
Fachbereich Informatik
Intelligente Autonome
Systeme

Latent State-Space Models for
Control
Regelung in latenten Zustandsräumen
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Philip Becker-Ehmck aus München
Tag der Einreichung: 28.07.2022, Tag der Prüfung: 26.09.2022

1. Gutachten: Prof. Jan Peters, Ph.D.
2. Gutachten: Prof. Dr. Marco Hutter
Darmstadt – D 17



Latent State-Space Models for Control
Regelung in latenten Zustandsräumen

genehmigte Dissertation von Philip Becker-Ehmck

1. Gutachten: Prof. Jan Peters, Ph.D.
2. Gutachten: Prof. Dr. Marco Hutter

Tag der Einreichung: 28.07.2022
Tag der Prüfung: 26.09.2022

Darmstadt – D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-urn:nbn:de:tuda-tuprints-224895
URL: http://tuprints.ulb.tu-darmstadt.de/22489

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/22489
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/


Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

München, 28.07.2022
P. Becker-Ehmck





Abstract

Learning to control robots without human supervision and prolonged engineering effort
has been a long-term dream in the intersection of machine learning and robotics. If
successful, it would enable many novel applications from soft robotics over human-robot
interaction to quick adaptation to unseen tasks or robotic setups. A key driving force
behind this dream are inherit limitations of classical control algorithms that restrict
applicability to low-dimensional and engineered state-spaces, prohibiting the use of high-
dimensional sensors such cameras or touchpads. As an alternative to classical control
methods, Reinforcement Learning (RL) presumes no prior knowledge of a robot’s dynamics
and paired with deep learning opens the door to use high-dimensional sensory information
of any kind. Yet, reinforcement learning has only achieved limited impact on real-time
robot control due to its high demand for real-world interactions (among other reasons).
Model-based approaches promise to be much more data efficient, but present the challenge
of engineering accurate simulators. As building a simulator comes with many of the same
challenges as designing a controller, using engineered simulators is not a satisfactory
solution for the generic goal of “learning to control”; most of the engineering work would
still have to be done to build the simulator. Instead, learning such a model, in particular a
Latent State-Space Model (LSSM), promises to resolve us from engineering a simulator
while still reaping the benefits of having one. A learned latent space can compactly
represent high-dimensional sensor information and store all relevant information for
prediction and control.
In this thesis, we show how to perform system identification of complex and nonlinear

systems based on high-dimensional observations purely from raw sensory data. Despite
their complexity, such systems can often be approximated well by a set of linear dynamical
systems if broken into appropriate subsequences. This mechanism not only helps us find
good approximations of dynamics, but also gives us deeper insight into the underlying
system. Combining Bayesian inference, Variational Autoencoders and Concrete relaxations,
we show how to learn a richer and more meaningful state-space, for example by encoding
joint constraints or collisions with walls in a maze, from partial and high-dimensional
observations. In a setting with time-varying dynamics, we show how our inference method
for continuous switching variables can infer changing but unobserved physical properties
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that govern the dynamics of a system, such as masses or link lengths in robotic simulations.
This inference happens online in our learned filter without retraining or fine-tuning of
model parameters. Quantitatively, we find that such representations translate into a gain
of accuracy of learned dynamics showcased on various simulated tasks and that they
promise to be helpful for policy optimization.
Building on this work, we show how this LSSM can be used to learn a probabilistic

model of real-world robot dynamics, such as from a self-built drone and a 7 degree of
freedom (DoF) robot arm. No prior knowledge of the flight dynamics or kinematics is
assumed. On top, we propose a novel Model-Based Reinforcement Learning (MBRL)
method where both a parameterized policy and value function are optimized entirely
by propagating stochastic analytic gradients through generated latent trajectories. Our
learned thrust-attitude controller can fly a drone to a randomly placed marker in an
enclosed environment, and steer a joint velocity controlled robot arm to random end
effector positions in Cartesian space. This can be achieved with less than an hour of
interactions on the real system. The control policy is learned entirely in the learned
simulator and can be applied without modification or fine-tuning to the real system.
Last, we propose a novel exploration criterion for the development of autonomous agents:

Empowerment Gain. Different to other exploration criteria, this approach ties together an
agent’s entire perception-control loop and its current capabilities to act. Perspectively, this
method will help us learn models of the world that are actually relevant to realizing an
agent’s influence in the world. As a key insight, our learned models do not actually have
to be perfect simulators of the entire world and all of its processes, rather they need to
convey the information necessary to enable an agent to interact with the world around
him. We show how this criterion compares to, and in some ways incorporates, other
intrinsic motivations such as novelty seeking, surprise minimization and learning progress.
While our method still ensures exploration of the entire space, it prefers regions with
greater potential for realizing an agent’s influence in the world.
In conclusion, we give answers to three major questions: (1) how do we learn a LSSM

from raw sensory data, (2) how do we use it for control and (3) what parts of the world
do we need to explore and model in the first place. While the last part remains in a
theoretical and conceptual stage, we demonstrate the first two on two different real-world
robotic platforms. We focused on proposing general purpose methods that are as broadly
applicable as they can be, but are still successful in a real-world setting.
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Zusammenfassung

Das Lernen der Regelung von Robotern ohne menschliche Betreuung und zeitrauben-
de spezifische Entwicklungsarbeit ist ein langwährender Traum in der Schnittstelle von
Machine Learning und Robotik. Falls von Erfolg gekrönt, würde dies viele neue Anwen-
dungsfälle eröffnen, wie zum Beispiel Soft Robotics, Mensch-Maschine-Interaktionen oder
die schnelle Anpassung an neuartige Aufgaben oder neue robotische Systeme. Getrieben
ist dieser Traum von unüberwindbaren Limitierungen klassischer Regelungsverfahren,
wie der Beschränkung auf niedrigdimensionale Zustandsräume. Als Alternative zu klassi-
schen Regelungsverfahren benötigt Reinforcement Learning kein Vorwissen über etwaige
Roboterdynamiken und zusammen mit Deep Learning Methoden öffnet es die Tür zur
Verwendung hochdimensionaler Sensorinformation wie Kameras oder Behrüngssensoren.
Trotz dieser Versprechungen hat Reinforcement Learning (RL) bisher nur begrenzten
Erfolg in der Regelung von echten Robotern aufgrund seiner Datenineffizienz (unter
anderem). Modellbasierte Methoden versprechen hier Abhilfe zu schaffen, setzen aber
die Erstellungen eines präzisen Simulators voraus. Eben diese kommt allerdings bereits
mit vielen der Herausforderungen, die auch klassische Regelungsverfahren unterlegen
sind, und daher sind sie keine ideale Option, wenn man tatsächlich universelle Methoden
zur Regelung entwickeln möchte. Stattdessen erscheint das Lernen eines Solchen die ei-
gentliche Lösung. Ein gelernter Zustandsraum kann hochdimensionale Sensoren kompakt
darstellen, während er immernoch alle Informationen beinhaltet, die für die Vorhersage
und Regelung von Bedeutung sind.
In dieser Arbeit zeigen wir, wie man Systemidentifikation von komplexen und nicht-

linearen Systemen basierend auf hochdimensionalen Sensordaten durch allgemeine Lern-
verfahren bewerkstelligen kann. Trotz ihrer Komplexität sind solche Systeme oft durch
eine Anzahl an linearen Systemen gut zu approximieren – falls man den Zustandsraum
entsprechend aufteilen kann. Dieser Mechanismus erlaubt uns nicht nur eine gute Approxi-
mation der Dynamik zu finden, er gibt uns auch Einsicht in das zugrundeliegende System.
Mittels Variational Inference, Deep Learning und einer kontinuierlichen Approximation
diskreter Zufallsvariablen, zeigen wir, wie man eine interpretierbare Zustandsraumdar-
stellung lernt, die Konzepte wie Geschwindigkeit und Beschränkungen durch Wände aus
hochdimensionalen und unvollständigen Beobachtungen explizit extrahiert. In Szenarien
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mit zeitvarianten Systemdynamiken zeigen wir, wie unsere Methode die der Veränderung
zugrundeliegenden, aber unbeobachteten, Systemvariablen, wie zum Beispiel Massen oder
Längen in Robotiksimulationen, automatisch inferieren kann. Diese Inferenz geschieht
dabei als Teil unseres gelernten Filters und ohne erneutes Anpassen der Modellparameter.
Diese gelernte Zustandsraumdarstellung führt nicht nur zu einer verbesserten Vorhersa-
gefähigkeit, sondern stellt sich auch als gute Informationsquelle für eine gelernte Policy
heraus.
Aufbauend auf dieser Arbeit zeigen wir, wie man diese Methode verwenden kann, um

echte Roboterdynamiken zu approximeren – wie die einer selbst gebauten Drohne und
die eines Roboterarms. Kein Vorwissen über die Flugdynamik oder die Kinematik wird
vorausgesetzt. Darauf aufgesetzt zeigen wir, wie man eine parametrisierte Policy und Value
Function damit optimieren kann; ganz allein basierend auf simulierten Erfahrungen und
deren Gradienten. Solch eine gelernte Policy kann eine Drohne zu einem bestimmten Ort
fliegen oder den Endeffektor eines Roboterarms an einen zufälligen kartesischen Ort durch
direkte Kontrolle der Gelenke fahren. Das Ganze wird erreicht mit unter einer Stunde
an Erfahrungen in der echten Welt. Die gelernte Policy ist ausschließlich im gelernten
Simulator optimiert und kann auf die echte Welt ohne weitere Veränderungen erfolgreich
übertragen werden.
Anschließend schlagen wir ein neuartiges Kriterium zur Exploration für autonome

Agenten vor: Empowerment Gain. Anders als andere Explorationskriterien umfasst diese
Methode die komplette Wahrnehmungs-Handlungs-Schleife, sowie die aktuellen Hand-
lungsfähigkeiten eines Agenten. Perspektivisch wird diese Methode uns helfen Zustands-
raumdarstellungen zu lernen, die tatsächlich relevant für die Regelung von Systemen
sind. Eine Schlüsselbeobachtung dieser Arbeit ist, dass wir kein Modell der Welt in ihrer
Gesamtheit lernen müssen, wir benötigen lediglich ein Modell, dass uns erfolgreiche Inter-
aktion mit der Umwelt erlaubt. Wir vergleichen dieses Kriterium zu bekannten Kriterien
wie Novelty Seeking, Surprise Maximization oder Learning Progress und zeigen auf, wie es
jene, in einer gewissen Weise, beinhaltet. Während unsere Methode weiterhin garantiert
den gesamten Beobachtungsraum zu erforschen, bevorzugt sie jene Bereiche, in der ein
Agent mehr potenziellen Einfluss auf die Welt entwickeln kann.
Schlussendlich geben wir in dieser Arbeit eine Antwort zu drei großen Fragen: (1)

wie lerne ich Zustandsraumdarstellungen basierend auf beliebigen Sensordaten, (2) wie
verwende ich diese Darstellung zur Regelung und (3) welche Teile der Welt muss ich
eigentlich explorieren und modellieren. Während der letzte Teil in der konzeptuellen
und theoretischen Phase verweilt, demonstrieren wir die ersten beiden Antworten in der
echten Welt auf zwei ganz unterschiedlichen Systemen. Obwohl wir eine erfolgreiche
Anwendung auf zwei konkreten Systemen beleuchten, sind die entwickelten Methoden
sehr allgemein gehalten und deutlich genereller anwendbar.
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1. Introduction

Classical control methods rely on carefully designed state-spaces to enable precise and
robust control policies. They shine in setups where robots are stiff, interactions are
limited and observations of the state are low-dimensional and easily transformed into the
underlying state-space. As an alternative to classical control methods, deep RL makes
far fewer presumptions about what has to be known a priori and has been shown, when
paired with powerful function approximators such as neural networks, to work directly on
high-dimensional observations. It has enjoyed remarkable success in various applications
such as in Atari (Mnih et al., 2015), Go (Silver et al., 2017) or StarCraft II (Vinyals et al.,
2019), however deep RL has only achieved limited impact on real-time robot control.
There are various reasons for this (Dulac-Arnold et al., 2020), most often mentioned
is the high demand for real-world interactions, but other reasons such as delays, noise,
partial observability and continuous and high-dimensional state and action spaces are
other important factors. Poor sample efficiency is seemingly the price to pay for a general
purpose learning method. For robotics, this cost becomes prohibitive as interactions
are not easily scaled up like in simulations or games. Fortunately and possibly due to
some of these reasons, model-based reinforcement learning approaches have become
more and more prominent (Schrittwieser et al., 2020; Hafner et al., 2020; Lee et al.,
2020a), matching their model-free counterparts in absolute performance while being
more sample efficient. Having an explicit world model comes with numerous potential
advantages. It allows for generation of synthetic data, enables planning of trajectories,
reasoning about outcomes and facilitates encoding of high-dimensional observations into
a low-dimensional state-space. Given these potential advantages, we hypothesize that
compressing high-dimensional and often highly redundant information into a small latent
representation capturing relevant information for control is a key ingredient for scaling
these approaches to real-world applications.
Learning representations can be approached in numerous ways, in this thesis we partic-

ularly focus on variational LSSMs (Krishnan et al., 2015). These are probabilistic models
that can learn both a latent representation and latent dynamics model from raw and
high-dimensional data such as video streams or tactile data. Thus, they not only give us a
low-dimensional representation to work with, but they represent a fully fledged simulator
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that can even be computationally cheaper to execute than their engineered counterparts.
They can deal with aleatoric and epistemic uncertainty in a principled manner, although
transferring this theory to practice remains an ongoing challenge. Importantly, these
learned simulators allow us to generate more data without actually operating a robot,
potentially cutting down the need for real-world interactions. While these learned simu-
lators may be black boxes, they can be designed to be differentiable, enabling us to use
first (or possibly higher) order information of the dynamics for optimizing a controller.
Furthermore, they can also be used as a filter for online state estimation, providing a belief
over the current state which in turn may be used to condition a policy.
However, while theoretically very promising, there are huge practical problems that

prohibited this approach from being widely successful so far. Often named first is the ques-
tionable accuracy of learned simulators paired with the inherit problem of accumulating
prediction errors over time. Much more popular have thus been model-free RL methods
that are learned in an engineered simulation first and then later on transferred to the
real robot. Here, huge effort is spent in ensuring the simulator adequately corresponds to
the real dynamics of the one specific robot one would like to operate. Still, even then the
transfer step from simulation to the real world may still be accompanied by quite a few
adjustments to account for simulation inaccuracies. Thus, for robotic simulations to be
useful for learning a controller for the real world, a technique called domain randomization
is often employed. This technique varies various parameters of the simulation to cover
possible inaccuracies, in the end producing a robust but potentially suboptimal policy that
hopefully works in all of these varied settings – including the real world. Despite these
drawbacks, there have been quite a few successes using this approach, e. g. Peng et al.
(2018), Andrychowicz et al. (2020), Tan et al. (2018), Chebotar et al. (2019), Lin et al.
(2019), Hwangbo et al. (2019) and Lee et al. (2020b) representing the current state of
the art.
However, there are further issues with this approach that limits its general applicability

and its potential when combined with general learning methods even if the manpower
and expertise to build an accurate simulator is available. First, they limit us in the robots
that we use. Dynamics of stiff and rigid robots are relatively simple to write down, while
soft robotics are for this reason typically excluded. The simulation of interactions is
intrinsically difficult and computationally expensive. Simulating high-dimensional sensors
such as video streams – while possible – typically is far away from being realistic and the
transfer from simulation to the real world remains an open challenge. So, while there
have been great successes, these are some essential arguments to look for an alternative
approach that is possibly more in line with the vision of generic methods for learning to
control. With the rise of deep learning methods over the last decade in various domains,
one wonders why one can not also learn world models directly from raw sensory data.
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While learned models may also be inaccurate, they are at least fitted based on real-world
data and the methodologies are theoretically applicable to systems where there exists
no analytical derivation of the system dynamics. Their inaccuracies and uncertainties
can principally be estimated and in a Bayesian setting a posterior over possible dynamics
could even replace often crude ways of domain randomization.
In this thesis, we will try to convince the reader that learned simulators, in particular

LSSMs, are a promising option that can be used to learn controllers in real-world scenarios.
While huge obstacles have to be addressed, their promise of broad applicability and the
freedom to incorporate any sensory information are just too big to ignore.

1.1. Objective and Approach

The principal objective of this thesis is to move closer towards learned and universally
applicable control methods using latent world models. We address three major questions
stemming from this objective:

1. How should such a world model look like and how can it be learned?

2. How can we learn a controller with it?

3. What parts of the world do we need to explore and model?

Each of these three questions is addressed in one of the main chapters of this thesis.

Resulting from this objective, some guiding principles can be derived and they were
followed throughout this thesis. First of all, all developedmethods strive to be as universally
applicable as they can be, not only applicable beyond a specific setting, task or robot,
but to any agent in any setting. While specific scenarios and robots were necessarily
chosen to demonstrate a method’s capabilities, no effort was spared to minimize the
modifications and engineering required to make it work. The focus was on developing
principled frameworks and algorithms implemented by deep learning methods that enable
broad applicability. Hence, we always directly learn on minimally preprocessed sensor
data. The latent representation itself, beyond being a proper state-space with its Markov
property, is never provided with any prior knowledge of the system. That is not to say
that such hybrid approaches are not useful or valid – as they clearly are – just that for
our objective and this thesis, it was not the correct thing to do. Despite this generality, it
was important to us to scale and demonstrate the methods on real robotic systems. While
they may not yet be able to match state of the art of engineered or hybrid approaches in
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absolute performance, the goal was to clearly demonstrate the feasibility and promise of
learned latent state-space models for control.

1.2. Contributions

The contributions of this thesis are separated into three main chapters. Chapter 2 intro-
duces a novel method for learning LSSMs with Switching Linear Dynamical Systems (SLDS)
by auto encoding high-dimensional data. Chapter 3 applies this method to real-world
robotic settings and develops a method for learning a controller. Chapter 4 asks and at-
tempts to answer the fundamental question of what parts of the world should be explored
and modeled in a latent space by taking into account an agent’s entire perception-control
loop.

1.2.1. Switching Deep Variational Bayes Filter

In this work, we show how to learn LSSMs with SLDS from raw observations in an
end-to-end manner using stochastic analytic gradients. Combining Bayesian inference,
Variational Autoencoders and Concrete relaxations, we show how to learn a richer andmore
meaningful state-space, for example by encoding joint constraints or collisions with walls
in a maze, from partial and high-dimensional observations. In a setting with time-varying
dynamics, we show how our inference method for continuous switching variables can infer
changing but unobserved physical properties that govern the dynamics of a system, such as
masses or link lengths in robotic simulations. This inference happens online in our learned
filter without retraining or fine-tuning of model parameters. Quantitatively, we find that
such representations translate into a gain of accuracy of learned dynamics showcased on
various simulated tasks and that they promise to be helpful for policy optimization. The
final model may act as a filter for online state estimation which can be used for control as
we demonstrate later on.

1.2.2. Learning to Control Real Robots via Deep Model-Based Reinforcement
Learning

In this work, by leveraging the previously introduced framework to learn a probabilistic
model of drone dynamics, we achieve thrust-attitude quadrotor control via model-based
reinforcement learning. Without encoding any physics knowledge into the latent state-
space, we show how to learn a drone dynamics model from raw sensory data. This
model is good enough to learn a controller entirely in simulation that can be executed
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Figure 1.1.: Conceptual overview of Switching DVBF (Chapter 2) with latent state zt and
control inputs ut. The state matrix Aθ and control matrix Bθ are chosen as
a linear combination of a set of base matrices via a stochastic switching
variable st.

on a real drone. The controller is capable of flying the drone to observed goal positions
using only onboard sensors and computational resources. This can be achieved with less
than 30 minutes of experience on a single, self-built drone. The optimization scheme is
based on stochastic analytic gradients enabled by implementing model, actor and critic as
differentiable function approximators. The methodology is showcased on various drone
configurations, but is applicable more broadly to other robotic setups without the need for
algorithmic changes. We demonstrate this by applying the same methodology to a 7 DoFs
robotic arm where we use joint velocity control to reach random Cartesian end effector
positions and orientations. Again, this can be achieved with limited real-world experience,
requiring only up to an hour of real-world interaction data.

1.2.3. Exploration via Empowerment Gain: Combining Novelty, Surprise and
Learning Progress

Here, we present a novel exploration criterion called Empowerment Gain for exploration
and develop its connection to well known intrinsic motivations such as novelty seeking,
surprise maximization and information gain. We show how it incorporates these methods
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Figure 1.2.: Model-Based Actor-Critic (Chapter 3): optimization of a policy by backpropa-
gating (gradient path indicated in red) through short imagined latent rollouts.

in a specific manner, but also demonstrate its key differences and advantages. In particular,
our method steers the exploration process based on agent’s entire perception-control
loop and directly encourages an agent to perform actions to recognize its capability to
interact with the world. This results in both novelty seeking and surprise maximization
in a particular trade-off. We demonstrate how such an exploration scheme avoids prison
cells, prefers exploring actions and regions of the state-action space of lower stochasticity
and prefers areas with a greater number of available options to the agent. Using both
the theoretical underpinning and the experimental results, we try to convince the reader
that increasing an agent’s capability to interact with the environment is the ultimate goal
of task-agnostic exploration. We believe it to be vital to the development of autonomous
agents as it allows us to learn world models that are useful for control.

1.3. Thesis Outline

Although the chapters are mostly self-contained, in particular chapters 2 and 3 heavily
build on each other, we recommend reading in the presented order. However, each chapter
is accompanied by its own appendix whose reading may be deferred to a later point.
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Chapter 1
Introduction

Chapter 2

Learning Switching
Linear Dynamics

Chapter 3

Learning to Control

Real Robots

Chapter 4

Agent-Centric

Exploration

Chapter 5

Conclusion

Figure 1.3.: The structure of this thesis. Chapters 2 and 3 should be read in order. Chap-
ter 4 is self-contained, but relates to the previous chapters in various ways.

Chapter 1 outlines this thesis. We introduce the general motivation, objective and state
the contributions of this thesis.
In Chapter 2, we show how to learn a LSSM with SLDS from raw data. We use

neural Variational Inference (VI) methods to learn this model end-to-end and showcase
its performance on various simulated tasks. The resulting model is not only good for
prediction, but may also act as an online filter for state estimation.
In Chapter 3, we show how to use the previous chapter’s methodology for control of two

different robotic systems. We show how to learn a neural controller using a novel MBRL
variant that backpropagates stochastic analytic gradients through learned dynamics. The
entire learned system can be deployed on a self-built quadrotor, flying it to an observed
goal marker, and on a 7 DoF robot arm for joint velocity control. Either system can be
learned without encoding prior knowledge into the latent space and by only collect up to
an hour of real-world interactions.
In Chapter 4, we propose a novel criterion for autonomous exploration in the absence

of a concrete task. Our criterion, Empowerment Gain (EG), directly tries to improve
an agent’s capability to interact with the world and incorporates well known intrinsic
motivations such as novelty seeking, surprise maximization and information gain in a
specific manner. We argue that this exploration mechanism is beneficial for learning latent
variable models of the world that are useful for control.
Finally, we conclude in Chapter 5 by summarizing the main contributions of our thesis.

We give an outlook on promising directions for future work that either directly extend
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this work or take it to new areas of research.
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2. Switching Deep Variational Bayes Filter

Learning dynamics from raw data (also known as system identification) is a key component
of model predictive control and model-based reinforcement learning. Problematically,
environments of interest often give rise to very complex and highly nonlinear dynamics
which are seemingly difficult to approximate. However, switching linear dynamical systems
(SLDS) approaches claim that those environments can often be broken down into simpler
units made up of areas of equal and linear dynamics (Ackerson and Fu, 1970; Chang and
Athans, 1978).
Not only have those approaches demonstrated good predictive performance in various

settings, which often is the sole goal of learning a system’s dynamics, they also encode
useful information into so called switching variables which determine the dynamics of the
next transition. For example, when looking at the movement of an arm, one is intuitively
aware of certain restrictions of possible movements, e.g., constraints to the movement due
to joint constraints or obstacles. The knowledge is present without the need to simulate;
it is explicit. Exactly this kind of information will be encoded when successfully inferring
switching variables. Our goal in this work will therefore entail the search for richer
representations in the form of latent state space models which encode knowledge about
the underlying system dynamics. In turn, we expect this to improve the accuracy of our
simulation as well. Such a representation alone could then be used in a reinforcement
learning approach that possibly only takes advantage of the learned latent features but
not necessarily its learned dynamics.
To learn richer representations, we identify one common problem with prevalent recur-

rent Variational Autoencoder models (Chung et al., 2015; Fraccaro et al., 2016; Karl et al.,
2017; Krishnan et al., 2015): the non-probabilistic treatment of the transition dynamics
often modeled by a powerful nonlinear function approximator. From the history of the
Autoencoder to the Variational Autoencoder, we know that in order to detect robust fea-
tures in an unsupervised manner, probabilistic treatment of the latent space is paramount
(Dai et al., 2017; Kingma et al., 2014). As our starting point, we will build on previously
proposed approaches by Krishnan et al. (2017) and Karl et al. (2017). The latter already
made use of locally linear dynamics, but only in a deterministic fashion. We extend their
approaches by a stochastic SLDS model with structured inference and show that such
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treatment is vital for learning richer representations and simulation accuracy.
Expanding on this, we show how our model and in particular the inference of these

separate latent switching variables that determine the latent dynamics can be used to
infer unobserved time-varying parameters governing system dynamics. In particular, we
show how our switching variables can detect hidden physical properties such as masses,
link lengths or friction coefficients from partial observations of the system dynamics alone.
Representing multiple dynamical systems by a single model can be viewed as a kind
of meta-learning where each dynamical system represents a different task. Different
to popular meta-learning approaches such as MAML (Finn et al., 2017) our approach
does not require a couple of gradient steps to adapt to a specific task. When using the
trained filter in the end, the detection of these quantities is amortized into the inference
procedure and happens online without any retraining of model parameters. This makes
our filter directly applicable to adaptive control scenarios. We demonstrate this by learning
a controller with SLAC (Lee et al., 2020a), a state of the art model-based reinforcement
learning method, on a pendulum environment with time-varying dynamics. This gives
support to our claim that our learned latent space representation is also superior for policy
optimization when compared to other approaches.

2.1. Background

We consider discretized time-series data consisting of continuous observations xt ∈ X ⊂
Rnx and control inputs ut ∈ U ⊂ Rnu that we would like to model by corresponding latent
states zt ∈ Z ⊂ Rnz . We will denote sequences of variables by x1:T = (x1, x2, . . . , xT ).

2.1.1. Switching Linear Dynamical Systems

A Switching Linear Dynamical Systems (SLDS) model enables us to model nonlinear time
series data by splitting it into subsequences governed by linear dynamics. At each time
t = 1, 2, . . . , T , a discrete switch variable st ∈ 1, . . . ,M chooses of a set of M LDSs a
system which is to be used to transform the continuous latent state zt−1 to the next time
step (Barber, 2012). Formally, we define

zt = A(st)zt−1 +B(st)ut−1 + ϵ(st),

xt = H(st)zt + η(st)

with η(st) ∼ N (0, R(st)), ϵ(st) ∼ N (0, Q(st)).

(2.1)

Here A ∈ Rnz×nz is the state matrix, B ∈ Rnz×nu is the control matrix, ϵ is the transition
noise with covariance matrix Q, η is the emission/sensor noise with covariance matrix
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(a) SLDS graphical model.

h s2 s3
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u1 u2

x1 x2 x3

(b) Our generative model.

Figure 2.1.: (a) st denote discrete switch variables, zt are continuous latent variables,
xt are continuous observed variables, ut are (optional) continuous control
inputs. (b) By introducing a special latent variable h used for initial state
inference, we want to make explicit that the first step is treated differently
from the rest of the sequence.

R and the observation matrix H ∈ Rnx×nz defines a linear mapping from latent to
observation space. These equations imply the joint distribution

p(x1:T , z1:T , s1:T | u1:T ) =
T∏︂
t=1

p(xt | zt, st) p(zt | zt−1, ut−1, st) p(st | zt−1, ut−1, st−1)

with p(s1 | z0, u0, s0) = p(s1) and p(z1 | z0, u0, s1) = p(z1 | s1) being initial state dis-
tributions. The discrete switching variables are usually assumed to evolve according to
Markovian dynamics, i.e. Pr(st|st−1 = k) = πk, which optionally may be conditioned on
the continuous state zt−1. The corresponding graphical model is shown in Figure 2.1a.

2.1.2. Stochastic Gradient Variational Bayes

Given the simple graphical model

p(x) =

∫︂
p(x, z) dz =

∫︂
p(x | z)p(z) dz, (2.2)

Kingma and Welling (2014) and Rezende et al. (2014) introduced the Variational Au-
toencoder (VAE) which overcomes the intractability of posterior inference of p(z | x) by
maximizing the evidence lower bound (ELBO) of the model log-likelihood

log p(x) ≥ LELBO(x; θ, φ) = Eqφ(z|x)[log pθ(x | z)]−KL(qφ(z | x) | | p(z)).
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Their main innovation was to approximate the intractable posterior p(z | x) by a recogni-
tion network qφ(z|x) from which they can sample via the reparameterization trick to allow
for stochastic backpropagation through both the recognition and generative model at once.
Assuming that the latent state is normally distributed, a simple transformation allows
us to obtain a Monte Carlo gradient estimate of Eqφ(z|x) [log pθ(x|z)] w.r.t. φ. Given that
z ∼ N (µ, σ2), we can generate samples by drawing from an auxiliary variable ϵ ∼ N (0, 1)
and applying the deterministic and differentiable transformation z = µ+ σϵ.

2.1.3. The Concrete Distribution

One simple and efficient way to obtain samples d from a k-dimensional categorical distri-
bution with class probabilities α is the Gumbel-Max trick

d = one_hot (argmax[gi + logαi]) with g1, . . . , gk ∼ Gumbel(0, 1).

However, since the derivative of the argmax is 0 everywhere except at the boundary of state
changes, where it is undefined, we cannot learn a parameterization by backpropagation.
The Gumbel-Softmax trick approximates the argmax by a softmax which gives us a
probability vector leading to what is since known as the Concrete distribution (Jang et al.,
2017; Maddison et al., 2017). We can then draw samples via

dk =
exp((logαk + gk)/λ)∑︁n
i=1 exp((logαi + gi)/λ)

.

This softmax computation approaches the discrete argmax as temperature λ→ 0 while for
λ→∞ it approaches a uniform distribution. In the same vein, the bias of the estimator
decreases with decreasing λ while its variance increases.

2.2. Related Work

Our model can be viewed as a Deep Kalman Filter (Krishnan et al., 2015) with structured
inference (Krishnan et al., 2017). In our case, structured inference entails another stochas-
tic variable model with parameter sharing inspired by Karl et al. (2019) and Karl et al.
(2017) which pointed out the importance of backpropagating the reconstruction error
through the generative transition. Marino et al. (2018) adopts this idea by starting an
iterative amortized inference scheme with the prior prediction. Iterative updates are then
only conditioned on the gradient of the loss, allowing the observation only to adjust, but
not completely overrule, the prior prediction. We are different to a number of stochastic
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sequential models like Bayer and Osendorfer (2014), Chung et al. (2015), Goyal et al.
(2017) and Shabanian et al. (2017) by directly transitioning the stochastic latent variable
over time instead of having an RNN augmented by stochastic inputs. Fraccaro et al. (2016)
proposes a transition over both a deterministic and a stochastic latent state sequence,
wanting to combine the best of both worlds.
Previous models (Fraccaro et al., 2017; Karl et al., 2017; Watter et al., 2015) have

already combined locally linear models with recurrent Variational Autoencoders, however
they provide a weaker structural incentive for learning latent variables determining the
transition function. Van Steenkiste et al. (2018) approach a similar multi bouncing ball
problem (see Section 2.4.1) by first distributing the representation of different balls
into their own entities without supervision and then structurally hardwiring a transition
function with interactions based on an attention mechanism. Kurle et al. (2020) learned
a switching Gaussian linear systems with a Rao-Blackwellised particle filter and also
explored Gaussian instead of discrete switch variables.
Recurrent switching linear dynamical systems (Linderman et al., 2017) uses message

passing for approximate inference, but has restricted itself to low-dimensional observations
and a multi-stage training process. Nassar et al. (2019) builds on this work and suggests
a tree structure for enforcing a locality prior on switching variables where subtrees
share similar dynamics. Johnson et al. (2016) propose a similar model to ours but
combine message passing for discrete switching variables with a neural network encoder
for observations learned by stochastic backpropagation. Dong et al. (2020) proposed a
method for switching nonlinear dynamical systems by learning an inference network for
the continuous latent variables, but performing exact marginalization over the discrete
latent variables.
One feature an SLDS model may learn are interactions which have recently been

approached by employing Graph Neural Networks (Battaglia et al., 2016; Kipf et al.,
2018). These methods are similar in that they predict edges which encode interactions
between components of the state space (nodes). Tackling the problem of propagating
state uncertainty over time, various combinations of neural networks for inference and
Gaussian processes for transition dynamics have been proposed (Doerr et al., 2018;
Eleftheriadis et al., 2017). However, these models have not been demonstrated to work
with high-dimensional observation spaces like images.
Our goal is not only to learn a single dynamical system, but be able to represent a whole

class of systems and adapt to a change of dynamics without retraining or fine-tuning
of parameters. This can be interpreted as a meta-learning problem where modeling
each instance of the environment is seen as a different task. One popular approach
for meta-learning is based on Model-Agnostic Meta-Learning (MAML) and its various
improvements (Finn et al., 2017; Liu et al., 2019; Rakelly et al., 2019; Song et al., 2020),
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a method for finding a set of parameters that are easily finetuned by a couple of gradient
steps to a specific instance of a task or environment. Different and more along the line
of our approach, Zhao et al. (2020) argues that one may use the training procedure to
directly amortize this adaptation process into the inference network. Kumar et al. (2021)
similarly learn an amortized adaptation module to cope with time-varying dynamics but
it assumes knowledge of the ground truth parameters governing the dynamics during
training time. Lee et al. (2020c) suggest learning an explicit context vector conditioning a
learned dynamics model that is learned via a forward and backward prediction loss, but
structurally they do not enforce the role of the context vector in shaping the transition.

2.3. Proposed Approach

We propose learning an SLDS model through a recurrent Variational Autoencoder frame-
work which approximates switching variables by a Concrete distribution (Jang et al., 2017;
Maddison et al., 2017). This leads to a model that can be optimized entirely by stochastic
backpropagation through time. For inference, we propose a time-factorized approach
with a specific computational structure, reusing the generative model. This allows us to
learn good transition dynamics. Our generative model is shown in Figure 2.1b and our
inference model in Figure 2.2a.

2.3.1. Generative Model

Our generative model for a single xt is described by

p(xt) =

∫︂
s≤t

∫︂
z≤t

p(xt | zt) p(zt | zt−1, st, ut−1) p(st | st−1, zt−1, ut−1) p(zt−1, st−1)

(2.3)

which is close to the original SLDS model (see Figure 2.1a). Latent states zt are continuous
and represent the state of the system while states st are switching variables determining
the transition. In order to use end-to-end backpropagation, we approximate the discrete
switching variables by a continuous relaxation, namely the Concrete distribution. Different
from the original model, we do not condition the likelihood of the current observation
pξ(xt | zt) directly on the switching variables. This limits the influence of the switching
variables to choosing a proper transition dynamic for the continuous latent space. The
likelihood model is parameterized by a neural network with, depending on the data,
either a Gaussian or a Bernoulli distribution as output.
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As outlined in (2.3), we need to learn separate transition functions for the continuous
states zt and for the discrete states st. For the continuous state transition p(zt | zt−1, st, ut−1)
we follow (2.1) and maintain a set ofM base matrices
{
(︁
A(i), B(i), Q(i)

)︁
| ∀i, 0 < i < M} as our linear dynamical systems to choose from. Our

transition is then defined as
pξ(zt | zt−1, st, ut−1) = N

(︁
µ, σ2

)︁
where µ = Aξ(st)zt−1 +Bξ(st)ut, σ2 = Qξ(st).

For the transition on discrete latent states p(st | st−1, zt−1, ut−1), we conventionally re-
quire a Markov transition matrix. However, since we approximate our discrete switching
variables by a continuous relaxation, we can parameterize this transition by a neural
network. We define

pξ(st | st−1, zt−1, ut−1) = Concrete(α, λprior) where α = gξ(zt−1, st−1, ut−1).

Finally, the question arises how we determine our transition matrices A,B and Q since
our Concrete samples st are now probability vectors and not one-hot vectors anymore. We
could execute the forward pass by choosing the linear system corresponding to the highest
value in the sample (hard forward pass) and only use the relaxation for our backward
pass. This, however, means that we would follow a biased gradient. Alternatively, we can
use the relaxed version for our forward pass and aggregate the linear systems based on
their corresponding weighting

At(st) =
M∑︂
i=1

s
(i)
t A

(i), Bt(st) =
M∑︂
i=1

s
(i)
t B

(i) and Qt(st) =
M∑︂
i=1

s
(i)
t Q

(i). (2.4)

Here, we lose the discrete switching of linear systems, but maintain a valid lower bound.
We note that the hard forward pass has led to worse results and focus on the soft forward
pass for this thesis.

2.3.2. Inference

As previously stated, the inference structure is critical for performance. In particular, we
require the reconstruction loss gradient to flow through the generative transition model
which is not naturally the case for these types of models. Without a properly structured
inference scheme, only the KL divergence would guide the generative transition model.
To achieve this, we formulate our inference scheme as a local optimization around the
prior prediction where information from the observation only adjusts our prior prediction.
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(a) Inference model.

qmeas(zt | x≥t)qmeas(st | x≥t)

×qtrans(zt | · )

q(zt | x≥t, zt−1, st, ut−1)

×qtrans(st | · )

pθ(xt | zt)

zt−1

st−1

zt−1
q(st | x≥t, zt−1, st−1, ut−1)

st

x≥tx≥t ut−1ut−1

. . .

(b) High-level overview.

Figure 2.2.: (a) Depicts the inference model. bt is the hidden state of the backward RNN
of qmeas(st | x≥t, u≥t). Initial inference of hmay be conditioned on the entire
sequence of observations, or just a subsequence. We omitted the arrows
for sake of clarity for the rest of the graph. (b) Shows schematically how we
combine the transition with the inverse measurement model in the inference
network. Transitions (in blue) are shared with the generative model.

Generally, we split the inference model into two parts: 1) the generative transition
model and 2) encoding the current (and optionally future) observations. Both parts will
independently predict a distribution over the next latent state which are then combined in
a manner inspired by a Bayesian update. In the following, we will go through the specific
construction for both normal and Concrete distributions. The overall inference structure is
depicted in Figure 2.2b.

Structured Inference of Gaussian Latent State

Starting from the factorization of our true posterior, our approximate posterior takes
the form qψ(zt | zt−1, st, x≥t, u≥t−1) where we notice that observations up to the last
time step can be omitted as they are summarized by the last Markovian latent state
zt−1. As mentioned, the inference model splits into two parts: 1) transition model
qtrans(zt | zt−1, st, ut−1) and 2) inverse measurement model qmeas(zt | x≥t, u≥t) as previ-
ously proposed in Karl et al. (2019). This split allows us to reuse our generative transition
model in place of qtrans(zt | zt−1, st, ut−1). For practical reasons, we only share the com-
putation of the transition mean µtrans but not the variance σ2trans between inference and
generative model. Both parts, qmeas and qtrans, will give us independent predictions about
the new state zt which will be combined in a manner akin to a Bayesian update in a
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Kalman Filter. Formally, our filter is defined as

qψ(zt | zt−1, st, x≥t, u≥t−1) = N
(︁
µq, σ

2
q

)︁
∝ qmeas(zt | x≥t, u≥t)× qtrans(zt | zt−1, st, ut−1)

qmeas(zt | x≥t, u≥t) = N
(︁
µmeas, σ

2
meas

)︁
where [µmeas, σ

2
meas] = hψ(x≥t, u≥t)

qtrans(zt | zt−1, st, ut−1) = N
(︁
µtrans, σ

2
trans

)︁
where µtrans = Aθ(st)zt−1 +Bξ(st)ut, σ2trans = Qψ(st).

The densities of qmeas and qtrans are multiplied resulting in another Gaussian density
defined by

µq =
µtransσ

2
meas + µmeasσ

2
trans

σ2meas + σ2trans
and σ2q =

σ2measσ
2
trans

σ2meas + σ2trans
.

To enable online filtering, we chose to condition the inverse measurement model
qmeas(zt | x≥t, u≥t) solely on the current observation xt instead of the entire remaining
trajectory. We found empirically that despite being theoretically suboptimal, this can yield
good results in many cases, in particular in case of actually Markovian settings which are
plentiful in the physical world. In this case, this methodology can be used for real-time
state filtering in online feedback control.
For the initial state z1 we do not have a conditional prior from the transition model

as in the rest of the sequence. Other methods (Krishnan et al., 2015; Fraccaro et al.,
2016) have used a standard normal prior, however this led to a large divergence for us
between approximate posterior and its prior in the first time step. We therefore decided
that instead of predicting z1 directly, we predict an auxiliary variable h that is then mapped
deterministically to a starting state z1. The initial inference step is defined by

qψ(h | x1:T , u1:T ) = N
(︁
h;µw, σ

2
w

)︁
where [µh, σ

2
h] = iψ(x1:T , u1:T )

andz1 = tψ(h).

A standard Gaussian prior is then applied to h. Alternatively, we could have specified
a more complex or learned prior for the initial state like the VampPrior (Tomczak and
Welling, 2018) which we defer to future work.

Inference of Switching Variables

Following Maddison et al. (2017) and Jang et al. (2017), we can reparameterize a discrete
latent variable with the Gumbel-softmax trick. Again, we split our inference network
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qψ(st | st−1, zt−1, x≥t, u≥t−1) in an identical fashion into two components: 1) transition
model qtrans(st | st−1, zt−1, ut−1) and 2) inverse measurement model qmeas(st | x≥t, u≥t).
The transition model is again shared with the generative model and is implemented
via a neural network as we potentially require quick changes to chosen dynamics. The
inverse measurement model is parametrized by a backward LSTM (or an MLP in the
online filtering setting). For Concrete variables, we let each network predict the logits of a
Concrete distribution and our inverse measurement model qψ(st | x≥t, u≥t) produces an
additional vector γ, which determines the value of a gate deciding how the two predictions
are to be weighted. Formally, our approximate posterior is defined by

qψ(st | st−1, zt−1, x≥t, u≥t−1) = Concrete(α, λposterior)
with α = γαtrans + (1− γ)αmeas,

qmeas(st | x≥t, u≥t) = Concrete(αmeas, λposterior)

where [αmeas, γ] = kψ(x≥t, u≥t)

qtrans(st | st−1, zt−1, ut−1) = Concrete(αtrans, λprior),

where αtrans = gξ(zt−1, st−1, ut−1).

(2.5)

The temperatures λposterior and λprior are set as a hyperparameter and can be set differently
for the prior and approximate posterior. The gating mechanism gives the model the option
to balance between prior and approximate posterior. If the prior is good enough to explain
the next observation, γ will be pushed to 1 which will ignore the measurement and will
minimize the KL between prior and posterior by only propagating the prior. If the prior is
not sufficient, information from the inverse measurement model can flow by decreasing γ
and incurring a KL penalty.

Reinterpretation as a Hierarchical Model

Lastly, we could step away from the theory of SLDS and instead view our model simply
as an hierarchical graphical model where some variables should explain the current
observation while others should determine the locally linear transition over said variables.
When viewed in this manner it gives more freedom to model the switching variables in
various ways, e.g. also as normally distributed with a specific decoder structure predicting
some kind of transition parameters. Gaussian switching variables have been found to
work well also by Kurle et al. (2020). If this worked better, it would either highlight still
existing optimization problems of concrete relaxations of discrete random variables or
be indicative that the hard switching behavior is too restrictive or not as easily learned.
Additionally, it would support our initial claim that stochastic treatment of the transition

18



dynamics in general is important, irrespective of the specific implementation. Although
any number of parameterizations are now viable, the one that we explore here is to use
the Gaussian switching variables in the following way. Using just a single linear layer, we
predict mixing coefficients

α = softmax(Wst + b) ∈ RM (2.6)

for our transition matrices. Alternatively, one may also use the sigmoid instead of the
softmax activation function for even more flexibility and expressiveness, allowing us to
superimpose any number of linear dynamical systems (for a more thorough discussion see
Appendix A.1.3). And then our transition matrices are defined by

At(st) =

M∑︂
i=1

αi(st)A
(i), Bt(st) =

M∑︂
i=1

αi(st)B
(i) and Qt(st) =

M∑︂
i=1

αi(st)Q
(i).

In this scenario, our inference scheme for normally distributed switching variables is then
analogous to the one described in Section 2.3.2. Another advantage of this approach is
that it allows explicit encoding of continuous hidden variables that govern the dynamics of
a system. We will explore this in detail in Section 2.4.6 where we show how these latent
variables can be used to encode properties governing the dynamics of robotic simulations.

2.3.3. Training

Our objective function is the commonly used evidence lower bound

Lθ,ψ(x1:T | u1:T ) ≥ Eqψ(z1:T ,s2:T |x1:T )[log pθ(x1:T | z1:T , s2:T , u1:T )]
−KL(qψ(z1:T , s2:T | x1:T , u1:T ) | | p(z1:T , s2:T | u1:T )).

for our hierarchical model. As we chose to factorize over time, the loss for a single
observation xt becomes

Lξ,ψ(xt | u1:T ) = Est [Ezt [log pξ(xt | zt)]]
− Est−1,zt−1 [KL(qψ(st | · ) | | pξ(st | st−1, zt−1, ut−1))]

− Ezt−1 [Est [KL(qψ(zt | · ) | | pξ(zt | zt−1, st, ut−1))]].

(2.7)

The full derivation can be found in Appendix A.1.1. We generally approximate the
expectations with one sample by using the reparametrization trick, the exception being
the KL between two Concrete random variables in which case we take 10 samples for the
approximation. For the KL on the switching variables, we further introduce a scaling factor
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Table 2.1.: Mean squared error (MSE) on predicting future observations. Static refers to
constantly predicting the first observation of the sequence.

Reacher 3-Ball Maze

Prediction steps 1 5 10 1 5 10

Static 5.80E-02 5.36E-01 1.25E+00 1.40E-02 5.74E-01 2.65E+00
LSTM 3.07E-02 3.67E-01 1.02E+00 7.20E-03 1.58E-01 2.60E-01
DVBF 1.10E-02 3.06E-01 6.05E-01 6.20E-03 1.36E-01 1.82E-01
DVBF Fusion 4.90E-03 2.97E-02 8.25E-02 4.33E-03 2.03E-02 4.88E-02
Ours (Concrete) 1.06E-02 5.73E-02 1.56E-01 2.28E-03 1.22E-02 3.40E-02
Ours (Normal) 3.39E-03 1.85E-02 4.97E-02 1.30E-03 5.52E-03 1.38E-02

β < 1 (as first suggested in Higgins et al. (2016), although they suggested increasing the
weighting of the KL term) to scale down its importance. This decision can be justified
by other work which has demonstrated theoretically and empirically the inadequacy of
maximum likelihood training on the ELBO for learning latent representations (Alemi et al.,
2018).

2.4. Experiments

In this section, we evaluate our approach on a diverse set of physics simulations based
on partially observable system states or high-dimensional images as observations. We
show that our model outperforms previous models and that our switching variables learn
meaningful representations.
Models we compare to are Deep Variational Bayes Filter (DVBF) (Karl et al., 2017),

DVBF Fusion (Karl et al., 2019) (called fusion as they do the same Gaussian multiplication
in the inference network) which is closest to our model but does not have a stochastic
treatment of the transition, the Kalman VAE (KVAE) (Fraccaro et al., 2017) and a vanilla
LSTM (Hochreiter and Schmidhuber, 1997).
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Figure 2.3.: Comparison of actual and predicted 20 step trajectories. The diamondmarker
denotes the starting position of a trajectory. These results have been pro-
duced with Concrete switching variables.

2.4.1. Multiple Bouncing Balls in a Maze

Our first experiment is a custom 3-agent maze environment simulated with Box2D. Each
agent is fully described by its (x, y)-coordinates and its current velocity and may accelerate
in either direction. We learn in a partially observable setting and limit the observations to
the agents’ positions, therefore x ∈ R6 while the true state space is in R12 and u ∈ R6.
Our first objective is to evaluate the learned latent space. We start by training a linear

regression model on the latent space z to see if we have recovered a linear encoding of
the unobserved velocities. Here, we achieve an R2 score of 0.92 averaged over all agents
and velocity directions.
We now shift our focus to the switching variables that we anticipated to encode interac-

tions with walls. We provide a qualitative confirmation of that in Figure 2.4 where we see
switching variables encoding space where there is no interaction in the next time step
and variables which encode walls, distinguishing between vertical and horizontal ones. In

21



(a) Multi agent maze environment. (b) Variable encoding free space for agent 2.

(c) Variable encoding walls for agent 1.
(d) System activation for deterministic transi-

tion.

Figure 2.4.: Figures (b) and (c) depict an agent’s position colored by the average value
of a single latent variable s marginalized over all controls and velocities.
Figure (d) shows a typical activation map for a single transition system for
deterministic treatment of transition dynamics. It does not generalize to the
entire maze and stays fairly active near the wall.

Figure 2.4d one can see that if the choice of locally linear transition is treated determinis-
tically, we do not learn global features of the same kind. To confirm our visual inspection,
we train a simple decision tree based on latent space s in order to predict an interaction
with a wall. Here, we achieve an F1 score of 0.46. It is difficult to say what a good value
should look like as collisions with low velocity are virtually indistinguishable from no
collision, but certainly a significant portion of collisions has been successfully captured.
We were unable to capture collisions between two agents which can be explained by their
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rare occurrence and much more complicated ensuing dynamics.
Going over to quantitative evaluation, we compare our prediction quality to several other

methods in Table 2.1 where we outperform all of our chosen baselines. Also, curiously,
modeling switching variables by a Gaussian distribution outperforms the Concrete distri-
bution in all of our experiments. Aside from known practical issues with training a discrete
variable via backpropagation, we explore one reason why that may be in Section 2.4.5,
which is the greater susceptibility to the chosen scale of temporal discretization.

2.4.2. Reacher

We then evaluate our model on the RoboschoolReacher (OpenAI, 2017) environment.
Again, we learn only on partial observations, removing velocities and leaving us with just
the positions or angles of the joints as observations. The reacher’s dynamics are globally
the same unless the upper and lower joints collide which is again a feature we expect our
switching variables to detect. Similar to before, we inspect the learned latent space in
Figure 2.5 visually where show linear encoding of shoulder joint’s velocity and encoding
of collision dynamics. The chosen dynamics are unaffected by the shoulder angle, but are
sensitive to the relative angle of the elbow to the upper link. To confirm our qualitative
analysis, we again learn a linear classifier based on latent space s and reach an F1 score
of 0.53. The predictive quality of our model is compared to other methods in Table 2.1.

2.4.3. Ball in a Box on Image Data

Here, we evaluate our method on high-dimensional image observations using the single
bouncing ball environment used by Fraccaro et al. (2017). They simulated 5000 sequences
of 20 time steps each of a ball moving in a two-dimensional box, where each video frame
is a 32 × 32 binary image. There are no forces applied to the ball, except for the fully
elastic collisions with the walls. Initial position and velocity are randomly sampled.
In Figure 2.7a we compare our model to both the smoothed and generative version

of the KVAE. The smoothed version receives the final state of the trajectory after the n
predicted steps which is fed into the smoothing capability of the KVAE. One can see that
our model learns a better transition model, even outperforming the smoothed KVAE for
longer sequences. For short sequences, KVAE performs better which highlights the value
of it disentangling the latent space into separate object and dynamics representation. A
sample trajectory is plotted in Figure 2.6.
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(a) Encoding shoulder velocity. (b) Encoding joint collisions.

Figure 2.5.: Encoding features of the reacher environment. Figure (a) shows two latent
dimensions colored by the ground truth shoulder velocity. The model cap-
tures the shoulder’s velocity purely out of provided joint angle data. Figure
(b) highlights the activation of a Concrete switching variable. Note that the
elbow’s angle is provided relative to the upper link, meaning that a (normal-
ized) value of -1 or 1 leads to a collision with the upper link.

2.4.4. FitzHugh-Nagumo

To compare to recurrent SLDS (rSLDS, Linderman et al. (2017)) and tree-structured
SLDS (TrSLDS, Nassar et al. (2019)), we adopt their FitzHugh-Nagumo (FHN, FitzHugh
(1961)) experimental setup. FHN is a 2-dimensional relaxation oscillator commonly used
throughout neuroscience to describes a prototype of an excitable system (e.g., a neuron).
It is fully described by the following system of differential equations:

v̇ = v − v3

3
− w + Iext, τ ẇ = v + a− bw (2.8)

Following their setup, we set the parameters to a = 0.7, b = 0.8, τ = 12.5 and external
stimulus Iext ∼ N (0.7, 0.04). We create 100 trajectories of length 430 where the last 30
time steps are withheld during training and used for evaluation. Starting states are drawn
uniformly from [−3; 3]2. Since they restrict their observation model to be linear, we do the
same for this experiment. In Figure 2.7b, we compare the models based on normalized
multi-step predictive performance where our model matches the performance of TrSLDS.
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Figure 2.6.: First row: data, second row: reconstructions, third row: predictions. The
first 4 steps are used to find a stable starting state, predictions start with
step 5 (after the red line). These results have been produced with Gaussian
distributed switching variables.

2.4.5. Susceptibility to the Scale of Temporal Discretization

In this section, we would like to explore how the choice of ∆t when discretizing a system
influences our results. This crucial factor is often ignored or presumed to be chosen
appropriately, although there has been some recent work addressing this issue specifically
(Jayaraman et al., 2019; Neitz et al., 2018).
In particular, we suspect our model with discrete (Concrete) switching latent variables
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Figure 2.7.: (a) Our dynamics model is outperforming even the smoothed KVAE for longer
trajectories. (b) Our models performs as well as TrSLDS. (c) Modeling switch-
ing variables as Concrete random variables scales less favorably with in-
creasing time discretization intervals.
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Figure 2.8.: Modeling switching variables as Concrete random variables scales less
favorably with increasing time discretization intervals.

to be more susceptible to scaling than when modeled by a normal distribution. A possible
explanation is that in the latter case the switching variables can scale the various matrices
more freely, while in the former scaling up one system necessitates scaling down another.
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Table 2.2.: Root mean squared error (RMSE) on predicting 10 time steps into the future.
Results are averaged over 10 training runs, ± 1 standard deviation. To fairly
evaluate, the filter is run for 80 steps before starting the prediction. The
dynamics are changed once after 50 time steps.

Pendulum Reacher Cheetah

RNN 0.058± 0.020 0.0508± 0.0084 0.168± 0.043

LSTM 0.063± 0.032 0.0319± 0.0052 0.111± 0.041

RSSM (Dreamer) 0.053± 0.019 0.0217± 0.0080 0.076± 0.0040.076± 0.0040.076± 0.004

HVAE (SLAC) 0.051± 0.012 0.0300± 0.0074 0.102± 0.006

DVBF Fusion 0.044± 0.006 0.0157± 0.0028 0.130± 0.008

Ours 0.037± 0.0050.037± 0.0050.037± 0.005 0.0150± 0.00190.0150± 0.00190.0150± 0.0019 0.098± 0.005

For empirical comparison, we go back to our custom maze environment (this time with
only one agent as it is not pertinent to our question at hand) and learn the dynamics
on various discretization scales. Then we compare the absolute error’s growth for both
approaches in Figure 2.8 which supports our hypothesis. While the discrete approximation
even outperforms for small ∆t, there is a point where it rapidly becomes worse and gets
overtaken by the normally distributed approximation. This suggests that ∆t was simply
chosen to be too large in both the reacher and the ball in a box with image observations
experiment.

2.4.6. Time-Varying Dynamics

Now, we shift the focus to time-varying dynamics and to the question whether our model
can capture hidden variables governing the dynamics in its switching variables. Here, we
compare to models that have been used in popular model-based reinforcement learning
approaches, in particular, we compare to RSSM (Hafner et al., 2020) and SLAC (Lee et al.,
2020a). The latter has also been used in Zhao et al. (2020) for meta-learning. Different
to us, they use it to infer an unobserved task variable instead of changing dynamical
properties, however they argue similar to us for an approach to amortize this process in
the inference model. For these experiments, we adapted the DeepMind Control Suite

27



Figure 2.9.: Model predictions of the pendulum. The two lines represent cos(θ) and sin(θ)
of the pendulum’s angle θ. Black lines are the ground truth data, green lines
are filtered reconstructions, blue lines are open-loop predictions from the
filtered part onward. The shaded blue area is the estimated uncertainty
over multiple rollouts. The vertical red line indicates a change of system
dynamics.

(Tassa et al., 2020) and use modified versions of the pendulum, reacher and cheetah
environment. Depending on the system, we change the systems mass, damping coefficients,
stiffness or link lengths (see Appendix A.1.2 for specifics). At every time step, there is a
probability p = 0.005 that these underlying parameters are resampled, abruptly changing
the dynamics of the system. As observations, we use (joint) positions, but remove time
derivative data (velocities). The time-varying physics parameters also remain unobserved.

Model Learning

For model training, we collect a data set consisting of 1000 episodes of 500 steps by
sampling actions from an Ornstein-Uhlenbeck process to get a diverse data set of the
environment. For evaluation, we first run our filter for 80 steps and predict the system
from then on forwards. After the first 50 time steps, we change the dynamics once and
keep them fixed afterwards as we want to fairly evaluate open-loop prediction quality.
This evaluation then showcases not only that the model can learn various dynamics but
also that it can adapt online to changes to the dynamical system. This evaluation scheme is
graphically presented in Figure 2.9 on some exemplary trajectories of the pendulum. The
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(a) Encoding of pendulum mass. (b) Encoding of pendulum length.

(c) Encoding of cheetah mass. (d) Encoding of cheetah joint stiffness.

(e) Encoding of cheetah damping. (f) Encoding of reacher mass.

Figure 2.10.: Encoding of unobserved variables governing the physics of a system into
our latent switching variables.

numerical results are presented in Table 2.2, where we can see that our method performs
best in 2 out of the 3 environments. We average the evaluation over 10 separate training
runs and compare the RMSE on predicting 10 time steps into the future. For the Cheetah,
the RSSM performed best, this may indicate possible scaling issues of globally switching
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Table 2.3.: The best performing agent of each of the 10 runs evaluated over 100 episodes.
The initial state and random seed for changing the physics is identical for the
evaluation of each algorithm.

Avg. Reward

SAC −1136± 69

SLAC LSTM −1371± 382

SLAC DVBF Fusion −1088± 108

SLAC −1027± 97

SLAC SLDS-DVBF (Ours) −950± 61−950± 61−950± 61

linear dynamics to more complicated systems, however our method still comes in second.
Qualitatively, we inspected the learned latent spaces and highlighted some of them

in Figure 2.10. Here, we plot some switching variables with the highest correlation to
some unobserved quantities governing the system dynamics, clearly showing successful
encoding of mass, link length, joint stiffness and damping coefficients. Despite the
high dimensionality of the switching latent space (between 32 and 64), we found these
individual correlations without further post-processing or dimensionality reduction of the
latent space. As we suspected based on our structural prior, all of these encodings were
found in switching latent variables s and not in latent variables z.

Latent Representation for Control

Lastly, we want to give some support to the claim that our filter and learned latent
representation can be useful for control. For that, we try to learn an agent in the time-
varying pendulum environment using SLAC, amodel-based reinforcement learningmethod.
SLAC can be described as a model-based Soft Actor-Critic (SAC) where the latent state
representation of the model is used to inform the critic, but other than that the model is
not used further for either backpropagation or generating synthetic data. Different to the
original paper, for our case we found it necessary to also condition the policy on the latent
representation. Hence, this algorithm and setting allows an isolated comparison of the
effect of the learned latent state representations on learning of an agent.
Our results are presented in Figure 2.11 showing performance over training and high-
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(a) SLAC performance on the time-varying pendulum environment.

(b) Exemplary pendulum rollouts, red lines indicate a change of physics.

Figure 2.11.: Reinforcement learning results in the time-varying pendulum environment.

lighting a few actual rollouts of the final policy. For each algorithm, we performed 10
training runs. In Table 2.3, we compare best performing agent of each training run on
100 episodes. For a fair comparison, both the initial state and the change of physics were
changed identically for each agent in the 100 episodes.
It should be noted that, given the control constraints, some configurations of the

pendulum are actually impossible to swing-up while for others the pendulum is not
underactuated anymore. Thus, only relative performance and not necessarily the absolute
performance should be compared. We found that not only did our latent representation
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lead to the best performance, but also the performance across runs were more stable than
with most other models. Although the final difference in performance is not huge, we
found it to be quite consistent over the training runs. For a model-free baseline, we also
included SAC where we stacked 4 observations to address partial observability. Overall,
this study gives some first indication that such an explicit encoding as enforced through
our model’s structural prior can be helpful for model-based reinforcement learning.

2.5. Discussion

We want to emphasize some subtle differences to previously proposed architectures that
make an empirical difference, in particular for the case when st is chosen to be continuous.
In Watter et al. (2015) and Karl et al. (2017), the latent space is already used to draw
transition matrices, however they do not extract features such as walls or joint constraints.
There are a few key differences to our approach. First, our latent switching variables st
are only involved in predicting the current observation xt through the transition selection
process. The likelihood model therefore does not need to learn to ignore some input
dimensions which are only helpful for reconstructing future observations but not the
current one. There is also a clearer restriction on how st and zt may interact: st may
now only influence zt by determining the dynamics, while previously zt influenced both
the choice of transition function as well as acted inside the transition itself. These two
opposing roles lead to conflicting gradients as to what should be improved. Furthermore,
the learning signal for st is rather weak so that scaling down the KL-regularization was
necessary to detect good features. Lastly, a locally linear transition may not be a good fit
for variables determining dynamics as such variables may change very abruptly. Therefore,
it might be beneficial to have part of the latent space evolve according to locally linear
dynamics and other parts according to a general purpose neural network transition.
Overall, our structure of choosing a transition gives a stronger inductive bias towards
learning such features when compared to other methods.

2.6. Conclusion

In this chapter we show how to learn a latent state-space model with switching linear
dynamical systems via neural variational inference and end-to-end backprogpagation. We
showed that latent switching variables are able to extract and represent joint constraints
or walls in a maze from raw data streams of an agent’s position alone. In the case of
time-varying dynamics, we showed that continuous switching variables can not only infer
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changing hidden variables governing the dynamics such as masses or link lengths, but also
infer those variables via online filtering; no retraining or fine-tuning of model parameters
is required. When comparing switching variables modeled by either a concrete relaxation
or by a Gaussian distribution, we showed that the latter is seemingly more robust in
practice while still retaining a lot of the interpretability of a strict switching behavior. The
inferred state-space representations are not only readily interpretable but also improved
simulation accuracy in various tasks when compared to other approaches. This makes this
model a promising candidate for model-based reinforcement learning methods also when
tackling time-varying dynamics or for adaptive control problems in general – which we
demonstrated in a first small case study. Further developing and showcasing this potential
application of this model for control is the focus of our future work.
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3. Learning to Control Real Robots via Deep
Model-Based Reinforcement Learning

Designing controllers for robots requires years of expertise and effort, fine tuning modules
for state estimation, model-predictive control and contact scheduling. As a final product,
one has designed a controller that works only on that one particular robot. In contrast, deep
RL presumes no prior knowledge of a robots dynamics and promises broad applicability.
However, applying deep RL to robotic systems faces many challenges, among them poor
sample efficiency. This shortcoming is often circumvented by finding ways to parallelise
the learning over many agents (i. e. many identical robotic setups) and by automatic
resetting of the environment (Gu et al., 2017; Kalashnikov et al., 2018). As an alternative
to expensive real-world rollouts, simulators have commonly been employed, allowing us
to generate more data without actually operating the robot. This approach has been the
most successful way to deploy learned controllers on real hardware (Peng et al., 2018;
Andrychowicz et al., 2020; Tan et al., 2018; Chebotar et al., 2019; Lin et al., 2019).
However, this just avoids the underlying issue that we wanted to address: while controller
learning is now generic, most of the expert knowledge is still required to build the simulator.
Thus, a truly generic solution using little to no prior knowledge requires us to also learn
the simulator.
All of these restrictions become obvious when working on drones. Simulating the

dynamics of a drone, esp. a self-built one, is complex. Recording many flights with a
drone is cumbersome because of frequent battery changes; flying many drones in parallel
is difficult because of space constraints, or just costly. We therefore focus on an approach
that is more data-efficient as we have to reduce data collection needs to a minimum. We
learn a full dynamics simulation of the drone, employing neural variational inference
methods to train a latent state-space model from observational data (Krishnan et al.,
2017; Karl et al., 2017; Fraccaro et al., 2017). This generic framework is applicable to all
kinds of dynamical systems as it is agnostic to sensorimotor configuration, and this we
demonstrate by applying the method to a 7-DoFs robot arm.
As model bias represents a huge challenge of this approach, most prior work on learning

controllers for quadrotors has been conducted using a predefined drone dynamics model,
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Figure 3.1.: A learned controller flying a quadrotor to a goal marker. The controller was
optimized using rollouts from a learned dynamics model and is executed
onboard.

e. g. Hwangbo et al. (2017), Lin et al. (2019) and Koch et al. (2019). Typically, they use
either imitation learning or model-free RL algorithms where the predefined simulator is
used as a data generator. As a drawback, the simulator’s internal structures can usually not
be exploited for optimization and its gap to reality may be high. In contrast, our learned
simulator is fully differentiable and, having been trained on data of the real system, may
also help reduce the simulation-to-reality gap. Further, truly model-free methods have
no possibility of building an internal model of the world, unless equipped with a hidden
state which allows them to build a world model implicitly. They are thus harder to apply
in partially observed settings, however this drawback can be mitigated in simple scenarios
by providing the policy with the last few observations instead of just the most recent one.
Our principal contribution is a methodology for learning a controller using a learned

LSSM without the necessity to provide prior information in form of a simulator or prede-
fined differential equations. The robot-agnostic dynamics model is learned from real-world
data and can deal with noisy and partial observations. We evaluate this methodology on
a self-built drone that has to fly to marked positions (see Figure 3.1) using various sensor
types and combinations. Using a novel model-based Actor-Critic approach, the controller
and value function are optimized entirely in the latent rollouts of the learned dynamics
model. The controller acts on the same level a human would operate a quadrotor, provid-
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ing roll, pitch, yaw and throttle control inputs. It is supported by a low-level controller
which keeps the drone hovering in absence of control inputs—a feature which mainly
simplifies the initial exploration policy. When deployed, both the learned model—used
for online state estimation—and controller are executed in real-time on the drone itself
using only embedded computational resources (cq. a Raspberry Pi 4).
To show that the algorithm is not limited to quadrotors, we perform some ablation

studies using a Franka Emika Panda robot arm. Being a stationary robot without the
need for changing batteries or any other human interaction, we can conduct a comparison
to other methods. The task is kept similar to the drone case, meaning the agent has to
move the arm’s end effector to an observed and randomly sampled Cartesian position
and orientation. Control is performed by commanding joint velocities in a gravity- and
Coriolis-compensated robot. The main challenge compared to the drone lies in the higher
number of DoFs and their complicated interaction.
Even though we have to learn a (global) dynamics model, by leveraging it for policy

optimization we can be sufficiently data efficient for a real-world application. For the
drone, we require only 30 minutes of real-world flight (equivalent to approximately 25.000
model steps at ∼ 14Hz) to find our final policy. In the robot arm scenario, we require
60.000 steps at 10Hz in the environment which corresponds to 100 minutes of interaction
on a real robot.

3.1. Background

Throughout this chapter, we consider observations xt and control inputs ut that form a
trajectory or episode τ = (x1, u1, x2, u2, ..., uT−1, xT ). We denote a sequence of variables
as x = x1:T = (x1, x2, ..., xT ).

3.1.1. Backpropagation through Stochastic Variables

Computing ∇θEqθ(z|·)[f(z)], i.e. a gradient w. r. t. to some parameters θ where the expecta-
tion is taken with respect to a distribution parameterized by θ is key for learning stochastic
representations by gradient descent. Function f is assumed to be integrable and smooth.
One way to approximate this gradient is by employing the score function estimator (also
called REINFORCE (Williams, 1992) or likelihood ratio method (Glynn, 1990))

∇θEqθ(z|·)[f(z)] = Eqθ(z|·)[f(z)∇θ log qθ(z | ·)]. (3.1)

In practice, this estimator often suffers from high variance. In this work, we instead make
use of a pathwise Monte Carlo gradient estimator, a technique repopularized by Kingma
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and Welling (2014) and Rezende et al. (2014). Instead of sampling from z directly, one
can sample from an auxiliary noise variable ϵ that is independent from the parameters θ
and transform the sample into a sample of the original distribution

z = gθ(ϵ) with ϵ ∼ p(ϵ). (3.2)

Such a transformation g exists for many continuous distributions and is in general required
to be smooth and invertible. This allows us to compute a Monte Carlo estimates of an
expectation

Eqθ(z|x)[f(z)] = Ep(ϵ)[f(gθ(ϵ))] (3.3)
by sampling from p(ϵ) instead of qθ(z|x). In this form, the gradient operator ∇θ can
trivially be moved inside the expectation. We made use of this technique, often called
reparameterization trick, both for learning a latent variable model and for optimizing a
stochastic policy.

3.1.2. Reinforcement Learning

We consider the regular Markov Decision Process (MDP) (Bellman, 1957) where both
state space Z and action space U1 are continuous. An agent starts in an initial state
z0 ∼ p(z0). At every time t, the agent samples a control ut from its policy π(ut | zt)
and transitions to a new state zt+1 according to the dynamics p(zt+1 | zt, ut). The agent
receives a bounded reward rt ∼ r(zt, ut) reinforcing or punishing the behavior. The
reward-to-go Rt =

∑︁∞
k=0 γ

krt+k is the accumulated discounted reward from now on, with
a discount factor γ ∈ [0; 1). Reinforcement Learning seeks to learn a policy that maximizes
the expected reward-to-go

J(π) = Eτ∼pπ(τ)[Rt], (3.4)
where pπ(τ) represents the distribution over trajectories induced by following policy π.
Optimizing directly w. r. t. eq. (3.4), as is often done in policy search methods (Deisenroth
et al., 2013), can suffer from high variance since we are using a single sampled trajectory
to evaluate the performance of our policy. Value-based methods introduce state or state-
action value estimators which can reduce variance while introducing a bias. The value
of a state z under policy π is defined as the expected reward for following the policy
from state z, i.e. V π(z) = Eτ∼pπ(τ)[Rt | zt = z]. The state-action value is defined as
Qπ(zt, ut) = r(zt, ut) + γEzt+1∼p(zt+1|zt,ut)[V

π(zt+1)]. To scale to real-world problems,
state and state-action value functions are typically represented by function approximators
1More common is the notation with state space S and action space A, but we remain with Z and U for sake
of consistency.
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such as neural networks. Actor-Critic methods are a hybrid approach that learn both a
policy (called actor) and value function (called critic) that bootstrap each other.
When working in continuous action spaces, optimization is most commonly done using

policy gradients where the policy parameters θ are updated in direction of the performance
gradient (Sutton et al., 2000)

Eτ∼pπ(τ)[∇θ log π(ut | zt)Q
π(zt, ut)]. (3.5)

Notably, the policy gradient does not depend on the gradient of the state distribution.
MBRL distinguishes itself from model-free methods by exploiting a (possibly) learned

dynamics model p(zt+1 | zt, ut) to optimize a policy. There are numerous ways of doing so.
In Dyna (Sutton, 1991) and derivative work, the learned dynamics model is used exclu-
sively as a data generator for optimizing the policy using standard model-free algorithms.
Real-world data is here only used to fit the dynamics model. Another category of algo-
rithms uses model derivatives either for policy search or improved value estimation (Heess
et al., 2015; Feinberg et al., 2018; Byravan et al., 2019).

3.2. Variational Latent Dynamics

As a model for the environment, we re-use the method introduced in Chapter 2. However,
to be useful in our reinforcement learning setting, on top of learning a model of the system
dynamics, we also require a (differentiable) reward function. In practice, the reward
function is often based on the entire system state or even some additional quantities like
contact points (Brockman et al., 2016) to provide an informative learning signal. However,
we would also like to learn in settings with only partial observations where not all of
these quantities are explicitly available to the agent. Thus, we can not directly compute
the rewards based on predicted observations of an imagined trajectory. Instead, we must
build a model of the reward function which is based on the learned latent state. Here,
even in the partially observed cases, we expect the latent space to contain all necessary
information for prediction and thus also for modeling a reward function. We introduce a
separate neural network for reward prediction pξ(rt | zt, ut) and extend the general lower
bound in eq. (2.7) by a term for the reward function

LReward(r1:T | u1:T ) =
T∑︂
t=1

Ezt∼qψ [log pξ(rt | zt, ut)]. (3.6)

Note that we stop the gradient such that this term does not shape the latent space as this
changes and possibly simplifies the underlying problem significantly. Additionally, this
would render the model non-transferable to different tasks.
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3.3. Learning a Controller

Generally, our algorithm falls into the category of Actor-Critic methods as introduced in
Section 3.1.2, meaning we learn both a parameterized policy (actor) and value function
(critic) that evaluates the actor. In terms of design choices, having a generative model
of the environment gives us every freedom in shaping our policy optimization scheme.
However, for policy and value function optimization, we limit ourselves to data generated
by the learned simulator for optimization. The observed data is thus only used for fitting
the generative model, but not directly for learning the controller. This demonstrates what
is possible with a purely model-based approach which is clearer to evaluate if we do
not make use of real-world rollouts for policy optimization. A hybrid approach, where
real-world data is used in an off-policy fashion, is also possible and the extension for that
is quite straightforward using importance sampling (see e. g. Heess et al. (2015)).
Going more into detail, Algorithm 1 sketches a high-level overview of the algorithm.

After collecting an initial data set and optimizing a preliminary dynamics model, we start
with the main optimization loop. Note that one could also perform only a single collection
step at the start and then learn in an offline setting. For optimizing the controller we
root every dreamed rollout, i. e. a rollout within the latent dynamics model, in a real-
world experience by randomly choosing points from the data set and computing the
corresponding latent state by filtering up to that point. From then on we follow the policy
for a fixed and small number of steps in our latent dynamics model. This rollout is used
to optimize both actor and critic via stochastic analytic gradients.
The length of the rollout is a trade-off between exploiting the model’s internal structure

for gradient computation and limiting the impact of the model’s accumulating prediction
error. Long imagined trajectories are generally not necessary for two reasons. First, we
use a learned value function as a critic to evaluate the policy’s performance instead of
relying entirely on a Monte Carlo estimate of the reward. Second, we are free to start a
rollout at any observed state that we have ever seen before, which is in contrast to e. g. a
real-world setup where the robot always resets to the same starting position. On the other
hand, imagining just a single step limits our use of the model severely. Generating data
this way has numerous advantages: we are always on-policy, we can create arbitrarily
many experiences and have no need for a replay buffer.
Note that the various updates of model, policy and value function are not tied to each

other and may be performed at independent intervals. Fujimoto et al. (2018) have noted
that updating the actor less frequently than the critic may be beneficial.
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Initialize model parameters θ, φ, ξ, ψ randomly.;
for each data collection do

\\ Collect data in real environment;
for each episode do

for t=1..T do
Get state estimate zt ∼ qψ(zt | xt, zt−1, ut−1);
Evaluate policy ut ∼ π(ut | zt);
\\ Execute control in env.;
xt+1, rt ← execute(ut);

Add episode (x, u, r) to data set D.;
\\ Optimize model and controller;
for each training iteration do

\\ Fit dynamics model;
Sample b episodes (x, u, r) ∼ D;
Update model parameters ξ, ψ based on eq. (2.7);
\\ Fit actor and critic;
Imagine a batch of trajectories starting from a random subset of filtered
states;
Update policy θ with ∇θ of eq. (3.13);
Update value function φ with ∇φ of eq. (3.9);
Update target value func. φ′ ← αφ′φ+ (1− αφ′)φ′;

Algorithm 1: Model-Based Actor-Critic

3.3.1. Value Estimation

As mentioned, we optimize the value function based on on-policy rollouts in our latent
dynamics model, where a rollout is formally defined as

τθ,ξ ∼ p(z1)
H−1∏︂
t=1

π(ut | zt)pξ(zt+1 | zt, ut). (3.7)

Note that for notational convenience we subsume our hierarchical latent space consisting
of z and s into a single latent state z for the remainder of this chapter. Given these rollouts,
state values can be estimated in numerous ways, most commonly by minimizing the
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temporal difference error (TD-error) (Sutton et al., 1998)

Eτθ,ξ
[︂(︁
V π
φ (zt)−

(︁
rξ(zt, ut) + γV π

φ (zt+1)
)︁)︁2]︂

. (3.8)

For faster convergence, we make use of an n-step variant (Watkins, 1989)

Eτθ,ξ
[︂(︁
V π
φ (zt)− yt

)︁2]︂
with yt =

H−1∑︂
i=0

γirξ(zt+i, ut+i) + γHV π
φ′(zt+H),

(3.9)

which reduces the bias at the cost of increased variance. Since we sample from both
policy and latent dynamics model, we can minimize this objective w. r. t. parameters φ by
computing analytic stochastic gradients using the reparameterization trick. To stabilize
this regression, we introduce a target value network V π

φ′(zt+H) parameterized by φ′ (Mnih
et al., 2015). The target network’s parameters φ′ are slowly updated towards φ using
a small learning rate αφ′ ≪ 1 and thus the target values of the regression are changing
more slowly. The update is defined by an exponential decay

φ′ ← αφ′φ+ (1− αφ′)φ′. (3.10)

We parameterize the value function by a neural network.

3.3.2. Policy

Using the critic, we can optimize our policy, which we choose to be represented as a
diagonal multivariate Gaussian distribution, i. e.

π(ut | zt) ∼ N (µθ(zt), σθ(zt)). (3.11)

The mean µθ(zt) and standard deviation σθ(zt) are again parameterized by dense neural
networks. In general, any distribution where the reparameterization trick is applicable
may be used instead. Similar to optimizing the value function, we make use of short policy
rollouts within the learned dynamics model. These rollouts do not need to be the same or
be of the same length as used for learning the critic. As the general objective for policy
optimization in Actor-Critic methods, one chooses the gradient of the critic, i. e.

∇θEτθ,ξ
[︁
rξ(zt, ut) + γV π

φ (zt+1)
]︁
. (3.12)

Here again, we make a slightly different compromise between Monte Carlo estimation
and relying on the critic by choosing to sum up predicted rewards before truncating the
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Figure 3.2.: Our quadrotor with 24 LiDARs (8 of them facing to the top, side and bottom),
motion capture markers and a Raspberry Pi 4. The flight controller including
the IMU is placed directly beneath the Raspberry Pi. The frame makes the
drone withstand collisions with the walls or floor.

series with the (discounted) critic of the trajectory’s terminal state. Formally, this n-step
term expressed by

Eτθ,ξ

[︄
H−1∑︂
i=0

γirξ(ut+i, zt+i) + γHV π
φ (zt+H)

]︄
(3.13)

where a typical rollout lengthH used in our experiments is between 3 and 10. Analogously
to the optimization of the critic, this objective can be maximized w. r. t. policy parameters
θ by backpropagation using the reparameterization trick.

3.4. Experimental Platform: Our Drone

We built our own quadrotor (see Figure 3.2) from scratch as learning autonomous flight
starting from random exploration places unique demands on the hardware. In particular,
we fitted our quadrotor with a robust polyamide frame, allowing it to bump into walls
or the ground while staying fully operational. This simplifies initial exploration and
deployment of (preliminary) policies. Moreover, this frame also allows for mounting
various sensors such as cameras or LiDARs. For this work, the drone is equipped with 24
VL53L1X time-of-flight sensors which are connected via I2C directly to a Raspberry Pi 4
which performs all computing tasks required for our entire model. In practice, the LiDARs
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Table 3.1.: Drone hardware components

Component Description

Flight Electronics

Flight Controller CLRACING F7

Motors 4×1808-2600 kv

ESC 4-In-1 30A with BLHeli-S

Propellers 4× 4” Bull Nose, 3 Blades

Battery 4S LiPo, 1400mAh, 65C

Perception & Computation

Onboard Raspberry Pi 4

LiDAR 24×VL53L1X

IMU ICM-20602

give us readings between 0.05–3.50m and take up to 50ms to measure. The drone is
further equipped with a CLRACING F7 flight controller which comes with an ICM-20602
inertial measurement unit (IMU) that combines a three-axis gyroscope and a three-axis
accelerometer. Similar to the LiDARs, the flight controller is connected to the Raspberry
Pi. Lastly, the drone frame is fitted with motion capture markers for an external tracking
system. Overall the drone weighs 640 g without the battery, which weighs another 181 g.
An overview of all key hardware components is given in Table 3.1.
The drone was placed in a 3.0m × 3.0m × 2.4m cage with acrylic glass walls (see

Figure 3.5). We artificially limited the drone’s throttle such that it cannot fly higher than
the visible foil at the walls which end at 1.2m. The foil’s main purpose is to improve
the LiDAR readings. The cage is fitted with a motion capture system (OptiTrack) which
operates at up to 120Hz. Its data is relayed to the drone over WiFi using Open Robot
Communication (ORC) (Frank et al., 2019). An overview of the various components and
their communication is visualised in Figure 3.3.

3.4.1. High and Low-Level Controller

Our control scheme consists of a high and low-level controller, where only the high-
level controller is learned (as described in Section 3.3). The high-level controller is a
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Figure 3.3.: Visualization of communication between sensors, onboard computational
hardware and external motion capture system. Motion capture data is sent
over WiFi using Open Robot Communication (Frank et al., 2019).

thrust-attitude controller, i. e. it defines throttle, roll, yaw and pitch commands which are
then translated to motor torques. For low-level control we use angle mode of Betaflight
3.5.6 (Betaflight, 2020) on our flight controller which keeps the drone hovering when
no control inputs are sent. In this mode, roll and pitch inputs are translated into fixed
desired angle of the drone and a throttle application of 0 approximately keeps the drone
hovering. In practice, variations due to individual battery performance and battery charge
require some adjustments from a controller to achieve a stable hovering position. When
no (i. e. 0) attitude commands are sent to the flight controller, it will level itself. This
behavior is mainly useful for initial exploration as it simplifies the policy design greatly,
but is admittedly also helpful for hovering at a goal position after it has been reached.
This general setting is identical to how humans typically learn to operate a drone at the
beginning.

3.4.2. Environment

Since our learned high-level controller sends thrust-attitude commands to the flight
controller, there exists an underlying PID controller that translates them into motor
currents. This PID controller being limited in its operational speed, we would like to
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Figure 3.4.: Timing of the control loop. The big intervals denote high-level control where
we update our state estimation and compute a new control input based on
our learned policy. The smaller 9ms intervals represent the communication
interval with the flight controller. Here, we send a control signal and receive
filtered IMU data.

avoid a jittery control signal—something that is not enforced by our Gaussian policy. We
therefore introduce a small moving average over the last 6 values (or 54ms) to smoothen
out the control signal. This also ensures that our policy stays within the data distribution
of our initial exploration policy which is important for valid model predictions. Further,
the control signal has to obey certain control limits of the real system. We enforced this
by transforming the control input by a tanh function and then scaling it to the required
interval.
The low-level controller runs at 2 kHz while the high-level controller sends control

commands every 9ms. Since computation of our neural state estimation and policy takes
longer than 9ms, we run the high-level controller at 72ms intervals which predicts the
next 8 actions in an open-loop fashion. This control loop is shown in Figure 3.4.
Finally, when applying RL methods, it is often wrongfully assumed that the agent’s state

does not change during action selection (Ramstedt and Pal, 2019; Travnik et al., 2018;
Walsh et al., 2009). In practice, this oversight is often not disastrous as the time required
for action selection is negligible. We follow Ramstedt and Pal (2019) which allows an
agent exactly one time-step to select an action and where the original MDP is augmented
by the previous action(s). Thus, the policy actually takes the form

πθ(ut+1 | zt, ut, ut−1). (3.14)

This recovers the theoretical applicability of the underlying mathematical framework.
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Table 3.2.: Drone sensor streams with nd as the number of dimensions of the sensor, neffd
as the effective dimension and∆t as themeasurement period inmilliseconds.

Sensor Stream nd ∆t neff
d

LiDAR 24 72 24

IMU orientation 3 9 24

IMU acceleration 3 9 24

Battery Voltage 1 72 1

(Simulated) Compass 1 9 8

Mocap Drone Position 7 9 56

Mocap Drone Velocity 3 9 24

Mocap Goal Marker 7 72 7

3.5. Drone Experiments

We showcase our methodology in various variations of the same scenario: our quadrotor
flying from any position to a randomly placed goal marker in an enclosed environment.
This scenario was completed in two settings with either disabled or enabled yaw actuation.
In both settings, drones using different subsets of the available sensory information were
compared to each other.

3.5.1. Setup

In this section, we introduce various drone configurations, how we collect data and how
we preprocess the data for learning.

Drone Configurations

We compared three different drone configurations, using only part of all sensory informa-
tion as listed in Table 3.2. Note that some sensors give measurements more frequently
than others (see also Figure 3.3), but our model works at a fixed interval length of 72ms.
If multiple measurements are available, we simply provide our model with all of them.
Our three configurations are defined as follows:
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(a) (b)

Figure 3.5.: (a) Shows the drone lifting off and flying to the marked goal in the upper
right section of the cage. (b) Shows a corresponding quiver plot looking at
the cage from a birds perspective and indicates the policy’s roll and pitch
commands averaged over a validation data set given the goal position of (a).
The arrow’s color denotes the relative magnitude of the control input.

• MocapVel observes motion capture estimates for position and Cartesian velocity.
Velocity is computed using backward differences on filtered motion capture positions.

• Mocap observes only motion capture positions, but no velocity. Thus, it only observes
a partial state and has to infer its velocity indirectly.

• LiDARVel uses only onboard sensors, including all 24 LiDARs and the IMU, but no
motion capture position or velocity. However, to make unique and global position
identification at all possible, we simulate a compass using our motion capture system,
i. e. we provide the drone’s z-orientation in the global motion capture frame. Lastly,
we supply the model with a LiDAR-based Cartesian velocity estimate based on
averaging estimates of LiDARs pointing in the same or opposite direction.

Further, all drones receive a current battery voltage measurement which is updated
approximately every 400ms and the motion capture position of the goal marker as an
observation.
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Data Collection

Exploration in this setting is a difficult endeavor as we require prolonged actions in one
direction for the drone to do something meaningful. Random control commands, as is
often done in RL research, would thus lead to the drone mostly sitting on the floor or
being stuck at one of the walls. This natural behavior of a random agent in a bounded
environment is aggravated by the suction effect near the walls. On the other hand, it is
very easy to accelerate the drone to high speeds by excessively tilting in one direction
which leads to uncontrollable flight. As both scenarios are undesirable, we start out by
collecting an initial data set with a PID controller and continue with the learned policy in
subsequent recording steps.
For the initial data set, a high-level PID controller based on the motion capture system

flies to randomly chosen targets. To facilitate learning, we update each component of the
goal, which consists of (x, y, z)-position and z-orientation, independently after a randomly
drawn interval length (on average around 1 s). This leads to more decorrelated actuation
of the control dimensions when compared to changing the entire goal at once. Note that
it is not important for the PID controller to actually reach a target or do a good job at
controlling the drone at all. We merely require varied and stable drone flight for our initial
data set to learn a first dynamics model. After recording an initial data set, we can record
subsequent data using the learned policy. We collected about 10 of overall 30 minutes
of flight data using this initial exploration scheme. Maximum velocity reached in any
direction during exploration was around 1.5ms .
Further, our algorithm allows us to reuse data between drone configurations. In partic-

ular, we perform the described data collection loop only using the MocapVel configuration
and learn the other configurations entirely offline based on the already collected data.

Data Processing

Minimising engineering effort being a primary motivation of our work, we wanted to limit
data processing requirements as much as possible; nevertheless a few processing steps are
necessary. As is common when working with neural networks, we normalized all input
data to the interval [−1; 1] based on known sensor limits.
Both the motion capture data and IMU signal are already filtered by their respective

sources and we applied no further filtering. The tracking system gives us the orientation of
the drone and goal marker in quaternions. Quaternions are difficult for neural networks
to learn as there are discontinuities and ambiguity in representation. Instead of learning
on them directly, we followed Zhou et al. (2019) and learned on a unique and smooth
6D representation which is based on 2 columns of the corresponding rotation matrix. For
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Figure 3.6.: Comparison of the position and z-orientation error over time averaged across
all successful test flights. Shaded area marks one standard deviation. One
can see how Mocap requires a bit longer to settle, oscillating a bit before
converging to a slightly larger error than the fully observable MocapVel con-
figuration.

the motion capture data, we mapped the drone’s position from the tracking frame to the
drone’s frame. This helps the model in so far as the actions and motion capture data are
represented in the same frame of reference. The goal marker position was not translated
or otherwise processed.
LiDAR data is filtered using a weighted moving average over the last 5 measurements,

both for computational simplicity and minimal added delay. Based on this filtered signal,
we estimate their rate of change using backward differences over the same window. Then,
LiDARs pointing in the same or opposite direction are averaged to compute a Cartesian
velocity estimate as we found the use of singular velocity estimates to be too noisy for the
model.
For training of the sequential latent variable model, we applied a sliding window on

the recorded trajectories, each of which is approximately a minute long, that yields
subsequences of ca. 3–6 s duration (i. e. 40–80 discrete time steps). This increases the
diversity of observed initial states and accelerates training. For each subsequence, we
augmented the data set by overwriting the recorded goal marker position by a randomly
drawn one, increasing the diversity of observed goals. Accordingly, we recomputed the
observed reward to match the new goal.

3.5.2. Fly to Marker

Our goal scenario is for a drone to fly to a marker, i. e. from a standstill, it is supposed to lift
off, fly and hover at a desired height over a goal marker that may be put anywhere in the
cage. We present results on two variations of this scenario, one simplified scenario where
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Table 3.3.: Fly to marker: quantitative results (yaw disabled)

Success Avg. Final Error

Config. Rate Time [s] Pos. [cm] Orien. [°]

MocapVel 100% 2.5± 0.3 6.2± 2.4 −

Mocap 100% 7.6± 3.2 6.5± 3.3 −

LiDARVel 44% 17.2± 6.6 7.3± 1.5 −

the drone’s yaw actuation was disabled and one where it was not. We do this because
some drone configurations were unable to complete the harder scenario successfully.
The global position of the goal marker is observed by the external motion capture

system and relayed to the drone. That goal may be treated just as any other observation
and be concatenated to the model input. Alternatively, as we do in our experiments, it
may be used directly as a condition for the policy and during training, the reward and
value function. A scenario is completed successfully if the drone hovers within a certain
distance and orientation (in the scenario where yaw actuation is enabled) for a duration
of 3 s. Specifically, its distance may not exceed 30 cm and its orientation may not exceed
15 degrees within the time frame. If an episode is successful, we compute the average final
error over the following second. These metrics are then used to showcase both the absolute
achieved performance and to compare between the different drone configurations.
As a reward function, we define a common one across all scenarios as

−(p− pgoal)2 − 0.1d(θz, θgoal)
2 − 0.1v2 − 0.001u2, (3.15)

where p[m] is the drone’s Cartesian position in the global tracking frame, θz[rad] its
z-orientation, v[m/s] its Cartesian velocity and u the normalized control input. The
quantities pgoal and θgoal refer to the position and orientation of the goal marker. Function
d(θz, θgoal) computes the difference between the two angles. This last term is omitted for
the scenario with disabled yaw actuation. In the other scenario, the goal orientation is
fixed and not dependent on the goal marker’s orientation. If successful, the white stripe
of the drone should always face upwards in the end (see Figure 3.5).

Disabled Yaw

In this simplified scenario, the drone’s yaw actuation was disabled and it was placed
axis-aligned in the environment, i. e. facing directly in one of the four cardinal directions.
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Table 3.4.: Fly to marker: quantitative results (yaw enabled)

Success Avg. Final Error

Config. Rate Time [s] Pos. [cm] Orien. [°]

MocapVel 100% 6.1± 2.8 4.4± 1.7 6.9± 2.8

Mocap 67% 10.5± 4.5 5.2± 2.1 7.8± 3.7

An example of this scenario is shown in Figure 3.1. We report our main metrics in Table 3.3
which were averaged over 9 different start and goal positions. The same start and goal
positions were used for each drone configuration.
We see that MocapVel is successful in all cases, achieving success much faster and with

lower error then the other two configurations. Without an observed velocity (Mocap), the
learned controller is still good enough to complete the task, albeit it requires significantly
more time and concludes with a slightly higher final error. Having no velocity observation,
it has a much harder time to find a perfect stand still above the goal and oscillates around
the goal. This behavior can readily be seen in Figure 3.7, displaying the remaining error
over time of successful trajectories.
Lastly, while LiDARVel possesses a velocity estimate, both its position and velocity

measurements are much more noisy than the motion capture data. Thus, it represents
the hardest setting as can be inferred by its lower rate of success. Here, we found that
our learned controller in all our attempts only flew well while oriented in some of the
four possible fixed orientations. The underlying issue we suspect to be related to the
translation from its local position measurement to the global goal frame, but we were
unable to resolve it. Other failures take the form of oscillating around the goal, leaving the
desired goal region periodically within 3s. In general, it took much longer until the drone
stayed within the defined goal region for a sufficient amount of time and even drifted
away from it after achieving a momentary standstill. We also tried a fourth configuration
LiDAR where we removed the velocity estimate from the observation and tried to control
based on LiDAR-sensors alone, but were unable to complete the scenario.

Activated Yaw

When activating yaw actuation, we were only able to get results in the MocapVel and
Mocap configuration. An example of a successful completion of this scenario is shown in
Figure 3.5, where the drone now also has to rotate to specific z-orientation. Analogously
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Figure 3.7.: Comparison of position error over time in the scenario where yaw actuation
is disabled. One can see the greater oscillation of Mocap and LiDARVel
compared to the perfect and complete information provided in MocapVel.
Nevertheless, they do eventually converge to the desired position within a
reasonable tolerance level.

to before, we report final errors in Table 3.4 and show the remaining error of position
and orientation over time in Figure 3.6. Here, we can see that MocapVel is still successful
in all cases, while Mocap is only successful in two thirds of the scenarios. The failures
were mainly due to the drone not rotating all the way to the required goal orientation and
rarely due to excessive oscillation around the goal position. Again, we can see that Mocap
takes a bit longer to settle at the goal, with slightly higher final errors in both position
and orientation. To get a better impression of the actual performance, we recommend
taking a look at the video (https://youtu.be/e5buJL_DYgA) where we show both
successful and failed episodes of these various sensors configurations.
Lastly, in Figure 3.8 we highlight our model’s predictive and filtering performance in

various drone configurations. Hyperparameters for all drone configurations are shared
and can be found in Table A.4 in the Appendix.

3.6. Robot Arm Experiments

To showcase more general applicability and to compare to a model-free method, we
perform some more experiments on an entirely different platform. The Franka Emika
Panda robot is a 7 DoFs robot arm intended to be used in a human robot collaboration
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(a) MocapVel

(b) Mocap

(c) LiDARVel

Figure 3.8.: These plots showcase the filtering and predictive performance of our prob-
abilistic model. The black line denotes the data, the magenta line denotes
the prediction average and its shaded area marks one standard deviation
based on 20 sampled trajectories. For predictions, we condition on a filtered
starting state and future control inputs and then let it simulate without further
feedback for 1s. The cyan line denotes the state estimation of our filter.

environment. For our purposes, the scenario was to move the robot’s end effector to a ran-
domly sampled position and orientation within a certain range using joint velocity control
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Figure 3.9.: Our Panda task environment. The arm is in a random starting position and
the desired end effector position and orientation is visualised in translucent
red in the small rendered frame. The target is also randomly sampled within
some constraints.

(see Figure 3.9). Again, this should be achieved without providing prior information about
the kinematic or dynamic behavior and by directly learning on the real robot instead of a
simulation. We compare our method to SAC (Haarnoja et al., 2018), a state of the art
model-free RL algorithm, and also perform two ablation studies: replacing our variational
LSSM (which we refer to as SLDS-DVBF) with a recurrent neural network (RNN), and
replacing our parameterized critic by a simple Monte Carlo estimation of the remaining
rewards. Note that we also tried to perform these model-based ablation studies on the
drone, but were unsuccessful in getting any quantifiable results.

3.6.1. Environment

Both the goal and initial robot configuration are sampled from two different ranges. The
goal end effector position is sampled from a semi circle doughnut around the robot’s
base. It is at least 30 cm and at most 80 cm away, and between 20 cm and 80 cm high.
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Table 3.5.: Ranges used for normalization of robot arm observations.

Observation Range

Joint Angle

j1 [ -2.8973; 2.8973 ]

j2 [ -1.7628; 1.7628 ]

j3 [ -2.8973; 2.8973 ]

j4 [ -3.0718; -0.0698 ]

j5 [ -2.8973; 2.8973 ]

j6 [ -0.0175; 3.7525 ]

j7 [ 2.8973; 2.8973 ]

Endeffector position

x, y [ -1; 1 ]

z [ 0; 2 ]

The orientation is rotated from its neutral position (pointing down) by up to 45degrees
independently around all 3 axes in either direction. All values are sampled uniformly
from these ranges for each rollout. Lastly, we ensure that the sampled goal is actually
reachable and re-sample if it is not. For starting position, the bottom joint is sampled from
[−1.5; 1, 5] rad, approximately covering the semi circle, all other joints are sampled within
0.2 rad of their neutral position. This mainly simplifies initial exploration, but also requires
a more versatile controller that can handle random starting positions as compared to a
single neutral position. As observations, we measure the integrated joint angles (but no
velocities) and the end effector position and orientation.

3.6.2. Setup

Just as in the drone experiments, we transform the end effector orientation given in
quaternions into a smooth 6D representation. Angles, end effector position and orientation
are clipped at their minimum and maximum ratings and are normalized to be in the
interval [−1; 1] based on Table 3.5. Importantly, different to our drone experiment, the
initial dataset here is recorded by simply executing actions from a randomly initialized
policy instead of an engineered exploration policy.
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Table 3.6.: Comparison of results in the Panda arm environment after 100minutes of inter-
action with the environment. Displayed is the achieved average performance
over 100 rollouts of 5s length.

Algorithm Avg. Reward

MBAC+SLDS-DVBF (Ours) −166.5

MBAC+SLDS-DVBF, Monte Carlo Critic −168.6

MBAC+RNN −179.5

SAC −192.6

Our reward function takes the form

−(p− pgoal)2 − d(θz, θgoal)2 − 0.25u2 − (ut − ut−1)
2. (3.16)

p [m] is the Cartesian position of the end effector of the robot arm, θ [rad] its orientation
and u is the control input (velocity of the joints in [m/s]). All values are normalized
for reward computation. To compute a scalar for the orientation error d(θz, θgoal)2, the
distance is computed in the smooth 6D space simply using the mean squared error. The
last term rewards smoothness of the trajectory which we found necessary to run the
otherwise jerky policy on a real robot arm without damaging it.
Our learned controller operates at 10Hz where it sends joint velocity commands and

receives observations. The environment is automatically terminated and reset after 5 s (50
steps) or just before it would collide with anything in the workspace to keep the robot
safe. We limited the overall interaction time to 100 minutes (60, 000 steps) and spread our
rollouts across 3 identical robot arms. To account for partial observability (since velocities
are unobserved), we stack the last 3 observations for the model-free SAC method.

3.6.3. Results

Our main results are displayed in Table 3.6. There, we compare the achieved average
reward over 100 rollouts of 5 s length for all 4 methods. We find that our approach works
the best, but is virtually matched by the Monte Carlo critic – very different to our drone
experiments where we could not make this approach work at all. We believe this is
explained by a comparatively very accurate predictive model that we can learn in this
setting as the robot arm’s dynamics and its sensors are less chaotic and noisy. Also, the
action space is simpler, allowing direct control of the velocity instead of just the attitude
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Figure 3.10.: Snapshots of two exemplary rollouts of the final policy.

of the drone. When we replace our variational LSSM with an RNN, we observed a steeper
drop off in performance and SAC performs worse than all the model-based approaches.
Note that this level of performance is not the best that can be reached with these methods,
but it represents the performance after 100 minutes of interaction (we found in simulation
that all methods would continue to improve with more data). SAC performing worse than
model-based approaches goes hand in hand with other work (e. g. (Hafner et al., 2020))
finding model-based approaches to be more data efficient in general.
Figure 3.10 shows two rollouts using our approach, for a visual comparison of all meth-

ods we recommend to take a look at our video (https://youtu.be/huW0LzU5DOk).

3.7. Related Work

The potential of classical reinforcement learning methods has already been demonstrated
by learning autonomous helicopter flight (Bagnell and Schneider, 2001; Ng et al., 2006;
Abbeel et al., 2007). Later on, deep learning methods enabled further applications. In
particular, neural networks helped enhance and support classical PID controllers. The
Neural Lander (Shi et al., 2019) achieves stable drone landing by approximating higher
level dynamics, such as air disturbances close to the ground, with a neural network.
Kaufmann et al. (2018) uses imitation learning to train an onboard CNN to predict
waypoints on a drone racing track. Loquercio et al. (2019) extends this work, dealing with
a changing track (e. g. moving gates the drone has to pass through). Li et al. (2018) has a
quadrotor following a person based on a camera input. They use model-free reinforcement
learning to give goals to a low-level PID controller which translates these into motor
commands.
Instead of using a PID controller to steer towards the goal, some approaches use neural
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networks to predict either thrust-attitude controls or motor commands directly. Imitation
learning was successfully employed in this fashion to train a thrust-attitude controller
that is capable of flying through a narrow gap (Lin et al., 2019). Lambert et al. (2019)
replaced the PID controller with MPC in a learned model using onboard sensors only and
hence achieved hovering capability for up to 6 seconds. Neuroflight (Koch et al., 2019)
suggested to replace the engineered PID controller of Betaflight (Betaflight, 2020) with
a learned one that can adapt to the current state of the aircraft. Probably closest to us
is pioneering work by Hwangbo et al. (2017) where they also learn a neural network
controller that directly computes motor torques based on state inputs. They manage to
stabilize a quadrotor from random starting conditions even without using an underlying
PID controller (for the final policy, they do use one during training/exploration) as in
our case. However, they achieve this by using a predefined instead of learned model for
simulation.
Model-free deep RL has received a tremendous amount of attention ever sinceQ-learning

was successfully applied to playing Atari games directly from raw input images with the
use of deep convolutional neural networks (Mnih et al., 2015). One key ingredient to its
success was its stabilization of its neural network based Q-values using a slowly updating
target network. Work on further stabilizing deep Q-learning and coping with its other
shortcomings like its overestimation bias has since been central to further inquiry (Wang
et al., 2016; Van Hasselt et al., 2016; Lillicrap et al., 2016; Fujimoto et al., 2018). Much
of the early deep RL work being limited to discrete action spaces, DDPG (Lillicrap et al.,
2016) revives the idea of deterministic policy gradient and hence, extends Q-learning to
continuous action spaces. A3C (Mnih et al., 2016) takes an Actor-Critic approach and
promotes parallelised asynchronous updates. Noticeably, the paper also explores n-step
value updates, similarly to our value-update schema in Section 3.3.1.
Changing focus to MBRL, learned models have been used for forward planning (Chua

et al., 2018; Haarnoja et al., 2019) which have recently closed the gap to model-free
methods in simulated physics environments while being more sample efficient. Looking
at gradient-based approaches, Stochastic Value Gradients (Heess et al., 2015) shows how
to use a model just for gradient computation of real-world trajectories by backsolving for
noise variables. Model-based value estimation (Feinberg et al., 2018) uses short imagined
rollouts within the dynamics model to improve the value estimation. Imagined value
gradients (Byravan et al., 2019) use the dynamics model’s gradient to optimize the value
function. Concurrent to our work, Hafner et al. (2020) demonstrates an optimization
scheme similar to ours with great success directly on pixel inputs of simulated environ-
ments. Morgan et al. (2021) proposes a hybrid approach, leveraging model learning and
optimized model predictive rollouts as the data source for policy optimization in a Soft
Actor-Critic algorithm.
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In robotics applications, end-to-end training of deep visuomotor policies was first shown
to be feasible in Levine et al. (2016). Zhang et al. (2019) demonstrated MBRL directly
on images of a robotic arm for Cartesian velocity control on various manipulation tasks.
Haarnoja et al. (2019) taught a real-world Minitaur robot to walk in 2 hours using a
slightly modified Stochastic Actor Critic method (Haarnoja et al., 2018). Andrychowicz
et al. (2020) and Akkaya et al. (2019) learn dexterous in-hand manipulation in a simulator
and deploy on a Shadow Dexterous Hand that is robust to various (previously unseen)
disturbances. Closely related to us, Piergiovanni et al. (2019) optimized a real-world
policy by dreaming in a learned, but deterministic dynamics model.
Watter et al. (2015) started by learning a locally linear LSSM using neural variational

inference, but they learn on pairs instead of sequences and do not optimize a lower
bound of p(x). Krishnan et al. (2017) and Karl et al. (2017) showed how to learn LSSMs
using neural variational inference directly on data sequences using a time-factorized
Evidence Lower Bound (ELBO), the latter pointing out the importance of propagating
the reconstruction error through the transition model for improved learning of dynamics.
Fraccaro et al. (2017) showed how to combine neural variational inference with an
underlying Kalman smoother in latent space. Before LSSMs, somemethods used sequential
VAEs for augmenting recurrent neural networks with a stochastic component allowing for
multi-modality (Bayer and Osendorfer, 2014; Chung et al., 2015). A multi-stage training
process was used in world models Ha and Schmidhuber (2018) to learn a controller for
game scenarios based on image observations. Aside from latent variable models, there
have also been efforts to inform or restrict deep learning methods using our physical
understanding of the world (Raissi, 2018; de Avila Belbute-Peres et al., 2018; Lutter et al.,
2019). Robot arm dynamics have been successfully learned with Graph Neural Networks
by Sanchez-Gonzalez et al. (2018). Using this model they performmodel predictive control
on desired velocities to solve a similar task as ours both in simulation and on a real robot
arm.

3.8. Conclusion

Even without encoding any physics knowledge into the latent-state space, we have shown
how to learn a drone dynamics model from raw sensor observations. This model is good
enough to learn a controller entirely in simulation that can be executed on a real drone.
The controller is capable of flying the drone to observed goal positions; in the case without
yaw actuation even using only onboard sensors while the goal is specified in a global
coordinate frame. The optimization scheme is based on stochastic analytic gradients
enabled by implementing model, actor and critic as differentiable function approximators.
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To our knowledge, our work is the first MBRL approach deployed on a real drone where
both the model and controller are learned by deep learning methods. The methodology
was showcased on various drone configurations, but is applicable more broadly to other
robotic setups without the need for algorithmic changes. We demonstrated this in a robotic
arm scenario where we highlighted its data efficiency when compared to a model-free
method. Thus, we believe that this represents an important step towards learning robots
from the ground up using minimal engineering.
However, there still remain some small engineered parts which prevent our method

from being truly robot-agnostic such as the reliance on a stabilizing PID controller for
exploration or performing thrust-attitude control instead of operating directly on motor
currents. The gap in performance to more engineered methods is still readily apparent,
but we hope that this contribution can inspire more work in the direction of combining
machine learning and control.
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4. Exploration via Empowerment Gain:
Combining Novelty, Surprise and Learning
Progress

In RL we tend to give an agent a specific task to solve, and use exploration heuristics
to speed up training (Thrun, 1992; Arulkumaran et al., 2017). While these heuristics
may be useful, biological systems have a more efficient approach. Even when faced with
no concrete task, natural autonomous agents (like children) explore the world playfully
to acquire new skills that may be used later (Chu and Schulz, 2020). This exploratory
behavior is an autonomous and active endeavor guided by intrinsic motivation which
forms the core of a system for task-independent learning (Oudeyer et al., 2007; Oudeyer
and Kaplan, 2009).
Intrinsic motivations have been formalized in RL literature in various ways (Aubret

et al., 2019). In particular, the concepts of novelty and surprise are believed to be vital to
exploration (Berlyne, 1960; Barto et al., 2013). We follow a common distinction (Berlyne,
1960; Barto et al., 2013; Xu et al., 2021) in defining the key difference of the terms,
although the formalization of novelty is particularly difficult and controversial. Following
common intuition, novelty may be defined as being a statistical outlier; something is
completely novel if we have not seen it before. One way this has typically been formalized
in machine learning (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017) is

Novelty(s) ∝ − log p(s), (4.1)

where p(s) models the visitation frequency of state s based on previous experience.
However, not everything that is novel is necessarily surprising. And complex states

may reveal something surprising even after having encountered them often before. Sur-
prise (also called contextual novelty or curiosity) requires an internal world model that
formulates an expectation about the future. The deviation between these predictions and
the observed reality quantifies the amount of surprise. One way to formalize this is to
use a forward model pξ(st+1 | st, at) (parameterized by parameters ξ) for computing the
inverse likelihood of the observation st+1 (Schmidhuber, 1991a; Lopes et al., 2012; Stadie
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et al., 2015; Achiam and Sastry, 2017; Pathak et al., 2017)

Surprise(st+1 | st, at) ∝ pξ(st+1 | st, at)−1. (4.2)

But just seeking novelty or surprise faces a problem. Consider static TV noise: it is
highly entropic and unpredictable, hence remains highly surprising and novel. To address
this, it has been suggested to consider an agent’s learning progress (Schmidhuber, 1991a;
Storck et al., 1995; Lopes et al., 2012; Achiam and Sastry, 2017). Since collecting more
data in this environment will not lead to better prediction of the noisy observation, an
explorer should avoid these areas. We should rather track and optimize the learning
progress of the agent, which has been defined as

log pξ′(st+1 | st, at)− log pξ(st+1 | st, at) (4.3)

where ξ′ and ξ are the updated and old parameters, after and before observing some
new data. A related formulation of learning progress can be derived from a Bayesian
definition of surprise (information gain, see Section 4.1.2) that similarly has been used
for exploration (Houthooft et al., 2016).
While learning progress is an important insight, we would like to offer an alternative

reason as to why the noisy TV screen is uninteresting for an exploring agent: it is really
the failure of increasing its capability to interact with the world. While improving one’s
world model is an absolutely vital part of that process, it alone is not sufficient – the goal is
not just to become a perfect simulator. Even a predictable pattern (e. g. a movie) remains
uninteresting without meaningful interaction (e. g. TV remote) or without informing the
agent about how to act in the world. As another example, consider an agent exploring a
chair. It may not be necessary to predict every nuance of its physical appearance, but it is
crucial to find out about its important practical uses such as exploring which surface is
suitable for sitting.
One formalism to measure an agent’s capability to interact with the world is called em-

powerment (Klyubin et al., 2005a,b). It is an information-theoretic concept that measures
the maximal flow of information over an agent’s perception–action loop. It is formally
defined as the channel capacity (a tight upper bound on the rate of information that can
be transmitted over a channel) between reachable terminal states S′ and the possible
action sequences A1:T over a horizon T , that is

ET (s) = max
A1:T

I
(︁
S′, A1:T

⃓⃓
s
)︁
= max

A1:T

[︁
H
(︁
S′ ⃓⃓ s)︁−H

(︁
S′ ⃓⃓ s,A1:T

)︁]︁ (4.4)

where I denotes the mutual information and H denotes entropy. Intuitively, an agent is
empowered if it can predictably reach many states (high H(S′ | s), low H(S′ | s,A1:T )),
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and it has low empowerment if its actions have little to no perceived influence on the
world (high H(S′ | s,A1:T )).
In this work, we propose a novel criterion for exploratory behavior in autonomous

agents which we call Empowerment Gain (EG). Its goal can be stated as follows: in the
absence of a concrete task, an agent should take those actions in the environment which
provide the most information for improving its empowerment estimator, i. e. it should take
those actions that maximize the increase in perceived influence over its environment after
observing new data. New experiences should help me recognize my capability to interact
with the world. We show how EG combines and puts into relation common notions of
novelty seeking, surprise maximization and learning progress in a single formulation.
This formulation takes into account an agent’s limitations in actuation and sensation as
well as inherent stochasticity of the environment. We provide a number of illustrative
experiments in simple and discrete environments which support our theoretical findings
and provide some more intuition about the EG criterion. In particular, we show how EG
guides an agent towards those areas of the state and action space where it has more
potential for improving its influence in the world. Since EG considers an extended time
horizon T instead of a single time step, we show that it tends to avoid inescapable traps in
the environment that limit its future control. Both of these behaviors cannot be achieved
by novelty seeking, surprise maximization or learning progress alone.

4.1. Background

As a necessary background, we introduce the basic formulation and concepts of empower-
ment. Then, we discuss ways to quantify information gain. A combination of these two
concepts leads to our proposed method later on.

4.1.1. Empowerment

Empowerment (Klyubin et al., 2005a,b; Salge et al., 2014) is a measurement of an agent’s
control over its perceived environment. It is defined in terms of an agent’s embodiment;
the coupling of sensors and actuators via the environment (perception–action loop).

Definition 1 Empowerment for state s is defined as the channel capacity between terminal
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state distribution S′ and the possible action sequences A1:T over a time horizon T

ET (s) = max
A1:T

I
(︁
S′, A1:T

⃓⃓
s
)︁ (4.5)

= max
A1:T

[︁
H
(︁
S′ ⃓⃓ s)︁−H

(︁
S′ ⃓⃓ s,A1:T

)︁]︁ (4.6)

= max
A1:T

[︁
H(A1:T | s)−H

(︁
A1:T

⃓⃓
s, S′)︁]︁ (4.7)

where I denotes mutual information and H denotes entropy.
Interpreting the environment as a communication channel, the agent finds a source

distribution over action sequences A1:T such that its sensors at time T + 1 can recover the
most information about them. Writing the mutual information as differences of entropy
terms gives an intuitive understanding. Interpreting eq. (4.6), empowerment finds balance
between diversity and predictability. It wants to maximize the diversity of reachable states
(entropy of final states S′) while still being able to predict the outcome when conditioned
on the taken action sequence. In highly stochastic environments, our empowerment will
always be relatively small, because even though we (accidentally) reach a lot of states, we
can not predict the outcome. By symmetry of mutual information, in eq. (4.7) we want
to maximize the diversity of action sequences, but every action sequence should ideally
lead to a unique final state s′ such that the action sequence can be recovered from first
and final state. For discrete and deterministic environments, empowerment simplifies
significantly and becomes proportional to the number of reachable states within a horizon
T and the source distribution learns how to reach those states uniformly. In this sense, we
can view an action sequence a1:T as a skill that transforms the world state from s to s′
and our source distribution as a distribution over those skills.

4.1.2. Information Gain

Given a model parameterized by θ ∈ Θ of random variableΘ, we are interested in selecting
data d that is maximally informative. To quantify this, one can define various measure of
information gain (IG), two of which we introduce here. First, one can look at the difference
in entropies of parameters before and after observing new data d ,

IG(Θ, d) = H(Θ)−H(Θ | d). (4.8)

The greater the reduction in uncertainty, the more information we have gained about our
parameters θ. Alternatively, in a Bayesian inference setting one typically defines

KL(p(θ | d) | | p(θ)). (4.9)
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as a measure of the information gained by revising one’s beliefs from the prior distribution
p(θ) to the posterior distribution p(θ | d). These two measures are equal in expectation
when considering new data d (MacKay, 1992). Information gain is another common way
to formalize and quantify surprise (e. g. when θ are the parameters of a world model)
and is aptly named Bayesian surprise (Itti and Baldi, 2005, 2006, 2009). Different to the
definition of surprise in eq. (4.2), this definition is directly related to an agent’s learning
progress.

4.2. Empowerment Gain (EG)

In this section, we develop an exploration criterion based on expected improvement of
an agent’s empowerment estimator. We show how it encapsulates and relates to other
intrinsic motivations such as novelty seeking, surprise maximization and learning progress.
We start out by looking at the components that make up empowerment estimation starting
from the well-known equations for the model-free setting

ÊMF,Tθ (s) = max
ωφ(a1:T |s)

Eωφ(a1:T |s)p(sT+1|s,a1:T )[

log pψ(a1:T | s, sT+1)− logωφ(a1:T | s)],
(4.10)

using real world transition p(sT+1 | s, a1:T ) or model-based setting

ÊTθ (s) = max
ωφ(a1:T |s)

Eωφ(a1:T |s)pξ(sT+1|s,a1:T )[

log pξ(sT+1 | s, a1:T )− log pφ,ξ(sT+1 | s)].
(4.11)

using an approximated transition model pξ(sT+1 | s, a1:T ). These estimations consists of
various familiar distributions, the source distribution
ωφ(a1:T | s), the transition or forward model pξ(sT+1 | s, a1:T ), the inverse model or plan-
ning distribution pψ(a1:T | s, sT+1) and the final state marginal distribution pφ,ξ(sT+1 | s)
where we have split our parameters θ = {φ, ξ, ψ}.
The idea of empowerment gain (EG) is that an agent should act such that it maximizes

its expected improvement of its empowerment estimator. Concretely, in any given state
s, it should perform action a∗ such that it maximizes its expected improvement of its
empowerment estimator ÊTθ (s) after updating the parameters θ using the newly collected
data d . Formally, the objective is defined as

a∗ = argmax
a

Ed=(s,a,s′∼p(s′|s,a))

[︂
ÊTθ′(s)− Ê

T
θ (s)

]︂
(4.12)
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where θ′ are the updated parameters after observing new data d . Next, by rewriting this
objective in various ways, we develop a deeper understanding of the EG objective and
discover that other intrinsic motivations such as novelty seeking and learning progress of
a forward or inverse model are contained as part of the EG objective in a specific way.

4.2.1. Model-Free Empowerment Gain

Let us first rewrite EG in the model-free setting that is broadly applicable to any parame-
terized estimate of one’s empowerment. We can define EG as

ÊMF,Tθ′ (s)− ÊMF,Tθ (s) ≈ H
(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)p(sT+1|s,a1:T )[ (4.13)
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)]

where Aφ′1:T is defined by pdf ωφ′(a1:T | s)

where the approximation is relatively tight for small updates of the source parameters φ
(for derivation see the supplementary material). Note that we introduce this approximation
mainly for didactical reasons to better grasp the components that make up EG. While this
approximation may also be useful to derive an efficient exploration algorithm later on,
this is not the focus of this work and we compute the exact EG value for our experiments
in Section 4.3. We see that the empowerment estimate can be improved in two distinct
ways.
First, by increasing the entropy of the empowerment-realizing source distribution

ωφ′(a1:T | s), which should be a highly entropic action distribution of skills (action se-
quences). The second part of the equation describes the learning progress of the inverse
model. This ensures that skills are distinguishable by their outcome/final state s′. Finding
novel ways to do something that we can already do is not enough. Importantly, the
learning progress of the inverse model is taken in expectation over our learned skills,
meaning the model quality outside of the space induced by our learned skills is of no
relevance. This is desirable because we are not interested in learning a perfect (inverse)
model of everything, but learn how to act in the environment. These two terms form
a trade-off where more diverse actions are only helpful if they lead to distinguishable
outcomes and a perfect inverse model alone is not worth much if we are limited to a small
number of skills.
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4.2.2. Model-Based Empowerment Gain

While the previous model-free formulation is theoretically interesting, practically it is not
very useful as one needs to sample from the real world for its estimation. Hence, let us now
consider a different formulation where we formulate EG estimated in a parameterized
and learned model pξ(sT+1 | s, a1:T ). We define model-based EG as

ÊTθ′(s)− Ê
T
θ (s) ≈ H

(︂
Sφ

′,ξ′

T+1

⃓⃓⃓
s
)︂
−H

(︂
Sφ,ξT+1

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)

[︁
KL
(︁
pξ′(sT+1 | s, a1:T )

⃓⃓ ⃓⃓
pξ(sT+1 | s, a1:T )

)︁]︁ (4.14)

where Sφ′,ξ′T+1 is defined by pdf∫︂
ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) da1:T

where the approximation is relatively tight for small updates of φ and ξ (for derivation
see Appendix A.3.1). Again, we see that the empowerment estimate can be improved in
two distinct ways.
First by (potential) novelty seeking, i. e. by increasing reachable state entropy, which

can be achieved by either detecting new states or by realizing how to reach them more
uniformly. Note that we are not strictly novelty seeking as we do not directly act according
to ωφ(a1:T | s), rather we want to realize that we could maximize novelty, if we wanted
to – hence the term potential novelty seeking. Whether actually visiting all reachable
states uniformly or not is the best way to achieve this goal is then up to the agent and the
learning procedure.
Second, by improving the forwardmodel (learning progress). Different to other methods

focusing on learning progress on a forward model, the divergence between current and
past forward model is put into context by the empowerment-realizing source distribution
ωφ′(a1:T | s). That is, the improvement of the forward model is weighted in so far as it
helps the agent realize its influence in the world. So even if learning progress of a forward
model is large, if it does not help the agent in attaining states more reliably, EG may still
be small. Inversely, a small update in the forward model can still lead to a large EG if the
improved transition is central to many skills (samples of ωφ′(a1:T | s)). Jointly optimizing
these two terms results in a trade-off between novelty seeking and learning progress.
A drawback of optimizing empowerment within a model is that the empowerment

estimate is no longer bounded by the empowerment value of the correct dynamics. The
model may become overly optimistic, leading to high empowerment estimates and avoiding
counterfactuals that disprove its perceived empowerment. If one assumes an uninformed
Bayesian model, this problem vanishes in deterministic, but not necessarily in stochastic,
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settings. To address this, an alternative heuristic would be to use the absolute value of the
difference in eq. (4.12) as the objective instead, encouraging just a big change in one’s
empowerment estimate. Having stated this potential shortcoming, we did not find this to
be problematic in our experiments. Note that this problem is also faced in a way by the
non-Bayesian formulation of learning progress (eq. (4.3)).
Also, while our discussion has been entirely in terms of states and actions, EG is readily

applicable to partially observable environments as discussed in Appendix A.3.5.

4.3. Experiments

In our experiments, we investigated the exploratory behavior of an EG-maximizing agent
(as discussed in Section 4.2.2, but we compute the exact value of EG rather than the
introduced approximation) in various simple but illustrative grid world scenarios. We
looked at the effect of various types of action noise, the shape of the state space, traps (sinks
in the state space the agent cannot get out of) and empowerment’s computation horizon.
We compared this to agents maximizing other types of intrinsic motivation as introduced
in the introduction. Namely, 1) IG explorer, an agent maximizing its information gain on a
forward model, 2) Novelty explorer, an agent that chooses the so far least visited reachable
state and 3) Surprise explorer, an agent maximizing the prediction error of a forward
model. Our main goal was to illustrate and compare what these exploration criteria would
do in a perfect information setting, but it should be noted that efficient and scalable
algorithms may be developed on top of existing work on empowerment approximation
(Mohamed and Rezende, 2015; Karl et al., 2019). This, however, is not the focus of our
work and while its development is discussed a bit in Section 4.5, it is mainly deferred to
future work.
Thus, for our purposes we remain in a simple grid world setting that allows for exact

computation of empowerment gain, information gain and closed-form solutions for model
updates. This setting also leads to the exploration algorithm (see Algorithm 2) where we
made some simplifying assumptions. In particular, when we explore, we first try out each
action an agent could take in the real world, update our parameterized model(s), and
compute either expected empowerment gain or information gain. Then we only execute
and count the best action according to the respective criterion. While this is impractical,
we think this study is very illustrative of the behavior induced by the various exploration
criteria and gives and intuitive understanding of the theoretical results of the previous
section.
Going through Algorithm 2 in detail, blahut_arimoto(m) refers to an implementa-

tion of the Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972), an iterative procedure
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Initialize forward model m = pξ(sT+1 | s, a1:T ) with Dirichlet(α) prior, α = 0.01.;
for each episode do

s = env.reset();
for t=1..T do

empowerment = blahut_arimoto(m);
for a in Actions do
# Try out all actions and compute their empowerment gain;
s’ = env.step(a);
m’ = m.update(s, a, s’);
empowerment’ = blahut_arimoto(m’);
gain[a] = empowerment’ - empowerment;
env.set_state(s);

# Perform the best action for exploration;
a = argmaxa gain;
s’ = env.step(best_action);
m = m.update(s, a, s’);
s = s’;

Algorithm 2: Exploration Algorithm

to compute the channel capacity (and thus empowerment) of a discrete channel. The
channel in our case is the currently approximated world model m. We perform just one
long rollout without resetting the environment where overall the agent takes 50, 000 steps
in the environment (10, 000 steps in the chain environment) in a whole experiment. For
IG exploration the algorithm works analogously, but naturally we compute information
gain instead of empowerment gain. To limit the effect of randomness in stochastic en-
vironments, we collect 10 instead of just 1 sample to collect data for the model update.
For all experiments, we executed 10 separate runs to ensure reproducible results. As the
results are quite stable across runs and our results are mostly qualitative in nature, we
picked representative plots from individual runs at random. Where quantitative measures
are mentioned, they are averaged across runs.
Our grid worlds, built on top of MiniGrid (Chevalier-Boisvert et al., 2018), have a

discrete state space S and action space A. The agent may perform five different actions
that move to a neighboring cell (left, right, up, down) or keep the agent where it is (stay).
An action that leads into a wall has no effect on the agent’s position. As observations we
use the global x and y coordinates.
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For estimating our criteria, we maintain a Bayesian forward model (aside from Novelty
exploration where we just maintain a visitation frequency map). For each cell, the forward
model is realized by a Categorical distribution with a Dirichlet prior. The parameterization
of the forward model is, of course, essential to the resulting behavior of these exploration
criteria and should be taken into account when interpreting the results. With our choice,
the agent cannot generalize information among states as would be the case with e. g. a
neural network. We use the iterative Blahut-Arimoto algorithm (Arimoto, 1972; Blahut,
1972) to directly compute an empowerment estimate, including the distribution param-
eters of the source ωφ(a1:T | s) and inverse model pψ(a1:T | s, sT+1). Information gain
can be computed in closed form since the Dirichlet distribution is a conjugate prior to the
Categorical distribution. For more details we refer to Appendix A.3.3.
Note that we do not compare to an Empowerment maximizing agent as this does not

result in exploratory behavior, but just leads the agent to the most empowered state in the
environment. In our setting, where initially empowerment is estimated to be 0 everywhere,
it results in the agent hopping back and forth between the first two states it encounters.

4.3.1. Deterministic Environments

We start out by discussing the fully observable and deterministic setting. For the IG and
Surprise explorer, in every state the agent performs each action uniformly which also leads
to a uniform visitation frequency of every state (see Figure 4.1a) in this particular setting.
This matches the uniform state visitation of novelty seeking. In contrast, rather than
performing each action uniformly, the EG explorer, from any state, visits each reachable
state uniformly. This leads to a visitation frequency that qualitatively resembles the
empowerment landscape for the environment in that more empowered states (center of
the room) are visited more frequently during exploration than less empowered states
(bordering walls). Importantly, the EG explorer still makes sure to visit every state and
does not remain strictly on high empowered states, it just shifts the exploration focus
towards them. This remains true for more complicated wall structures and is also affected
by the empowerment horizon as shown in Figures 4.1c and 4.1d. Since a state being more
empowerment means having more ways to interact with the world, exploring these states
more thoroughly should in general be more helpful for downstream tasks.

4.3.2. Prison States

What happens if we have detrimental states in the environment that severely limit an
agent’s control? Avoiding such states should generally be helpful for exploration. We
investigated the extreme scenario of perfect sinks where an agent, once entered, cannot

72



(a) Novelty, Surprise, IG. (b) EG, horizon T = 1.

(c) EG, horizon T = 1. (d) EG, horizon T = 2.

Figure 4.1.: Comparison of state visitation frequencies (dark blue visited most often,
white least often) of the EG and the three other explorers (Novelty, Surprise,
IG) in deterministic and discrete environments.

get out again (prison states). In our grid world, we model these states as lava cells
(Figure 4.2a). Different to the other scenarios, we randomly reset the agent once it is
stuck in such a cell (the agent can not observe this reset).
We can see in Figure 4.2c that, while the IG and Surprise explorer skew away from

the lava cells to some degree, this is just due to the random walk being reset randomly
whenever an agent enters the lava. Pure novelty seeking (Figure 4.2b) is an especially
poor choice in this environment as it actively ensures that all lava cells are visited just as
often as any other state. For the EG explorer, avoidance of lava is actively pursued for an
empowerment horizon greater than 1. One may ask: why is EG not fully avoiding the lava
since the agent’s empowerment in this state is 0 as its actions have no influence at all?
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(a) Environment. (b) Novelty. (c) IG, Surprise.

(d) EG, horizon T = 1. (e) EG, horizon T = 3.

EG-3
EG-2
EG-1
IG 1

1.16

0.84

0.6

Relative Lava
visitation frequency

(f) Comparison plot.

Figure 4.2.: (a) Rendering of the empty environment, orange cells are lava cells (prisons
states). (b) Novelty seeking ensures uniform visitation frequency. (c) IG and
Surprise do not avoid lava, its visitation frequency skews away from the lava
in so far as the random walk resets randomly whenever the agent enters the
lava. (d,e) EG over horizon 3, however, actively avoids the lava trap to some
extent, while horizon of 1 is too myopic. (f) shows how often lava states
are visited compared to all other states (normalized to the ratio of the IG
explorer).

This is because the lava cell is still a state in and of itself, and it is still more empowering
to know that you can reach that state more reliably. However, improving empowerment
after having entered a lava cell is impossible and hence the increase of the estimated
empowerment for the rest of the trajectory is 0. That is why a horizon of 1 is not enough
to realize the detrimental effect and longer horizon skew more and more away from the
lava as shown in Figure 4.2f.
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(a) IG explorer. (b) Surprise explorer. (c) Novelty explorer.

(d) EG, small noise. (e) EG, med. noise. (f) EG, large noise.

Figure 4.3.: Comparison of different action noises, there is no noise for actions going
down and right, but there is noise going up (with probability pa) and left (with
probability 2pa). (a,b) IG and Surprise explorer are muchmore attracted in per-
forming the more noisy actions. (c) Novelty explorer still maintains a uniform
visitation frequency. (d) When introducing a bit of noise, EG prefers going to
the bottom right, but still stays away from the walls as in the deterministic
setting. (e, f) When noise on the actions is increased even further, at some
point this effect dominates.

4.3.3. Actions of Varying Reliability

Next, we investigated the influence of varying action noises, i. e. in any state different
actions are augmented with different level of noise. Concretely, when taking action a,
there is a probability pa that a random action a′ ∈ A is performed instead. We share the
same action noise model for every state in the environment.
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Novelty seeking is ignorant of the action space and still (tries to) ensure a uniform
visitation frequency. For IG exploration, we observe that the more noisy action is taken
more frequently. This is because occasionally we observe an unexpected event which leads
to a bigger change to the model and thus to high information gain. Similarly, the Surprise
explorer prefers the noisy action as well because the prediction error for noisy actions
remains larger than for less noisy ones. Interestingly, expected EG skews in the opposite
direction, generally preferring the more reliable actions as they have greater potential of
increasing one’s empowerment estimate. This effect augments the results we found in the
deterministic setting and also depends on the empowerment’s horizon, which push the
agent away from the walls (see Figures 4.3d to 4.3f). Again, we argue that this exploration
behavior is more desirable as exploring the actions that have a more reliable effect should
in general be more helpful for interacting with the world.

4.3.4. State-Dependent Action Noise

Let us now look at state-dependent action noise, in which all actions in one state share
the same noise model, but differ among different states. For the Surprise and IG explorer
we observe the same behavior as in the deterministic setting, as these criteria cannot see
ahead enough; after all, all actions in any state have an identical effect (except next to a
wall). Conversely, we found that an EG explorer skews towards the part of the state space
with less noise (Figure 4.4). While it still explores the whole state space, it focuses more
on areas with greater potential for influencing the world. However, as with the previously
discussed sinks (lava), EG needs to be computed over at least a horizon of 2 in order to
realize that going towards the less noisy region helps us with increasing our empowerment
estimate to a greater degree. For this experiment, we used a slightly different objective
that considered the impact of action sequences on the empowerment estimate instead of
just an individual actions as we detail in Appendix A.3.4.

4.3.5. Redundancies in the Action Space

Last, we wanted to take a look at the effect of an enlarged action space containing
multiple actions with the same effect on the state space. As far as improving the transition
model is concerned, these actions are all equally important, but for an agent to act in the
environment, it is really sufficient to learn any one of the identical actions. To illustrate
this, we explore a simple chain environment as depicted in Figure 4.5 where only a single
action leads either left or remains in the current state, while 8 actions lead to its right
neighbor. The agent starts out in the rightmost state and is never reset.
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(a) IG, Surprise, Novelty. (b) EG, horizon T = 2.

Figure 4.4.: (a) - (b) The left half of the room is without noise, while the right half is
augmented by linearly increasing state-dependent action noise, i. e. the col-
umn right of the center line has noise probability pa = 0.1 and the rightmost
column of the room pa = 0.4. State visitation frequency for EG is skewed
towards the less noisy part of the state space while the other 3 intrinsic
motivations cannot account for this effect.

Here, we found the result as shown in Table 4.1. The Novelty explorer is naturally
unaffected by the change in action space and still ensures uniform visitation frequency of
all states. It chooses one of the 8 options leading right at random. However, the Surprise
and IG explorer are heavily affected and their uniform action selection preference leads
to a strongly skewed state visitation frequency to the rightmost state, barely visiting the
leftmost state in comparison. The EG explorer, even of horizon 1, acts similarly to the
Novelty explorer. The resulting visitation frequency is analogous to the one we found in
Section 4.3.1, meaning the border states at both ends of the chain are visited a bit less
frequently than the inner states as they have fewer neighbors. Different to the Novelty
explorer, the EG explorer focuses on one of the actions leading right, ignoring the others,
maximally improving the agent’s capability to interact. Note, that this complete focus will
only occur in this complete hindsight information setting in deterministic environments.
If the actions leading right were augmented by varying levels of noise, EG would focus on
the least noisy one (in contrast to e. g. the Surprise explorer as seen in Section 4.3.3).
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S1 S2

...

...

...

S5

Figure 4.5.: Our chain environment where many options lead right, but only a single one
in each state to the left.

Method s1 s2 s3 s4 s5

Novelty 2000 2000 2000 2000 2000

Surprise 26 95 409 1771 7669

IG 4 18 138 1095 8745

EG, T = 1 1538 2307 2308 2308 1539

Table 4.1.: State visitation frequency in the chain environment.

4.4. Related Work

Numerous ways of motivating exploration have been suggested over the years. Among
the first was Schmidhuber (1991b) which based reward signals on prediction errors of
predictive models. This prediction error has been used in various ways using function
representation learning (Stadie et al., 2015; Pathak et al., 2017). Pathak et al. (2017)
formulates surprise as the error in an agent’s ability to predict the consequence of its own
actions in a visual feature space learned by a self-supervised inverse dynamics model.
Focusing purely on prediction error has the downside of being attracted unpredictable
traps (static TV noise problem), where the error remains large even if it has been observed
countless times. Hence, learning progress of a predictive model has been suggested and
formalized in various works (Schmidhuber, 1991a; Lopes et al., 2012; Stadie et al., 2015;
Achiam and Sastry, 2017). Houthooft et al. (2016) formulates learning progress in a
Bayesian setting as information gain.
More recently, ensembles of predictors have been used to form some kind of internal

disagreement metric as opposed to directly comparing to the real world difference. Pathak
et al. (2019) and Shyam et al. (2019) train ensembles of dynamics models and incen-
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tivize the agent to explore such that the disagreement of those ensembles is maximized.
Plan2Explore (Sekar et al., 2020) performs latent rollouts using an ensemble of learned
world models, then rewarding action plans by their latent disagreements. Ratzlaff et al.
(2020) is modeling uncertainty about dynamics using a generative model and incentivizes
exploration where uncertainty is large. Blaes et al. (2019) combines surprise with task
selection based on learning progress.
Different from these surprise based approaches, various ways of novelty seeking have

similarly been formalized over the years. Bellemare et al. (2016) (extended by Ostrovski
et al. (2017)) proposed using a pseudo-count using density estimation for novelty esti-
mation in high-dimensional state spaces. Tang et al. (2017) suggested a computationally
simple but effective generalization of count-based approaches using hashing. Lee et al.
(2019) recast exploration as a problem of state marginal matching, where they aim to
learn a policy for which the state marginal distribution matches a given target state
distribution (often a uniform distribution). Similarly, Hazan et al. (2019) defines the
maximum-entropy exploration policy as the policy whose induced state distribution has
the maximum possible entropy. Savinov et al. (2018) defines novelty through reachabil-
ity within a certain time horizon from observations in a memory where reachability is
approximated using a siamese network architecture.
However, there are also other exploration approaches based on skill acquisition that

are related to our method. Sharma et al. (2019) encourages novel skill acquisition via
mutual information maximization between skills and states. DIAYN (Eysenbach et al.,
2019) encourages exploration by incentivizing different skills that lead to distinguishable
outcomes. Choi et al. (2021) generalizes various methods for goal-conditioned exploration
(such as DIAYN) in a common framework and derives novel objectives based on variational
mutual information maximization.
Empowerment (Klyubin et al., 2005a,b) as an intrinsic motivation has been gaining

more and more attention over the recent years. Initially mainly formulated in the discrete
domain, empowerment has since been applied in the continuous domain by Jung et al.
(2011) where empowerment is approximated using a learned model and Monte Carlo
sampling. Salge et al. (2013a) introduced a more efficient approximation based on
linear Gaussian channels. Salge et al. (2013b) extents this method by accounting also
for state-dependent noise where they find that empowerment maximizing agents will
avoid uncertain states or unpredictable interactions, similar to what we have found in our
exploration with EG. Later, variational methods for approximation have been suggested
using the Barber-Agakov bound on mutual information (Agakov, 2004) in model-free
(Mohamed and Rezende, 2015; Gregor et al., 2016) and model-based settings (Karl et al.,
2019). Zhao et al. (2021) approximate empowerment via a learned Gaussian channel by
convex optimization.
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4.5. Discussion & Limitations

There are various shortcomings of our proposed framework. Estimating empowerment
(and hence, EG) is very complex and computationally prohibitive. Even if one found an
efficient way of approximating empowerment, directly trying to estimate improvement
in empowerment can be problematic. While it is true that increasing one’s options will
eventually improve one’s empowerment, this becomes true only after some initial learning
phase, e. g. when interacting with novel objects this can at first be detrimental to our
understanding of the world and thus decrease our empowerment at first. This is particularly
true for our current machine learning models where outlier observations can radically
change a model’s behavior, even on the previously seen data distribution. As empowerment
estimation consists of multiple components, it may take some time to converge and realize
its greater influence in the world.
Even though EG is computationally expensive, it is still a heuristic. Optimizing it may

not be the best way to recognize one’s empowerment. In particular, the maximal local
improvement of Empowerment does necessarily not guarantee fast global convergence.
Alternatively, one could imagine computing EG not on a singular state but over a represen-
tative distribution of states and maximizing the average change, but that would increase
the computational cost significantly. The impact of the horizon of empowerment is critical
but often neglected since the computational complexity effectively limits the horizon. In
particular, the formulation is indifferent to when an agent can reach a certain state, as
long as it can be attained at time T . That means, it does not care about reaching a certain
state within a shorter time horizon – something we can imagine to be of great importance
to an agent in general. How to choose the best horizon or maybe interleave multiple time
horizons remains an open question.
In our experiments, we parameterize the forward model of each cell independently.

This is for both simplicity’s sake to allow for exact computation and to get a clear and
isolated understanding of the exploration criterion. However, a forward model realized by
a (Bayesian) Neural Network or a Gaussian Process that allows to generalize experience
in the neighborhood or even to unseen areas would drastically change the exploratory
behavior. Given that these types of model are ubiquitous, a study thereof when combined
with EG is of great importance. Moreover, only limited conclusions can be drawn from
these simple and discrete settings when transferring the agent to more complicated
scenarios with continuous state and action spaces.
As far as scaling this approach to high-dimensional or continuous domains, various ways

of efficiently approximating have been proposed (Mohamed and Rezende, 2015; Karl
et al., 2019; Zhao et al., 2021). Using these approaches, a more practical algorithm can be
formulated by computing EG in hindsight after performing a (batch of) actions in the real
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world. EG can then be approximated by doing a few gradient steps with the newly acquired
data and then computing the EG as an (additional) reward term to the agent. However,
while feasible, this approach is still computationally expensive compared to many other
exploration heuristics. Potentially more promising as a direction, we suggest to use the
exploration characteristics derived from this framework as a foundation for future research,
e. g. the consideration of relevancy for improving the world model based on an agent’s
current capabilities to interact with the world is crucial. More crude approximations of
these characteristics may turn out to be more fruitful in practice.

4.6. Conclusion

In this work, we propose a novel framework for embodiment driven exploration. Building
on the universally applicable and information-theoretic measure of an agent’s perceived
influence in the world – empowerment – we suggest an exploration criterion based on
the expected improvement of one’s estimation thereof. Theoretically, we show that it
captures and puts into relation various previously suggested exploration criteria such as
novelty seeking, surprise maximization and learning progress. Different to the use of
these individual criteria, EG accounts for the agent’s current capabilities and boundedness,
and focuses directly on what we are interested in – recognizing one’s capability to interact
with the world. In various discrete grid world environments featuring different noise
models, we showcase our theoretical findings where an agent’s exploration is focused on
areas with greater potential for increasing its influence. However, this work is just the very
start of this investigation. For future work, the focus will be on smart approximations that
can capture the spirit of EG while being scalable to scenarios of interest for the current
state of the art research.
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5. Conclusion

In this thesis, we show the full picture of how to “learn to control” using a learned LSSM
on two very different robotic platforms: a self-built drone and a robotic arm. While
minimizing engineering effort and maximizing use of machine learning methods, we
demonstrate that some relatively simple tasks can be learned with less than an hour of
real-world interaction data and without expert domain knowledge. Starting from raw
sensory data, we learn a LSSM that acts as both a simulator of dynamics and a filter
for online state estimation. Using this model, we show how to learn a controller relying
entirely on the simulation accuracy of the learned model. Without modification, this
controller can be deployed and successfully perform relatively simple tasks in the real
world. Last, in a more theoretical contribution, we address the question of what should
be explored and modeled in the first place. In particular, we hinge the answer to this
question on an agent’s potential to increase its empowerment estimator, i. e. to increase
its recognized potential to influence the world around him.

5.1. Outlook

Naturally, in a single thesis there is only so much that can be explored. In the following,
we give an outlook on promising directions of research. These are either rather direct
follow-ups of the presented work or present related issues that were untouched in this
work, but are required to fulfill the dream of autonomous robots that can learn on their
own.

5.1.1. Robustness to Sensor Noise and Partial Observability

We (and others) have shown how to extract various ground truth state information using
a LSSM without encoding prior knowledge into the latent space. For example, we showed
that we can linearly encode simple time derivative information, such as velocities from
positional data. However, the performance gap to an agent that is provided with observed
velocities can be quite significant, in particular as the observations become more and
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more noisy. Most of the work in the field is done on either simulated data or very well
engineered robotic systems with sophisticated methods for preprocessing raw sensor data.
As we experienced with the LiDARs on the drone, which required very low-weight and thus
comparatively low-quality sensors, a low-pass preprocessing step was helpful to attain a
viable controller. It is somewhat surprising that such a simple operation was not learned
to an equal level of quality by our proposed modeling approach. It should be investigated
how learning methods can be made more robust such that we can avoid engineering such
simple preprocessing steps in the future.

5.1.2. Universally Applicable Reward Functions

Success of RL depends heavily on the given reward function. For state of the art results
or just to produce a workable outcome on more complicated system, algorithms usually
require highly-tuned reward functions. We tried to keep the reward engineering to a
minimum, but on top of rewarding the desired position, punishing high velocities and
accelerations was almost always helpful or even crucial in our experiments. Other RL
methods, in particular for quadruped walking, often come with up to a dozen reward terms
encouraging and punishing all kinds of different behaviors (Lee et al., 2020b; Kumar et al.,
2021). Naturally, this level of reward engineering is not a satisfactory state of affairs in RL,
especially as tuning the reward function incurs the cost of training the agent repeatedly.
In effect, this mitigates some of the potential benefit from not engineering other parts
of the system. What we really hope to find is a more general purpose reward function.
Candidates for such universal reward terms may be energy minimization (Fu et al., 2021),
pain avoidance (or rather its translation to robotic systems) and other intrinsic motivations
such as novelty seeking, surprise maximization and empowerment (gain). Formulating
and combining these objectives with the actual task objective has been proposed numerous
times, but the best results on a given task are usually still achieved with hand-tailored
reward functions.

5.1.3. Learned Low-Level Control

In this thesis, we showcased a learned controller on two real robotic platforms where
most components were learned without encoding prior knowledge or strong inductive
biases into the model. Nevertheless, a few parts still relied on engineered methods, one of
particular note were the action spaces. Both the learned thrust-attitude controller and
joint velocity controller require underlying PID controllers to transform these signals
into torques and then pulse width modulation signals. For the chosen systems, these
components are well understood and can be engineered precisely. However, for a method
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to be truly generic and universally applicable, we cannot rely on such components. They
may not exist for the next system we want to solve, and maybe the necessity for their
existence limits us unnecessarily in our design of robotic systems. Unfortunately, learning
low-level control end-to-end has been shown to be challenging, not only because the action
to state space interaction becomes more complicated, but also because lower level control
typically requires (much) higher frequency of control. Instead of learning end-to-end, this
transformation of the control signal as previously been framed and learned as a separate
supervised learning problem (Hwangbo et al., 2019). While this approach has had some
successes, addressing the general problem of action spaces has seen very little attention
in the RL community and remains an open challenge to fulfill its promises of universal
applicability.

5.1.4. What Does Really Matter in (Model-Based) Reinforcement Learning?

Having so many different parts in (MB)RL makes it really difficult to attribute any method’s
success or failure to individual design choices. In our work, we found our choice of LSSM
and backpropagating through this dynamics model for optimization of the policy to be of
vital importance. Others have reported good results (in different settings) with a variety
of approaches, not only limited to model-based methods. Be it Model Predictive Control
(MPC) or model-free RL methods where the policy may be conditioned on otherwise
compressed representations of high-dimensional observations. It will probably be a long
accompanying investigation on what truly makes these approaches work in order to
routinely strip the methods down to their core essentials.

5.1.5. Empowered Exploration

The key observation of our EG contribution was that the exploration should be based
on an agent’s capability to interact with the world and how this understanding can be
improved. It takes into account an agent’s perception, actuation and current limitations of
its modeling and control. It shows what parts of the world are fundamentally interesting
and on the other side irrelevant to encode into a world model. Increasing an agent’s
capability to act is a fundamental exploration principle for which we suggested one
formalism based on empowerment. However, we believe that we just scratched on the
surface of this principle. We believe finding a scalable and efficient method realizing this
key principle is central to the task of developing autonomous agents.
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5.1.6. A Universal Agent

Training a completely new agent from a blank slate for a specific task on a specific platform
is a time-consuming task. While this mode of operation is still the default in machine
learning, it is in stark contrast to how human’s learn to act in the world. Intuitively, one
would would imagine learning tasks in a curriculum from easy to hard should lead to
natural synergies and speed up training. Despite this intuition and this obviously conflicting
approach in a lot of machine learning research, there remains a good reason for this mode
of operation: learning to solve multiple tasks with a single agent is a very complicated
endeavor often leading to complete failure to solve any task, or unlearning previously
mastered tasks when acquiring new tasks. MT-Opt (Kalashnikov et al., 2021) carefully
detailed a successful process of a robotic arm learning a handful of tasks consisting of
lifting various objects, rearranging or covering them in various ways. While ultimately
successful, its learning procedure turned out to require a lot of care and attention to
detail. More recently, GATO (Reed et al., 2022), a neural network architecture based on
transformers (Vaswani et al., 2017), showed how a single agent can play Atari, caption
images, chat and stack blocks with a real robot arm based on expert demonstrations.
Undoubtedly, this demonstrated an unprecedented level of multi-task competency and
encouragingly the model consisting of 79M − 1.1B parameters ended up relatively small
for modern deep learning standards. However, the evaluation of adaptation on unseen
tasks still raises a lot of questions. For example, GATO requiring 1000 episodes of expert
demonstration to match the expert’s performance on the cart-pole swing up task suggests
that while the authors may have found an architecture that can successfully encode policies
for a lot of different tasks, multi-task learning may still lead to negative rather than positive
synergies. Thus, a long road remains ahead.
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A. Appendix

A.1. Appendix for Chapter 2

A.1.1. Lower Bound Derivation

We derive the sequential ELBO

log p(x1:T )

= log

∫︂
z1:T

∫︂
s2:T

qφ(z1:T , s2:T | x1:T )
pθ(x1:T | z1:T )pθ(z1:T , s2:T )

qφ(z1:T , s2:T | x1:T )

≥
∫︂
z1:T

∫︂
s2:T

qφ(z1:T , s2:T | x1:T ) log
pθ(x1:T | z1:T )pθ(z1:T , s2:T )

qφ(z1:T , s2:T | x1:T )

=

∫︂
z1:T

∫︂
s2:T

qφ(z1:T , s2:T | x1:T ) log pθ(x1:T | z1:T )

+

∫︂
z1:T

∫︂
s2:T

qφ(z1:T , s2:T | x1:T ) log
pθ(z1:T , s2:T )

qφ(z1:T , s2:T | x1:T )

=

∫︂
z1

∫︂
s2

· · ·
∫︂
sT

∫︂
zT

q(z1 | x1:T )q(s2 | z1, x1:T ) . . . q(sT | zT−1, sT−1, x1:T )

q(zT | zT−1, sT , x1:T ) log pθ(x1 | z1) . . . pθ(xT | zT )
−KL(q(z1:T , s2:T | x1:T ) | | pθ(z1:T , s2:T ))

= Ez1∼q(z1|·)[log p(x1 | z1)]

+

T∑︂
t=2

Est∼q(st|st−1,zt−1,xt)

[︁
Ezt∼q(zt|zt−1,st,xt)[log p(xt | zt)]

]︁
−KL(q(z1:T , s2:T | x1:T ) | | p(z1:T , s2:T ))

for our model where we omit we omit conditioning on control inputs u1:T for brevity.
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Factorization of the KL Divergence

The dependencies on data x1:T and u1:T as well as parameters φ and θ are omitted in the
following for convenience.

KL(q(z1, s2, . . . , sT , zT ) | | p(z1, s2, . . . , sT , zT ))
(Factorization of the variational approximation)

=

∫︂
z1

∫︂
s2

· · ·
∫︂
sT

∫︂
zT

q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT )

log
q(z1)q(s2 | z1) . . . q(zT | zT−1, sT )

p(z1, s2, . . . , sT , zT )

(Factorization of the prior)

=

∫︂
z1

∫︂
s2

· · ·
∫︂
sT

∫︂
zT

q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT )

log
q(z1)q(s2 | z1) . . . q(zT | zT−1, sT )

p(z1)p(s2 | z1) . . . p(zT | zT−1, sT )

(Expanding the logarithm by the product rule)

=

∫︂
z1

q(z1) log
q(z1)

p(z1)
+

∫︂
z1

∫︂
s2

q(z1)q(s2 | z1) log
q(s2 | z1)
p(s2 | z1)

+

T∑︂
t=2

∫︂
z1

∫︂
s2

· · ·
∫︂
sT

∫︂
zT

q(z1)q(s2 | z1) . . . q(zT | zT−1, sT ) log
q(zt | zt−1, st)

p(zt | zt−1, st)

+

T∑︂
t=3

∫︂
z1

∫︂
s2

· · ·
∫︂
sT

∫︂
zT

q(z1)q(s2 | z1) . . . q(zT | zT−1, sT ) log
q(st | zt−1, st−1)

p(st | zt−1, st−1)

(Ignoring constants)
=KL(q(z1) | | p(z1))

+ Ez1∼q(z1)[KL(q(s2 | z1) | | p(s2 | z1))]

+

T−1∑︂
t=2

Ezt−1∼q(zt−1|·)

[︂
Est∼q(st|·)

[︁
KL(q(zt | zt−1, st) | | p(zt | zt−1, st))

]︁]︂
+

T−1∑︂
t=3

Est−1∼q(st−1|·)

[︂
Ezt−1∼q(zt−1|·)

[︁
KL(q(st | zt−1, st−1) | | p(st | zt−1, st−1))

]︁]︂
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Table A.1.: Dimensionality of environments.

Dimensionality of Observation Space Control Input Space State Space

(Bullet) Reacher 7 2 9

Hopper 8 3 15

Multi Agent Maze 6 6 12

Image Ball in Box 32× 32 0 4

FitzHugh-Nagumo 2 1 2

Time-Varying Pendulum 2 1 2

Time-Varying Reacher 4 2 6

Time-Varying Cheetah 8 6 17

A.1.2. Experimental Setup

Overall, training the Concrete distribution has given us the biggest challenge as it was
very susceptible to various hyperparameters. We made use of the fact that we can use a
different temperature for the prior and approximate posterior (Maddison et al., 2017) and
we do independent hyperparameter search over both. For us, the best values were 0.75
for the posterior and 2 for the prior. Additionally, we employ an exponential annealing
scheme for the temperature hyperparameter of the Concrete distribution. This leads to
a more uniform combination of base matrices early in training which has two desirable
effects. First, all matrices are scaled to a similar magnitude, making initialization less
critical. Second, the model initially tries to fit a globally linear model, leading to a good
starting state for optimization.
With regards to optimizing the KL-divergence, there is no closed-form analytical solution

for two Concrete distributions. We therefore had to resort to a Monte Carlo estimation
with n samples where we tried n between 1 and 1000. While using a single samples was
(numerically) unstable, using a large number of samples also didn’t result in observable
performance improvements. We therefore settled on using 10 samples for all experiments.
In all experiments, we train everything end-to-end with the ADAM optimizer (Kingma

and Ba, 2015). We start with learning rate of 5e−4 and use an exponential decay schedule
with rate λ ∈ {0.95, 0.97, 0.98} every 2000 iterations.
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Table A.2.: Overview of hyperparameters.

Parameter Multi Agent Maze Reacher Image Ball in Box

# episodes 50000 20000 5000
episode length 20 30 20
batch size 256 128 256
dimension of z 32 16 8
dimension of s 16 8 8
posterior temp. 0.75 0.75 0.67
prior temp. 2 2 2
temp. annealing steps 100 100 100
temp. annealing rate 0.97 0.97 0.98
β (KL-scaling) 0.1 0.1 0.1

Roboschool Reacher

To generate data, we follow a Uniform distribution U ∼ [−1, 1] as the exploration policy.
Before we record data, we take 20 warm-up steps in the environment to randomize our
starting state. We take the data as is without any other preprocessing.

Multi Agent Maze

Observations are normalized to be in [−1, 1]. Both position and velocity is randomized for
the starting state. We again follow a Uniform distribution U ∼ [−1, 1] as the exploration
policy.

Time-Varying Dynamics: Pendulum, Reacher, Cheetah

As exploration policy we use and Ornstein-Uhlenbeck process with damping coefficient
0.05 and standard deviation 0.2. We generate 1000 episodes of 500 steps. For the pendulum
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Table A.3.: Overview of hyperparameters for experiments with time-varying dynamics.

Parameter Pendulum Reacher Cheetah

# episodes 1000 1000 1000
episode length 500 500 500
batch size 256 256 256
dimension of z 16 16 32
dimension of s 32 32 64
β (KL-scaling) 0.1 0.1 0.1

we vary the mass, length and damping coefficient from 50% to 200% of the default values.
For the cheetah, we sample the mass, damping and joint stiffness from 50% to 200% of the
default values. For the reacher, we vary the mass between 25% and 400% of the default
value.

Network Architecture

For most networks, we use MLPs implemented as residual nets (He et al., 2016) with
ReLU activations. The following specifications were used for networks in the reacher and
maze experiments:

• qmeas(zt | x≥t, u≥t): MLP consisting of two residual blocks with 256 neurons each.
We only condition on the current observation xt although we could condition on the
entire sequence. This decision was taken based on empirical results.

• qtrans(zt | zt−1, ut−1, st): In the case of Concrete random variables, we just combine
the base matrices and apply the transition dynamics to zt−1. For the Normal case, the
combination of matrices is preceded by a linear combination with softmax activation.
(see equation 2.6)

• qmeas(st | x≥t, u≥t): is implemented by a backward LSTM with 256 hidden units.
We reuse the preprocessing of qmeas(zt | xt) and take the last hidden layer of that
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network as the input to the LSTM. For the work on time-varying dynamics, we chose
a forward LSTM instead to get an actual filter for control.

• qtrans(st | st−1, zt−1, ut−1): MLP consisting of one residual block with 256 neurons.

• qinitial(w | x1:T , u1:T ): MLP consisting of two residual block with 256 neurons option-
ally followed by a backward LSTM. We only condition on the first 3 or 4 observations
for our experiments.

• qinitial(s2 | x1:T , u1:T ): The first switching variable in the sequence has no predeces-
sor. We therefore require a replacement for qtrans(st | st−1, zt−1, ut−1) in the first
time step, which we achieve by independently parameterizing another MLP.

• p(xt | zt): MLP consisting of two residual block with 256 neurons.

• p(zt | zt−1, ut−1, st): Shared parameters with qtrans(zt | zt−1, ut−1, st).

• p(st | st−1, zt−1, ut−1): Shared parameters with qtrans(st | st−1, zt−1, ut−1).

We use the same architecture for the image ball in a box experiment, however we
increase number of neurons of qmeas(zt | x≥t, u≥t) to 1024. For the FitzHugh-Nagumo
model we downsize our model and restrict all networks to a single hidden layer with 128
neurons.
For the reinforcement learning experiments, we use MLPs for the policy and critic

network consisting of 2 layers with 256 neurons and with tanh activation functions.

A.1.3. On Scaling Issues of Switching Linear Dynamical Systems

Let’s consider a simple representation of a ball in a rectangular box where its state is
represented by its position and velocity. Given a small enough ∆t, we can approximate
the dynamics decently by just 3 systems: no interaction with the wall, interaction with
a vertical or horizontal wall (ignoring the corner case of interacting with two walls at
the same time). Now consider the growth of required base systems if we increase the
number of balls in the box (even if these balls cannot interact with each other). We would
require a system for all combinations of a single ball’s possible states: 32. This will grow
exponentially with the number of balls in the environment.
One way to alleviate this problem that requires only a linear growth in base systems is

to independently turn individual systems on and off and let the resulting system be the
sum of all activated systems. A base system may then represent solely the transition for a
single ball being in specific state, while the complete system is then a combination of N
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such systems where N is the number of balls. Practically, this can be achieved by replacing
the softmax by a sigmoid activation function or by replacing the categorical variable s
of dimension M by M Bernoulli variables indicating whether a single system is active
or not. We make use of this parameterization in the multiple bouncing balls in a maze
environment and also for the section about time-varying dynamics.
Theoretically, a preferred approach could be to disentangle multiple systems (like balls,

joints) and apply transitions only to their respective states. This, however, would require a
proper and unsupervised separation of (mostly) independent components. We defer this
to future work.

A.2. Appendix for Chapter 3

A.2.1. Implementation & Training

For the drone experiments, the model was implemented using TensorFlow (Abadi et al.,
2016) and TensorFlow Probability (Dillon et al., 2017). The ablation study on the Panda
robot arm was done in PyTorch (Paszke et al., 2019). Mostly the same parameters were
used across all experiments and drone configurations. All individual neural networks
were parameterized by dense neural networks with either 1 or 2 hidden layers with ReLU
activations and 256 neurons. For the policy and value function we used a tanh activation
function instead. The encoder network was chosen to be an RNN in cases where the
drone’s velocity was unobserved. We used ADAM (Kingma and Ba, 2015) for optimization
of all our model components.
In case of the drone, the training can be done on a single GPU and takes up to a few

days. The best hyperparameters (see Table A.4) were chosen using the real data in an
offline reinforcement learning setting.
For the Panda Arm, training is distributed across three arms and can be completed within

a few hours. Its joint velocities are limited to the range [−0.6; 0.6] rads . All observations are
normalized based on Table 3.5. The best hyperparameters (see Table A.4 and Table A.5)
were chosen based on a search in a simulated replication of the environment using the
Bullet physics engine (Coumans and Bai, 2016).

A.2.2. Onboard Computational Cost

For online control of the robot, we do not require execution of all parts of the model.
In particular, we only need the policy πθ(at | st) and the filter consisting of inverse
measurement model qmeas(zt | xt) and transition models pξ(zt | zt−1, st, ut−1) and
pξ(st | st−1, zt−1, ut−1). Not needed are the likelihood model for observations pξ(xt | zt)
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Table A.4.: Hyperparameters for drone and arm experiments.

Parameter Drone Panda

Dynamics Model

batch size 64 256

dimensions of latents zt 32 64

dimensions of latents st 32 64

learning rate 3× 10−4 3× 10−4

# of base matrices 32 64

Policy

batch size 128 256

learning rate 1× 10−4 1× 10−4

rollout horizon 5 10

discount factor 0.95 0.99

Value Function

batch size 128 256

learning rate 3× 10−4 3× 10−4

rollout horizon 5 10

target network learning rate αφ′ 1× 10−3 5× 10−3

Data Collection

collect data every n iterations - 100

env. steps per collection - 200

replay buffer initial size - 1,000

replay buffer capacity - 60,000

and rewards rξ(zt, ut) and the value function as they are only required during training.
We are therefore free to choose the parameterization of the latter while the former need
to be of limited complexity so that they can be executed in real-time on a Raspberry Pi 4.
For the Panda experiments, we do not deploy the model to an embedded device, rather
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Table A.5.: SAC hyperparameters for experiments on the Panda arm.

Parameter Value

batch size 256

policy/critic layers 2

policy/critic neurons 512

discount factor 0.99

entropy loss coefficient 0.001

learning rate 3× 10−4

target network learning rate αφ′ 5× 10−3

Data Collection

collect data every n iterations 100

env. steps per collection 200

replay buffer initial size 1,000

replay buffer capacity 60,000

we remotely control it from the workstation where the training procedure takes place. We
sent observations and actions over TCP and ZeroMQ.

A.3. Appendix for Chapter 4

A.3.1. Derivations

For model-free empowerment gain, we derive at the approximation of eq. (4.13) with

ÊMF,Tθ′ (s)− ÊMF,Tθ (s)

= max
ωφ′ (a1:T |s)

∫︂
a1:T

∫︂
sT+1

ωφ′(a1:T | s)p(sT+1 | s, a1:T ) log
pψ′(a1:T | s, sT+1)

ωφ′(a1:T | s)

− max
ωφ(a1:T |s)

∫︂
a1:T

∫︂
sT+1

ωφ(a1:T | s)p(sT+1 | s, a1:T ) log
pψ(a1:T | s, sT+1)

ωφ(a1:T | s)
(Assuming ω∗

φ′(a1:T | s) and ω∗
φ(a1:T | s) to be the resp. maximizing distribution)
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=

∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)p(sT+1 | s, a1:T ) log pψ′(a1:T | s, sT+1)

+H
(︂
Aφ

′

1:T = ωφ′(a1:T | s)
⃓⃓⃓
s
)︂

−
∫︂
a1:T

∫︂
sT+1

ω∗
φ(a1:T | s)p(sT+1 | s, a1:T ) log pψ(a1:T | s, sT+1)

−H
(︂
Aφ1:T = ωφ(a1:T | s)

⃓⃓⃓
s
)︂

=H
(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+

∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)p(sT+1 | s, a1:T ) log pψ′(a1:T | s, sT+1)

−
∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)p(sT+1 | s, a1:T )

[︄
ω∗
φ(a1:T | s)

ω∗
φ′(a1:T | s)

log pψ(a1:T | s, sT+1)

]︄
=H

(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)p(sT+1|s,a1:T )

[︁
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)

]︁
− Eω∗

φ′ (a1:T |s)p(sT+1|s,a1:T )

[︄(︄
ω∗
φ(a1:T | s)

ω∗
φ′(a1:T | s)

− 1

)︄
log pψ(a1:T | s, sT+1)

]︄
≈H

(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)p(sT+1|s,a1:T )

[︁
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)

]︁
.

The approximation is exact if and only if ω∗
φ′(a1:T | s) is equal to ω∗

φ(a1:T | s). What this
approximation conceptually means is the following: if we look at the three lines before
we introduce the approximation, the first line captures change in entropies of the source
distribution, the second line measures the improvement of the (inverse) model (expecta-
tion is taken over the new source distribution ω∗

φ′(a1:T | s)), the third line accounts for
the fact that the optimal source distribution (our distribution of relevant skills) may have
changed given our new understanding of the world. Hence we should have computed
the performance of our old (inverse) model over this old source distribution. This last
term we drop to make our approximation. The approximation is exact if and only if the
source distribution (set of skills) did not change at all and it becomes tighter as the two
source distributions become closer to each other. It should be stated that we make this
(and following approximations) mainly to gain and explain conceptual understanding
of what constitutes EG. EG itself is still defined as the exact difference of the new and
old empowerment estimate. We use the exact values in our experiments, not the approxi-
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mations. However, we do hope that these approximations may also become useful when
trying to derive more practical and efficient algorithms based on EG in future work.

A.3.2. Model-Based Empowerment Gain

Model-Based Empowerment Gain

For model-based empowerment gain, we derive at the approximation of eq. (4.14) with

ÊTθ′(s)− Ê
T
θ (s)

= max
ωφ′ (a1:T |s)

∫︂
a1:T

∫︂
sT+1

ωφ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log
pξ′(sT+1 | s, a1:T )
pφ′,ξ′(sT+1 | s)

− max
ωφ(a1:T |s)

∫︂
a1:T

∫︂
sT+1

ωφ(a1:T | s)pξ(sT+1 | s, a1:T ) log
pξ(sT+1 | s, a1:T )
pφ,ξ(sT+1 | s)

(Assuming ω∗
φ′(a1:T | s) and ω∗

φ(a1:T | s) to be the resp. maximizing distribution)

=

∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log pξ′(sT+1 | s, a1:T )

+H
(︂
Sφ

′,ξ′

T+1 = pφ′,ξ′(sT+1 | s)
⃓⃓⃓
s
)︂

−
∫︂
a1:T

∫︂
sT+1

ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T ) log pξ(sT+1 | s, a1:T )

−H
(︂
Sφ,ξT+1 = pφ,ξ(sT+1 | s)

⃓⃓⃓
s
)︂

=H
(︂
Sφ

′,ξ′

T+1

⃓⃓⃓
s
)︂
−H

(︂
Sφ,ξT+1

⃓⃓⃓
s
)︂

+

∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log pξ′(sT+1 | s, a1:T )

−
∫︂
a1:T

∫︂
sT+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )[︄
ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T )

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log pξ(sT+1 | s, a1:T )

]︄

with α =
ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T )

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

=H
(︂
Sφ

′,ξ′

T+1

⃓⃓⃓
s
)︂
−H

(︂
Sφ,ξT+1

⃓⃓⃓
s
)︂
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+

∫︂
a1:T

ω∗
φ′(a1:T | s)

∫︂
sT+1

pξ′(sT+1 | s, a1:T )[︁
log pξ′(sT+1 | s, a1:T )− α log pξ(sT+1 | s, a1:T )

]︁
=H

(︂
Sφ

′,ξ′

T+1

⃓⃓⃓
s
)︂
−H

(︂
Sφ,ξT+1

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)

[︁
KL
(︁
pξ′(sT+1 | s, a1:T )

⃓⃓ ⃓⃓
pξ(sT+1 | s, a1:T )

)︁]︁
− Eω∗

φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )[(α− 1) log pξ(sT+1 | s, a1:T )]

≈H
(︂
Sφ

′,ξ′

T+1

⃓⃓⃓
s
)︂
−H

(︂
Sφ,ξT+1

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)

[︁
KL
(︁
pξ′(sT+1 | s, a1:T )

⃓⃓ ⃓⃓
pξ(sT+1 | s, a1:T )

)︁]︁
.

The approximation is relatively tight for small updates of ω∗
φ(a1:T | s) and

pξ(sT+1 | s, a1:T ).

A Different View on Empowerment Gain

As mutual information is inherently symmetric, we can rewrite empowerment in terms of
the action distribution instead of final state distribution as we have done for the model-free
case, that is

ÊTθ (s) = max
ωφ(a1:T |s)

Eωφ(a1:T |s)pξ(sT+1|s,a1:T )[log pψ(a1:T | s, sT+1)− logωφ(a1:T | s)]. (A.1)

Similar to above, we can derive an approximation of the EG

ÊTθ′(s)− Ê
T
θ (s)

≈H
(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )

[︁
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)

]︁
.

(A.2)

Here, the focus shifts to the empowerment-realizing source distribution ωφ′(a1:T | s),
which should be a highly entropic action distribution of distinguishable (by their outcome,
final state s′) skills. Again, these two terms form a trade-off where more diverse actions
are only helpful if they lead to distinguishable outcomes. However, a perfect inverse
model alone is not helpful if we are limited to a small number of skills. We derive the
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approximation of eq. (A.2) with

ÊTθ′(s)− Ê
T
θ (s)

= max
ωφ′ (a1:T |s)

∫︂
a1:T

∫︂
st+1

ωφ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log
pψ′(a1:T | s, sT+1)

ωφ′(a1:T | s)

− max
ωφ(a1:T |s)

∫︂
a1:T

∫︂
st+1

ωφ(a1:T | s)pξ(sT+1 | s, a1:T ) log
pψ(a1:T | s, sT+1)

ωφ(a1:T | s)
(Assuming ω∗

φ′(a1:T | s) and ω∗
φ(a1:T | s) to be the resp. maximizing distribution)

=

∫︂
a1:T

∫︂
st+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log pψ′(a1:T | s, sT+1)

+H
(︂
Aφ

′

1:T = ωφ′(a1:T | s)
⃓⃓⃓
s
)︂

−
∫︂
a1:T

∫︂
st+1

ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T ) log pψ(a1:T | s, sT+1)

−H
(︂
Aφ1:T = ωφ(a1:T | s)

⃓⃓⃓
s
)︂

=H
(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+

∫︂
a1:T

∫︂
st+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) log pψ′(a1:T | s, sT+1)

−
∫︂
a1:T

∫︂
st+1

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

[︃
ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T )

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log pψ(a1:T | s, sT+1)

=H
(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )

[︁
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)

]︁
− Eω∗

φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )

[︄
(︄
ω∗
φ(a1:T | s)pξ(sT+1 | s, a1:T )

ω∗
φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

− 1

)︄
log pψ(a1:T | s, sT+1)

]︄
≈H

(︂
Aφ

′

1:T

⃓⃓⃓
s
)︂
−H

(︂
Aφ1:T

⃓⃓⃓
s
)︂

+ Eω∗
φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )

[︁
log pψ′(a1:T | s, sT+1)− log pψ(a1:T | s, sT+1)

]︁
.
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The approximation is relatively tight for small updates of ω∗
φ(a1:T | s) and

pξ(sT+1 | s, a1:T ).

A.3.3. Experiments

For the environments in Section 4.3.3, the noise levels are: small noise pa = 0.05, medium
noise pa = 0.1 and large noise pa = 0.2. There is noise when performing action "up" (with
probability pa) and "left" (with probability 2pa). We built our environments on top of
MiniGrid (Chevalier-Boisvert et al. (2018), Apache License 2.0).

Model Details

The forward model of each cell is modeled by a Categorical distribution with a Dirichlet(α)
prior with α = 0.01. For empowerment estimation, Blahut-Arimoto is run until the change
of empowerment from one iteration to the next is less than 1e−6 or after at most 1000
iterations, whichever comes first.

Technical details

The implementation was done in PyTorch (Paszke et al. (2019), published under a BSD-
style license). All individual experiments were run using a single CPU core each (on e. g.
a Intel Xeon Gold 6252 or comparable) and took from less than an hour to up to a day to
finish (for the longer horizon empowerment experiments). However, limited time was
spent on optimizing the implementation for performance and huge improvements are
likely possible. The computation was done on our internal compute cluster.

A.3.4. An Alternative Empowerment Gain Formulation

As an alternative objective to eq. (4.12), we want to discuss a different formulation

a∗1:T = argmax
a1:T

Ed=(s1,a1,s2,a2,...,sT ,aT ,sT+1)

[︂
ÊTθ′(s1)− Ê

T
θ (s1)

]︂
(A.3)

that focuses on action sequences instead of individual actions. Different to the original
formulation, here we are comparing and choosing the best action sequence over an horizon
T that matches the empowerment’s horizon. Intuitively, as we compute the empowerment
over a specific horizon, it might be helpful to consider how execution of a whole skill
over the same horizon instead of just a single action impacts our empowerment estimate.
This would allow us to understand the impact of exploring a whole skill and potentially
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lead to temporally extended and more directed exploratory behavior. In particular when
our forward model does not have the capacity to generalize over the state-action space,
comparing EG after and before experiencing a single state action transition modifies
empowerment only in so far as it changes the transition probabilities from the starting
state. But while choosing among skills may be desirable, it problematically comes with
greater computational cost. Naively computing the argmax becomes exponentially more
expensive with the horizon T as we now need to compare all possible action sequences
instead of individual actions.

A.3.5. Empowerment in Partially Observable Environments

Having characterized empowerment gain, let us succinctly discuss its general applicability
to partially observable settings. Instead of working with the true system state s, an agent
typically observes only partial and noisy information about the world through its sensors.
Indeed, this is how empowerment is typically defined and applied. Using observations
o = f(s) of an arbitrary function f , one can show that empowerment conditioned on
observations is upper bounded by the corresponding empowerment value conditioned
on the true system state (Klyubin et al., 2008). Let bt be a believe state given a history
h≤t = (o1, a1, o2, . . . , at−1, ot), then empowerment can be expressed as

ET (b) = max
A1:T

I
(︁
S′, A1:T

⃓⃓
b
)︁
≤ max

A1:T

I
(︁
S′, A1:T

⃓⃓
s
)︁
= ET (s). (A.4)

Intuitively, empowerment on a belief state is a lower bound as we can not condition on
more information than the true system state. However, eq. (A.4) still relies on the true
(final) state distribution to compute empowerment. To alleviate this, one can introduce
another lower bound

max
A1:T

I
(︁
O′, A1:T

⃓⃓
b
)︁
≤ max

A1:T

I
(︁
S′, A1:T

⃓⃓
b
)︁
= ET (b) (A.5)

on ET (b) by using observations instead of system states, where the lower bound derives
from the information processing inequality. Thus, the previously introduced formalism
can readily be adopted to partially observable environments using common techniques for
state estimation with e. g. latent dynamics models.
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