences and derive suitable data-sharing attributes. In this
way, we move from a mere suggestion of patterns towards their semi-automatic implementation.
We assessed the performance of our approach in comparison to previously parallelized versions
of the benchmarks and three parallelization tools: PLUTO [7], autoPar [8], and Mercurium [11].
The codes that we parallelized with the help of our approach are faster in most cases with average
speedups relative to any of the three ranging from 1.8 to 2.7. Additionally, we automatically
reclassified variables of OpenMP programs parallelized manually or with the help of these tools,
improving their execution time by up to 29%.

1.7.3 Offloading computations to GPUs

We use the output of our approach in Section 1.7.2 to identify doall and reduction patterns
in sequential programs. Then, we suggest OpenMP constructs and clauses to offload the
computations in the patterns to a GPU. Also, we have proposed a method to transfer the data
referenced inside the loops to the device memory. To increase the parallelization speedup, we
find loop nests for which we can employ the collapse clause. We evaluated our approach on
Polybench [16] programs and observed a speedup of up to 500x. The median speedup across all
the benchmarks is 13.9x. However, there is a potential room to improve the approach further.
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1.7.4 Ranking the identified patterns

It is usually possible to parallelize code sections in a program with multiple parallel patters.
Selecting the pattern that creates the best parallelization efficiency depends on many parameters
including the features of the patterns, the structure of the program, and the specifications of the
hardware platform. The selection process can be very troublesome for a programmer, particularly
if the program is large, complex, or developed by someone else. We have developed two methods
to help programmers rank the identified patterns in a program. The first approach uses program
autotuning. It creates all the parallel versions of a program based on the suggestions generated
by our approach in Section 1.7.2. Then, it runs the programs to select the pattern that runs the
fastest. This approach has high accuracy but also a huge overhead and, thus, is not practical.
Moreover, we proposed a static approach to avoid the large runtime overhead. First, our

approach trains a regression analysis model. Then, we use the model to predict the speedup
of the detected patterns statically. We evaluated the approach with Polybench benchmarks.
Overall, we found that the approach predicts the right pattern for most of the benchmarks.
However, when we ran the benchmarks on a different platform than the one we used during
the training phase, we observed that the prediction results are not valid anymore.

1.8 Contributions of this thesis

This thesis presents the following contributions:

1. A hybrid technique for data-dependence analysis. The technique combines the advan-
tages of static and dynamic techniques. We implemented it as an extension of the data-
dependence profiler of DiscoPoP [23], although it is generic enough to be implemented
in any data-dependence profiler. We evaluated the hybrid profiler with 49 programs from
three benchmark suites and two computer simulation programs, reducing the profiling
time by at least 43%, with a median improvement of 76%.

2. A novel method that enhances the automation of the parallelization process substantially.
The method guides programmers where to insert which OpenMP construct in a program
to parallelize it. Additionally, our method classifies variables according to the OpenMP
data-sharing semantics. We implemented the approach in DiscoPoP and compared it to
three state-of-the-art auto-parallelizing compilers. The parallel version that we produced
achieved superior performance in most cases with average speedups relative to any of the
three ranging from 1.8 to 2.7.

3. A technique that detects and offloads the computational kernels of the program to the
GPU. We implemented the technique in DiscoPoP and evaluated it with 30 benchmarks
from the Polybench suite. We achieved a speedup of up to 500x over the sequential version
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of the programs.
4. Investigating two methods to rank the identified patterns in a program. We implemented
the methods as an extension to DiscoPoP and evaluated them with 30 Polybench programs.
Our methods select the most efficient pattern for many of the benchmarks. However,
it takes a long time to detect the optimal pattern or the results are valid for a specific
hardware platform. The methods can serve as the basis for a more general and efficient
approach to predict the speedup of patterns.

1.9 Statement of Originality

This dissertation is based on the following peer-reviewd publications, where I have contributed
either as the main or as a secondary author:

1. Automatic construct selection and variable classification in OpenMP. Mohammad
Norouzi, Felix Wolf, and Ali Jannesari. In Proc. of the International Conference on
Supercomputing (ICS), pages 330–342, Phoenix, AZ, USA, June 2019. [15]

2. Accelerating data-dependence profiling with static hints. Mohammad Norouzi, Qamar
Ilias, Ali Jannesari, and Felix Wolf. In Proc. of the European Conference on Parallel
Processing (Euro-Par), pages 17–28, Göttingen, Germany, Aug. 2019. [36]

3. Skipping non-essential instructions makes data-dependence profiling faster. Nicolas
Morew, Mohammad Norouzi, Ali Jannesari, and Felix Wolf. In Proc. of the European Con-
ference on Parallel Processing (Euro-Par), pages 3–17, Warsaw, Poland, Aug. 2020. [36]

4. Safer parallelization. Reiner Hähnle, Asmae Heydari Tabar, Arya Mazaheri, Mohammad
Norouzi, Dominic Steinhöfel, and Felix Wolf. In Proc. of the International Symposium On
Leveraging Applications (ISoLA), pages 117–137, Rhodes, Greece, Oct. 2020. [37]

5. Tool-supported mini-app extraction to facilitate program analysis and parallelization.
Jan-Patrick Lehr, Christian Bischof, Florian Dewald, Heiko Mantel, Mohammad Norouzi,
and Felix Wolf. In Proc. of the International Conference on Parallel Processing (ICPP),
Chicago, IL, USA, Aug. 2021. [38]

The work published in all these publications was done under the combined supervision of
Prof. Dr. Felix Wolf (Department of Computer Science, Technical University of Darmstadt)
and Prof. Dr. Ali Jannesari (Department of Computer Science, Iowa State University). The
contributions of these publications to this dissertation are explained below in detail.
The content of paper 1 in the above list appears mostly verbatim in Chapter 4. Similarly,

Chapter 3 is based on papers 2 and 3. In all the papers, I proposed the approach and wrote the
papers. My co-authors, Qamar Ilias and Nicolas Morew were two students who did their master
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thesis under my supervision. They helped me with the implementation and evaluation of the
approach.
Chapters 6 and 5 are based on my work with my students Patrick Christ, Jan Henrick

Kriechel, Marc Joachim Blum, and Andreas Meyer-Berg, who worked on their bachelor or
master theses or during (parallel programming technologies) courses. I contributed to the
projects by providing the idea, the approach, and supervision during the implementation and
evaluation of the methods.
Finally, papers 4 and 5 in the list use DiscoPoP to analyze programs. I helped the first authors

of the papers with analyzing programs with DiscoPoP.
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2 Related work

There are several methods that identify parallelizable code sections in programs. Some of
them require substantial programmer support—either to identify the regions to be paral-
lelized [33] or to address correctness problems pinpointed without providing precise resolution
instructions [32]. Both consume considerable time and limit programmer productivity. Assisted-
parallelization approach also involves the programmer, but rather at the end to insert parallelism
constructs according to precise specifications including data-sharing attributes.
We categorize the parallelism discovery tools based on how they extract data dependences

into two three groups, namely: static, dynamic, and hybrid. In the following subsections, we
explain the major tools in each group.

2.1 Static tools

Auto-parallelizing tools [7, 8, 9, 10] extract data dependences in programs statically. They
parallelize programs automatically, but may miss parallelization opportunities because the
values of pointers and array indices are often not visible at compile time, making parallelization
more conservative than it needs to be. In practice, most of the tools in this group are mainly
limited to loop nests with affine loop bounds and array accesses. Below, we introduce some key
tools in this group.

2.1.1 PLUTO

PLUTO [39] is an auto-parallelizing compiler. It detects data dependences statically in polyhedral
loops. The loops follow the constrains of the polyhedral model, which provides an abstraction
to perform high-level transformations such as loop-nest optimizations [40].
PLUTO annotates the beginning and end of a code section containing a polyhedral loop.

The annotated area is called a SCoP (Static Control Part) and fulfills certain constraints. A
SCoP has a single entry and a single exit point and includes only (perfectly-nested) loops with
affine linear bounds [30]. Listing 2.1 shows function kernel_trmm() from Polybench suite. The
function contains a polyhedral loop which is annotated with SCoP directives.
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PLUTO also classifies variables in loop constructs [7], but it identifies neither firstprivate,
lastprivate, nor reduction variables. In general, static classification methods are likely to fail
when the program contains pointer and global variables [41].
Bondhugula et al. [7] tested the tool on the Polybench programs and reported a speedup of

up to 20X over the sequential version of the programs.
Listing 2.1: A polyhedral loop in Function kernel_trmm from trmm benchmark in Polybench

suite. The loop is annotated with SCoP directives.

1 static
2 void kernel_trmm(int ni,
3 DATA_TYPE alpha,
4 DATA_TYPE POLYBENCH_2D(A,NI,NI,ni,ni),
5 DATA_TYPE POLYBENCH_2D(B,NI,NI,ni,ni))
6 {
7 int i, j, k;
8

9 #pragma scop
10 /* B := alpha*A’*B, A triangular */
11 for (i = 1; i < _PB_NI; i++)
12 for (j = 0; j < _PB_NI; j++)
13 for (k = 0; k < i; k++)
14 B[i][j] += alpha * A[i][k] * B[j][k];
15 #pragma endscop
16 }

With PLUTO extracting data dependences from SCoPs, our hybrid data-dependence profiler
accelerates subsequent dependence profiling by excluding memory-access operations that appear
in SCoPs from instrumentation, cutting the SCoP-related profiling overhead.

2.1.2 LLVM Polly

Polly [42] is an automatic parallelizing tool that is based on the LLVM [43, 22]. Like PLUTO, it
relies on the polyhedral model to identify parallelism and inserts OpenMP directives into the
source code to generate the parallel version of a program. It provides many optimizations as
well as a platform for developing new analyses. Also, there is an ongoing work for the automatic
generation of GPU codes. Polly has been tested on the benchmarks from the Polybench suite [42].
It creates the OpenMP version of the benchmarks automatically and achieves an average speedup
of 12× on 24 threads on the CPU.
In addition to Polly and PLUTO, there are many other tools that use the polyhedral model

for the parallelization including PPCG [44], Par4All [45], Traco [46], APOLLO [47], and
AlphaZ [48]. However, the scope of parallelism detection in all the tools is confined to polyhedral
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loops.

2.1.3 The classifier of Mercurium

Mercurium is a source-to-source compilation framework that supports C, C++, and Fortran.
Many researchers use the platform to implement different optimizations. Royuela et al. [32, 49]
extended Mercurium to classify variables in OpenMP task constructs that have been previously
inserted into the program. They construct the parallel control-flow graph (PCFG) of a program
to identify the correct data-sharing clause of the variables. The PCFG extends the control-flow
graph to represent parallelism. A parallel control-flow graph G is represented as a tuple in
Equation 2.2:

G =< N,Nstart, Nend, Ecfg, Et, Esync > (2.2)

In Equation 2.2:

• N is the set of nodes. In addition to the set of nodes in a regular control-flow graph, PCFG
contains specific nodes (e.g., task, task body, and taskwait) that represent the parallelism
in the source code.

• Nstart, Nend are the sets of start and end nodes in a control-flow graph.
• Ecfg is the set of edges. This set is identical in both CFG and PCFG.
• Etask is the set of task edges. Everytime a #pragma omp task is encountered in the
source code, an edge is added between the task node and the task body node that contains
the code block embraced by the #pragma omp task.

• Esync is the set of synchronization edges. For every #pragma omp taskwait in the
source code, an edge is added between taskwait and task nodes. Additionally, PCFG
contains an edge between the task and the task body nodes.

Figure 2.1 shows a sample code which contains OpenMP task parallelism constructs. Also,
the figure contains the PCFG of the program. After the PCFG of a program is generated, the
classifier of Mercurium determines the data-sharing attribute of variables based on the def-use
chain analysis. However, it is still possible that it does not identify the correct classification for
global and pointer variables because it cannot detect the def-use chain of the variables.

2.1.4 autoPar

autoPar [8] is a tool based on the ROSE compiler framework [50]. ROSE is a source-to-source
transformation infrastructure that is well suited for creating tools for static analysis and program
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1 int bar(){

2    int i = 0, j, k = 10;

3    #pragma omp task private(k)
4    {
5          j = i + k;
6          i = k * j;
7    }
8    #pragma omp taskwait

9    return i;
10 }

i = 0, k = 10

return i

NtaskBody

j = i + k;
i = k * j;

Ntaskwait

Nstart

Nend

Ntask

Use: i, k
Def: i, j

Def: i, k

Use: i

Esync

Etask

Ecfg

Node

Figure 2.1: An example function containing task parallelism constructs and the corresponding
PCFG, adopted from Sara Royuela at al. [32].

optimization.
Figure 2.2 shows the workflow of autoPar. It applies a series of analyses on a sequential

program to identify parallelism and insert OpenMP worksharing-loop and task constructs into
the program.
autoPar first applies a set of custom optimizations such as fusion, fission, interchange,

unrolling, and blocking in array-based loops [51]. It then normalizes the loops to follow the
canonical form. There are optimizations [19] that transform certain non-canonical loops to the
canonical form. Further, autoPar applies use-def chain and liveness analysis to classify variables
in loop constructs. These techniques, however, are not sufficient to determine the data-sharing
attribute of all types of variables, for example, they struggle with pointers that appear under
different names or global variables affected by inter-procedural dependences.
autoPar checks whether or not a data dependence in a loop can be eliminated. If it is

successful to eliminate all dependences in the loop, it parallelizes the loop by inserting OpenMP
directives into the source code. Contrary to autoPar, which finds data dependences only in
specific loops, our method identifies data dependences in all types of loops and functions.
Additionally, autoPar inserts OpenMP worksharing-loop constructs at every level in a nested
loop, degrading the parallelization performance significantly.
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2.1.5 TaskMiner

TaskMiner [10] is a static analysis tool which parallelizes programs with the OpenMP task
construct. It solves some of the challenges that programmers face when parallelizing programs
with OpenMP tasking. We use Figure 2.3 to explain the challenges and the approach of TaskMiner
for resolving them.
The first challenge is identifying the region of a task. TaskMiner builds the dependence

graph of the program to detect task regions. It relies on the LLVM data-dependence analysis
to extract data dependences and generate the graph. Figure 2.3a shows function foo(). The
program dependence graph of the function is shown in Figure 2.3b. The figure shows two
regions that can be parallelized: the outermost loop and the nested loop. According to the data
dependences, TaskMiner suggests that the iterations of the inner loop could be made into a task
and thus, it embraces the loop with OpenMP task construct. Figure 2.3c shows the suggested
construct and the position in the source code where the directive is inserted.
However, parallelizing the outermost loop yields a higher efficiency because each task has a

larger workload to execute; compensating for the overhead of the task creation. Encapsulating
the outermost loop with the task construct will result in the sequential execution of the program
because a single task is created to execute the entire loop. To parallelize the coarser region,
one can use OpenMP taskloop construct, which instructs the OpenMP runtime system that the

Custom 
optimization

Loop 
normalization

Liveness 
analysis

Dependence 
analysis

Variable 
classification

Dependence 
elimination

Sequential 
code

Parallel
OpenMP

code

Figure 2.2: The workflow of the parallelization tool autoPar, adopted from Chunhua Liao et
al. [8].
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iterations of the loop can be grouped together to create a task. Later, threads pickup the tasks
from the task pool to execute them in parallel. Confined to identify regions that pertain to the
task construct, TaskMiner misses opportunities that create a higher efficiency. One possible
reason for not exploiting the taskloop construct is that TaskMiner was released before the
introduction of the construct in OpenMP. Unlike TaskMiner, which parallelizes programs using
only task construct, our tool chain chooses among the worksharing-loop, task, or taskloop
constructs. This allows more parallelization opportunities to be exploited in a broader spectrum
of programs.
TaskMiner does not target the performance improvement but instead, it aims to increase the

productivity of programmers in the parallelization process. The tool recommends a profitability
estimation to avoid the creation of tasks that do not have sufficiently large workload. It uses the
if clause in OpenMP to manage the task creation. The clause receives two parameters as the
inputs to a condition. It creates a task only if the condition evaluates to true. It is not possible to
determine the workload of a task precisely based on the static information. Therefore, TaskMiner
estimates the profitability of a task based on its symbolic workload. For example, there are five
instructions inside the suggested task in Figure 2.3c. Symbolically, the workload of the task is
defined as 5 * M, where M is the number of loop iterations which is determined during the
execution. In the figure, WORK_CUTOFF is the other parameter in the condition of the if clause.
The value of the parameter depends on several factors including the number of available cores
and the task dispatch cost in terms of machine instruction. The users of TaskMiner need to set
the parameter manually considering the specifications of the hardware platform. Depending on
the values of M and WORK_CUTOFF, the tool decides at runtime whether or not it is profitable
to create tasks.
Finally, TaskMiner classifies the variables that emerge within the boundaries of tasks. Again,

it relies on the static data-dependence analysis to determine the classification of variables.
Like TaskMiner, we use LLVM and its features to identify the data dependences whenever it
is possible. However, we use dynamic data-dependence analysis when runtime information is
required to detect data dependences.

2.1.6 Appentra

Appentra [52] is a company which was founded in 2012 as a spin-off at the University of A
Coruña, Galicia, Spain. The company has developed Parallelware, a tool that offers OpenMP-
level parallelism and finds concurrency bugs in programs. The tool has three main components:
PWCheck, PWLoops, and PWDirectives. Figure 2.4 shows the relation between the components.
PWCheck identifies defects related to the parallelism including data races, invalid OpenMP

variable classifications, and incorrect use of OpenMP reduction clause. PWLoop tool finds
parallelism opportunities in programs while PWDirectives is responsible for the annotation of
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void foo(int* U, int* V, int N, int M) {
int i, j;
for(i = 0; i < N; i++) {

for (j = 0; j < M; j++) {
U[i] += V[i*M + j];

}
}

}

(a) A sequential program.

i = 0

i < N i++

j = 0

j < M

j++

V[i*M + j]

U[i]
Task level 1

Task level 2

(b) program dependence graph of function foo().

void foo(int* U, int* V, int N, int M) {
int i, j;
#pragma omp parallel
#pragma omp single
for(i = 0; i < N; i++) {

#pragma omp task depend(in: V[i*M:i*M+M]) \
if (5 * M > WORK_CUTOFF)

for (j = 0; j < M; j++) {

U[i] += V[i*M + j];

}
}

}

movl   (%rsi,%rax,4), %r11d
movslq %r9d, %rbx
addl   %r11d, (%rdi,%rbx,4)
incl   %r10d
incl   %eax

(c) Identifying regions that belong to a task.

Figure 2.3: Parallelization of a sequential program with TaskMiner, adopted from Pedro Ramos
et al. [10].

the source code with compiler directives specializing in parallel computing for vector, multicore
and accelerator processors.
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The three tools rely on the Parallelware middleware, which enhances the existing static
code analyzers with an artificial intelligence engine to analyze programs. There are four level
of analyses in the middleware. Figure 2.5 shows the levels and the relation between them. The
first three levels prepare the source code for the last step which is the parallelism analysis.

• Level 1: Parallelware finds code formatting issues, duplicated code, and unused code in
the program.

• Level 2: It performs a number of static analyses including data-flow analysis, liveness
analysis, definite assignment analysis, available expression, and constant propagation.

• Level 3: The tool detects dead code, out-of-bound array indices, and buffer overflows.
Also, it combines data-flow with symbolic and interprocedural analyses to reduce the
overhead of data-flow analysis in Level 2.

• Level 4: It uses an AI engine to detect parallelism opportunities, common concurrency
bugs, and compiler directives which are used for parallel code generation.

The AI engine consists of three layers. The first layer is code normalization, which creates
different abstract models from the source code. The second layer is called classification of
semantic patterns. It classifies the abstract models to a set of semantic patterns specializing
in performance and parallelism. The last layer (i.e., pattern-based abstract reasoning) uses
the knowledge which are manually defined about the patterns to support key use-cases of
parallel programming. Based on the information, Parallelware detects parallelism opportunities,
concurrency bugs, or compiler directives, and generates the final parallel code.
Parallelware has been evaluated by a rich set of benchmarks. In none of the benchmarks,

however, obtaining the runtime information is not necessary for the analysis of data dependences

PWCheck

PWDirectives

PWLoops

Identify 
concurrency 

bugs

Detect 
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opportunities

Generate 
parallel
code

Test 
and

profile

Figure 2.4: Different analyses in the Appentra parallelization tool, adopted from Appentra [52].
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Figure 2.5: The workflow of the parallelization tool Appentra, adopted from [52].

and parallelization of the programs. Such cases rarely happen in the real-world applications
that contain pointers or array indices whose values are not predictable at compile time.

2.1.7 DawnCC

DawnCC [53] is a tool that helps programmers produce parallel code for the GPU. It targets two
challenging tasks during the parallelization process: Identifying parallelism opportunities in
sequential programs and estimating the memory bounds in the programs. Programmers need
to resolve the first challenge when parallelizing a program on the CPU or the GPU. However,
they face the second challenge only when they want to offload the computations to the GPU.
They must detect which sections of the memory are referenced by the computations and hence,
copy them to the device memory before the execution of the computations on the device.
Programming languages such as C/C++ provide no information about the memory accesses
during the program execution. Therefore, programmers need to find the memory bounds
manually.
DawnCC performs both tasks automatically. It uses static analysis to infer the size of the

memory regions which are accessed in the source code. Based on the information, it inserts
OpenMP memory transfer directives into the program.
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Mendonca et al. [53] tested the tool with two real-world programs, namely, FFmpeg [54],
which is an audio/video encoding/decoding library and VLC media player [55], which is a
well-known multimedia player that converts, encodes, streams and manipulates streams into
numerous formats. They show that DawnCC is able to detect parallelism in code sections that
contain pointer variables. However, the pointer manipulations are trivial; they are incremented
constantly. Therefore, DawnCC is not able to find parallelism opportunities or memory bounds
when runtime information is required to find the value of pointers or aliases.

2.1.8 Others

Cetus [56] is a source-to-source transformation tool that identifies reduction operations, per-
forms privatization, and induction variable substitution. Parcae [57, 58] and the Paralax
Infrastructure [59] are tools which employ the liveness and use-def chain analyses to detect
parallelism opportunities. Wang et al. [33] apply the same set of techniques to classify variables
in task constructs. Like the classifier of Mercurium, they classify variables in task constructs that
have been previously inserted into the program, without identifying task dependences. Like the
above-mentioned auto-parallelizing tools, these works may miss parallelization opportunities
because they lack runtime information, making parallelization more conservative than it needs
to be.

2.2 Dynamic tools

Avoiding the limitations of purely static analysis, many tools capture data dependences during
the program execution. They profile memory accesses, which imposes a huge runtime overhead,
often a factor of 100 or more. Also, they suffer from the input sensitivity problem. We discuss
some of the state-of-the-art approaches in the following subsections.

2.2.1 DiscoPoP

DiscoPoP [23] is a parallelism discovery tool that serves as the basis for our implementations.
The tool includes a generic data-dependence profiler [25]. The original version of the profiler
converts the program into its LLVM-IR representation, after which it instruments all memory
access instructions. A runtime library tracks the memory accesses during execution. To reduce
the memory and runtime overhead, it records memory accesses in a signature hash table. Also,
it skips repeatedly executed memory operations. Moreover, it runs multiple threads to reduce
the runtime overhead further. Because of its favorable speed with an average slowdown of 90,
we have implemented our methods in DiscoPoP, although it is generic enough to improve the

38



efficiency of any profiler. The main difference to the optimizations pursued in the original version
of DiscoPoP profiler is the hybrid combination of dynamic and static dependence analysis.
Additionally, the original version of DiscoPoP detected only parallel patterns inside programs.

It did not provide suggestions or specific instructions for the parallelization. We have extended
the tool with a parallelism recommendation system that assists programmers to produce the
parallel version of programs.

2.2.2 SD3 and Prospector

Kim et al. proposed SD3 [27] and Prospector [60] tools that detect parallelism based on the
profiled data dependences. They instrument the memory-access instructions in a program and
monitor them at runtime to identify the data dependences. Based on the extracted data depen-
dences, they detect parallelism opportunities and recommend developers how to parallelize
programs.
To reduce the overhead of the data-dependence profiling, they divide the memory address

space which is referenced in a program into multiple sections and assign each section to a
thread to perform the data-dependence analysis. Prospector limits the scope of its analysis to
the loops in a program to reduce the profiling overhead. Unlike Prospector, SD3 extracts data
dependences from the whole program. SD3 compresses memory accesses with stride patterns
to decrease the memory overhead of the profiler. Combining static and dynamic analysis, we
take a fundamentally different approach to reduce the overhead of data-dependence profiling.

2.2.3 Intel® Advisor and Inspector

Intel Advisor [61] helps programmers parallelize programs while Inspector [62] finds data
races and memory-access bugs in programs. Users of Intel Advisor require to annotate the
code locations in which they see the potential parallelism. Hot spots (i.e., loops and functions
that take most of the execution time of a program) are suitable candidates for the annotation.
Programmers require to provide Advisor with a header file that contains the source code lines
of the annotations. Also, they might need to change the source code slightly. Figure 2.6 shows
the relation between Intel Advisor and Inspector. Also, it shows the different components in the
Advisor.
To identify parallelism, Intel Advisor emulates the behavior of the annotated code blocks. It

builds the emulation based on many analyses, including:

• Survey and characterization analyses: It estimates number of loop iterations or function
calls.

• Memory Access Patterns (MAP) analysis: The users can utilize the analysis to detect
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the pattern of memory accesses in loops. The analysis also gives warnings about non-
contiguous memory accesses, unit stride vs. non-unit stride accesses, or other memory
related issues.

• Roofline analysis [63]: Primarily, the Roofline analysis adds data to the survey analysis.
Roofline charts show the achieved performance and arithmetic intensity of a program.
The analysis counts the number of computational and memory-access operations and
multiples them by the number of loop iterations to compute the memory traffic and
the computational workload of loops. Further, it discovers whether or not the memory
bandwidth or the compute capacity are the limiting factors for the parallelization of loops.

• Suitability test analysis: Based on the information collected during the previous analyses,
it determines the suitability of an annotated code for the parallelization. The suitability

Survey and 
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Memory Access 
Patterns

Data 
dependence
identification

Roofline

Suitability test

Sequential code

Parallel code

Data race 
detection

Intel Advisor

Rebuild and verify Eliminate 
dependences

Intel Inspector

Figure 2.6: The workflow of Intel Advisor, adopted from [62].
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test performs a speedup estimation and the scalability of the program, from 2 to 512
threads.

• Data-dependence analysis: It checks for data dependences in the annotated code blocks.
If the analysis detects dependences, it provides additional details to help resolve them.
Users can analyze the modified program to identify further parallelization opportunities.

Moreover, Intel Inspector checks the correctness of parallel programs. It looks for data races
and deadlocks in OpenMP constructs. It profiles programs to identify unprotected accesses to
shared variables. The Inspector considers four bytes by default to monitor memory accesses. To
increase the precision of the analysis, the access granularity can be set to a single byte. This,
however, increases the profiling overhead. Depending on the program structure and the inputs,
the overhead can vary between 2X to 160X.
Intel parallelization toolkits can only parallelize loops with relatively simple structures. They

cannot determine the data dependences of a loop that includes external function calls. Also, it
may not be able to detect if two pointers or array references refer to the same memory address,
and thus it skips parallelizing the loop. In code sections with a high parallelism potential, it
generates additional checks for aliasing at runtime.

2.2.4 Tareador and Alchemist

Tareador [64] is a tool that identifies parallelism inside programs iteratively. It receives as input
a sequential program and starts analyzing function main() in the program. Then, it decomposes
the program into smaller sections (e.g., loops and functions). At each iteration, it analyzes a
single section to find parallelism and compute the cost and benefits of parallelizing the section.
It continues the decomposition until it reaches a section which is not worth parallelizing (e.g.,
because of many dependences or the low workload of the section).
Alchemist [65] is a research tool developed at the Purdue University. It looks for parallelism

in constructs at different levels of granularity (e.g., loops and functions) in a program. It detects
all types of data dependences (i.e., RAW, WAR, and WAW) between a construct and its dynamic
scope, which is the execution following the completion of the construct. Alchemist introduced
time-ordered distances to measure the effectiveness of parallelizing a construct. A distance is
the time interval between the access to a memory location inside the construct and another
access to the same memory location but from the dynamic scope of the construct. When a
construct is worth to parallelize, Alchemist suggests the necessary transformations to facilitate
the parallelization.
Tareador and Alchemist use Valgrind [66] to profile instructions inside the sections or

constructs and find data dependences. Both tools have a huge profiling overhead which is
between 200X and 1000X.
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2.2.5 Parwiz

Parwiz [17] is a tool which is developed at INRIA. It uses dynamic binary instrumentation
to detect data dependences. The input to the tool is the binary code of a program. It uses
Intel Pin [67] to instrument the memory accesses in the program. Based on the detected data
dependences, Parwiz suggests parallelization actions, ranging from inserting directives into the
source code to recommending elaborate loop transformations.
Parwiz also includes a few optimizations to lower the profiling overhead. For example, it

coalesces contiguous memory accesses that always happen atomically into a single block. This
lowers the profiling overhead, but only for a subset of the memory accesses.

2.2.6 Parceive

Parceive [68] is a parallelism identification and optimization tool. It uses Intel Pin to instrument
the binary code of a program. To reduce the profiling overhead, it implements a filter mechanism
to control the instrumentation. Users can specify a blacklist and a whitelist in XML-format.
The files determine which parts of the program must be excluded from or included in the
instrumentation.
Parceive stores the identified data dependences and other profiling information in a SQL

database. It has a visualizer component that visualizes all the information in an interactive way.
The tool does not generate the parallel version of a program automatically but the visualizer
component helps programmers find parallelism opportunities in programs.

2.2.7 Others

Jimborean et al. [69] suggest sampling to reduce the profiling overhead. The method, however,
does not apply well to data-dependence profiling. A data dependence is made of two distinct
memory accesses and omitting only one of them is enough to miss a dependence or introduce
spurious dependences.
Kremlin [70] is a tool that profiles program with the purpose to detect code sections which

are worth to parallelize. It profiles data dependences only within specific code regions. Wang et
al. [35] profile memory accesses inside loops to classify variables. Aldea et al. [71] identify the
data-sharing attribute of variables by speculatively monitoring memory accesses inside loops.
This method, however, is limited to loops. Also, they cannot tell whether a variable should
be declared lastprivate or firstprivate. Using dynamic data-dependence analysis, we are able
to classify pointers and global variables. In addition, we cover variables in both worksharing-
loop and task constructs and distinguish among private, shared, reduction, lastprivate, and
firstprivate variables.
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2.3 Hybrid analysis

There are a few methods that combine static and dynamic analyses to parallelize programs.
Rus et al. [72] have proposed an approach that targets the automatic parallelization of loops
whose parallelization is not obvious at compile time. Based on the results of static analysis,
they formulate conditions and insert them into the source code. These conditions evaluate at
runtime whether a loop can be parallelized or not.
Another hybrid-analysis framework was proposed by Sampaio et al. [73]. Their goal is

providing theoretical and practical foundations to apply aggressive loop transformations. They
apply static alias and dependence analysis and provide their results to an optimizer. The
optimizer, instead of filtering out invalid transformations, performs transformations believed
to reduce the execution time. It then generates fast and precise tests to validate at runtime
whether the transformations can be taken.
In contrast to the works, our contribution happens at a lower level, where we just collect

data dependences in a hybrid method, with the goal of increasing the profiling speed.

2.4 Summary

Data-dependence analysis is a technique for detecting parallelism opportunities in sequential
programs. Dynamic methods capture data dependences that actually occur during program
execution. They suffer from high runtime overhead. Purely static methods assume parallelism-
preventing dependences because they lack critical runtime information such as the values of
pointers and array indices. Some methods combine static and dynamic methods to discover
parallelism opportunities. We also use a hybrid approach to collect data dependences, however,
with the primary aim of reducing the overhead of the dynamic profiler. Nevertheless, we also
exploit static knowledge to improve the accuracy of the dependence set we obtain. In conclusion,
our hybrid approach avoids the disadvantages and pitfalls of purely static or purely dynamic
methods for data dependence detection.
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3 Data-dependence analysis

In this Chapter, we explain our hybrid approach to the detection of data dependences. Figure 3.1
shows the basic workflow. Dark boxes highlight our contribution in relation to the isolated static
and dynamic dependence analyses.
Our approach first eliminates from instrumentation the memory-access instructions that

create statically-identifiable data dependences. Section 3.1 presents the details of our method
for the detection of such instructions. In a complementary attempt, our approach excludes
polyhedral loops from instrumentation. We use PLUTO, a polyhedral compiler, to extract the
data dependences that exist within the boundaries of polyhedral loops. Section 3.2 explains
the details to identifying the loops and skipping them from profiling. We also discuss the
relation between the set of data dependences extracted by our hybrid and the purely dynamic
approach in Section 3.3. Finally, we present our approach to the detection of reduction patterns
in Section 3.4.

3.1 Scalar variable elimination

We eliminate a memory-access instruction from profiling under certain conditions. They guar-
antee that the instruction creates only statically-identifiable data dependences and thus, we
can safely omit it, without missing any data dependences that a purely dynamic analysis may
capture at runtime.
The first condition is that the target address of a memory instruction must be predictable

statically. We use Algorithm 1 to detect memory addresses that comply with the condition.
Figure 3.2 serves as an illustrating example.
The static analysis we conduct in this section does not cross function boundaries. This is

why we continue profiling memory instructions of variables that create data dependences whose
sink and source appear in different functions. Nevertheless, we will investigate the analysis of
dependences between functions in the future.
According to our algorithm, we first look for memory allocation instructions in a function.

We retrieve the symbolic address from an allocation instruction and add it to the set of statically-
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predictable addresses. In Figure 3.2, the set includes initially the address of variables x, y, and
p. Then, we look for call and store instructions. We exclude the addresses that are passed by
reference to functions; they may create data dependences that cannot be identified statically.
In the figure, a reference to variable x is passed to function bar() at line 5. It means that we
cannot exclude memory-access instructions of variable x from profiling and, thus, we remove
the symbolic address of x from the set of static addresses.
In addition, pointer variables create data dependences which may not be identified statically.

According to Algorithm 1, we detect a pointer variable if a store instruction assigns the address
of a variable to another variable. We remove the symbolic address of a pointee from the set
of static addresses. In the figure, the address of variable y is assigned to variable p by the

Coordinate the tools
in one framework

PLUTO

Source code

Polyhedral loops

Scalar variables
inside functions

Static analysis

Our LLVM pass

Static data 
dependences

Eliminate
instructions

from instrumentation

Dynamic analysis

Dynamic data 
dependences

DiscoPoP
data-

dependence
profiler

Hybrid data 
dependences

Unify representation
and merge 

data dependences

Detect reduction 
patterns statically

Figure 3.1: The workflow of our hybrid data-dependence analysis. Dark boxes show our contri-
butions.

1 void foo(int x){

2 int y = 0;
3 int *p = &y;
4 *p = 4;
5 bar(&x);
....
6 }

Figure 3.2: A program containing only aliased variables.
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for each function F ∈ program P do
staticAddrs = {}
for each instruction I ∈ F do

if I.isAlloca() then
addr = I.getMemAddr()

staticAddrs.insert(addr)

end
end

for each instruction I ∈ F do
if I.isCall() then

params = I.getParams()

for each param p ∈ params do
if p.isPassedByReference() then

addr = p.getMemAddr()

staticAddrs.remove(addr)

end
end

end
else if I.isStore() then

var = I.storedV ar()

if var.isMemAddr() then
pointeeV ar = I.getPointee()

staticAddrs.remove(var)

staticAddrs.remove(pointeeV ar)

end
end

end
end

Algorithm 1: Finding memory addresses that are statically predictable.

implicit store instruction at line 3. All memory instructions of variable y should be profiled and,
therefore, we discard them from further analysis.
In Figure 3.2, most variables are aliased via pointers or references. In practice, we rarely find

programs that contain only aliased variables. Figure 3.3 shows function fib() from BOTS [21].
There, we can skip profiling memory instructions of all variables, namely, i, j, n, and an implicit
variable retval, which saves the return value because we can identify data dependences between
their accesses statically.

47



1 int fib(int n) {
2     int i, j;

3     if (n < 2)
4         return n;

5     i = fib(n - 1);
6     j = fib(n - 2);

7     return i + j;
8 }

Figure 3.3: Function fib from BOTS. The memory addresses of all variables are statically pre-
dictable.

Figures 3.4 to 3.6 demonstrate the analyses that we perform to extract data dependences
statically, using function fib() in Figure 3.3 as an example.
First, we convert the program into its LLVM-IR representation and generate the control

flow graph (CFG) of the program. The CFG of function fib() is shown in Figure 3.4. The CFG
contains many instructions that are irrelevant to the data-dependence analysis. We generate
a memory-access CFG (MCFG) which has the same structure as the CFG but contains only
memory-access instructions. Henceforth, we briefly refer to MCFG as memory-access graph or
simply as graph if the context allows it. Figure 3.5 shows the memory-access graph of function
fib().

%retval = alloca i32
%n.addr = alloca i32
%i = alloca i32
%j = alloca i32
store i32 %n, i32* %n.addr
%0 = load i32, i32* %n.addr
%cmp = icmp slt i32 %0,2
br i1 %cmp, label %if.then, 

    label %if.end

Basic block: entry

T

F

Basic block: if.then

%1 = load i32, i32* %n.addr
store i32 %1, i32* %retval
br label %return

Basic block: if.end

%2 = load i32, i32* %n.addr
%sub = sub nsw i32 %2, 1
%call = call i32 @fib(i32 %sub)
store i32 %call, i32* %i
%3 = load i32, i32* %n.addr
%sub1 = sub nsw i32 %3, 2
%call2 = call i32 @fib(i32 %sub1)
store i32 %call2, i32* %j
%4 = load i32, i32* %i
%5 = load i32, i32* %j
%add = add nsw i32 %4, %5
store i32 %add, i32* %retval
br label %return

Basic block: return

%6 = load i32, i32* %retval
ret i32 %6

Control flow

Figure 3.4: Control-flow graph of function fib() in Figure 3.3.

We traverse the graph to extract data dependences statically. Algorithm 2 shows how.
Figure 3.6 illustrates the dependences that we extract from the memory-access graph of fib.
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5
store(i)

0
store(n)

1
load(n)

2
load(n)

3
store(retval)

4
load(n)

7
store(j)

6
load(n)

9
load(j)

8
load(i)

10
store(retval)

11
load(retval)

Basic block: entry

Basic block: if.then

Basic block: return

Basic block: if.end

Control dependences

Return
node

Figure 3.5: Memory-access graph of function fib() in Figure 3.3.

5
store(i)

0
store(n)

1
load(n)

2
load(n)

3
store(retval)

4
load(n)

7
store(j)

6
load(n)

9
load(j)

8
load(i)

10
store(retval)

11
load(retval)

Data dependences

Figure 3.6: Data dependences that our method extracts from function fib() in Figure 3.3.

According to the algorithm, we use two recursive functions to traverse the graph of each
function in the source code. First, we pass the return node in the graph to function findDepsFor().
The function recursively iterates over all nodes preceding the return node and calls function
checkDepsBetween() to look for dependences between the return node and its preceding nodes.
It performs the same process for all other nodes until it has found dependences for all nodes.
Function checkDepsBetween checks the memory addresses of the two nodes that it receives
and, if they are equal and one of them is a store operation, creates a data dependence edge
between the nodes. Considering the control flow, we determine the type of an identified data
dependence, that is, whether it must be classified as read-after-write (RAW), write-after-read
(WAR), and write-after-write (WAW).
In Figure 3.5, the value of variable i is read in node 8. The value was previously stored in

node 5. Figure 3.6 shows the data dependence that our approach adds between the nodes. The
type of the dependence is RAW because the value of i is read after it is written.
We do not report read-after-read (RAR) dependences, although we identify them. This de-

pendence type is irrelevant to the parallelization and, strictly speaking, does not even constitute
a dependence. Most data-dependence profilers do not report them either. However, instrument-
ing memory-access instructions relevant to RAR dependences adds to the profiling overhead. If
we prove during the static analysis that an instruction is only involved in RAR dependences,
we can safely omit the instruction from profiling, without violating the completeness of data
dependences captured by purely dynamic analysis. In Algorithm 2, function checkForRARDep()
determines whether a memory address is only read in a function. In function fib() in Figure 3.3,
variable n creates only RAR dependences after its memory initialization. We skip profiling all of
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Input: I: Return node in the memory-access graph of a function
Function findDepsFor(node I):

if I.isEntry()||I.isV isited() then
return;

end
for each node J directly preceding I do
checkDepsBetween(I,J);
findDepsFor(J);

end
Function checkDepsBetween(node I, node J):

if J.isEntry() then
return;

end
if J.getMemAddr() == I.getMemAddr() then

if J.isStore()||I.isStore() then
addDataDeps(I, J);

return;

end
else

checkForRARDep();

end
end
for each node K directly preceding J do

if !K.isV isited() then
K.isV isited = true

checkDepsBetween(I,K);
end

end
Algorithm 2: Traversing the graph of a function to extract data dependences.

its memory-access instructions and do not report its RAR data dependences.
We check the dependences between a node and all other nodes preceding it in the memory-

access graph of a function. We repeat the process for all functions in a program. The worst-case
complexity of our analysis O(f · n2), where f is the number of functions and n is the maximum
number of memory instructions in a function. However, given that during execution many
instructions are executed many times, the overhead of the static pre-analysis, which usually
takes in the order of minutes, is small in comparison to the profiling overhead the affected
instructions would cause. Moreover, our analysis excludes memory-access instructions that can
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1
store(x)

2
load(x)

3
store(x)

Transitive 
data dependences

RAW WAR

WAW

void foo(){

1        x = …
2        … = x
3        x = …

}

Figure 3.7: A transitive data dependence.

be safely removed during the static analysis. In the worst case, if there are no such instructions in
a program, all instructions are instrumented and our approach falls back to the purely dynamic
technique. In this case, we cannot reduce the profiling overhead.
In the end, we merge all the data dependences that we have identified using our portfolio of

static and dynamic methods into a joint ASCII file. Furthermore, we compact the dependence
data, combining all dependences with the same sink into a single line. The result can be used
by parallelism discovery tools to find parallelization opportunities.

3.1.1 Transitive data dependences

Transitive data dependences are the only difference that we came across while comparing the
sets of dependences extracted by a purely dynamic profiler and our approach. Consider two
memory-access instructions S1 and S2 in a program. If S1 precedes S2 in execution and both
either read from or write to the same memory location M, we say that S2 is data dependent
on S1. Now consider an additional statement S3 that accesses M, too. We say that there is a
transitive data dependence between S1 and S3 if S1 depends on S2 and S2 depends on S3.
Transitive data dependences can be derived based on other data dependences that we identify.
In Figure 3.7, the value of variable x is read in node 2. Nodes 1 and 3 store values in variable x.
Our approach identifies a RAW dependence between nodes 1 and 2, and a WAR dependence
between nodes 3 and 2. There is a transitive data dependence between nodes 3 and 1. The
type of the dependence is WAW. We can identify the transitive data dependence and its type by
following the chain of the identified dependences, starting from node 3 to node 2 and further
to node 1. Note that transitive data dependences only provide additional information and are
not important for parallelization, as long as the chain of dependences that create a transitive
data dependence are extracted. Since our method identifies the dependences that constitute
transitive dependences, we do not generate and report transitive dependences to keep the set
of data dependences concise.
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3.2 Excluding polyhedral loops

We exclude specific memory-access instructions from instrumentation that appear inside source
code locations from which PLUTO can extract data dependences statically. Algorithm 3 shows
the details and can be best understood when following the examples in Figure 3.8.
We first let PLUTO annotate the target program with SCoP directives. In the example, lines

10 and 65 contain the annotations. Then, we traverse the source code and mark the variables
inside a SCoP. For each variable, we determine its boundary instructions: the first and the last
read and write operation. The first read and write of the array variable a appear in lines 15
and 20 and the last read and write in lines 55 and 60, respectively. We instrument only these
boundary instructions and mark all other memory-access operations on a variable for exclusion.
The dark box shows the section to be left out for variable a.
If a profiler fails to instrument one of the boundary instructions, it will report false positive

and negative data dependences. False positives are data dependences that are reported but do
not exist in the program. Conversely, false negatives are data dependences that exist in the
program but are not reported by the profiler.
False positive or negative data dependences that are reported when the boundary instructions

are skipped can adversely influence parallelization recommendations that span across multiple
SCoPs. The opportunities inside a SCoP, however, are not affected because PLUTO extracts
all the data dependences relevant to its parallelization. We profile the boundary instructions
not to miss any data dependences that a purely dynamic method would obtain. In addition,
this avoids false positives and negatives and helps assess parallelization potential that stretches
across SCoPs.

for each function f ∈ program do
SCoPSet = PLUTO.getSCoPs(f)

for each SCoP s ∈ SCoPSet do
varSet = getV ariables(s)

for each variable var ∈ varSet do
instrument(firstLoadInst(var,s))
instrument(lastLoadInst(var,s))
instrument(firstStoreInst(var,s))
instrument(lastStoreInst(var,s))

end
end

end
Algorithm 3: Exclusion of memory-access instructions from instrumentation
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1   foo(){
         …

10          #pragma scop
         ...

15         … = a[i]; 
    ...

20         a[i] = …; 
    ...

30             for(i = 0; i < n; i++){
         ... = a[i] ;
         …
         a[i] = …;

50          }
    ...

55          a[i] = …;  
    …

60          … = a[i]; 
    ...

65           #pragma endscop
                   …
70  }

First read

First write

Last read

Last write

Section 
excluded 

from 
instrumentation

Figure 3.8: A SCoP and the memory-access instructions excluded from instrumentation.

Figures 3.9a and 3.9b show situations that create false negatives. If we exclude the first
read in Figure 3.9a, the read-after-write (RAW) dependence between the first read inside the
SCoP and the last write preceding it is not reported. If the first write is eliminated, two types
of false negatives will happen: on the one hand, the write-after-read (WAR) between the first
write and the read before the SCoP (Figure 3.9b), and the write-after-write (WAW) between
the first write and the write before the SCoP on the other.
Moreover, if we do not instrument the last read operation on a variable (Figure 3.9a), the

WAR between the last read and the write after the SCoP will be ignored. If we exclude the last
write, however, dependences of two types will not be reported: the RAW between the last write
and the read after the SCoP (Figure 3.9b) and the WAW between the last write and the write
after the SCoP. Of course, these considerations apply only to live-out loop variables that are
accessed both inside and outside the loop.
Figures 3.9c and 3.9d show situations that create false positives. Three types of false positives

are reported if the boundary instructions are not instrumented. Figure 3.9c shows a false positive
RAW between the last write preceding the SCoP and the first read succeeding it. Figure 3.9d
shows a WAR that will be reported falsely between the last read before the SCoP and the first
write after it. Finally, the write operations before and after the SCoP, in both figures, create
false positive WAW dependences.
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Figure 3.9: Situations that create false negative (a and b) and false positive (c and d) data
dependences when the first and last read and write instructions in a SCoP are not
instrumented (shown in dark circles).

Our analysis excludes memory-access instructions that exist in polyhedral loops. In the worst
case, if there are no polyhedral loops in a program, all instructions are instrumented and thus,
the hybrid approach falls back to the purely dynamic approach. The overhead of the hybrid
approach, in this case, is not reduced in comparison with the purely dynamic approach.

3.2.1 Conversion to DiscoPoP representation

PLUTO does not use the representation of data dependences that we explained in Section 1.6.2.
In contrast, it assigns a unique ID to each source-code statement in a SCoP and reports data
dependences based on these IDs. We use Algorithm 4 to transform the output of PLUTO into
the representation that DiscoPoP uses.
First, we find the fileID of each SCoP, before we retrieve the set of data dependences in a

SCoP from PLUTO. We use the IDs to identify the statements in which the source and sink of a
data dependence appear. Then, we read the source code of the file to find the line number of
the statements. Finally, we determine the type of the data dependence and the name of the
variable involved in it. Unfortunately, PLUTO does not report data dependences for loop index
variables. We apply use-def analysis to statically identify the types of data dependences for the
indices appearing in SCoPs. We cannot run this analysis for an entire program because the code
beyond the SCoPs may contain pointers that cannot be tracked with use-def analysis. At the
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for each SCoP scop ∈ SCoPSet do
fileID = findF ileID(scop)

depSet = PLUTO.getDeps(scop)

for each dependence dep ∈ depSet do
varName = getV arName(dep)

sourceLine = findSourceLine(dep)

sinkLine = findSinkLine(dep)

depType = getDataType(dep)

print(fileID : sinkLine depType fileID : sourceLine|varName)

end
end

Algorithm 4: Transformation of data dependences identified by PLUTO into the DiscoPoP
representation.

end, we transform the dependences for the loop indices into the DiscoPoP representation.
Once we have collected all data dependences using our portfolio of static and dynamic

methods, we merge them into a joint ASCII file. To reduce the size of the output, we compress
the dependence data, merging all dependences with the same sink into a single line. Finally, we
sort the dependences based on the sink. The result can be used by parallelism discovery tools
to find parallelization opportunities.

3.3 Hybrid vs. dynamic data dependences

In this Section, we take a deeper look into the relationship between the set of data dependences
extracted by our hybrid approach in comparison to the one produced by purely dynamic
analysis, which is illustrated in Figure 3.10. To better understand this relation, let us consider
the listings in the figure. In Figure 3.10b, both loops meet the constraints of the polyhedral
model. PLUTO finds data dependences in those loops and, thus, our hybrid approach excludes
the whole conditional block from profiling. Profilers might execute either the if or the else
branch, depending on the condition k < average, and extract dependences only in the executed
part. Only running the program with two different inputs, each of them causing the program to
take a different branch, however, would allow a profiler to identify dependences in both parts. In
general, the set of hybrid data dependences is therefore a superset of the set of purely dynamic
data dependences (i.e., D ⊆ H). Figure 3.10c shows a similar case where the set of hybrid
dependences contains the set of dynamic dependences (i.e., D ⊆ H). There are two loops, but
only the one in the else branch is polyhedral. Again, profilers might miss the dependences in the
polyhedral loop if none of the provided inputs makes the program go through the else branch.
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H D

(a)

if ( k < average ){
for ( i = 0; i < n; i++ ) {

q[i] = q[i] + A[i] * p[i];
}

} else {
for ( j = 0; j < n; j++ ) {

s[j] = s[j] + r[j] * A[j];
}

}

(b) Both loops are polyhedral

if ( k < average ){
for ( i = 0; i < n; i++ ) {

w = a[f(i)];
a[g(i)] = v;

}
} else {

for ( j = 0; j < n; j++ ) {
s[j] = s[j] + r[j];

}
}

(c) Only the loop in the else part is
polyhedral

if ( k < average ){
for ( i = 0; i < n; i++ ) {

w = b[f(i)];
          a[g(i)] = v;

}
} else {

for ( j = 0; j < n; j++ ) {
d = d * z[colidx[j]];

}
}

(d) Neither loops are polyhedral

Figure 3.10: (a): The relation between dynamic and hybrid data dependences. H includes data
dependences that are identified via hybrid analysis. D contains data dependences
identified via dynamic analysis with a finite set of inputs. (b) and (c): Two examples
where D ⊆ H . (d) One example where H = D.

Finally, in Figure 3.10d, neither loop is polyhedral. PLUTO does not extract dependences from
either loop and, thus, our approach does not exclude any instructions from instrumentation. In
this case, the set of dependences identified by our approach is equal to the set of dependences
detected by purely dynamic analysis (i.e., H = D).
In theory, H and D would be different for a program only if a polyhedral loop recognized

by PLUTO was never executed. However, this condition happens rarely in practice because
polyhedral loops constitute hotspots, that is, they consume major portions of the execution
time. As several authors have shown [17, 27, 23, 15], such regions are usually always visited—
regardless of the specific input. Exceptions include, for example, erroneous inputs that cause
the program to terminate prematurely.
In the example, we used only polyhedral loops to demonstrate the relation between hybrid

and purely dynamic data-dependence analyses. However, this relation holds when eliminating
from the instrumentation the scalar variables that create statically-identifiable data dependences.
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3.4 Detecting reduction patterns statically

Reduction patterns are suitable for a loop with a specific type of inter-iteration dependence,
that is, the loop uses an associative binary operator to reduce all elements of a container to a
single scalar value. This happens, for example, when a loop adds all the elements of an array.
We developed an LLVM pass [15], as part of the DiscoPoP tool, that instruments all LLVM-IR

instructions that create inter-iteration dependences in a loop. It records the source-line numbers
for each read and write operation on every variable. The variables can be scalar or arrays with
any number of dimensions. If a memory address is written only once after it is read, DiscoPoP
marks the loop as a possible candidate for a reduction. Many cases of the reduction pattern can
be detected statically. We have modified the LLVM pass to skip profiling loops in which we can
detect reduction opportunities statically. Now, the LLVM pass marks a variable as a reduction
candidate if the read and write operations on the variable happen at the same source-code line.
Nevertheless, our approach does not identify all cases of reduction statically. The cases that are
beyond the scope of our analysis are the reductions related to multi-dimensional arrays (i.e.,
more than two dimensions), arrays with complex subscripts, or variables with non-standard
(i.e., user-defined) data types. In these cases, we need to resort to profiling to identify the
reduction opportunities.
Listing 3.1 shows a long-running loop in LULESH. In this loop, variable dtcourant_tmp

creates an inter-iteration data dependence. We can identify the data dependences related to
the variable statically using our approach in Section 3.1. The memory accesses to the variable
preserve the conditions of the reduction pattern and thus, our hybrid approach marks the loop
and the variable as a reduction pattern.
Listing 3.1: A hotspot loop in LULESH. The loop contains a reduction operation which we detect

statically.

1 for (Index_t i = 0 ; i < length ; ++i) { // dp ++
2 Index_t indx = regElemlist[i] ;
3 Real_t dtf = domain.ss(indx) * domain.ss(indx) ;
4

5 if ( domain.vdov(indx) < Real_t(0.) ) {
6 dtf = dtf
7 + qqc2 * domain.arealg(indx) * domain.arealg(indx)
8 * domain.vdov(indx) * domain.vdov(indx) ;
9 }
10

11 dtf = SQRT(dtf) ;
12 dtf = domain.arealg(indx) / dtf ;
13

14 if (domain.vdov(indx) != Real_t(0.)) {
15 if ( dtf < dtcourant_tmp ) {
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16 dtcourant_tmp = dtf ;
17 courant_elem = indx ;
18 }
19 }
20 }

3.5 Evaluation

We performed a range of experiments to evaluate the effectiveness of our hybrid data-dependence
approach. We used the following benchmarks: NAS Parallel Benchmarks 3.3.1 [31] (NPB),
a collection of programs derived from real-world computational fluid-dynamics applications,
Polybench 3.2 [16], a set of benchmarks including polyhedral loops mainly, and the Barcelona
OpenMP Task Suite (BOTS) 1.1.2 [21], a suite that all the benchmarks contain recursive
functions. In addition to the benchmarks, we have analyzed our approach with LULESH, a C++
application which is used in the field of dynamic fluid simulation, and EOS-MBPT code, a C++
astro-physics simulation code. Since Polybench has been designed as a test suite for polyhedral
compilers, it is well suited to evaluate our polyhedral loop elimination approach. Also, the
NBP benchmarks contain many polyhedral loops. In addition, we used BOTS to measure the
usefulness of our method for recursive functions.
We compiled the benchmarks and the LULESH program using clang 8.0.1, which is also

used by the data-dependence profiler of DiscoPoP. We ran them on an Intel(R) Xeon(R) Gold
6126 CPU @ 2.60GHz with 64Gb of main memory, running Ubuntu 14.04 (64-bit edition). We
profiled the benchmarks using the inputs packaged with the programs.
EOS-MBPT code has many software dependencies. It uses the Cuba library [74] and relies

on the GNU scientific library (GSL) [75] and the OpenBLAS [76] package. Because of the
software dependencies, we ran the program on Lichtenberg Cluster of Technical University of
Darmstadt, Germany. The cluster provides the software dependencies and 2.5GHz Intel Xeon
E5-2670v3 processors. Moreover, we used clang 8.0.1 to compile the code and profile it with
the data-dependence profiler of DiscoPoP and our hybrid approach.
Our evaluation criteria are the completeness of the data dependences in relation to purely

dynamic profiling and the profiling time. In Section 3.5.1, we discuss the accuracy of the
identified data dependences and explain the performance of our approach in Section 3.5.2.

3.5.1 Accuracy of the extracted data dependences

In this section, we explain the parameters that influence the accuracy of extracted data depen-
dences and describe how our hybrid data-dependence analysis enhanced the accuracy of the
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extracted data dependences.

Input sensitivity

We compared the set of data dependences identified by the profiler with and without prior static
analysis. Because the entire source code of the programs was visited during the execution with
the given inputs, we observed no difference in the reported data dependences. Following the
arguments of Section 3.3, however, we believe that higher code-coverage potential makes our
approach generally less input sensitive than purely dynamic methods.
We compared the sets of data dependences extracted by the DiscoPoP profiler with and

without our technique. Because the entire source code of the benchmarks was visited during the
execution with the given inputs, we observed that, excluding the transitive data dependences,
there is no difference in the reported data dependences. We identified all the dependences
that created the transitive data dependences and thus, the set of dependences detected by our
method can be used further to parallelize the programs. Moreover, following the arguments of
Section 3.3, we believe that higher code-coverage potential makes our approach generally less
input sensitive than purely dynamic methods.

Reduced false positive rate of the DiscoPoP signature mechanism

DiscoPoP employs signature-based memory management to limit the memory consumption
of the data dependence profiler. The signature is essentially a hash table that records the
memory locations of the variables in a program. However, DiscoPoP provides users with two
options: perfect and shadow signatures. When the perfect signature option is selected, every
memory location is recorded in a unique slot in the hash and thus there will be no collisions.
In this mode, it works equally like a map. The shadow signature, on the other hand, provides
users with the option to limit the number of slots in the hash table. This option enables users
to reduce memory consumption but it also introduces the chance of false positive and false
negative data dependences in the case of a hash collision (i.e., two memory addresses are
assigned to one slot in the table). Li et. al [23] presented the fractions of false positive and
negative data dependences in relation to the number of slots in the signature data structure.
To compute the fraction, they ran programs with the perfect signature and recorded the data
dependences. Then, they ran programs under the same conditions with the shadow signature.
They used different signature sizes and concluded that the false positive and false negative
fractions reduced significantly when the number of slots in the signature increased.
We evaluated the accuracy of the extracted data dependences with our approach similarly.

We compared the sets of data dependences extracted by the DiscoPoP profiler with and without
our unified hybrid approach. Whenever we used perfect signatures, transitive data dependences
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were the only difference between the two sets. We identified all the dependences that created
the transitive data dependences and thus, the set of dependences detected by our method can
be used further to parallelize the programs.
We also evaluated the effectiveness of our approach with the shadow signatures. Table 3.1

shows the fractions of false positive and false negative data dependences reported by our
approach and the original DiscoPoP. We observe that our unified hybrid approach has smaller
fraction of false positives and false negatives.
We observed the highest fractions of false positives and negatives in the Polybench programs.

These programs contain large matrices which increase the chance of hash conflicts; the DiscoPoP
profiler assigns a slot in the hash table to every element of the matrices to recored memory
accesses and identify data dependences. With one million slots in the signature, the highest
rate of false positive data dependences reported with the original profiler of DiscoPoP occurs
in Polybench and is 16%. Under the same settings, our approach reported only 4% of false
positives. Excluding polyhedral loops from profiling, our approach reduced the number of
memory locations that the profiler should allocate in the signature. In general, our approach
excludes certain variables from instrumentation, letting the profiler allocate fewer slots in the
signature and thus, creating fewer hash conflicts.

3.5.2 Performance

To measure the improvements in the profiling time, we executed the programs with the vanilla
version of the DiscoPoP profiler. We executed each benchmark five times in isolation, calculated
the median of the execution times, and used it as our baseline. Then, we profiled the benchmarks
using our methods: polyhedral exclusion, scalar variable elimination, and the unified hybrid
approach that integrates both works into a single framework. We ran each benchmark fives
times in isolation and recorded its median execution time, which we then compared with

Table 3.1: False positive and false negative rates of data dependences identified by the original
DiscoPoP vs. our unified hybrid approach for the three benchmark suites.

Hybrid DiscoPoP
# slots =
1.0E+6

# slots =
1.0E+7

# slots =
1.0E+8

# slots =
1.0E+6

# slots =
1.0E+7

# slots =
1.0E+8

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR
BOTS 0.9 0.10 0.01 0.03 0.01 0.01 5.18 0.20 0.14 0.15 0.02 0.02
Polybench 4.3 0.07 0.70 0.05 0.25 0.02 16.8 3.47 4.40 0.93 0.36 0.14
NPB 0.5 0.33 0.01 0.20 0.01 0.13 0.66 0.34 0.06 0.21 0.02 0.14
Median 0.9 0.26 0.07 0.15 0.03 0.09 3.46 0.66 0.57 0.28 0.06 0.12
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the baseline. We repeated the process to obtain the median execution times for each of the
methods. We used the same input to execute the benchmarks with each approach. Table 3.2
shows the relative slowdown of each approach for the three benchmark suites and the computer
simulation programs. Figure 3.11 presents the relative reduction of the profiling overhead for
each benchmark.
Whether we can reduce the profiling time of a benchmark depends on its memory access

and computational patterns. In theory, the more memory accesses that occur without using
pointers and aliases, the more effective our method will be. If the variables in a program are
mostly pointers or passed by reference to functions, it is unlikely that our method reduces
the profiling overhead substantially. Additionally, we observed that our approach reduces the
profiling overhead if a program contains polyhedral loops that take up a substantial amount of
the execution time of the program. If a program does not contain such loops, we fail to reduce
the profiling overhead significantly.
The BOTS benchmarks, LULESH, and the EOS-MBPT code do not contain polyhedral loops

and thus, the polyhedral exclusion method does not reduce the profiling overhead significantly.
Skipping memory-access instructions of the scalar variables from the instrumentation, however,
we decrease the profiling overhead significantly. The median improvement of the profiling time
by our method across all BOTS benchmarks was 64%.
For four benchmarks in NPB, namely EP, IS, CG, and MG, we observed only small improve-

ments when eliminating polyhedral loops from profiling because the benchmarks do not contain
long-running polyhedral loops and thus we could not exclude many instructions from profiling.
This method only improved the profiling across all the NPB benchmarks by a media of 35%.
In all benchmarks in the NPB suite, however, we find many instructions that create statically-
detectable data dependences. Removing them from instrumentation, we improved the profiling
time across all the NPB programs by a median of 57%. Our hybrid approach, however, reduced
the profiling overhead further by a median of 66% over the benchmarks in the suite.
For Polybench, the scalar variable elimination technique reduced the profiling overhead

Table 3.2: Relative slowdown caused by standard DiscoPoP vs. polyhedral loop exclusion vs.
scalar variable elimination vs. our unified hybrid approach.

DiscoPoP Polyhedral
loop exclusion

Scalar
variable elimination

Unified
hybrid approach

BOTS 80 0 20 20
Polybench 121 24 43 20
NPB 88 63 36 30
LULESH 50 0 29 29
EOS-MBPT 290 0 95 95
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(a) Polybench

(b) NPB

(c) BOTS

Figure 3.11: Profiling-time reduction relative to the standard DiscoPoP profiler.
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Table 3.3: The number of reduction patterns identified by DiscoPoP vs. our hybrid approach.
Unified hybrid approachBenchmark DiscoPoP Static Dynamic Total

BOTS 41 41 0 41
Polybench 94 90 4 94
NPB 217 71 146 217
LULESH 10 10 0 10
EOS-MBPT 21 15 6 21
Total 383 227 156 383

to a lesser degree than polyhedral loop exclusion method because these benchmarks contain
polyhedral loops. Excluding the loops from profiling reduced the overhead by a median of
70% across the benchmarks in this suite while eliminating memory-access instructions of scalar
variables improved the profiling time only by a median of 61%. Combining the strengths of both
methods in a single framework, however, our unified hybrid approach decreased the overhead
by a median of 81% across all the benchmarks in the suite.
Overall, compared to the vanilla version of DiscoPoP, our unified hybrid approach reduced

the profiling time of all programs by at least 43%, with a median reduction of 76% across all
the benchmark suites and the simulation programs.
Moreover, Table 3.3 shows the number of reduction operations that DiscoPoP and our hybrid

approach identify. Our approach found most of the reduction cases in Polybench suite and the
EOS-MBPT code statically. Unlike our approach, DiscoPoP identifies reduction opportunities for
variables which have a user-defined data type in the EOS-MBPT code. Also, our hybrid method
could not identify reductions related to arrays with more than two dimensions in Polybench
and most NPB programs. Additionally, we could not identify the reduction pattern in arrays
whose indices are determined at runtime. However, we identified all the reductions in the BOTS
benchmark suite and LULESH with our static analysis. Notably, our method found more than
half of the reduction patterns in all test cases statically.

3.6 Summary

In this Section, we presented our hybrid approach to the data-dependence analysis. Our
approach identifies scalar variables that create statically-identifiable data dependences and
eliminates from profiling the memory-access instructions that generate the dependences. Addi-
tionally, it uses PLUTO to extract data dependences within polyhedral loops and skips profiling
them.
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We extended the data-dependence profiler of DiscoPoP with our approach, although our
method is generic enough to be implemented in any data-dependence profiler. Using our
hybrid approach, parallelism discovery tools, including DiscoPoP, can detect parallelization
opportunities in large applications in a realistic time.
Moreover, we evaluated our approach with 49 programs from three benchmark suites and

two computer simulation programs. The evaluation results show that our unified approach
reports fewer false positive and negative data dependences as compared with the original data-
dependence profiler and reduces the profiling time by at least 43%, with a median reduction of
76% across all programs. Also, we identify 40% of reduction cases statically and eliminate the
associated profiling overhead for these cases.
However, we still believe that by improving the static phase of our approach (e.g., using

existing compiler methods) the profiling overhead can be reduced even further. Two major
options that can be exploited are the autoPar tool and the LLVM alias analysis. AutoPar helps
extracting data dependences in non-polyhedral loops and the LLVM analysis detects data
dependences for aliased scalar variables.
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4 Parallelization with OpenMP

In this Chapter, we focus on our two contributions (i) construct selection and fitting and (ii)
variable classification. In Section 4.1, we explain how we map the patterns onto OpenMP
worksharing-loop, taskloop, and task constructs, after which we describe in Section 4.2 how
we classify variables occurring in these constructs according to their data-sharing semantics.
The input to these two steps is the execution tree of the program produced by DiscoPoP,
annotated with possible (abstract) design patterns that DiscoPoP recommends as foundation
of the parallelization. As a prerequisite for the construct selection, we extended the pattern
matching procedure in contribution (iii) to identify more complex cases of reduction and
determine the reduction operator and the names of reduction variables, a task which was left to
the programmer in the original version of DiscoPoP. In addition, we now detect dependences
between recursive tasks and further improve the efficiency of pipelines by merging their stages.
The refinements of the pattern matching process are presented in more detail alongside the
construct selection in the first subsection, whereas the discussion of the code-coverage analysis we
apply to counter input sensitivity (contribution (iv)) is deferred to the evaluation in Section 4.3.1.

4.1 Construct selection

The main task of this step is to translate the relatively coarse pattern information into precise
OpenMP constructs. This involves identifying the components of each pattern in the source
code and deciding where exactly to insert directives. Table 4.1 shows our suggested OpenMP
constructs for each pattern. We explain each pattern in more details as follows.

4.1.1 DOALL

The DOALL pattern can be applied to loops of a program. A loop node in the execution tree
is reported as DOALL if there is no inter-iteration dependence in the loop. We merge all child
CUs that belong to a DOALL loop into a single loop node. We then enclose the loop with a
worksharing-loop construct. We obtain the start and end lines of the construct from the tree.
The programmer can use the schedule clause to specify how the loop iterations are assigned
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Table 4.1: OpenMP constructs suggested for various parallel design patterns.

Parallel pattern Components OpenMP construct
DOALL Loop Worksharing loop
Reduction Loop + reduction operation Worksharing loop + reduction clause
Geometric decomposition Function call Taskloop construct

Task parallelism Workers Task + depend clause
Barriers Taskwait directive

Pipeline Pipeline stages Task + depend clause
Worksharing loop

to threads, taking into account both data locality and load balance as the most fundamental
scheduling criteria [77]. Possible schedules can be broadly divided into two categories: static
and dynamic.
A static schedule assigns the iterations before the loop starts. A dynamic schedule assigns

the iterations to unoccupied threads while the loop is running. Dynamic schedules can balance
the load even if the iterations take an unpredictable amount of time, but they incur periodic
synchronization overhead, which is why static schedules are preferable if the amount of work is
always the same or follows a regular pattern that can be exploited.
To determine the scheduling strategy, we measure the load balance across the iterations of a

loop. Unless the loop contains a conditional statement or the boundaries of inner loops depend
on the outer loop index, the load is balanced because all iterations execute the same number of
instructions. In this case, we suggest static scheduling and dynamic scheduling otherwise. We
will consider data locality and uneven but regular load distributions in our future work.

4.1.2 Reduction

Reduction patterns are suitable for a loop with a specific type of inter-iteration dependence,
that is, the loop uses an associative binary operator to reduce all elements of a container to a
single scalar value. This happens, for example, when a loop adds all the elements of an array.
The original version of DiscoPoP already identifies the simplest version of a reduction (i.e.,

an array reduced to a scalar variable). With the improvements that we have made in the
pattern detection, we cover more complex cases of reduction, including the reduction of a
multi-dimensional array into a one-dimensional one.
For this purpose, we instrument all LLVM-IR instructions that create inter-iteration depen-

dences in a loop. We record the source-line numbers for each read and write operation on every
variable. The variables can be scalar or arrays with any number of dimensions. If a memory
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address is written only in a single source line and read only at the same source line, we mark
the loop as a possible candidate for a reduction. We also remember the reduction variable and
operation (e.g., +).
The OpenMP worksharing-loop construct provides a reduction clause. To implement a

reduction pattern, we merge the child CUs in a reduction loop into a single loop node. We
then enclose the loop with a parallel for construct and add a reduction clause containing the
reduction operator plus the variable(s).

4.1.3 Geometric decomposition

The geometric decomposition pattern exists in functions that contain only doall and reduction
loops. Algorithm 5 shows our approach for mapping OpenMP constructs to parallelize the
pattern.
Figure 4.1 shows the application gemver from the Polybench suite. We use the program

to explain Algorithm 5. The highlighted boxes in the figure represent the changes that we
need to apply to the source code to parallelize it. According to the algorithm, we identify the
function that contains the geometric decomposition pattern. In our example code, the function
is kernel_gemver(). There are two approaches to the parallelization of the geometric decompo-
sition pattern. The first approach parallelizes all the loops with the OpenMP worksharing-loop
construct. We suggest the reduction clause whenever the reduction pattern exists in a loop.
The second approach needs to modify the source code slightly to implement the paralleliza-

tion with the OpenMP taskloop construct. The changes are highlighted in the middle box in
Figure 4.1. We add two additional arguments, which are used for the decomposition of the
data, to function kernel_gemver(). In the figure, the additional arguments are variables start
and end. We use the number of available threads in the system to calculate the size of partitions
and compute the actual values of variables start and end. Then, we create multiple instances of
the call instruction to perform the computations on each partition in isolation. The additional
loop in Figure 4.1 iterates over each instance of the function call. Moreover, for loops which are
not nested inside other loops in function kernel_gemver(), we set the loop index to variable
start and the loop condition to variable end. After the source-code transformations, we suggest
the OpenMP taskloop construct for the additional loop that embraces the calls to function
kernel_gemver(). The rightmost box in Figure 4.1 shows the loop which is annotated with the
taskloop construct. When the program execution reaches the construct at runtime, the OpenMP
runtime system distributes the iterations of the associated loop across tasks which are generated
by the construct. Later, it schedules the tasks for the execution.
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GDs = PET.getGeometricDecompositionPatterns()

for each gd ∈ GDs do
func = gd.getCalledFunction()

if ParallelizeWithWorksharingLoop then
for each loop ∈ func do

loop.addParallelConstruct(”pragmaompparallelfor”)

if loop.isReduction() then
loop.addClause(”reduction”)

end
end

end
else

callInstruction = func.getCallInstruction()

int i = 0

numThreads = omp_get_num_threads()
additionalLoop.setLoopIndex(i)

additionalLoop.setLoopCondition(numThreads)

additionalLoop.setLoopIncrement(i++)

additionalLoop.addInstruction(start = i ∗ problemSize/numThreads)

additionalLoop.addInstruction(end = (i+ 1) ∗ problemSize/numThreads)

callInstruction.addAdditionalParameters(start, end)

additionalLoop.addInstruction(callInstruction)

func.addAdditionalArguments(start, end)

for each loop ∈ func do
if loop.isNotNested() then

loop.setLoopIndex(start)

loop.setLoopCondition(end)

end
end

end
end

Algorithm 5: Parallelization of the geometric decomposition pattern with OpenMP
worksharing-loop and taskloop constructs.

4.1.4 Task parallelism

The task-parallelism pattern can be applied to a collection of CUs within a hotspot function
that are arranged in a roughly diamond-shaped dependence structure. DiscoPoP classifies the
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void kernel_gemver(int n, int alpha, int beta, 
int A[n][n], int u1[n], int v1[n], int u2[n], int v2[n], 
int w[n], int x[n], int y[n], int z[n]){

int i, j;

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

x[i] = x[i] + beta * A[j][i] * y[j];

for (i = 0; i < n; i++)
x[i] = x[i] + z[i];

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

w[i] = w[i] +  alpha * A[i][j] * x[j];
}

int main(){
...
init_arrays(n, alpha, beta, A, u1, v1, u2, v2, 

w, x, y, z);

kernel_gemver(n, alpha, beta, A, u1, v1, u2, 
v2, w, x, y, z);

polybench_print();
...

}

void kernel_gemver( 
int n, int alpha, int beta, 
int A[n][n], int u1[n], int v1[n], int u2[n], int v2[n], 
int w[n], int x[n], int y[n], int z[n]){

int i, j;

for (j = 0; j < n; j++)
A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];

for (j = 0; j < n; j++)
x[i] = x[i] + beta * A[j][i] * y[j];

x[i] = x[i] + z[i];

for (j = 0; j < n; j++)
w[i] = w[i] +  alpha * A[i][j] * x[j];

}

int main(){
...
init_arrays(n, alpha, beta, A, u1, v1, u2, v2, 

w, x, y, z);

polybench_print();
...

}

 int start, int end,

int numThreads = omp_get_num_threads();

for(int i = 0; i < numThreads; i++){
start =  i*n/numThreads;
end = (i+1)*n/numThreads;
kernel_gemver( start, end,
n, alpha, beta, A, u1, v1, u2, v2, w, x, y, z);

}

for (i = start; i < end; i++)

for (i = start; i < end; i++)

for (i = start; i < end; i++)

for (i = start; i < end; i++)

void kernel_gemver( int start, int end,
int n, int alpha, int beta, 
int A[n][n], int u1[n], int v1[n], int u2[n], int v2[n], 
int w[n], int x[n], int y[n], int z[n]){

int i, j;

for (i = start; i < end; i++)
for (j = 0; j < n; j++)

A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];

for (i = start; i < end; i++)
for (j = 0; j < n; j++)

x[i] = x[i] + beta * A[j][i] * y[j];

for (i = start; i < end; i++)
x[i] = x[i] + z[i];

for (i = start; i < end; i++)
for (j = 0; j < n; j++)

w[i] = w[i] +  alpha * A[i][j] * x[j];
}

int main(){
...
init_arrays(n, alpha, beta, A, u1, v1, u2, v2, 

w, x, y, z);

int numThreads = omp_get_num_threads();

for(int i = 0; i < numThreads; i++){
start =  i*n/numThreads;
end = (i+1)*n/numThreads;
kernel_gemver( start, end,

n, alpha, beta, A, u1, v1, u2, v2, w, x, y, z);
}
polybench_print();
…

}

#pragma omp parallel
#pragma omp single
#pragma omp taskloop

Figure 4.1: Function kernel_gemver (on the left), which contains the geometric decomposition
pattern. The source code is modified slightly (in the middle) before it is parallelized
with the taskloop construct (on the right).

CUs that belong to such a diamond as worker, barrier, or fork. A fork represents the entry point
of the pattern (i.e., the top of the diamond). CUs that depend on the fork CU are classified as
workers. They form the body of the diamond. CUs that depend on at least two workers are
classified as barriers. The bottommost barrier closes the pattern. Note that workers and barriers
need not be disjoint. This role assignment occurs before the execution tree is passed on to the
construct-selection and fitting unit, the first of the two main contributions of our method in this
Chapter.
Unfortunately, recursive functions, where task parallelism exists abundantly, previously

lacked the dependence information needed to recognize such a diamond because DiscoPoP
reserved only a single node to represent the execution of such a function, collapsing all related
data dependences. Thus, it was impossible to determine whether recursive function calls
depended on each other. Static analysis is insufficient to provide such details either. For this
reason, we developed an LLVM pass that identifies data dependences between recursive function
calls such that we can determine which call of a function depends on which other calls. The
pass receives as input the list of recursive functions. It first assigns a unique identifier call ID to
each function call and then instruments read and write instructions that appear inside these
functions. To determine dependences, we maintain a map that stores a call ID for every memory
address. Whenever a memory address x is written or read, we update the map with the call
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ID of the writer/reader. If a read happens after a write on x, we report a RAW dependence
between the reader and the writer.
Once we have determined the dependences between workers and confirmed the diamond

structure, we suggest enclosing each worker with a task construct. We refrain from mutual-
exclusion synchronization (e.g., critical construct) to resolve data dependences between two
workers because this would not preserve the order in which workers access memory. Instead,
we propose depend clauses with a specific dependence type, including in, out and inout to
maintain dependences between workers. The dependence type indicates how a task is related
to a sibling task, that is, whether it prepares data for or receives data from another task. We
explain how we identify dependence types in Section 4.2. Moreover, our approach recommends
inserting a taskwait directive before barriers. This directive lets the current task region wait on
the completion of child tasks generated since the beginning of the current task. Furthermore, we
enclose the fork CU with only an OpenMP single directive nested inside a parallel construct. The
parallel construct creates the team of threads that will execute the tasks. The single directive
ensures that only one thread in the team creates the tasks.

4.1.5 Pipeline

In a loop with inter-iteration dependences, it may still be possible to partly overlap the execution
of consecutive iterations with each other, resulting in pipeline parallelism. A pipeline is a
sequence of stages, where each stage consumes data from the previous stage and supplies data
to the next. If the stages of a pipeline are executed many times, parallelism can be exploited by
overlapping the processing of different inputs as they travel through the pipeline.
The stages identified by DiscoPoP, which identifies patterns at the level of single CUs, are

often too small to make the pipeline efficient and may still contain forward dependences. A
forward dependence is a data dependence that exists between two stages Sj and Sk with
j < k if in loop iteration i, Sj needs a result of Sk produced in the previous iteration i− 1. A
forward dependence adversely affects the execution of the pipeline because an earlier stage of
an iteration has to wait for the results of a later stage of the previous iteration.
We resolve forward dependences by merging pipeline stages. We try to merge different

combinations of pipeline stages. To verify whether merging has reduced the number of the
forward dependences, we compare their number before and after we merge. We keep trying
different combination until there is no forward dependence left, which can amount to the
elimination of the pipeline in the worst case. After resolving forward dependences and reach-
ing the appropriate granularity, we suggest how to parallelize the pipeline in OpenMP. We
enclose each stage with a task construct. Most important, we propose depend clauses including
correctness-preserving dependence types to maintain data dependences between stages. Finally,
we enclose the loop in which the pipeline pattern has been identified with a single directive
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nested inside a parallel construct for the same reasons we mentioned above: to create the team
of concurrent threads executing the pipeline only once.

4.2 Variable classification

Unlike existing methods, our variable classification goes beyond liveness and use-def analyses
because they are insufficient to determine the data-sharing semantics in all situations. For
example, global variables accessed from different functions or pointers that appear under
different names can cause trouble. Instead, we rely on the execution tree of a program, which,
in addition to the results of the above analyses, contains inter-procedural and alias information.
Using the tree, we identify the data-sharing attribute of variables—regardless of the number of
files in which they appear and their number of aliases. To classify variables, we consider RAW
dependences available in the tree. We preserve other dependences by keeping the sequential
order of their memory accesses intact. We first explain our approach for worksharing-loop, then
for task constructs. For brevity, we do not explain the classification of variables in the taskloop
construct because it follows the same rules as in the worksharing-loop construct.

4.2.1 Worksharing-loop construct

Algorithm 6 shows howwe classify variables in loop constructs. Figure 4.2 serves as an illustrating
example.

  OUT = *q; CU
6

for (i = 1; i < iter; i++) CU
1

     init[i] = a * 100; CU
2

     d = d + init[i]; CU
5

     c = a * 0.1; CU
3

     *b = c + init[i]; CU
4

foo(&a, 100000);

}
bar(&b);

void bar(int *q) {

}

iter = iters;
*p = IN;

CU
0

extern int iter;
void foo(int *p, int iters) {

}

left_subtree
right_subtree

{

Figure 4.2: Variable classification in a loop in which a reduction pattern is identified. To par-
allelize the loop, we suggest the worksharing-loop construct with the reduction
clause.

According to our algorithm, we first receive the list of identified DOALL and reduction loops
from the execution tree. Then, we collect all the child CUs in the dynamic extent of an identified
loop node. We then traverse the dynamic extent of the loop to identify variables that should be
classified. In the example, variables a, b, c, d, iter, i, and init should be classified. Variables iters,
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loops = PET.getDOALLAndReductionLoops()

for each loop ∈ loops do
variables = loop.collectV ariables()

rightSubTree = PET.visitedCUsInDFSAfter(loop)

leftSubTree = PET.visitedCUsInDFSBefor(loop)

for each var ∈ variables do
if var.isWrittenIn(leftSubTree)

& var.isReadOnlyIn(loop) then
if var.isGlobal() then

var.mark(shared)

end
else

var.mark(firstprivate)

end
end
else if var.isWrittenIn(loop)

& var.isReadIn(rightSubTree) then
var.mark(lastprivate)

end
else if var.isF irstWrittenIn(loop) then

if var.isScalar() then
var.mark(private)

end
else

var.mark(shared)

end
end

end
if var.isLoopIndexIn(loop) then

var.mark(private)

end
else if var.isReductionIn(loop) then

var.mark(reduction)

end
end

Algorithm 6: Variable classification for the worksharing-loop construct.
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p, and q do not belong to the loop and, therefore, do not require classification.
To prepare the classification, we traverse the execution tree for each loop node using depth-

first search (DFS). We put CUs visited before the loop node into its left subtree. Also, we put
CUs visited after the loop into its right subtree.
In Figure 4.2, the left and right subtrees of the loop node contain the CUs in functions foo()

and bar(), respectively. We create the left and right subtrees because data dependences may
span over multiple files in the program and this is why we cannot use source-code line numbers
for classification.
For each variable, we then check the source and destination of every RAW dependence. If a

variable is written in the left subtree of a loop node and is only read inside the loop node, then
its value is passed into the loop. We mark the variable as firstprivate or shared, depending on
whether it is local or global.
In cc-NUMA architectures, it is preferred to classify local read-only variables as firstpri-

vate [77]. This is because their cache controllers communicate to keep memory coherent when
more than one cache holds a copy of the same memory location. For this reason, ccNUMA
systems may perform poorly when multiple processors attempt to access the same memory
location in rapid succession.
To improve performance, we declare a read-only local variable firstprivate. The variable

can be an array or a scalar variable. In this way, each processor will access its private memory,
which is much faster. In Figure 4.2, we mark variable a as firstprivate because it is written in the
left subtree and only read inside the loop. Variable iter is also written in the left subtree and
only read inside the loop. Nevertheless, because it is a global variable, we mark it as shared.
To identify lastprivate variables, we check if a variable is written inside the loop and read in

the right subtree of the loop, that is, a value is produced inside the loop and consumed after
the loop. In Figure 4.2, variable b is lastprivate because it is written inside the loop and read
after the loop in function bar().
If a variable is first written inside the loop but never read after it, then it is useful only for

the loop. We mark it as private if it is a scalar. If the variable is an array and every loop iteration
accesses only the elements that correspond to the loop index, we mark it as shared because
parallel threads will process disjoint chunks of the array. In the figure, array init is shared.
Variable c is private because it is scalar and first written in the loop.
Finally, if a variable is the loop index or a reduction variable, we mark it as private or

reduction, respectively. In the example, variable i is private because it is the loop index. Variable
d is reduction because it creates an inter-iteration dependence that can be resolved using the
reduction clause. The actual identification of reduction variables occurs earlier during the refined
pattern matching procedure for reduction, as explained before.
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d = 90; 

for (i = 1; i < N; i++) 

     c = f3(b, c);
     e = c * d;
     printf(“%d\n”, e);

}

     a = f1(i);

     b = f2(a);

CU
1

CU
0

Task 1

Task 2

Task 3

{

Figure 4.3: Variable classification in A loop in which a three-stage pipeline is identified. We
suggest the task construct to exploit parallelism among the the stages.

4.2.2 Task construct

Algorithm 7 shows how we classify variables in task constructs, illustrated using the example in
Figure 4.3.
The code in the example contains a loop in which a three-stage pipeline has been identified.

Our construct selection suggests creating a task for each stage. Our algorithm first obtains the
list of tasks from the execution tree. For each task, we collect the child CUs in its dynamic
extent. We then traverse the dynamic extent of the task to identify variables that should be
classified (i.e., a, b, c, d, e, and i in the example). For each task, we traverse the tree again
using DFS. We place CUs that are visited before the task node into its left subtree. Because the
task construct of OpenMP does not support lastprivate variables, we do not have to maintain a
right subtree. We also determine the sibling tasks, which make up the stages in the example. In
Figure 4.3, Tasks 1-3 make up the pipeline. The left subtrees of Tasks 1 and 3 contain CU1 and
CU0, respectively.
We identify the dependence type of variables in a task by looking for the source and

destination of RAW dependences. If the task reads the value of a variable which is written in a
sibling task, the task should wait for the sibling task to produce the value first. In this case, we
mark the dependence type of the variable as in. On the other hand, if a variable is written in
the task and read by a sibling, the task should produce a value for the sibling. In this case, we
mark the dependence type of the variable as out. In the example, there is a RAW dependence
between Tasks 1 and 2 concerning variable a; the result of the call to function f1() is stored in
variable a, which is later read in the call to function f2(). We mark the dependence type of a
as out for Task 1 and in for Task 2. We find variable b in a similar situation, which implies a
dependence between Tasks 2 and 3.
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tasks = getTasks(PET )

for each task ∈ tasks do
variables = task.getV ariables()

leftSubTree = PET.visitedCUsInDFSBefor(task)

siblings = task.getSiblings()

for each var ∈ variables do
if var.isWrittenIn(siblings) & var.isReadIn(task) then

var.markDepType(in)

end
else if var.isWrittenIn(task) & var.isReadIn(siblings) then

var.markDepType(out)

end
else if var.isF irstReadIn(task) & var.isWrittenIn(task) then

var.markDepType(inout)

end
else if var.isF irstWritten(task) then

var.mark(private)

end
else if var.isWrittenIn(leftSubTree)

& var.isReadOnlyIn(task) then
if var.isGlobal() then

var.mark(shared)

end
else

var.mark(firstprivate)

end
end

end
end

Algorithm 7: Variable classification for the task construct.

If a variable is first read and then written in a task, then every instance of the task should
wait for its previously generated instance to produce the value of the variable. In this case, we
mark the dependence type of the variable as inout. In the figure, we mark the dependence type
of variable c as inout for Task 3 because the value of c, which is read as function parameter in
Task 3, should be received from a previously generated instance of the same task.
Also, we classify variables in a task by looking for the source and destination of RAW
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dependences. We mark a variable as private if it is first written inside a task. In the example,
variable e is private in task 3. Finally, if a variable is only read inside a task and written in a
CU in its left subtree, then a value is passed into the task by the thread that created the task.
We mark the variable as firstprivate or shared, depending on whether it is local or global. In
Figure 4.3, variables i and d are only read in Tasks 1 and 3, respectively. We mark i as firstprivate
because it is a local variable and d as shared because it is global.

4.3 Evaluation

Below, we summarize our experimental results and provide details of the test environment and
the benchmarks that we used. Our evaluation criteria are the performance and correctness
of the benchmarks that we parallelize or whose variables we classify. We ran our tests with
benchmarks from LULESH, EOS-MBPT, and three suites, including Polybench, NPB and BOTS.
For the benchmark suites, we compare our approach with three state-of-the-art tools that
parallelize sequential programs using OpenMP or classify variables in OpenMP constructs:
PLUTO 0.11.4, autoPar, which is part of ROSE 0.9.9.13, and the variable classifier of Mercurium
2.0.0. In addition, we compare our approach with manual parallelization, that is, pre-existing
OpenMP versions of the benchmarks. The NBP and BOTS suites already contain OpenMP
versions. Moreover, we considered the OpenMP version of Polybench developed by Grauer-Gray
et al. [1]. Since Polybench has been designed as a test suite for polyhedral compilers, it is well
suited for comparison with PLUTO. NBP, which offers parallelization potential in nested loops,
is a good match for autoPar. BOTS, a set of programs designed for tasking, is the yardstick
of our comparison with the classifier of Mercurium, which targets tasking. We compiled the
benchmarks using gcc 4.9.3. Experiments were run on an Intel(R) Xeon(R) Gold 6126 2.60
GHz double socket with 64 GB memory, running Ubuntu 14.04 (64-bit edition). Reported
execution times are the median of five isolated executions with 48 threads for Polybench and
NPB and 24 threads for BOTS, respectively. To compare the different parallelization approaches
quantitatively, we calculate average speedups across entire benchmark suites using the geometric
mean [78].

4.3.1 Full parallelization

The first set of experiments has been designed to evaluate our full parallelization tool chain,
including data-dependence profiling, computational unit decomposition, pattern detection, and
offering parallelization using OpenMP directives. However, before we compare in Section 4.3.1
the speedups achieved by DiscoPoP with those of its competitors, including the manually
parallelized versions, we first validate the correctness of the code we produce in the following
subsection.
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Correctness of parallelization suggestions

First, we establish the output equivalence in comparison to the serial versions. Then, we
investigate how sensitively the data dependences respond to changes of the input, before we
apply a common data race detector to check whether the parallelized codes are free of races.
Finally, we inspect the source code of the parallelized programs manually to see whether their
behavior would differ from the hand-crafted versions.

Output equivalence. We ran each program with five different inputs, a number an overwhelm-
ing majority of benchmarks (45 out of 49) readily provided. Most of the benchmarks work on
arrays and their inputs determine the size and the dimension of those arrays. However, they fill
the arrays themselves, either randomly or based on a specific pattern. In the few cases without
a sufficient number of predefined inputs, we generated the missing inputs randomly or we
constructed them ourselves (e.g., for sort in BOTS). The output of the parallel code produced
with the help DiscoPoP consistently matched the output of the serial version.

Input sensitivity An expected source of input sensitivity is code coverage, which we analyze
at the level of CUs, the sources and sinks of the data dependences we extract. For this purpose,
we traversed the sequential code of each benchmark statically to obtain the set of all CUs in the
program. Again, we ran each program with five different inputs and, during each run, marked
all the CUs that were visited. It turned out that every benchmark touched all the CUs of the
program—regardless of the input. In a next step, we compared the data dependences collected
with different inputs one by one. Although we noticed some differences, varying the input did
not change dependences for the code regions subject to parallelization.

Data races Data races constitute one of the most important and harmful classes of paralleliza-
tion errors. To uncover potential data races, we ran both the parallel versions produced with
DiscoPoP and the hand-written parallel benchmarks under the control of Intel Inspector [79], a
widely used data-race detector, which, however, is known to report false positives. The results
are summarized in Table 4.2. We scrutinized each single data race reported for the parallel code
we produced and could not verify any of them to be true. Given that Intel Inspector reported a
comparable number of races for the manually parallelized programs, we argue that checking the
code produced with our approach for the occurrence of data races is not more laborious than
checking hand-crafted parallel code. In fact, it might even be less if the hand-written versions
already underwent significant debugging cycles earlier.

Behavioral differences Lastly, we visually examined the source code of the parallel versions
created with the help of DiscoPoP and found no behavioral differences in comparison with the
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Table 4.2: Data races reported by Intel Inspector for DiscoPoP and manual parallelization.
Benchmark
suites

DiscoPoP Manual parallelization
Min Max Avg Min Max Avg

Polybench 0 4 1.36 0 4 1.23
NPB 1 13 7.50 1 13 7.50
BOTS 0 11 2.36 0 12 2.27

source code of the hand-crafted parallel versions.

Performance

Some auto-parallelizing tools failed to parallelize some benchmarks. We confirmed the failure
of tools by contacting their developers. PLUTO, which is designed for polyhedral parallelization,
failed to parallelize NPB and BOTS because the loops in these program suites usually do not
satisfy the constraints of the polyhedral model (i.e., affine loop bounds and array accesses).
autoPar failed to parallelize BOTS and Polybench. In addition, it failed to parallelize LU, SP, BT,
and FT from NPB. The classifier component in Mercurium only classifies variables in OpenMP
task constructs. Nevertheless, it failed to classify variables in most benchmarks in BOTS. Grauer-
Gray et al. missed to parallelize two benchmarks (i.e., deriche and heat-3d) in Polybench, which
they confirmed upon request. Now, we evaluate how the parallel code produced with DiscoPoP
performs in comparison to the other three tools and the manually parallelized versions for each
benchmark suite. To measure performance, we chose a medium-sized input from the five inputs.

Polybench Figure 4.4 shows how our approach performs on Polybench in comparison to
PLUTO and parallel versions created by Grauer-Gray et al.. The base line is the serial version of
the benchmarks with the same input which we used for their parallel version. We parallelized
the benchmarks by PLUTO with –parallel –tile (with default settings for tile sizes).
Compared with PLUTO, our codes are faster in most cases. PLUTO performs optimizations

including tiling and vectorization as part of its parallelization process. However, the optimiza-
tions allowed PLUTO to achieve better speedup for several benchmarks (e.g., trmm and syr2k) in
which hotspot loops are DOALL. For these benchmarks, however, our parallelized version is still
better than the manually parallelized version. Our parallelization of the benchmark correlation
outperforms the manually parallelized version by a factor of 12.5.
For all benchmarks (e.g., seidel and adi) in which the outer hotspot loops are not DOALL while

the loops nested inside are, our approach suggested the insertion of OpenMP constructs at slightly
different code locations than the manual parallelization did, leading to better performance. In
these cases, our approach outperformed PLUTO by a factor of 2.1 on average.
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Figure 4.4: Parallelization of Polybench using our approach vs. PLUTO vs. manual paralleliza-
tion by Grauer-Gray et al. [1] with 48 threads.

PLUTO leaves the loop-scheduling strategy unspecified, in which case the implementation-
defined default applies. In this situation, most implementations schedule statically. Our approach,
in contrast, specifies the scheduling strategy individually for each parallel loop. It suggested
static scheduling for the loops of jacobi, seidel-2d, heat-3d, floyd-warshall, adi, gemver, and
gesummv because their iterations have identical workloads. For the remaining benchmarks in
which the DOALL pattern was identified, our approach proposed dynamic scheduling because
the workload varies across iterations. We ran the benchmarks with both scheduling strategies
(i.e., static and dynamic) and confirmed ours to be superior.
In some benchmarks, we identified complex cases of reduction (e.g., a two dimensional array

being reduced to one dimension) stretching across an entire loop nest. However, Grauer-Gray
et al. did not parallelize the reduction hidden in nested loops. PLUTO resolved inter-iteration
dependences related to possible reductions in the course of other optimizations, forgoing the
chance to apply a reduction clause. Using the reduction clause for benchmarks where we
identified a reduction pattern, our approach outperformed PLUTO by a factor of 1.9 on average.
We parallelized some benchmarks using the task construct. These include fdtd-2d, ludcmp,

and reg_detect, where we identified pipeline patterns. Moreover, we applied the task construct to
fdtd-2d, where four DOALL loops are nested inside a non-DOALL loop. The manually parallelized
version saw only the DOALL loops parallelized. On the other hand, DiscoPoP found a four-stage
pipeline with two forward dependences in the non-DOALL loop. After resolving the forward
dependences, DiscoPoP recommended a two-stage pipeline in addition to parallelizing the
loops nested inside. This enabled superior speedup in comparison to the manually parallelized
version. Similar situations were found in ludcmp and reg_detect. Finally, we discovered task
parallelism in deriche and mvt. The latter contains two independent DOALL loops. In the
manually parallelized version, each loop was parallelized separately. Our approach suggested
running them in parallel to each other using the task construct – in addition to their individual
parallelization. Again, this made it faster than the handcrafted version. A similar situation was
found in deriche. In all benchmarks where we identified pipeline or task-parallelism patterns,
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Figure 4.5: Parallelization of NBP using our approach vs. autoPar vs. parallel versions shipped
with NBP with 48 threads.

PLUTO and the manually created parallel versions preferred the worksharing-loop construct.
Relative to PLUTO, our code was 2.9 times faster on average.

NPB Figure 4.5 compares our approach with autoPar and manual parallelization of NPB
programs. Our approach came close to the performance of manual parallelization for most of
the programs. We realized that the improvements in LU, BT, and SP can be attributed to our
variable classification.
autoPar missed one reduction in EP and two in IS because it tried to identify them statically.

The developers of NPB restructured IS to exploit the available parallelism and thus, it executed
faster than our parallelized version. In CG, the DOALL loops had reduction loops nested
inside. Although it was sufficient to parallelize only the outer DOALL loops, autoPar chose to
parallelize these inner reduction loops as well, causing significant runtime overhead. Moreover,
our approach outperformed autoPar with MG. This was because we parallelized a pipeline in
addition to reduction and DOALL loops. Using an extra array, the NPB developers parallelized
the pipeline using the worksharing-loop construct. Compared with their version, our approach
did not produce an improvement for small inputs. For large inputs (≥ 106), however, their
version of MG aborted with a segmentation fault because the memory allocation for the extra
array exceeded the available memory. Our version did not need the extra array to run in parallel
and therefore finished without segmentation fault also with large inputs. FT behaved like MG
except that autoPar failed to parallelize it. We recommended dynamic scheduling only for two
loops in CG and static scheduling for the remaining loops and all other benchmarks in the suite,
whereas autoPar relied on the default scheduling strategy.

BOTS Figure 4.6 compares our approach with the classifier of Mercurium and the manually
parallelized version of BOTS. The results for Mercurium were created by taking a manually par-
allelized version, stripping off all data-sharing attribute clauses, and reclassifying the variables
using Mercurium. Essentially, this amounts to manual OpenMP parallelization, followed by an
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Figure 4.6: Parallelization of BOTS using our approach vs. Mercurium vs. parallel versions
shipped with BOTS with 24 threads.

automatic classification of variables. Because the parallelism available in BOTS was less than in
the other benchmark suites, we used 24 instead of 48 threads in these experiments.
Our approach identified the task parallelism pattern in all benchmarks except sparselu. It

came close to or exceeded the performance of all other parallel versions. sort, sparselu, and
floorplan owed their improvements to our variable classification algorithm, results we elaborate
in Section 4.3.2. The performance of alignment was better because we parallelized a reduction
loop that was not parallelized elsewhere.

Listing 4.1: Hotspot loop in nqueens from BOTS.

1 for (i = 0; i < n; i++) {
2 a[j] = (char) i;
3 if (ok(j + 1, a)) {
4 nqueens(n, j + 1, a,&res);
5 *solutions += res;}
6 }

Listing 4.1 shows the hotspot loop in nqueens. Task parallelism was identified in this loop;
each call to function nqueens() was marked as a worker task and the statement in line 5 as
the barrier for the workers. Our approach suggested inserting a task directive before the call
to function nqueens() and a taskwait directive before the statement in line 5. In the OpenMP
version of nqueens from BOTS, the task construct was inserted before the if, creating many
empty tasks due to a false condition and thus causing significant runtime overhead. Compared
with the manual parallelization, our approach achieved a speedup of 10.0.
Table 4.3 summarizes the number and type of the OpenMP constructs selected by each

parallelization approach. In general, the DiscoPoP-based tool chain seems to choose more freely
among worksharing-loop and task constructs, whereas the other approaches appear to favor
either one or the other. Overall, the code we produced is on average 1.8 times faster than that
of PLUTO, 2.7 times faster than that of autoPar, 1.8 times faster than that of Mercurium, and on
average very close to the hand-crafted version (i.e., a speedup of 1.3), but with a substantial
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degree of automation.

LULESH and EOS-MBPT. We analyzed our approach with LULESH, a dynamic fluid simulation
program, and EOS-MBPT, an astro-physics simulation code. We ran LULESH on the same
platform that we used for the evaluation of the benchmarks. DiscoPoP suggested the same
OpenMP constructs and clauses at the same source code lines that were identified by the
developers of the applications. Our approach suggested the identical OpenMP constructs and
clauses at the same lines in the source code as in the manually parallelized version of the
benchmark. Our approach, however, produced the suggestions automatically. We executed the
parallelized version that we produced on the platform and compared it with the sequential
programs. It ran 8X faster compared to the sequential program.
Moreover, we used our approach to detect parallelization and suggest OpenMP hints for the

EOS-MBPT code. The program has specific software dependences which were available in the
Lichtenberg computing center of Technical University of Darmstadt. The center provides 2.5GHz
Intel Xeon E5-2670v3 processors with frequency scaling and HyperThreading disabled. Jan-
Patrick Lehr et al. [38] used the results of our analysis to parallelize the code. They implemented
the different patterns separately and evaluated the speedup using the original data set size
(i.e., 16, 250, 000 Monte-Carlo points). They ran the parallelized program 10 times and used
the median of the execution times to compare with the sequential program. Compared to the
sequential version, they observed a speedup of up to 1.35.

4.3.2 Variable classification

We compared our variable classification approach with the classification approach of the tools
and expert programmers who parallelized the three benchmarks. We considered two scenarios.
In the first scenario, we executed each benchmark as it was parallelized by the three tools or
created by a programmer. In the second, we changed the data-sharing clause of the variables
in the parallelized benchmark according to our suggestions. We validated the correctness of
our classifications following the same method as in Section 4.3.1 and could not find any error.
Figure 4.7 shows how much our classifier improved the performance beyond the classification
selected by either the tool we chose for a benchmark or manual parallelization.
The Mercurium classifier failed to classify global variables in most of the benchmarks in

BOTS. The benchmarks either contained a call to a function that was not defined in the same file
where the call occurred or Mercurium failed to identify the synchronization point preceding the
creation of tasks in the benchmarks. Our measurement results for the classifier are consistent
with the results of Royuela et al. [49], who developed the Mercurium classifier. Our classifier,
in contrast, was able to determine the data-sharing semantics of all variables. Compared with
the tools and preexisting OpenMP versions of the benchmarks, our classifier improved the
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Figure 4.7: Execution time improvements after applying our classifier to the code produced by
either auto-parallelizing tools PLUTO, autoPar, and Mercurium on the one hand and
manual classification on the other. “Not parallelized” indicates that the benchmarks
were not parallelized manually. “Failed” indicates that the tool failed to classify
variables in the benchmarks or parallelize them.

performance of benchmarks under three conditions, which we explain below.

Depend clause vs. taskwait, atomic, and critical

Manually parallelized versions of BOTS benchmarks did not use the depend clause. Instead,
they used taskwait directive, atomic, and critical constructs. One possible reason could be that
the benchmarks were parallelized before the introduction of the depend clause in OpenMP.
In general, our approach can be used to re-classify variables in legacy programs, potentially
increasing their performance. For example, compared with the preexisting OpenMP version, we
improved the execution time of sparselu and floorplan by 17% and 25%, respectively.

Private vs. threadprivate

Martorell et al. [80] showed that threadprivate directives can slow down execution. We observed
that the slowdown was negligible if the number of accesses to threadprivate variables was less
than a million for the given input and architecture. In LU, however, our classifier suggested using
a private clause instead of the threadprivate directive and achieved a performance improvement
of 29% in comparison to the preexisting OpenMP version. It made the same recommendation
for the variables declared as threadprivate in BT and SP.

Firstprivate vs. shared

PLUTO could not identify firstprivate variables because it identified dependences only within
loops. It used shared instead of firstprivate clauses for all variables that could be declared
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either way without compromising correctness. Similar to PLUTO, Grauer-Gray et al. had
classified all such variables as shared in their OpenMP version of Polybench, probably because
analyzing dependences at program scope is too laborious. Classifying read-only local variables
as firstprivate in Polybench, our classifier improved the execution time of the benchmarks in
comparison to PLUTO and manual parallelization by up to 25%. Read-only variables in NPB
and BOTS were global. Our classifier suggested shared semantics for them like the three tools
and the programmers.

4.4 Summary

Our approach strikes a viable compromise between conservative but limited auto-parallelization
on the one hand and unguided manual parallelization on the other. Compared with state-of-the-
art parallelizing tools, our method is therefore more likely to produce efficient parallel programs.
In addition, it parallelized a broader range of programs from different benchmark suites.
Also, we presented an approach for classifying variables in OpenMP worksharing-loop,

taskloop, and task constructs. Our approach classified all types of variables in both the loop and
task constructs according to different types of data-sharing semantics. We also showed that our
approach increases the performance of programs which are already parallelized by reclassifying
their variables.
In the future, our method can be extended to support additional parallel patterns, including

stencil and evaluated with more complex programs. Also, the approach can be used as the basis
to exploit more parallelism by providing guidance for code refactoring beyond the insertion of
pragmas.
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5 Offloading computations to GPUs

In this Chapter, we present our approach to detecting computational kernels in a program and
offloading them onto the GPU using OpenMP constructs. Figure 5.1 shows the workflow of our
approach in relation to the components in the DiscoPoP tool.
We suggest offloading only loops in a program because the execution of tasks on the GPU

has huge overhead and is not efficient. We use the output of our approach in Chapter 4 to
derive parallelization suggestions for doall and reduction patterns. To boost the performance,
we suggest OpenMP using a collapse clause whenever the structure of the identified loops
allow us. Section 5.1 presents the details of our method for the detection of the collapse
clause. Additionally, we merge multiple loops that appear after each other in the source code
into a single GPU region. Merging the loops, we reduce the overhead of the parallelization
constructs. In Section 5.2, we explain our approach for creating the GPU regions. Finally,
running computational kernels on the GPU requires mapping the data which is referenced inside
the kernels prior to the execution of the computations on the target device. We present our
approach to mapping the data in Section 5.3.

5.1 Identifying the collapse level

To improve the performance of the loop parallelization, we can convert perfectly nested loops
into a single loop. This process, which is called loop collapsing, increases the granularity of
the parallelism and improves the performance significantly. Listing 5.1 contains a nested loop
which we use to show how collapsing increases the parallelization efficiency. In the listing, the
outermost loop has five iterations, which are divided among the available threads in the system
if the collapse clause is not present. In a system which has more than five threads, most of the
threads are wasted because they are not assigned to execute the iterations. Collapsing the loop,
however, the iteration space increases to 100000 and each thread executes a certain number of
iterations.

Listing 5.1: A nested loop which we collapse to increase the parallelization efficiency.

1 #pragma omp parallel for private(i,j,k) collapse(3)
2 for (i = 0; i < 5; i++)
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3 for (j = 0; j < 200; j++)
4 for (k= 0; k < 100; k++)
5 E[i][j] = A[i][k] * B[k][j];

OpenMP supports the collapse of perfectly nested loops. The collapse clause receives as input
an integer number which indicates the number of loop nests to collapse. We use Algorithm 8 to
find perfectly nested loops and detect the level of the loop nests. The algorithm iterates over all
nodes in the execution tree of a program to find doall and reduction loops. It then iterates over
the child nodes of the identified loops and checks whether the child loop is perfectly nested
inside the loop. We repeat the process for every child node until there are no nested loops. For
each nested loop that satisfies the condition, we increment the collapse level which we later use
as the input to the collapse clause.
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Figure 5.1: The workflow of our approach to identifying computational kernels and suggesting
the parallelization with OpenMP.
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for each Loop node ∈ Loops do
if node.isDoallOrReductionLoop() then

childNodes = node.getChildren()

collapseLevel = 1

for each child ∈ childNodes do
if child.isLoop()and!child.dependsOn(node) then

childCUs = child.getComputationalUnits()

loopCUs = node.getComputationalUnits()

CUsInNodeButNotInChild = loopCUs.subtract(childCUs)

if CUsInNodeButNotInChild.preceedsInPET (child) == ∅ then
collapseLevel ++

end
end

end
end

end
Algorithm 8: Detecting the level of perfectly nested loops.

Input : gpuLoops[ ]

sortByLineNumber(gpuLoops)

for each loop l ∈ gpuLoops do
if l.isNested() then

gpuLoops.remove(l)

end
end
gpuLoopsInRegions = [ ][ ] , regionNum = 0

for each loop l ∈ gpuLoops do
if l.isNextLoopIn(gpuLoopsInRegions[regionNum]) then

gpuLoopsInRegions[regionNum].append(l)

end
else

regionNum++

gpuLoopsInRegions[regionNum].append(l)

end
end

Algorithm 9: Finding GPU regions.
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1  void init_array(...)
2  {
3    int i, j;
4    *alpha = 1.5;  *beta = 1.2;
5    for (i = 0; i < ni; i++)
6        for (j = 0; j < nk; j++)
7           A[i][j] = ((i*j+1) % ni) / ni;
8    for (i = 0; i < nk; i++)
9       for (j = 0; j < nj; j++)
10          B[i][j] = (i*(j+1) % nj) / nj;
11    for (i = 0; i < nj; i++)
12       for (j = 0; j < nl; j++)
13          C[i][j] = (i*(j+3)+1) % nl) / nl;
14    for (i = 0; i < ni; i++)
15       for (j = 0; j < nl; j++)
16          D[i][j] = (i*(j+2) % nk) / nk;
17  }
18
19  void kernel_2mm(...)
20  {
21    int i, j, k;
22    for (i = 0; i < _PB_NI; i++)
23       for (j = 0; j < _PB_NJ; j++){
24          tmp[i][j] = SCALAR_VAL(0.0);
25          for (k = 0; k < _PB_NK; ++k)
26             tmp[i][j] += alpha *A[i][k] *B[k][j];
27       }
28    for (i = 0; i < _PB_NI; i++)
29       for (j = 0; j < _PB_NL; j++){
30          D[i][j] *= beta;
31         for (k = 0; k < _PB_NJ; ++k)
32            D[i][j] += tmp[i][k] * C[k][j]; }
33       }
34  }

1  void init_array(...)
2  {
3    int i, j;
4    *alpha = 1.5;  *beta = 1.2;
5    for (i = 0; i < ni; i++)
6        for (j = 0; j < nk; j++)
7           A[i][j] = ((i*j+1) % ni) / ni;
8    for (i = 0; i < nk; i++)
9       for (j = 0; j < nj; j++)
10          B[i][j] = (i*(j+1) % nj) / nj;
11    for (i = 0; i < nj; i++)
12       for (j = 0; j < nl; j++)
13          C[i][j] = (i*(j+3)+1) % nl) / nl;
14    for (i = 0; i < ni; i++)
15       for (j = 0; j < nl; j++)
16          D[i][j] = (i*(j+2) % nk) / nk;
17  }
18
19  void kernel_2mm(...)
20  {
21    int i, j, k;
22    for (i = 0; i < _PB_NI; i++)
23       for (j = 0; j < _PB_NJ; j++){
24          tmp[i][j] = SCALAR_VAL(0.0);
25          for (k = 0; k < _PB_NK; ++k)
26             tmp[i][j] += alpha * A[i][k] * B[k][j];
27       }
28    for (i = 0; i < _PB_NI; i++)
29       for (j = 0; j < _PB_NL; j++){
30          D[i][j] *= beta;
31         for (k = 0; k < _PB_NJ; ++k)
32            D[i][j] += tmp[i][k] * C[k][j]; }
33       }
34  }
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Figure 5.2: The discovery of GPU regions in 2mm from Polybench.

5.2 Creating GPU regions

To reduce the associated overhead of the OpenMP parallelism constructs, we create a single
region for loops that appear after each other in the source code and offload the entire region to
the GPU using a single construct. Algorithm 9 shows our approach to identify GPU regions.
We use Figure 5.2 to explain Algorithm 9. The input to the algorithm is an array (i.e.,

gpuLoops) that contains all doall and reduction loops in the program. In the figure, the gpuLoop
arrays contains 14 loops. We sort the array based on the line number of the loops in the source
code. We also ignore nested loops and keep only the ID of their parent loops in the array. In
Figure 5.2, array gpuLoops contains the ID of six loops after removing the nested loops.
The output of the algorithm is stored in a two dimensional array (i.e., gpuLoopsInRegions).

The first dimension of the array keeps the ID of the GPU regions in the program and the second
dimension contains the ID of loops in every region. We initialize the array with the first loop
in the program. We then check whether the next loop in gpuLoops appears in the source
code after the last loop in the current region. If two loops appear in separate functions in
the source code or there are function calls between them, we assign them to separate GPU
regions. The algorithm identifies two regions in Figure 5.2 because two sets of loops exist
in the gpuLoops array. The set of loops appear in different functions in the source code and
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thus they belong to distinct GPU regions. Once we identify the GPU regions in the program,
we suggest encapsulating them with OpenMP directives to offload the computation to a GPU.
Table 5.1 shows the OpenMP constructs that we suggest for doall and reduction patterns. We
do not offload pipeline, geometric decomposition, and task parallelism patterns because they
rely on the OpenMP tasking model, which is not suitable for the execution on a GPU. When the
execution reaches the target directive, the OpenMP runtime system creates a data environment
on a target device and runs the construct that succeeds the target directive on the device. With
the teams directive, the runtime system creates multiple teams of threads. Finally, the distribute
parallel worksharing-loop construct executes a loop using the threads. The iterations of the
loop are assigned to the teams of threads in round robin fashion.

Table 5.1: OpenMP constructs suggested for offloading doall and reduction patterns on the
GPU.

Pattern Components OpenMP construct and clauses
doall Loop #pragma omp target teams distribute parallel for

Reduction Reduction
loop #pragma omp target teams distribute parallel for reduction(Op:Var)

5.3 Detecting the direction of data mappings

All the variables which are referenced inside a target directive must be transferred to the device
memory and in the end, the computed values should be mapped back to the host memory.
OpenMP supports four types of data mappings. Table 5.2 explains the mapping types briefly.
Programmers need to specify the direction of the data mappings; otherwise the OpenMP

runtime system applies the default mapping (i.e., tofrom), which is not efficient because every
variable is transferred twice between the host and the device. Detecting the mapping type
of variables manually is a trivial and time-consuming task. We have proposed an approach
that detects the mapping direction of the variables that appear inside an OpenMP offloading
construct. The rules to identify the data mapping of variables for a single loop are similar
to finding their data-sharing attributes. Therefore, we extended Algorithm 6 in Chapter 4 to
suggest the data mapping type of variables. If the algorithm classifies a variable as firstprivate,
we mark the mapping type of the variable as to. If the variable is categorized as private, we
instruct OpenMP to allocate memory for the variable on the device memory by marking the
mapping type of the variable as alloc. Moreover, if the variable is classified as lastprivate, it
means that the values which are computed on the device should be mapped back onto the host
memory and thus, we put the variable in the list of from mapping type. Finally, if a variable is
listed as shared, it means that the value of the variable is used for the computations on the GPU
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and the calculated values should be copied back onto the host memory. In this case, we select
the mapping type of the variable as tofrom.
A GPU region contains multiple loops. We can improve the performance significantly by

mapping the data once for the entire region instead of mapping the data between the host and
the device memory for every single loop in the region. We use Algorithm 10 to identify the data
mapping type of variables that appear inside a GPU region.

Table 5.2: Four types of mappings that OpenMP supports for transferring the data between
the host and the GPU device memories.

Data
mapping type Description

alloc Allocates an uninitialized variable with the specified size in the device memory.
to Copies the variables listed in the clause onto the memory of the device.
from Maps the data from the GPU device memory to the host device memory.

tofrom First copies the data from the memory of the host to the GPU device memory
and copies the data back from the GPU device to the host memory in the end.
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variables = gpuLoopsInRegions[region].getV ariables();
for each var ∈ variables do

for each loop ∈ gpuLoopsInRegions[regionNum] do
if loop.isMapped(var, ”from”) then

if region.isV isited(var) == TRUE then
if region.isMapped(var, ”to”) then

region.changeMapping(var, ”to”, ”alloc”);
else

region.add(var, ”from”);
end

else
region.add(var, ”from”);

end
region.visited(var, ”TRUE”);

else if loop.isMapped(var, ”to”) then
if region.isV isited(var) == TRUE then

if region.isMapped(var, ”alloc”) then
region.changeMapping(var, ”alloc”, ”to”);

end
else

region.add(var, ”to”);
end
region.visited(var, ”TRUE”);

else if loop.isMapped(var, ”tofrom”) then
if region.isV isited(var) == FALSE then

region.add(var, ”tofrom”); region.visited(var, ”TRUE”);
else

if region.isMapped(var, ”to”) then
region.changeMapping(var, ”to”, ”alloc”);

else if loop.isMapped(var, ”from”) then
region.changeMapping(var, ”from”, ”tofrom”);

end
else if loop.isMapped(var, ”alloc”) then

if region.isV isited(var) == FALSE then
region.add(var, ”alloc”); region.visited(var, ”TRUE”);

end
end

end
Algorithm 10: Detecting the data mapping type of variables in GPU regions.
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Figure 5.3 serves as an example to demonstrate Algorithm 10. The algorithm starts by
iterating over the GPU regions and collects the variables that appear inside every region. Then,
it checks whether a variable is listed in one of the mapping clauses of the loops in the region
and whether or not the mapping type of the variable needs to be updated. If the mapping type
of the variable is "from" for a loop and "to" for another, it means that the variable is generated in
the first loop and used in the other one and thus, we update the mapping type of the variable to
"alloc". The algorithm does not change the mapping type of the variable if the generated value
is referenced in a different region. In Figure 5.3, variable E is marked as to in the first loop. In
the third loop, however, it is marked as from. This means that the value which is generated in
the region is later consumed in the same region and thus, we mark the mapping type of variable
E as alloc. This change reduces the data mapping overhead considerably because the OpenMP
runtime system does not transfer a large array from the device memory to the host and vice
versa. Moreover, the mapping type of variable G is from for the third loop. The algorithm does
not update its mapping type because the values which are generated in the loop are referenced
beyond the region.

#pragma omp target teams distribute parallel for\
  map(from: E)\
  map(to:A, B)
  for (i = 0; i < NI; i++)
    for (j = 0; j <NI; j++)
      {

E[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < NI; ++k)
  E[i][j] += A[i][k] * B[k][j];

      }
#pragma omp target teams distribute parallel for\
  map(from: F)\
  map(to: C, D, H)
  for (i = 0; i < NI; i++)
    for (j = 0; j < NI; j++)
      {

for (k = 0; k < NI; ++k)
  F[i][j] = C[i][k] * D[k][j] - H[i][j];

      }
#pragma omp target teams distribute parallel for\
  map(from: G)\
  map(to: E)\
  map(tofrom: H, F)
  for (i = 0; i < NI; i++)
    for (j = 0; j < NI; j++)
      {

G[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < NI; ++k)
  G[i][j] += E[i][k] * F[k][j] + H[i][j];

      }

#pragma omp target data\
map(alloc: E)\
map(to:A,B,C,D)\
map(from:G, F)\
map(tofrom: H)
{
#pragma omp target teams distribute parallel for
  for (i = 0; i < NI; i++)
    for (j = 0; j < NI; j++)
      {

E[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < NI; ++k)
  E[i][j] += A[i][k] * B[k][j];

      }
#pragma omp target teams distribute parallel for 
  for (i = 0; i < NI; i++)
    for (j = 0; j < NI; j++)
      {

F[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < NI; ++k)
  F[i][j] += C[i][k] * D[k][j];

      }
#pragma omp target teams distribute parallel for
  for (i = 0; i < NI; i++)
    for (j = 0; j < NI; j++)
      {

G[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < NI; ++k)
  G[i][j] += E[i][k] * F[k][j];

      }
 } // end of mapping

Figure 5.3: Updating the data mapping type of variables in a GPU region.
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In a region, if a loop reads the value of a variable that is initialized before the region, we
need to mark the mapping type of the variable as to for the entire region because we need to
map the variable to the device memory for the entire course of the execution in the region. In
Figure 5.3, the mapping type of variables A and B is to for the first loop. This means that we
need to map the variables to the device memory for the entire GPU region. The same condition
applies for variables C and D, which are mapped to the device memory in the second loop.
If a variable is marked as tofrom in a single loop in a region, it means that the variable is

initialized before the region and the value of the variable is used after the region. In this case,
we do not change the data mapping type of the variable. However, if a variable is marked as to
in one loop and as tofrom in a succeeding loop, it means that the variable is transfered twice
between the host and device. We mark the variable as tofrom for the entire region and avoid the
extra transmission. In the figure, variable H is marked as to in the second loop and as tofrom in
the third one. We mark it as tofrom for the whole GPU region.
Moreover, an extra transmission occurs when a variable is marked as from in a loop and as

tofrom in a succeeding loop. Reducing the number of data mappings, we can mark the variable
as from for the whole region. In Figure 5.3, the calculated values of array F is copied from
the device to the host in the second loop and again transferred to the device in the third loop.
We mark variable F as from for the whole GPU region to avoid the associated overhead of the
unnecessary transmission. Finally, Algorithm 10 allocates memory for each variable only once
for the entire GPU region.

5.4 Evaluation

Below, we summarize the evaluation results of our approach and provide the details of the
benchmarks and the test environment that we used during the experiments. Our evaluation
criterion is the performance of the benchmarks that we parallelize on the GPU.

Table 5.3: Experimental setup.
Nvidia GTX 1080Ti

OS Ubuntu 16.04 64-bit
CPU Intel Xeon Gold 6126, 2.6GHz
Host Memory 64 GB
GPU Memory 11GB GDDR5X
Driver Linux Display 410.66
Libraries CUDA 10
Compiler Clang 8

We evaluated our approach with the benchmarks from the Polybench suite. The ideal is to
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use a polyhedral compiler (e.g., PLUTO or LLVM Polly) to produce OpenMP parallel codes. Yet,
there is no polyhedral compiler that supports the parallelization with OpenMP to a GPU. Also,
our approach is not limited to the properties of polyhedral loops and, in general, it can analyze
arbitrary-structured programs. We used Polybench for the evaluation because the benchmarks
contain many computational kernels; making them beneficial for the execution on a GPU.
Moreover, Polybench suite does not contain GPU parallel versions of the programs. We

could not find an OpenMP version that targets parallelization on a GPU either. Therefore, we
compared the execution results of the sequential programs with the parallel versions which we
generated based on our approach. We compiled the benchmarks using clang 8. Experiments
were run on a popular desktop GPU. Table 5.3 summarizes the configuration details of the
target platform. Reported execution times are the median of five isolated executions with 48
threads on the CPU and 16*3584 threads on the GPU. For the GPU, the reported execution
times include the time for mapping the data from the host to the device and back to the host.
We designed the experiments to evaluate our parallelization approach on the GPU, including

all steps shown in Figure 5.1. We cannot compare the output of the serial execution with that
on the GPU because the precision on the GPU is higher than on the CPU and the computed
values differ substantially. Therefore, we rely on the correctness of the suggestions for the CPU
(Section 4.3.1) to determine whether or not a recommended construct violates the semantics of
the program. Also, we checked the parallelized programs manually to validate the correctness
of the identified data mappings.
Now, we evaluate how the parallel code produced with our approach performs in comparison

to the sequential version of the program. To measure the performance, we chose an extralarge-
sized input from the five inputs that are shipped with the benchmarks. Mapping the data
between the host and the GPU has a large runtime overhead in addition to the overhead of the
parallelization constructs. For smaller inputs, however, the program takes longer to execute on
the GPU because most of the threads do not have enough workload to execute and are wasted.
Figure 5.4 shows the speedups of the parallelized programs with the help of our approach

on the CPU and the GPU. The base line is the serial version of the benchmarks with the same
input that we used for their parallel versions. We observe in the figure that the parallelization
on the GPU is not always faster than the CPU; the extra data transmissions between the host
and the device add a large overhead to the execution time.
We reduced the overhead by identifying GPU regions in the benchmarks. Figure 5.5 shows the

speedup that we gained after creating the GPU regions. As the figure suggests, the parallelization
is much faster on the GPU for almost all of the benchmarks. For bicg, creating the GPU regions
did not reduce the number of transmissions and thus we did not observe any improvement.
Moreover, DiscoPoP suggested doall and pipeline patterns for the parallelization of reg_detect,

fdtd-2d, and ludcmp benchmarks. Pipeline is the most efficient pattern to parallelize the
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Figure 5.4: Parallelization of Polybench using our approach on the CPU and the GPU.

Figure 5.5: Speedup improvement by creating GPU regions. The baseline is the serial execution.

benchmarks. Our approach, however, does not support offloading the computations of the
pipeline pattern to the GPU and thus, we do not observe any improvement for these benchmarks
either. Finally, there is a single loop in the identified GPU regions for lu, trisolv, floy-warschall,
gesumv, and cholesky. We did not update the data mapping type of the variables and we did
not observe an improvement in the programs. Creating the GPU regions, however, we improved
the performance by a median of 32% across all the benchmarks.
Finally, we suggested to insert the collapse clause in almost half of the benchmarks. Figure 5.6

shows the improvements in the performance of the benchmarks in which our approach identified
the collapse clause. The collapse clause increased the performance considerably for almost
all the benchmarks. In heat-3d, we observed an improvement of 46x. The clause reduced the
execution time of the 3mm and 2mm benchmarks by 17x and 13x, respectively. Suggesting
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Figure 5.6: Speedup improvement after inserting the collapse clause.

the collapse clause, our approach improved the execution time by a median of 70% across the
benchmarks.

5.5 Summary

In this section, we proposed an approach that suggests OpenMP constructs and clauses to offload
computational kernels to the GPU. Our approach uses DiscoPoP to find doall and reduction
parallelism in a program. Then, it offers to programmers OpenMP offload directives for doall
and reduction patterns. To reduce the number of data transmissions between the host and
the GPU device, our approach detects GPU regions in a program. A region contains multiple
loops which succeed each other lexically in the source code. We evaluated our approach on
the benchmarks from the Polybench suite. Our approach is able to target a broader range of
applications. However, we used Polybench because the programs contain many computational
kernels and no Polyhedral compiler exists yet that generates OpenMP parallel code for a GPU.
The evaluations show that offloading the computations to the GPU improves the performance
for most of the benchmarks. We achieved a speedup of up to 500x over the sequential version of
Polybench programs. However, it is crucial to evaluate the approach with further programs.
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6 Further applications of our methods

6.1 Pattern ranking

In the majority of programs, the parallelization can follow multiple design patterns, which
yield different performance results. Selecting the pattern or the combination of patterns that
produces the best parallelism efficiency is complicated because it depends on many parameters
including the program structure. We use Figure 6.1 as an example to demonstrate the problem.
The figure shows function kernel_3mm() from Polybench program 3mm. DiscoPoP identifies

multiple patterns in the function. Table 6.1 contains the patterns in addition to their line

/* E := A*B */
for (i = 0; i < _PB_NI; i++)
     for (j = 0; j < _PB_NJ; j++) {
           E[i][j] = SCALAR_VAL(0.0);
           for (k = 0; k < _PB_NK; ++k)
                 E[i][j] += A[i][k] * B[k][j];
     }

/* F := C*D */
for (i = 0; i < _PB_NJ; i++)
     for (j = 0; j < _PB_NL; j++){
          F[i][j] = SCALAR_VAL(0.0);
          for (k = 0; k < _PB_NM; ++k)
               F[i][j] += C[i][k] * D[k][j];
     }

/* G := E*F */
for (i = 0; i < _PB_NI; i++)
     for (j = 0; j < _PB_NL; j++){
          G[i][j] = SCALAR_VAL(0.0);
          for (k = 0; k < _PB_NJ; ++k)
               G[i][j] += E[i][k] * F[k][j];
    }

1
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21

Figure 6.1: Function kernel_3mm(), which can be parallelized based on multiple parallel pat-
terns.
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numbers in the source code. Choosing any combination of the opportunities, programmers can
generate different parallel versions of the program. The number of combinations can reach
hundreds easily even for small programs such as 3mm.

Table 6.1: Parallel patterns that can be used to parallelize function kernel_3mm().
Number Pattern Line numbers
1 Reduction 5 - 6
2 Doall 3 - 7
3 Doall 2 - 7
4 Reduction 12 - 13
5 Doall 10 - 14
6 Doall 9 - 14
7 Reduction 19 - 20
8 Doall 17 - 21
9 Doall 16 - 21
10 Geometric decomposition 1 - 21

A rule of thumb is to prioritize the coarser-grained opportunities because they are more likely
to boost the performance. In Figure 6.1, we can expect the highest parallelization efficiency if
the outermost loops (i.e., the loops that start at lines 2, 9, and 16) are parallelized. However,
parallelizing an outermost loop is not always profitable (e.g., when the loop does not have a
sufficient number of iterations). In general, it is complicated to rank patterns that overlap.
We have developed two methods to perform the task of pattern ranking automatically. The

first approach uses autotuning to find the most suitable pattern. We explain the approach in
Section 6.1.1. The second approach extracts features from programs to train a model. Later,
we use the model to predict the ranking of the identified patterns. Section 6.1.2 contains the
details of our prediction-based method.

6.1.1 Autotuning

We used OpenTuner [81] to rank the identified patterns in a program. OpenTuner is an
autotuning package that identifies the most efficient compiler optimizations for a program.
It receives a list of optimizations and compiles the program with every combination of the
optimizations. Then, it executes the compiled programs and reports the optimizations that
produced the fastest execution. Figure 6.2 shows how our approach is integrated to OpenTuner.
First, we run DiscoPoP to obtain the parallelization suggestions for a program. Then, we identify
overlapping patterns based on their start and end line numbers in the source code. We provide
the list of overlapping patterns to OpenTuner, which then generates all the parallel versions
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Figure 6.2: The workflow of our autotuning approach.

of the program. OpenTuner compiles the parallel versions with different input sizes, executes
them, and records their execution times. In the end, it reports the version that runs the fastest,
compares the execution time with the sequential execution of the program and the version
which is ranked manually.
We evaluated our approach on the benchmarks from the Polybench. Figure 6.3 shows the

speedups of program 3mm, which is ranked manually and with autotuning. The baseline is the
sequential execution of the program.
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Figure 6.3: The speedup of our autotuning approach vs. the manual ranking for program 3mm.
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Unlike the manual ranking, the autotuning approach did not parallelize the program when
the input size is not large enough to compensate for the parallelization overhead. Therefore,
the approach outperforms the manual ranking for the mini input size because the loops do
not have a sufficiently large workload to distribute among multiple threads. For the small
input, manual ranking and the autotuning approach perform similarly. When the size of the
inputs are medium or large, we observed that OpenTuner suggested parallelizing some of the
nested loops in addition to the outermost loops and thus, it created a faster parallel program.
For the extralarge input, both manual and the autotuning approach achieve similar speedups
because the coarse-grained parallelism (i.e., the outermost loops) dominates the performance
improvements. Unfortunately, the autotuning approach is not practical; it requires a long time,
often several days, to discover the optimal solution even for a small program like 3mm.

6.1.2 Prediction

To overcome the large overhead of the autotuning approach, we proposed a method that
predicts the speedups of the identified patterns in a program. Figure 6.4 depicts the workflow
of our prediction method. The approach consists of two steps: training and validation. In the
first step, we use some train data to training a regression analysis model [82]. Regression
analysis is a set of statistical processes for estimating the relationships between a number of
independent variables and a dependent variable. The independent variables in our study are
certain features of the patterns. The dependent variable is the execution time of the programs
after the parallelization with the patterns.
In the validation phase, we analyze a sequential program with DiscoPoP, identify the parallel

patterns, and obtain the actual values for the features. Then, we replace the actual values by
the features in the model to predict which pattern produces the highest speedup.
Table 6.2 shows the features that we consider for each pattern. We focus on doall, reduction,

geometric decomposition, and pipeline patterns, though the approach can be extended to
include the task parallelism pattern. According to the table, the features that represent a doall
pattern are the loop iterations, the number of LLVM-IR instructions in the loop and the workload
of the loop. We compute the workload of a loop based on Equation 6.3:

workload = iterationCount ∗ instructionCount (6.3)

When there are nested doall loops in the program, we compute the workload of the outermost
loop based on the workloads of the nested loops. We start from the innermost loop and compute
its workload. Then, we repeat the process for its parent loop by multiplying the workload of the
child loop to the iteration count of the parent loop.
Moreover, parallelism constructs add an overhead to the program execution. Parallelizing a

102



Table 6.2: Features that we use for ranking parallel patterns.
Pattern Feature

Doall

- Number of loop iterations
- Number of instructions
- Parent loop iteration count
- Workload

Reduction - Features in doall pattern
- Dependence type

Geometric
decomposition

- Features in doall pattern
- Number of synchronization points

Pipeline - Number of pipeline stages
- Pipeline stage load imbalance

nested loop has even a greater overhead because the overhead of parallelism is multiplied by
the iteration count of the parent loop. We use parent loop iteration count to take into account
the overhead of parallelism for nested loops. We set the value of the parameter to one for
non-nested loops. Considering the workload of nested loops, however, our prediction method
does not favour a parent loop with a few iterations over a nested loop that has a considerable
workload.
Table 6.2 shows that we consider all features in the doall pattern for the reduction pattern,

Train data
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Figure 6.4: The workflow of our pattern ranking method.
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too. The reason is the similarity of the patterns. To distinguish them, however, we consider the
dependence type. Our prediction method sets the value of the parameter to one if the pattern is
reduction. Otherwise, the parameter is set to 0.
The geometric decomposition pattern exists in functions that contain only doall and reduction

patterns. We can parallelize the loops individually using the OpenMPworksharing-loop construct
or parallelize the function with the taskloop construct. We explained the latter scenario in
Section 4.1.3. At the end of each worksharing-loop construct, there is an implicit synchronization,
which adds to the runtime overhead. The taskloop construct outperforms the worksharing-loop
construct when there are many child loops in a function; the taskloop encapsulates all the child
loops in a task and executes the tasks in parallel without the need to synchronize them. Hence,
to rank the geometric decomposition pattern, we consider the number of synchronization points
in addition to all the features that we extract for the doall pattern.
Finally, we consider the number of pipeline stages and the workload imbalance of the stages

to predict the ranking score of the pipeline pattern. Parallelization adversely influences the
execution of a pipeline if there are many pipeline stages that have a low workload; the overhead
of creating tasks is much more than the time which is saved by running the stages in parallel.
Also, a high workload imbalance reduces the potential of good speedup because the execution
of a stage with a large workload introduces a bottleneck in the pipeline.
We evaluated the approach with 30 programs from the Polybench suite. Our evaluation

criteria is the accuracy of the predictions. First, we used our approach to predict the scores
for the patterns that DiscoPoP identified in the programs. Figure 6.5a contains the scores for
Polybench programs. Then, we parallelized the programs with the identified patterns, ran
them five times in isolation, and reported the median of the execution times for each pattern.
Figure 6.5b shows the speedups that we obtained for each pattern. Figure 6.5c shows how
accurate our approach detects the pattern that produces the highest speedup. Overall, we found
out that the approach predicts the right pattern for 21 out of 30 benchmarks and thus, the
approach has a prediction accuracy of 70%. Also, we evaluated the portability of our approach.
We executed the programs on a different platform, which has a higher number of threads, and
observed that the prediction results are valid only for the target platform on which the model is
trained. Therefore, the approach is not generic to be used on all platforms.

6.2 Summary

In the majority of programs, programmers can select among multiple parallel patterns to
parallelize a program. Finding the pattern that yields the best parallel efficiency is an intricate
task which depends onmany parameters including the target platform and the program structure.
We have developed two methods to perform the task automatically.
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(a) The prediction score that our ranking approach calculates for each pattern.

(b) The speedup that we obtain by parallelizing the programs with each identified pattern.

Incorrectly predicted
30.0%

Correctly predicted
70.0%

(c) The accuracy of our prediction approach.

Figure 6.5: Ranking of the patterns.

The first approach uses autotuning to find the suitable pattern. It receives as input the
patterns that DiscoPoP identifies, creates all possible parallel versions of the program and runs
them to find the best constellation. We evaluated our approach on a few benchmarks from the
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Polybench suite and found that the approach is not practical because it takes a long time, often
several days, to discover the optimum.
The second approach extracts features from programs to train a model. Later, substituting

actual values with the features in the model, we compute the parallel efficiency of the identified
patterns in a program. Again, we evaluated our approach on benchmarks from the Polybench
suite. The evaluation shows that the method selects the most efficient pattern for most of the
benchmarks on the platform that we had considered during the training. However, we learned
that features related to platforms, such as cache, should be considered to improve the precision
of the predictions.
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7 Usage of the DiscoPoP framework

In this chapter, we provide the users of DiscoPoP with more details about the information that
it extracts from a program. The information helps users understand the different analyses
in DiscoPoP, debug the tool more conveniently, extend it with custom analyses, or optimize
programs beyond the parallelization suggestions. Also, we explain the parameters to configure
the data-dependence profiler of DiscoPoP. Using the parameters, programmers can profile
applications more accurately and efficiently. Moreover, we use an example code to demonstrate
the usage of DiscoPoP.
DiscoPoP assigns a unique ID to each file in a program to analyze programs containing

multiple files scattered in different directories.

7.1 Extracting computational units

We have developed an LLVM pass that extracts the computational units in a program. The
output of the analysis is an XML file which contains the computational units in addition to
many other information about the program. Table 7.1 shows the information that the LLVM
pass extracts.
There are four types of nodes in the XML file: functions, loops, CUs, and dummies. Each

node has an ID, a type, a name (some nodes have empty names), and the start and the end
line of the node in the source code. Function nodes, which are represented by type 1, contain
information about functions of the source code. Function nodes contain child nodes that can be
CUs, loops, or dummies. It also contains the list of function arguments.
Nodes with type 0 in the XML file represent CUs. They follow a read-after-write pattern.

Table 7.1 shows the information that we provide for each identified CU.
Loop nodes have type 2 in the XML file. They contain child nodes which can be CUs, nested

loops, or dummy nodes. We represent the calls to libraries whose source code is not available to
DiscoPoP with dummy nodes. In such cases, DiscoPoP is not able to profile the libraries and
thus, it cannot provide parallelism suggestions for them.
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Table 7.1: Reported information about each computational unit in a program.

BasicBlockID
The ID of the basic block containing the CU. A basic block is a block of code
with single entry and exit points. A basic block may contain multiple CUs,
but a CU does not span over multiple basic blocks.

readDataSize Number of bytes which is read in the CU. We consider LLVM-IR load in-
structions to compute the value.

writeDataSize Number of bytes written in this CU. It is computed like readDataSize.
instructionsCount Number of LLVM-IR instructions in the CU.
instructionLines Source-code line numbers in which the CU exists.

readPhaseLines The source-code line number of LLVM-IR load instructions which appear
within the boundaries of the CU.

writePhaseLines The source-code line number of LLVM-IR store instructions in the CU.

returnInstructions If a CU contains return instructions, then this attribute contains their line
numbers. Otherwise, it is empty.

Successors The ID of the CU that succeeds the current CU when analyzing the source
code top-down.

localVariables The variables which appear within the CU. Also, we report the definition
line, the name, and type of the variables.

globalVariables Variables which break the read-after-write rule for the CU.

callsNode If the CU contains a call instruction, then the attribute contains the line
number of the call instruction.

7.2 Identifying data dependences

DiscoPoP instruments the memory accesses in a program and links the source code with runtime
libraries to create the executable. Then, we execute the program with several representative
inputs to extract data dependences. The data-dependence profiler of DiscoPoP uses a signa-
ture [25] to store data dependences. We provide more details of a signature data structure in
Section 1.6.1. We can modify the settings of the signature using some parameters. Table 7.2
contains the parameters and a brief description about them. The output of this analysis is written
to a text file which ends with "ExecutableName_dep.txt". The file contains data dependences
which are identified with the provided input.

7.3 Detecting parallel patterns and parallelization suggestions

We have developed the pattern detection and implementation components in DiscoPoP as Python
modules. The module receives the XML and dependence files. We use the code in Figures 7.1
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Table 7.2: Parameters which are used to configure the DiscoPoP data-dependence profiler.
DP_DEBUG If it is set to one, DiscoPoP prints out debug information.
SIG_ELEM_BIT The size of each element in the signature in bits.

SIG_NUM_ELEM Size of the signature. The bigger it is, the less false positives or false
negatives are reported.

SIG_NUM_HASH Number of signatures. A value of two indicates that one signature is used
for read accesses and one signature for write accesses.

USE_PERFECT When it is set to one, DiscoPoP uses a perfect signature. The default value
is one.

and 7.2 as an example to walk through the steps in our toolchain. The codes contain functions
compute() and initialize().
In Figure 7.1, function compute() multiplies the transpose of a matrix to a vector. In

Figure 7.2, function initialize() contains two loops which initialize array v and matrix a. Both
figures also depict a simplified view of the computational units, the data dependences, the
identified patterns in the functions, and the suggestions that we provide for the programmers
to parallelize the functions.
Based on the information, the pattern detector identifies three reduction loops and a doall

loop in function compute(). Also, it finds the loop in function initialize() to be doall. Thus,
the pattern implementor suggests to annotate the loops in function initialize() with OpenMP
worksharing-loop and the related data sharing clauses. For function compute(), we also suggest
the reduction clause.
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void compute(vType *a, vType *s, vType *t, vType *v){
   vType i, j;

  for(j = 0; j <  r; j++)
    *(s + j) = 0;

  for (i = 0; i <  c; i++){
    *(t + i) = 0;
    for (j = 0; j < r; j++) 
      *(t + i) = (*(t + i)) + ((*(a + i*r + j)) * (*(v + j)));
    for (j = 0; j < r; j++) {
      *(s + j) = *(s + j) + ((*(a + i*r + j)) * (*(t + i)));  
    }  
  }
}

void compute(vType *a, vType *s, vType *t, vType *v){
   vType i, j;
  #pragma omp parallel for private(j)
  for(j = 0; j <  r; j++)
    *(s + j) = 0;
  #pragma omp parallel for private(i,j) reduction(+:s[0:r])
  for (i = 0; i <  c; i++){
    *(t + i) = 0;
    for (j = 0; j < r; j++) 
      *(t + i) = (*(t + i)) + ((*(a + i*r + j)) * (*(v + j)));
    for (j = 0; j < r; j++) {
      *(s + j) = *(s + j) + ((*(a + i*r + j)) * (*(t + i)));  
    } 
  } 
}

Serial 

Parallel (CPU)

Decomposition

for(j)

CU_s

Dependence analysis

for(j)

CU_s

for(i)

for(j)

CU_a

RAW s

for(j)

CU_t

RAW t

for(i)

for(j)

CU_a

for(j)

CU_t

Pattern detection & implementation

for(j)

Do-all 
pragma: "omp parallel for"
private: ['j']
shared: ['s']
first private: ['r']

for(i)
Reduction
pragma: "omp parallel for"
private: ['i', 'j']
shared: [‘a']
first private: ['r', 'v', ‘c']
Reduction: ['+', 's']

for(j)
Reduction
pragma: "omp parallel for"
private: ['j']
shared: [‘a']
first private: ['r', 'v', ‘i']
Reduction: ['+', 't']

for(j)
Reduction
pragma: "omp parallel for"
private: ['j']
shared: [‘a']
first private: ['r', 'v', ‘i']
Reduction: ['+', 's']

Figure 7.1: Suggesting OpenMP worksharing-loop constructs and reduction clause for doall
and reduction loops in function compute().
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void initialize(vType r, vType c, vType *a, vType *v){
  vType i, j;
  for (j = 0; j <  r; j++) {
    *(v + j) = 1 + (i / r);
  }
  for (i = 0; i <  c; i++) {
    for (j = 0; j < r; j++) {
      *(a + i*r + j) = ((i+j) % r) / (5*c);
    }
  }
}

void initialize(vType r, vType c, vType *a, vType *v){
  vType i, j;

#pragma omp parallel for private(j)
  for (i = 0; i <  r; i++) {
    *(v + i) = 1 + (i / r);
  }
#pragma omp parallel for private(i,j)
  for (i = 0; i <  c; i++) {
    for (j = 0; j < r; j++) {
      *(a + i*r + j) = ((i+j) % r) / (5*c);
    }
  }
}

Dependence analysis

for(t)initialize

CU_v CU_a

Decomposition

for(t)

for(j)

CU_v

for(i)

CU_a

for(j)

initialize

Pattern detection & implementation

for(t)

for(j) for(i)

initialize

Do-all 
pragma: "omp parallel for"
private: ['j']
shared: ['v']
first private: ['r']

Do-all 
pragma: "omp parallel for"
private: ['i', 'j']
shared: [‘a']
first private: ['r', ‘c']

Serial Parallel (CPU)

Figure 7.2: Suggesting OpenMP worksharing-loop construct for doall loops in function initial-
ize().
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8 Conclusion

Exploiting the computing capacity of multicore processors requires programmers to develop
parallel programs or parallelize applications. These tasks are complicated and error-prone
because application developers should consider many details (e.g., data and control dependences
in a program) to avoid common concurrency bugs including deadlocks and data races.
Many tools have been proposed to provide assistance in the parallelization process. A

majority of the tools relies on the compile information to extract data dependences in programs.
They fail to identify parallelism in many cases, because the value of pointers and array indices
are unknown at compile time. Dynamic methods have been proposed to overcome the limitation
of the compiler-based techniques. They capture data dependences that occur during the program
execution. Many researchers have shown that dynamic methods are able to find parallelization
cases that experts need to spend a great amount of time and energy to detect. However, the
techniques suffer from a huge profiling overhead which is often a factor of 100x. The overhead
is the main reason that programmers are not willing to use profiling methods to find parallelism
opportunities. Another challenge is translating the identified opportunities to suggestions, which
can guide programmers to parallelize programs.
In this dissertation, we presented two methods that help programmers parallelize programs.

The methods abandon the idea of fully automated parallelization and instead pinpoint pro-
grammers to likely parallelism opportunities in the source code. Our first method detects
data dependences using a hybrid approach; overcoming the limitations of both static and
dynamic analyses. Our second method exploits the identified dependences to provide practical
suggestions for producing the parallel version of sequential programs.
Our hybrid data-dependence analysis first uses static analysis to extract data dependences.

Then, it finds memory-access instructions that create these dependences and removes them
from profiling, avoiding their associated overhead at runtime. We evaluated the approach
with 49 benchmarks from three suites (i.e., NPB, Polybench, and BOTS) and two computer
simulation programs, namely LULESH and EOS-MBPT. Using the approach, we reduced the
profiling overhead by at least 43%, with a median improvement of 76% across all programs.
Also, we proposed a method that uses the identified dependences to recommend instructions

for the parallelization of a program with OpenMP. Our approach hides from programmers

113



the complex tasks of detecting where to insert which OpenMP construct to maximize the
performance and preserve correctness. In addition, it classifies automatically the variables
that appear inside the constructs according to the OpenMP data-sharing semantics. With
our approach, programmers are involved only for a final validation, a step which they need to
perform, too, when parallelizing programs manually. We used our approach to detect parallelism
opportunities in the above-mentioned benchmarks and programs. We observed a speedup of
up to 1.35x for EOS-MBPT and 8x for LULESH. For the benchmarks, we compared the codes
that we parallelized based on our suggestions with the codes generated by three state-of-the-art
parallelization tools: PLUTO, autoPar, and the classifier of Mercurium. We generate faster codes
in most cases with an average speedup relative to any of the three ranging from 1.8 to 2.7.
Additionally, we reclassified variables of OpenMP programs which are parallelized manually
or with the help of the tools. We suggested firstprivate clause for read-only local variables.
They are shared in the OpenMP programs. Also, we used OpenMP depend clause instead of
taskwait directive, atomic, and critical constructs. Moreover, we used private clause instead
of the threadprivate directive. Reclassifying variables, we improved the execution time of all
programs by up to 29%.
Moreover, executing certain loops on the GPU outperforms the performance on the CPU

significantly. We extended our parallelism detection approach to identify the loops and suggested
OpenMP GPU directives to offload the computation in the loops to the GPU. However, a challenge
is the overhead of data mapping, which is transferring the variables that appear inside the loops
to the memory of the GPU device before the computation starts and back to the host device
after the computation is completed. The overhead is negligible for scalar variables. Mapping
large arrays, however, has a huge runtime overhead, often much more than the speedup that
we obtain by executing the computations on the GPU. We proposed a technique to lower the
overhead. Our technique finds a set of loops that write to and read from the same arrays.
Under specific conditions, our approach transfers the arrays for the set of loops once, instead
of mapping them back and forth for each individual loop. Moreover, we collapsed perfectly-
nested loops to improve the parallelization performance further. We evaluated our approach
with the programs in the polyhedral suite. Loops in the Polybench programs are designed to
be computationally intensive and thus, they are good candidates for offloading to the GPU.
However, many Polyhedral compilers (e.g., PLUTO and LLVM Poly [83]) do not generate parallel
code for the GPU. PPCG [44] is a Polyhedral compiler that offloads polyhedral loops to the GPU
but it does not generate OpenMP parallel code for the GPU. We used our approach to parallelize
Polybench programs and generated parallel OpenMP code for the GPU. The evaluation results
show that offloading the computations to the GPU improves the performance for most of the
benchmarks. However, we need to improve our approach to support a wider range of programs.
In many cases, the parallelization of a program can follow multiple parallel patterns, each

yielding different performance. Detecting the pattern that produces the highest speedup is
complicated because it depends on many parameters including the input size, the program
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structure and the specifications of the target hardware. We developed two methods to help
programmers rank the identified patterns.
The first approach uses autotuning. It receives as the input all the parallelization suggestions

in a program and generates multiple parallel versions of the program. Then, it executes the
parallel programs, records the execution times, and finally selects the program which runs
faster with a fixed number of threads. We tested the approach with Polybench programs and
observed that it is not practical for large programs; it takes a long time, often days, to find the
optimal solution.
The second approach receives as input the identified parallel patterns in a program and

predicts the speedup of each pattern based on features that it extracts from the patterns. Again,
we evaluated the approach with Polybench programs. The results show that we find the most
efficient pattern for most of the benchmarks. However, we learned that we need to consider
features related to platforms such as cache to improve the precision of the predictions.
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