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ABSTRACT 6 

A novel probabilistic methodology for regional seismic site characterization is 7 

proposed and applied to a region with highly heterogeneous surficial geology and 8 

varying soil sediment thickness and stiffness. The method combines various 9 

sources of geological and geotechnical uncertainties to develop a 3D shear-wave 10 

velocity (Vs) model and evaluate the associated uncertainties. A 3D geological 11 

model of the unconsolidated deposits was developed using geostatistical 12 

interpolation and simulation methods. Sequential indicator simulations produced a 13 

quantitative geologic model that explicitly quantified geological uncertainties 14 

based on the likelihood of specific soil types occurring. In situ measurements and 15 

multivariate statistical analysis allowed the development of empirical correlations 16 

between Vs, geotechnical parameters, depth, and soil types. The resulting 3D Vs 17 

values were estimated on the basis of Vs-depth correlations and the probability of 18 

occurrence of each soil type. In this approach, the propagated uncertainty was also 19 

quantified by considering the combined variance. Seismic microzonation mapping 20 

was then conducted by transforming the 3D Vs model into 2D maps that represent 21 

the spatial distributions of the time-averaged shear-wave velocity of the top 30 m 22 

(Vs,30) and the fundamental site period (T0), along with their respective uncertainties 23 

using Monte Carlo simulations. The results indicate that microzonation maps and 24 

their uncertainties are influenced by the thickness, occurrence probability, and 25 

geotechnical properties of soils. The proposed method can be used to assess the 26 

probabilistic seismic risk at local and regional scales in areas with geologically and 27 

geotechnically complex soil properties. 28 
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INTRODUCTION 1 

Local site conditions tend to modify the amplitude and frequency of incoming seismic 2 

waves (Seed et al., 1976). This phenomenon is known as the site effect, and it depends on the 3 

geotechnical (e.g., soil type, shear modulus, damping ratio) and geological (e.g., stratigraphy, 4 

basin topography, thickness) properties of soil sediments. Site-effect parameters such as the 5 

time-averaged shear-wave velocity of the top 30 m (Vs,30) and the fundamental site period (T0) 6 

are reliable proxies for regionally evaluating seismic shaking amplification (Thompson et al., 7 

2014; Heath et al., 2020) and seismic microzonation mapping (SM Working Group, 2015; 8 

Licata et al., 2019; Molnar et al., 2020). 9 

Although shear-wave velocity (Vs) is recognized as a simple, effective and representative 10 

parameter for determining site effects, obtaining sufficient direct Vs measurements in regional 11 

site characterization studies is challenging. As a proxy, the available geotechnical data 12 

represent a useful data source for estimating Vs (Oliveira et al., 2020). In this case, empirical 13 

Vs correlations with geotechnical parameters (Mayne and Rix, 1995; Robertson, 2009) or depth 14 

(Motazedian et al., 2011; Podestá et al., 2019) are suggested for addressing the scarcity of Vs 15 

measurements. However, specific depositional environments, such as the presence of soft 16 

sensitive clays, which is frequently observed in Eastern Canada (Locat and St-Gelais, 2014; 17 

Salsabili et al., 2022), hinder the use of existing global regression equations, potentially 18 

resulting in estimation biases (McGann et al., 2015). 19 

Several seismic microzonation studies in Eastern Canada have used multilayered geological 20 

models as a basis for predicting the spatial variability of Vs,30 and T0, as well as their associated 21 

uncertainties (Motazedian et al., 2011; Rosset et al., 2015; Nastev et al., 2016a and 2016b). For 22 

example, Rosset et al. (2015) developed three different 𝑉𝑠,30 models for the Montreal region 23 

using predictive equations for Vs as a function of depth: a single-layer model based on total 24 

soft soil thickness, a four-layer model based on geological and geotechnical information from 25 

borehole data, and a composite model that combined the characteristics of the two previous 26 

models. In the Ottawa and St. Lawrence Valleys, Nastev et al. (2016a) assigned a typical Vs–27 

depth function to postglacial sediments and uniform Vs values to glacial sediments and bedrock 28 

units. In these studies, the best expert (deterministic) 3D geological model was used in the 29 

sequential development of geotechnical models and the mapping of Vs,30 and 𝑇0. They analyzed 30 



3 

 

the uncertainty propagated to Vs,30 and/or 𝑇0 using the first-order, second-moment (FOSM) 1 

approach, focusing solely on the statistical uncertainty related to Vs (geotechnical uncertainty). 2 

This approach, however, does not consider the randomness of the Vs variable, spatial 3 

uncertainty and the heterogeneity associated with the 3D geological model. 4 

Geospatial modeling can be achieved using spatial variability. Spatial variation refers to the 5 

dissimilarity of pair values of a random variable as a function of distance (Isaaks and 6 

Srivastava, 1989). The spatial variation in soil properties has been modeled using random field 7 

theory, which decomposes the spatial variation into a deterministic trend function and its 8 

residuals (Fenton, 1999; Fenton and Griffiths, 2003). This method can also be used to address 9 

problems with sparse and nonstationary data (Wang et al., 2018; Zhao and Wang, 2020). In 10 

recent soil engineering practices, geostatistical methods have also been used to predict 11 

spatially-correlated geotechnical properties, such as cone resistance and Vs (Vessia et al., 2020; 12 

Hallal and Cox, 2021). However, few attempts have considered the influence of soil geological 13 

uncertainty on the prediction of geotechnical properties (Zhang et al., 2021). The geostatistical 14 

approach has the advantage of being able to provide quantitative spatial predictions of soil 15 

types (probabilistic geological model) prior to estimating geotechnical properties, while also 16 

providing an assessment of spatial uncertainty. 17 

The objective of this paper is to conduct seismic microzonation mapping while considering the 18 

uncertainties associated with both geological and geotechnical models. The study was 19 

conducted over the city of Saguenay in Eastern Canada, which is a region with highly 20 

heterogeneous surficial geology and soil layers of varying thickness and stiffness (Salsabili et 21 

al., 2021). Geostatistical and multivariate statistical analyses were used to determine the spatial 22 

distribution and propagated uncertainties of seismic site parameters (Vs,30 and T0). Lithological 23 

heterogeneity was characterized through spatial simulation of the main geological units present 24 

in the study area (e.g., clay, sand and gravel). The resulting model depicts the probability of 25 

occurrence of geological units and their related spatial uncertainties based on the simulation 26 

variance. Multivariate statistical analysis was performed to develop the empirical Vs 27 

correlations. The geotechnical model was then built by combining the estimated occurrence 28 

probabilities of the soil units and the Vs empirical correlations for each soil type. Thus, a 29 

consistent spatial distribution of the respective Vs values and their uncertainties were 30 

determined in 3D. Finally, the 3D Vs model was transformed into 2D maps using Monte Carlo 31 
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simulations that show the spatial distributions of Vs,30 and T0, as well as their related 1 

uncertainties. 2 

 3 

METHODOLOGY AND PROCEDURE 4 

The methodology for developing a seismic microzonation map and the uncertainties at each 5 

step are presented in Figure 1. This methodology includes three major steps: (I) the 6 

development of probabilistic geological models, (II) the development of geotechnical models 7 

and (III) the mapping of soil properties. Uncertainties must be considered for each step. Below, 8 

we explain the different uncertainties that affect each step, as well as the methodology used to 9 

quantify the uncertainties in the geological and geotechnical models and in the mapping of soil 10 

properties. Numerical examples are used to clarify the approach. 11 

CONSIDERED UNCERTAINTIES 12 

As illustrated in Figure 1, soil variability is primarily rooted in two sources of uncertainty: 13 

(1) uncertainty resulting from the inherent variability of the natural process and (2) knowledge-14 

related uncertainties resulting from the statistical inference of a limited number of samples or 15 

from measurement imprecisions, i.e., statistical uncertainty or measurement error (Wang et al., 16 

2016). In addition, transformation uncertainty is introduced in the geotechnical variability 17 

when field or laboratory measurements are transformed into design soil properties using 18 

empirical or other correlation models (Phoon and Kulhawy, 1999; Wang et al., 2016). The 19 

propagation of the uncertainty to the design soil properties depends primarily on the 20 

combination of the analytical methods used and probabilistic analysis. Analytical methods vary 21 

from simple linear or empirical models to sophisticated constitutive models that include 22 

nonlinearity or elastoplasticity (Kaggwa and Kuo, 2011). Based on the complexity of the 23 

selected probabilistic and analytical methods, the response uncertainty varies from a single 24 

conventional statistical variance of averages to multiple probability density functions. 25 
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 1 

Figure 1. Variabilities and uncertainties affecting seismic microzonation mapping. 2 

 3 

GEO-MODELING: DEVELOPMENT OF GEOLOGICAL AND GEOTECHNICAL 4 

MODELS 5 

A quantitative geological model obtained by geostatistical simulation is presented, along 6 

with the probability of occurrence of the soil types. Probabilities are suggested to describe the 7 

different aspects of the uncertainty. The “simulation variance” is introduced as a quantitative 8 

measure of geological uncertainty (Yamamoto et al., 2014; Salsabili et al., 2021). Soil units are 9 

treated as Bernoulli variables with an outcome of either zero or one, and the variance (𝜎2(𝑥𝑖)) 10 

is computed based on the discrete probability distribution of a random categorical variable (𝑥𝑖) 11 

with an event probability of 𝑝𝑖 (Eq. (1) and Figure 2). 12 

𝜎2(𝑥𝑖) = 𝑝𝑖(1 − 𝑝𝑖), 𝑥𝑖  ∈  {0,1},𝑖 ∈  {1, … , 𝑘} (1) 

 13 
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 1 

Figure 2. Simulation variance for a Bernoulli variable as a function of the probability of occurrence. 2 

When the probability of an outcome is close to 0 or 1, the variance (or uncertainty) is low, whereas 3 

when the probability is 0.5, the variance is maximal and equal to 0.25. 4 

 5 

The flexibility of this approach is demonstrated in Figure 3, which shows an example of 2D 6 

grid cells of a binary soil unit (e.g., clay or sand). The certainty in distinguishing between the 7 

two soil units is represented by the probability of occurrence (Figure 3a). The values of 0 and 8 

1 represent zones with sand or clay only. On the other hand, uncertain zones have probability 9 

values between 0 and 1; a probability of 0.5 conveys no information to distinguish the soil unit 10 

as either sand or clay and thus represents the maximum uncertainty. To develop the respective 11 

geotechnical model and its associated uncertainty, a deterministic or probabilistic interpretation 12 

of the geological model can be used. Figure 3b presents the deterministic interpretation of the 13 

geological model, in which the highest probability of occurrence is used to represent the soil 14 

type of the cells. The input geotechnical parameters are arbitrarily assumed to be: 15 

𝑉𝑠,𝑠𝑎𝑛𝑑 = 400 𝑚 
𝑠⁄ , 𝑉𝑠,𝑐𝑙𝑎𝑦 = 200 𝑚 

𝑠⁄  , 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦

 =  40 𝑚
𝑠⁄ . 16 

It is clear that the local value on the Vs map varies sharply based on the cell’s soil type, whereas 17 

the 𝜎𝑉𝑠
  map is uniform, with 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑

 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦
 . The Vs map is determined solely by the binary 18 

variation of the soil units, not by the pi values; difficulties arise in determining Vs when the 19 

probability is approximately 0.5. In the probabilistic approach, the mean (𝐸(𝑍  
)) and 20 

combined variance (𝜎2(𝑍)) of a random geotechnical variable (𝑧𝑖) with a variance of 𝜎 
2(𝑧𝑖) 21 

are determined using Eqs. (2) and (3). 22 

(pi) 
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𝐸(𝑍  ) =  ∑ 𝑝𝑖 ×  𝑧𝑖 

𝑘

𝑖=1

 , (2) 

𝜎2(𝑍  ) =  ∑(𝑝𝑖 × (𝜎 
2(𝑧𝑖) + 𝑧𝑖

2)) −

𝑘

𝑖=1

𝐸(𝑍 )
2  

(3) 

 

For the example given in Figure 3, Eqs. (2) and (3) can be rewritten as follows: 1 

𝑉𝑠
𝑐𝑒𝑙𝑙 =  𝑝𝑐𝑙𝑎𝑦 × 𝑉𝑠,𝑐𝑙𝑎𝑦  + 𝑝𝑠𝑎𝑛𝑑 ×  𝑉𝑠,𝑠𝑎𝑛𝑑 , (4) 

𝜎
𝑉𝑠

𝑐𝑒𝑙𝑙 
2 = (𝑝𝑐𝑙𝑎𝑦 × (𝜎𝑉𝑠,𝑐𝑙𝑎𝑦

2 +  𝑉𝑠,𝑐𝑙𝑎𝑦
2 ) + 𝑝𝑠𝑎𝑛𝑑 × (𝜎𝑉𝑠,𝑠𝑎𝑛𝑑

2 + 𝑉𝑠,𝑠𝑎𝑛𝑑
2 )) −  (𝑉𝑠

𝑐𝑒𝑙𝑙 )
2
, (5) 

where 𝑉𝑠
𝑐𝑒𝑙𝑙 and 𝜎

𝑉𝑠
𝑐𝑒𝑙𝑙 

2  are the mean and combined variance of an example grid cell with 2 

probabilities of occurrence of 𝑝𝑐𝑙𝑎𝑦 for clay and 𝑝𝑠𝑎𝑛𝑑 for sand. Figure 3c presents the 3 

probabilistic interpretation of the geological model. Vs and its associated variance values vary 4 

gradually based on the pi values. The resulting variance (𝜎
𝑉𝑠

𝑐𝑒𝑙𝑙 
2 ) considers the “combined 5 

variance” of both the geological and geotechnical variables, and the uncertainty of the 6 

geological model is also reflected in the Vs map. The uncertainty in Vs is lowest when the 7 

simulation variance is zero (i.e., when 𝑝𝑖 = 1.0) and highest when all members are equally 8 

probable (i.e., when 𝑝𝑖 = 0.5). This approach contributes to a more realistic model of Vs and 9 

its associated uncertainties. It also allows for an interpretation in the uncertain zone based on 10 

transitional or mixed soil units, e.g., clayey sand or sandy clay, which is often referred to as a 11 

fuzzy interpretation in the spatial context (Wellmann and Regenauer-Lieb, 2012). Fuzziness is 12 

caused by imprecision and uncertainty, which are the main consequences of grouping similar 13 

soil units into broad categories with a certain level of ambiguity (McBratney and Odeh, 1997). 14 
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 1 
Figure 3. Numerical 2D grid cells presenting the methodology of probabilistic seismic mapping; (a) 2 

probability of possible outcomes for each soil unit in each cell and their visualized uncertainties 3 

(simulation variance); (b) deterministic Vs and uncertainty maps; (c) probabilistic Vs and uncertainty 4 

maps (𝑉𝑠,𝑠𝑎𝑛𝑑 = 400 𝑚 
𝑠⁄ , 𝑉𝑠,𝑐𝑙𝑎𝑦 = 200 𝑚 

𝑠⁄  , 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦

 =  40 𝑚
𝑠⁄ ). 5 

 6 

MAPPING OF SOIL PROPERTIES 7 

In accordance with the evaluation of soil properties in 3D, a straightforward procedure for 8 

mapping local site conditions is the time-weighted averaging velocity of the vertically 9 

propagating shear wave through the column of blocks, as expressed by (Eq. (6)). Figure 4 10 

presents a schematic cross-section of the three dominant geologic layers in the Saguenay region 11 

(from top to bottom): postglacial soils, glacial deposits (till), and bedrock. For the postglacial 12 

soils, the Vs is considered a normal random variable with mean and variance, 𝑉𝑠,𝑖
 =13 
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𝑁(𝜇𝑉𝑠,𝑖
 , 𝜎𝑉𝑠,𝑖

2 ), for each block obtained by Eqs. (2) and (3). The glacial deposits are assumed 1 

to take normal random Vs values with constant mean and variance, 𝑉𝑠,𝑡𝑖𝑙𝑙
 = 𝑁(𝜇𝑉𝑠,𝑡𝑖𝑙𝑙

 , 𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
2 ), 2 

whereas, for bedrock, the Vs value is considered to be scalar. These assumptions are elaborated 3 

in the following sections.   4 

 5 

Figure 4. Schematic cross-section of a 3D model containing postglacial, glacial, and bedrock 6 

units. 7 

For a given postglacial column with n blocks, 8 

𝑉𝑠,𝑝𝑔
 

 

 
= �̅�𝑠,𝑛

 
 

 
=   𝐸 [

𝐻 𝑛

∑
ℎ 

𝑉𝑠,𝑖
 

𝑛
𝑖=1

] =
𝐻 𝑛

ℎ
× 𝐸 [

1 

∑
1 

𝑉𝑠,𝑖
 

𝑛
𝑖=1

],  (6) 

where the thickness h of each block is assumed to be 2 m and the total thickness is 𝐻 𝑛
. The 9 

parameters Hn and h are not random variables but the 𝑉𝑠,𝑖
  is a random variable. Therefore, to 10 

estimate the shear wave velocity profiles (�̅�𝑠,𝑛
 ), one should rely on stochastic Monte Carlo 11 

simulations and develop a set of 𝑉𝑠,𝑖
  realizations. In this regard, a problem could arise when 12 

the random variable 𝑉𝑠
  tends towards zero, 1 𝑉𝑠

 ⁄  tends towards infinity, and the average of 13 

1 𝑉𝑠
 ⁄  becomes unstable. However, in practice, the 𝑉𝑠

 values are all well above zero and this 14 

problem does not arise. One solution would be to assume that 𝑉𝑠
  in each block follows a 15 

lognormal distribution. Hence, given that 𝐶. 𝑉. = 𝜎𝑉𝑠
2 𝜇𝑉𝑠

 ⁄  is quite small, the fit of lognormal 16 

and normal laws are almost equivalent.  17 
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Considering Y = ln (𝑉𝑠
 ), 𝜇𝑦

  and 𝜎𝑦
2 are equal to the mean and variance of Y, respectively. The 1 

relations between the mean and variance in real and log space are expressed as follows:  2 

𝜇𝑦
 = ln 𝜇

𝑉𝑠
 −

𝜎𝑦
2

2
⁄ , (7a) 

𝜎𝑦
2 =  ln (

𝜎𝑉𝑠
2

𝜇
𝑉𝑠
 2⁄ + 1). (7b) 

Therefore, for one realization of the random normal distribution of �̅�𝑠,𝑛
 , Eq. (6) can be rewritten 3 

as Eq. (8).    4 

𝑣𝑠,𝑝𝑔
 = �̅�𝑠,𝑛

 =
𝐻 𝑛 

∑
ℎ 

𝑒𝑅𝑎𝑛𝑑(𝑁(𝜇𝑦
 ,𝜎𝑦

2))

𝑛
𝑖=1

 
(8) 

  5 
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SAGUENAY CITY STUDY AREA 1 

Saguenay City was selected as the study area due to its relatively high seismic hazard 2 

(https://earthquakescanada.nrcan.gc.ca/) and the presence of heterogeneous Quaternary 3 

sediments with complex spatial and vertical architecture. It is the largest municipality within 4 

the Saguenay‒Lac-Saint-Jean region, covering 1136 km² with a population of 147,100. The 5 

recent most important seismic event was the 1988 M 6.0 Saguenay earthquake. The epicenter 6 

of the earthquake, which had a mid-crustal depth of 29 km, was 35 km south of the downtown 7 

area (Du Berger et al., 1991). The earthquake’s secondary effects included soil liquefaction, 8 

rock falls and landslides observed within a 200-km radius of the epicenter (Lamontagne, 2002). 9 

The bedrock in the Saguenay region is part of the Grenville province of the Canadian Shield, 10 

which is composed mainly of crystalline Precambrian rocks (Davidson, 1998). Based on the 11 

surficial geology maps, cross-sections and subsurface data (LaSalle and Tremblay, 1978; 12 

Daigneault et al., 2011; CERM-PACES, 2013), the soil deposits can be grouped into four major 13 

categories: till, gravel, clay and sand (Figure 5). 14 

 Till: This glacial sediment is located at the base of the stratigraphic soil column; it is 15 

compact and semiconsolidated. Till is the most common soil unit in the study area, with 16 

thicknesses ranging from a few meters to >10 m at certain locations. With the exception 17 

of rock outcrops, till covers the bedrock elsewhere, which is an important assumption 18 

in the 3D modeling approach. 19 

 Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists 20 

of gravel, sand and occasionally till. This unit occurs infrequently in the region and is 21 

often in contact with till, sand or clay units. 22 

 Clays: These fine postglacial sediments are the most abundant soil type by volume in 23 

the study area. Clays are classified as silt, silty clay or clay. They generally have a 24 

thickness of up to 10 m and may attain a maximum thickness of >100 m in the lowlands. 25 

 Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic 26 

sediments, as well as alluvial sands composed of sand and gravely sand. 27 

Other unconsolidated sediments, such as loose postglacial sediments (alluvium, floodplain 28 

sediments, organic sediments, etc.) and landslide colluvium, can also be found in minor 29 

https://earthquakescanada.nrcan.gc.ca/
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proportions. For the purposes of this study, these unconsolidated sediments are classified 1 

as sand, clay and/or gravel based on grain size. 2 

 3 

Figure 5. Saguenay city study area: surficial geology map (modified from Daigneault et al. 2011). 4 

 5 

3D PROBABILISTIC GEOLOGICAL MODELING 6 

Geostatistical simulation is widely used to model the spatial architecture of major 7 

lithofacies in reservoir and mineral resource modeling (Deutsch, 2006; Pyrcz and Deutsch, 8 

2014). Sequential indicator simulation (SIS) represents a practical approach for cases without 9 

an obvious genetic shape that can be incorporated into object-based modeling. It makes use of 10 

indicator kriging (IK), in which the Monte Carlo simulation draws a precise category at each 11 

location (Deutsch, 2006). SIS was used to determine the spatial boundaries of categorical 12 

variables (in this case, clay, sand and gravel) and to develop a model that captures the 13 

heterogeneity of soil properties prior to estimating geotechnical parameters (Salsabili et al., 14 

2021). The geostatistical simulation requires a full 3D volume to determine the soil type of the 15 

glacial and postglacial deposits. Accordingly, the entire model space was subdivided into a 16 

raster with equal cell sizes (also referred to as voxels or blocks representing the smallest unit 17 

of a given soil type). Salsabili et al. (2021) developed the model on the basis of comprehensive 18 
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datasets, including 3,524 borehole logs, 26 geological cross-sections, and 973 virtual 1 

boreholes. They were combined to create the total soil and till thickness maps and to generate 2 

the bedrock topography. The space between the top and bottom of each interface was filled 3 

with 75 m × 75 m × 2 m blocks to perform the geostatistical simulation. Then, the 3D model 4 

of soil type was created by using sequential indicator simulation. The spatial statistics of a 5 

target variable were reproduced with a set of alternative models of categorical variable spatial 6 

distributions called realizations. (Deutsch and Journel, 1997). The method consists of three 7 

steps, which are as follows: 8 

(i) Transformation of the soil types into K indicator variables 9 

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢 , 𝑘 = 1, … , 𝐾.

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

(ii) Determination of indicator variograms to model the spatial continuity of the indicator soil 10 

types (see Appendix); 11 

(iii) Sequential and reproducible simulations of the soil types based on field observations 12 

(conditional simulation). 13 

Overall, 100 realizations were generated using the conditional SIS method to determine the 14 

probability of occurrence (pi) for each of the postglacial deposits: clay, sand and gravel. The 15 

resulting probability values were used to estimate the associated simulation variance 16 

(uncertainty). Figures 6 and 7 show the probabilistic interpretations of the plan and the cross-17 

section of the 100 SIS realizations in a typical area containing all four surficial soil units. 18 

  19 
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(a) (b) 

Figure 6. Map of (a) soil units with the highest probability of occurrence at the ground surface and (b) 1 

one SIS realization showing sand, clay and gravel. (c) Local blown-up showing the surface soil 2 

variability in the SIS map. The AB line indicates the position of the cross-sections in Figure 7. 3 

 4 

 

 

 

 

 
 

Figure 7. Stratigraphic cross-sections A-B: (a) soil units with the highest probability of occurrence; (b) 5 

one SIS realization of sand, clay and gravel. Individual probabilities of occurrence for (c) clay, (d) sand 6 

and (e) gravel obtained from a set of 100 conditional SIS realizations. 7 
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DEVELOPMENT OF THE 3D GEOTECHNICAL MODEL 1 

For practical convenience and because the term “geotechnical model” has different 2 

meanings in the literature related to stability analysis (Phoon and Tang, 2019), the geotechnical 3 

model considered in this paper is valid within the limits of elastoplastic behavior before 4 

ultimate failure. In this context, the geotechnical model was created similarly to the 3D 5 

geologic model in terms of engineering parameters, i.e., Vs. The procedure includes two main 6 

steps: (I) developing Vs empirical correlations and (II) creating a 3D Vs model that incorporates 7 

the probabilistic geologic model and Vs empirical correlations. 8 

VS EMPIRICAL CORRELATIONS 9 

In situ Vs measurements can be obtained by invasive methods, such as cross-hole or 10 

downhole drilling, as well as noninvasive methods, such as refraction or surface wave methods 11 

(Hunter and Crow, 2012; Garofalo et al., 2016a, 2016b). The seismic piezocone penetration 12 

test (SCPTu) is an invasive method that provides optimized Vs intervals and continuous 13 

penetration results, allowing the development of reliable empirical correlations between Vs and 14 

strength-based soil parameters. In addition, CPTu profiling provides continuous logs of the 15 

interpreted soil stratigraphy (Prins and Andresen, 2021). Interpretations are based on the values 16 

of the CPTu parameters, such as the cone tip resistance (qt), sleeve friction and friction ratio in 17 

former studies (Robertson and Campanella, 1983) and the normalized cone resistance and 18 

friction in later studies (Robertson, 2009, 2016). For the development of Vs empirical 19 

correlations, we 1) perform SCPTu field tests, 2) collect and store existing data in a database, 20 

3) develop CPTu–Vs correlations by using the results of 15 SCPTu surveys, and 4) estimate Vs 21 

on the basis of CPT and SPT data by using empirical correlations for the entire study area. The 22 

final step involves developing Vs–depth correlations to assist in determination of the 3D Vs 23 

values.     24 

Field testing program 25 

Fifteen SCPTu surveys were carried out using a standard type 2 piezocone with the 26 

following specifications: 60° apex angle, 10 cm2 conical tip base area and 150 cm2 sleeve area, 27 

with the filter located at the shoulder. A dual-array seismic cone mounted on the top of the 28 

piezocone allows the measurement of arriving vertically propagating seismic body waves. For 29 

a given depth, the SCPTu method generates four types of data: Vs, the raw cone tip resistance 30 
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qc, the frictional cone resistance fs and the penetration pore pressure u2. The field program 1 

followed principally the ASTM D5778-12 procedure and preprocessing, and corrections were 2 

done in accordance with Lunne et al. (2002) and Robertson (2009). SCPTu surveys were 3 

performed at the penetration rate of 2 cm/s. High-resolution CPTu data were collected every 1 4 

cm, and Vs values were recorded at every 50 cm depth interval. Shear-wave velocities were 5 

determined from seismic signals by applying the cross-correlation algorithm (Campanella and 6 

Stewart, 1992). The cone tip was corrected, and qc and fs were cross-correlated by using the 7 

software CPeT-IT (GeoLogismiki, 2014). The predrill depth was assessed by applying the 8 

geological 3D model (Salsabili et al., 2021) prior to performing the field test. The maximum 9 

depth of testing was set to 30 m. The termination conditions were reached at the bedrock 10 

contact or in the presence of very stiff soil, such as till or gravel, where the pushing force 11 

reached the maximum. The ground water table in saturated drained soils (e.g., sands) was 12 

identified on the basis of pore water pressure (u0 ~ u2) and that in clayey soils was determined 13 

through dissipation tests. In some cases, before the sounding hole was destroyed, a piezometer 14 

was installed to measure the piezometric level. Precautions were taken in soils above the 15 

groundwater table that were saturated due to capillarity. 16 

Database 17 

The collected database contains more than 700 soil samples that were tested under 18 

laboratory conditions for physical properties such as unit weight, permeability, natural water 19 

content, Atterberg limits, plasticity and liquidity index, as well as for mechanical properties 20 

such as preconsolidation stress, compression index, and sensitivity. The results show a 21 

relatively high variability of the sensitivity of the fine-grained sediments, ranging from 1 to 22 

~2700; however, most of the data vary from 1 to 50, with a median value of 44. The natural 23 

water content (w) ranges from 9 to 70%; most of the plasticity index data vary from 5 to 25%; 24 

more than 50% of the samples have a liquidity index greater than one; and the unit weights 25 

range between 17 and 19 kN/m3, with an average value of approximately 18 kN/m3 and a 26 

relatively weak correlation between the unit weight and depth (R2 ≈ 0.2). 27 

In situ tests with invasive methods were conducted during three field campaigns (Figure 8): 28 
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 15 recent SCPTu surveys were conducted by the Université du Québec à Chicoutimi 1 

(UQAC) research group. The data include the complete set of qt, fs, u2 and Vs 2 

measurements. 3 

 Ninety-one CPT profiles were obtained during the 1980s and 1990s by the Quebec 4 

Ministry of Transport (MTQ). The CPT data set is limited to measurements of qc and 5 

fs. For the purposes of the present study, the field reports were digitalized, and Vs was 6 

calculated using the developed sit-specific CPT-Vs correlation. 7 

 Sixty-four standard penetration tests (SPTs) were acquired during the 1980s and 1990s 8 

by the MTQ. The results were incorporated in the determination of the geotechnical 9 

properties of coarse-grained soils. 10 

 11 

Figure 8. Distribution of geotechnical test sites. The background presents soil thickness (modified from 12 

Salsabili et al., 2021), and validation was conducted at the three indicated sites. 13 

 14 

Development of CPTu-Vs correlation 15 

After performing 15 SCPTu surveys and collecting raw data, the data were statistically 16 

preprocessed due to the presence of surface noise. As part of the process, the Vs outliers were 17 

determined using a box plot, in which their values were above the upper quartile or below the 18 

lower quartile of 1.5 times the interquartile range. Next, 568 CPTu-Vs data pairs were retained 19 

for analysis. The Vs values were assumed to be consistent for the intervals of 50 cm, and the 20 



18 

 

midpoint of each interval was assumed to be the depth (D) of the measured Vs. Figure 9 shows 1 

the relationships between Vs and the CPTu-based parameters. The color range is based on the 2 

variation in the soil behavior type index (Ic). The positive correlation between the CPTu 3 

measurements and Vs was mainly attributed to the soil’s stiffness properties and overburden 4 

pressure, which were represented by qt and D, respectively.  5 

 6 

Figure 9. Relationships between Vs and CPTu-based parameters. qt is the corrected cone tip resistance 7 

in MPa, fs is the sleeve friction resistance in kPa, and D is the depth (m).  8 

 9 

The general CPTu–Vs correlation was developed for postglacial soils using 568 data pairs (Eq. 10 

(10)). By distinguishing between cohesive (clay-like) and cohesionless (sand-like) soils, simple 11 

and robust regression equations for non-piezocone profiles can be developed. The soil behavior 12 

type index (Ic) was used to classify soil into two categories: clay (Ic > 2.6) and sand (Ic < 2.6). 13 

The soil-specific CPT-Vs correlations for the clayey soil (Eq. (11)) and for the sandy soil (Eq. 14 

(12)) are indicated as follows: 15 

All soils: Vs = 7.648qt
0.35Ic

0.322D0.031(1 + Bq)0.653 N = 568 R2 = 0.692 (10) 

Clay: Vs = 10.052qt
0.379D0.085 N = 453 R2 = 0.813 (11) 

Sand: Vs = 38.757qt
0.174D0.099 N = 115 R2 = 0.545 (12) 

where qt is in kPa; D is depth (m) and Bq is normalized pore pressure (for detailed 16 

calculation see Robertson, (2009)).  17 

Vs–depth profile 18 

The Vs–depth profile is of interest because it is frequently used as a proxy for Vs prediction 19 

(Motazedian et al. 2011, 2020; Rosset et al. 2015; Nastev et al. 2016a). The depth, D, has a 20 
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significant correlation with the measured Vs value and enables straightforward prediction of 1 

the spatial variability of Vs by assigning different depth values. 2 

Following the retrieval and processing of the older MTQ CPT logs, 4600 averaged data 3 

pairs of qt and fs were generated at 50 cm intervals. The Vs values were predicted by using the 4 

developed empirical CPT–Vs correlations (Eqs. (11) and (12)) for sands and clays. In addition, 5 

the SPT data were converted into Vs by applying the empirical relationship of Ohta and Goto 6 

(1978) for gravel sediments. Then, linear and nonlinear Vs–depth regression analyses were 7 

conducted on SCPTu and CPT–Vs data for sand and clay soils (Eqs. (13) – (15)) and on SPT–8 

Vs data for gravels (Eq. (16)). The results are also shown in Figure 10. The standard deviations 9 

of the Vs–depth correlations were used as a measure of statistical uncertainty. Note that the data 10 

from CPT–Vs and particularly SPT–Vs were subject to epistemic uncertainties. These sources 11 

of uncertainty have not been considered in our methodology, due to the limitations in analytical 12 

calculations. The use of site-specific Vs correlations for the dominant soil types of the study 13 

area (sand and clay) is, however, intended to reduce the epistemic uncertainties.   14 

Sand and Clay mixture: Vs = 144.9 + 2.55 × D 𝜎𝑉𝑠,𝑆𝐶
 = 34 𝑚/𝑠 R2 = 0.43 (13) 

Clay: Vs = 114.5 + 9.4 × D0.76 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦
 = 33 𝑚/𝑠 R2 = 0.59 (14) 

Sand: Vs = 150.47 × D0.149 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 21 𝑚/𝑠 R2 = 0.66 (15) 

Gravel: Vs = 46.86 + 61.55 × D0.50 𝜎𝑉𝑠,𝑔𝑟𝑎𝑣𝑒𝑙
 = 34 𝑚/𝑠 R2 = 0.52 (16) 
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 1 

Figure 10. Interval Vs–depth relationships for postglacial sandy and clayey soils. Bold lines indicate 2 

average values; gray lines indicate ±2 standard deviations (σ). 3 

 4 

3D GEOTECHNICAL MODELING 5 

A probabilistic method was used to estimate Vs. The Vs values for postglacial deposits were 6 

estimated on the basis of the probabilistic approach by using Eq. (2). The Vs values were 7 

calculated by using the Vs–depth profiles (Eqs. (14)-(16)) and the probability of soil occurrence 8 

(pi). Then, the associated uncertainty was calculated on the basis of the combined variance 9 

approach (Eq. (3)) where the variance of the regression models for each soil type was 10 

incorporated for each block. Given that regression analysis removes the trend from the 11 

observed data, it allows residuals to behave as independent variables with a normal distribution, 12 

indicating that the Vs of each block is assumed to be normal. Figure 11a presents the developed 13 

3D geotechnical model, which indicates the spatial distribution of Vs, and its associated 14 

uncertainty is shown in Figure 11b. It should be mentioned that the spatial correlation of the 15 

shear wave velocity within each geological unit is overlooked in this approach (see Toro 16 

(2022), auto-regressive model). This limitation can be addressed in a future study by 17 

consideration of Vs as a random field variable using a geostatistical approach by Vs profiling 18 
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(Passeri et al., 2020); full 3D modeling, such as sequential Gaussian simulation (Pyrcz and 1 

Deutsch, 2014); or with Markov chain Monte Carlo simulations (Wang et al., 2016). 2 

 Due to the lack of Vs measurements in glacial deposits and bedrock and the geological 3 

similarities between till and crystalline bedrock, the regional Vs values of the glacial deposits 4 

and bedrock were calculated from the data obtained by Motazedian et al. (2011) (Vs,till = 580 5 

m/s, σVs,till=175 m/s) and Nastev et al. (2016b) (Vs,rock = 2500 m/s). 6 

 7 

Figure 11. Probabilistic geotechnical model for the city of Saguenay: (a) 3D shear wave velocity and 8 

(b) associated Vs standard deviation. The color range indicates the Vs of postglacial deposits. The 9 

assumed uniform values for the glacial deposits were Vs,till = 580 m/s and σVs,till=175 m/s. 10 

 11 

(a) 

(b) 
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COMPARISON TO RECORDED DATA 1 

Three sites (Figure 8) composed of (1) sensitive clay soils, (2) transitional soil layers and 2 

(3) sandy soils with thin interbeds of clays, were selected to visually demonstrate the capability 3 

and efficiency of the developed probabilistic and deterministic models in predicting the Vs 4 

values of the various soil types. In general, the predicted Vs values correspond fairly well to 5 

the measured values, although several inconsistencies were noted. 6 

Soil classification was first performed using widely accepted CPTu-based charts and indices 7 

to determine the soil stratigraphy in selected SCPTu locations (Robertson, 2009, 2016). The 8 

normalized soil behavior type (SBTn) chart proposed by Robertson (2016) delineated the in 9 

situ behavior of soils, such as sensitivity, contractivity, or tendency to dilate, in addition to 10 

textural descriptions. Figure 12a shows a dominant fine-grained soil profile with alternating 11 

soft clay and silty clay sediment layers known as sensitive clays. Lower values of qt and fs and 12 

higher values of u2 are typical indicators for distinguishing these soils. The CPTu parameters 13 

(qt, fs and u2) fluctuate continuously over a short distance before stabilizing with depth, 14 

confirming the continuous stratigraphy of Laflamme-sensitive clays. Figure 12b depicts 15 

heterogeneous transitional soils with alternating clay and silty clay soils. The profile starts with 16 

interbedded thin (< 10 cm) sandy soils that transform into fairly soft transitional soils, most 17 

likely silty clay and clay soils. Figure 12c depicts a site with clean sandy soil interspersed with 18 

thin interbeds of fine-grained silt and clay soils. The variation in CPTu parameters indicates a 19 

sharp rather than a transitional change in soil behavior type. 20 

  
(a) Sensitive clay, SCPT-45AVF (b) Transitional soils, SCPT-30AF 
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SBT index (Ic) 

Ic<1.31 gravelly sand to dense sand 

1.31<Ic<2.05 clean to silty sand 

2.05<Ic<2.60 silty sand to sandy silt 

2.60<Ic<2.95 clayey silt to silty clay 
2.95<Ic<3.60 clay 

Ic>3.60 organic soil 

(c) Sandy soils, SCPT-2AF   

Figure 12. SCPTu profiles at three different sites composed of (a) sensitive clay soils, (b) transitional 1 

soil layers and (c) sandy soils with thin interbeds of clay; classification based on the SBTn chart 2 

(Robertson, 2016). 3 

 4 

Figure 13 shows cross-sections of the 3D Vs block model and their associated standard 5 

deviations at the three representative SCPTu locations. Eq. (2) was calculated for each 3D 6 

block to generate the probabilistic Vs model 𝑉𝑠
𝑝
 (Figure 13a). The respective standard 7 

deviations obtained from the combined variance (Eq. (3)) are illustrated in Figure 13b. As 8 

indicated earlier, the soil type behavior at these locations varies from top to bottom as follows: 9 

clayey, transitional and sandy soil. The resulting 𝑉𝑠
𝑝
 values depend primarily on the depth and 10 

the probabilities of occurrence of the soil types. Based on Eq. (3), the resulting 𝜎𝑉𝑠
𝑝 values 11 

represent a combined standard deviation of 𝑉𝑠,𝑐𝑙𝑎𝑦
 , 𝑉𝑠,𝑠𝑎𝑛𝑑

  and 𝑉𝑠,𝑔𝑟𝑎𝑣𝑒𝑙
 , with their respective 12 

probabilities incorporated. The relatively higher 𝜎𝑉𝑠
𝑝 values for the sandy soil profile (Figure 13 

13b bottom) than for the clayey soil (Figure 13b top) were attributed to higher heterogeneity 14 

in the sand profile, which resulted in higher simulation variance. 15 

Figure 13c compares the measured Vs values using the SCPTu test, Vs predictions based on the 16 

deterministic 𝑉𝑠
𝑑 approach, and Vs predictions based on the probabilistic 𝑉𝑠

𝑝
 approach. The 17 

deterministic 𝑉𝑠
𝑑 values depend only on the depth of occurrence of each soil type, which are 18 

respectively shown in Eqs. (14)–(16). Essentially, the prediction methods serve as a good proxy 19 

for Vs measurements. In clays, which make up the majority of the study area, the estimated Vs 20 

values correspond closely to their measured counterparts. In transitional soils, we observed 21 

underestimations, but interestingly, the probabilistic approach provided better results. In sandy 22 

soils, due to intrinsic heterogeneity, the measured Vs values fluctuate considerably, and both 23 
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the deterministic and probabilistic approaches underestimated Vs; however, in clay interbeds, 1 

the estimated Vs values were in good agreement with the measured values. We should note that 2 

the comparison of the model to recorded shear wave velocity profiles at three locations is 3 

insufficient for a general statement. Additional analyses with a larger dataset by performing 4 

non-invasive geophysical tests are needed to make general statements about the performance 5 

of the model.   6 
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Clayey soils 

   
Transitional soils 

   
Sandy soils 

   
(a) probabilistic Vs model (b) Vs standard deviation (c) Vs profile 

Figure 13. (a) Probabilistic 3D Vs block model and (b) associated standard deviations at the three 1 

different sites (from top to bottom): clayey, transitional and sandy soil; (c) comparison of the respective 2 

Vs profiles: SCPTu measurements (𝑉𝑠
∗), deterministic predictions (𝑉𝑠

𝑑), and probabilistic predictions 3 

(𝑉𝑠
𝑝
). 4 
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VS,30 AND T0 MAPPING 1 

Seismic site parameters, namely, the shear-wave velocity of the top 30 m, 𝑉𝑠,30, and the 2 

fundamental site period, T0, were introduced to conduct site classifications. The computations 3 

were performed based on a 2D raster with a cell size of 75×75 m. The time-averaged shear-4 

wave velocity was first estimated using Monte Carlo simulations of 20,000 realizations for 5 

postglacial soils from the ground surface down to the interface with the underlying glacial soils 6 

or bedrock (Eq. (8)). Then, the averaged VS values of a complete geologic soil column, 7 

including the postglacial soils, till, and rock, were obtained by performing Monte Carlo 8 

simulations of 20,000 realizations, as respectively indicated in Eqs. (17), (18), and (18) (the 9 

optimum number of realizations can be found in Appendix B):  10 

𝑣𝑠,30
 =

30 
ℎ𝑝𝑔 

𝑒
𝑅𝑎𝑛𝑑(𝑁(𝜇ln (𝑉𝑠,𝑝𝑔)

 ,𝜎ln (𝑉𝑠,𝑝𝑔)
2 ))

+
ℎ𝑡𝑖𝑙𝑙 

𝑒
𝑅𝑎𝑛𝑑(𝑁(𝜇ln (𝑉𝑠,𝑡𝑖𝑙𝑙)

 ,𝜎ln (𝑉𝑠,𝑡𝑖𝑙𝑙)
2 ))

+
(30−ℎ𝑠𝑜𝑖𝑙)

𝑉𝑠,𝑟𝑜𝑐𝑘
 

,  
(17) 

𝑇0 =
4×ℎ𝑠𝑜𝑖𝑙

𝑉𝑠,𝑎𝑣𝑔
, (18) 

where N is the notation of normal distribution with parameters;  𝑉𝑠,𝑝𝑔
 , 𝑉𝑠,𝑡𝑖𝑙𝑙

 (=11 

𝑁(580 𝑚/𝑠, 1752)), and 𝑉𝑠,𝑟𝑜𝑐𝑘
 (= 2500 m/s)  are the shear-wave velocities of postglacial, 12 

glacial deposits and bedrock, respectively; 𝑉𝑠,𝑝𝑔
  is computed using Eq. (6) with the 13 

incorporation of the 3D Vs model; ℎ𝑠𝑜𝑖𝑙 = ℎ𝑝𝑔 + ℎ𝑡𝑖𝑙𝑙; and 𝑉𝑠,𝑎𝑣𝑔 is the soil average shear-wave 14 

velocity obtained by Eq. (19): 15 

𝑣𝑠,𝑎𝑣𝑔 =
ℎ𝑠𝑜𝑖𝑙

ℎ𝑝𝑔 

𝑒
𝑅𝑎𝑛𝑑(𝑁(𝜇ln (𝑉𝑠,𝑝𝑔)

 ,𝜎ln (𝑉𝑠,𝑝𝑔)
2 ))

+
ℎ𝑡𝑖𝑙𝑙 

𝑒
𝑅𝑎𝑛𝑑(𝑁(𝜇ln (𝑉𝑠,𝑡𝑖𝑙𝑙)

 ,𝜎ln (𝑉𝑠,𝑡𝑖𝑙𝑙)
2 ))

. 

(19) 

The final maps of the seismic site parameters are shown in Figure 14. At first glance, the spatial 16 

distribution of the seismic site parameters appears to follow the general variation patterns of 17 

surficial soil thickness (Figure 8). In shallow areas, where the thickness of the overlying soils 18 

is less than 30 meters, 𝑉𝑠,30 and T0 exhibit the same pattern. The majority of the region was 19 

classified as rock or very stiff soil sites, with an average vibration period of less than 0.2 s, 20 

indicating that the seismic site response at these locations coincides at high frequencies, similar 21 

to rock outcrops (Zhao et al., 2006). In contrast, regions with thicker sediments, where 𝑉𝑠,30 < 22 

360 m/s and T0 > 0.4 s, represent sites with seismic responses that resemble medium and soft 23 
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soil behavior during seismic incidents. These zones will generally be sensitive to distant strong 1 

earthquakes with dominant low-frequency signals. 2 

 
(a) 

 
(b) 

Figure 14. Spatial distributions of (a) 𝑉𝑠,30 and (b) fundamental site period, 𝑇0. 3 

 4 

As a result of the Monte Carlo simulations, the uncertainties associated with the seismic site 5 

parameters Vs,30 and T0 can also be determined. The 𝜎𝑉𝑠,30
  and 𝜎𝑇0

 values were determined by 6 

resampling the 20,000 simulations for the complete soil column. 7 

 It should be noted that in this study, 𝜎𝑉𝑠,𝑟𝑜𝑐𝑘
2  was neglected to better reflect the uncertainty of 8 

only soil deposits. The spatial distributions of 𝜎𝑉𝑠,30
  and 𝜎𝑇0

 are shown in Figures 15a and 15b. 9 

 10 

  
(a) (b) 
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(c) (d) 

  
Figure 15. Spatial distributions of the associated uncertainties of seismic site parameters: (a) 𝜎𝑉𝑠,30

 , (b) 1 

𝜎𝑇0
, (c) Vs,30 coefficient of variation, and (d) T0 coefficient of variation.  2 

 3 

Visual comparisons of Figures 15a and 15b with the corresponding spatial distributions in 4 

Figure 14 indicate that the uncertainties are approximately proportional to the modeled 𝑉𝑠,30 5 

and T0 values. Therefore, the distribution of 𝜎𝑉𝑠,30
  showed an approximately inverse spatial 6 

pattern relative to that of 𝜎𝑇0
. Figures 15c and 15d present the coefficients of variation of 𝑉𝑠,30 7 

and T0, respectively. The areas with relatively high uncertainty in 𝑉𝑠,30 and T0 are characterized 8 

by shallow deposits.     9 

  
(a) (b) 

Figure 16. The effects of geological spatial uncertainty on the uncertainties of seismic site parameters: 10 

(a) 𝜎𝑉𝑠,30
  and (b) 𝜎𝑇0

. 11 

 12 
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The standard deviations shown in Figure 15 represent the model uncertainties that result from 1 

both the spatial variation of the geological soil units and the predicted Vs data. The efficiency 2 

of the developed methodology can be observed in Figure 16, which depicts the effect of 3 

geological uncertainty on the resulting geotechnical model. The certainty of the geological 4 

model is highest (pi ~ 1) in the vicinity of the boreholes, and thus, the combined uncertainty of 5 

the geological and geotechnical models has its lowest value at these locations. In contrast, as 6 

the distance from the boreholes increases, the spatial uncertainty in the prediction of the soil 7 

units increases, leading to increased geotechnical model and seismic map uncertainty. 8 

CONCLUSION 9 

This study proposed a novel approach for determining the spatial uncertainties of the 10 

geological model and propagating these uncertainties to the geotechnical response variable Vs. 11 

A probabilistic approach for seismic site characterization was introduced to develop the 3D Vs 12 

model and to assess the uncertainty associated with combining various types of uncertainties 13 

in building the geological and geotechnical models. The model uncertainty was calculated 14 

using the combined variance of the probabilistic geological model and the variance of the Vs–15 

depth regression model. 16 

Given the complex stratigraphic setting and soil type heterogeneity of the study area, sequential 17 

indicator simulation was used to predict the probability of occurrence of the postglacial soil 18 

deposits. To quantify the uncertainty associated with the geological model, a method for 19 

determining the simulation variance was introduced. 20 

Due to the lack of direct Vs measurements, it was necessary to supplement the Vs values inferred 21 

from existing CPT logs, which covered most of the study area. SCPT surveys were conducted 22 

to develop empirical site-specific CPT-Vs correlations for postglacial sediments in the study 23 

area, thereby reducing the epistemic uncertainties associated with the use of existing global 24 

correlations. 25 

The Vs correlation functions were developed using nonlinear regression analyses, which 26 

incorporated qt, depth and the SBT indicators for general soil types. In soil-specific 27 

correlations, the depth and qt control the significant variability of Vs, and the developed CPT-28 

Vs correlations were proposed for clay-like and sand-like soils. 29 
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The final output consisted of maps of the main site effect parameters Vs,30 and T0, the 1 

uncertainties of which were assessed by using a 3D Vs model. The Vs,30 and T0 spatial 2 

distributions appear to follow the general variation patterns of the surficial soil thickness. In 3 

shallow sediments, the 𝑉𝑠,30 and T0 maps represent rock or very stiff soil conditions, with 4 

seismic responses in short vibration periods ≤ 0.2 s. In contrast, regions with thicker sediments 5 

denote sites with potential responses that resemble medium to soft soil conditions, with longer 6 

vibration periods dominating. 7 

The respective 𝜎𝑉𝑠,30
  and 𝜎𝑇0

 maps represent the inherent random and epistemic uncertainty in 8 

the models, which are associated with both the spatial variability of the geological units and 9 

the statistical dispersion of the Vs data. As a result, the combined uncertainty of the geological 10 

and geotechnical models decreases in the vicinity of the geological boreholes due to the higher 11 

certainty of the geological model. In contrast, as the distance from the boreholes increases, the 12 

spatial uncertainty increases, resulting in greater uncertainties of Vs,30 and T0. 13 
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APPENDICES 1 

APPENDIX A 2 

Directional and omnidirectional variograms were analysed using a lag size of 25 m to 3 

model the variability at the short scale of all soil units. Lag sizes of 300 and 750 m were adopted 4 

to capture the variability at the long scale for gravel, sand and clay layers. The selected 5 

bandwidth was three times larger than the lag size to limit eventual deviation around the 6 

direction of the azimuth vector. The range of short-scale variability can be measured within 7 

hundreds of meters, as indicated in Table A1, whilst that of long-scale variability is within 8 

thousands of meters. Significant spatial variances were captured in short-scale variability.  9 

Table A1. Variogram model parameters of the soil type indicators. 10 

Variables 
Number of 

Structures 

Model Properties 

Structure 1 

Model Properties 

Structure 2 

Model 

Type 

Anisotropy Axis (amax, 

amed, amin) 
Model Parameters Model Type 

Anisotropy Axis (amax, 

amed, amin) 
Model Parameters 

Clay 2 Sp. (135°,45°,90°) 

Nugget: 0.01 

R1: (375,212.5,75) 

Sill1 *: 0.18 

Ex. (135°,45°,90°) 
R2: (12825,4275,75) 

Sill2 *: 0.05 

Sand 2 Sp. (135°,45°,90°) 
Nugget: 0.02 

R1: (412.5187.5,62.5) 

Sill1 *: 0.17 

Sp. (0°,0°,90°) 
R2: (12375,12375,62.5) 

Sill2 *: 0.03 

Gravel 2 Sp. - 
Nugget: 0.01 

R1: (150,150,150)  

Sill1 *: 0.026 

Ga. (0°,0°,90°) 
R2: (4600,4600,150) 

Sill2 *: 0.015 

* Partial sill, R: range (meter), Sp.: spherical, Ex.: exponential, Ga.: Gaussian. amax, amed and amin 11 

refer to the azimuths of the three principal axes of the anisotropy. 12 

 13 

Table A2 provides the proportions of each soil unit based either on real or on virtual 14 

borehole logs. Given that virtual boreholes are designed in a systematic pattern, the percentages 15 

of virtual data are deemed reliable estimates for the marginal probabilities that are applied in 16 

the geostatistical simulation.  17 

Table A2. Proportion of each soil type based on real and virtual borehole logs. 18 

Geological Unit Real Borehole Data (%)  Virtual Logs (%) 

Clay 53.60% 58.54% 

Gravel 6.80% 2.06% 

Sand 35.66% 18.37% 

Till 3.94% 21.03% 

 19 
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The reproduction of the input variogram models and the proportion of categorical variables 1 

were the two key criteria for checking the realizations. Moreover, given that the results of 2 

simulation analyses should not be dependent on the number of realizations that were generated, 3 

the stability of proportions (Table A2) and the probability of soil units in the dataset as a whole 4 

or a subset of data had to be confirmed.  5 
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APPENDIX B 1 

Due to a large number of Vs, Vs,30, and T0 values in this case study, the optimal number of 2 

iterations must be determined to achieve the desired level of precision before running the 3 

simulations. Figure B indicates two representative sites used in the Monte Carlo simulations 4 

with different numbers of iterations. Figure B(a) presents the results of Site I with only 5 

postglacial soil columns, and Figure B(b), Site II with 12 m postglacial soils, 6 m glacial 6 

deposits and 12 m rock. Owing to the use of logarithmic values in the simulation of Vs, the 7 

estimates show low fluctuations with less than ~0.5 m/s for Vs,30 and ~ 0.02 s for T0, particularly 8 

after 20,000 iterations. Therefore, to avoid time-consuming iterations, Monte Carlo simulations 9 

of all sites were carried out for 20,000 iterations to obtain the accurate and steady estimates of 10 

Vs,30 and 𝜎𝑉𝑠,30
 . 11 

  

  
(a) 

  

  
(b) 
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Figure B. Vs,30 and T0 estimates (left) and their associated standard deviation (right) for the 1 

representative (a) Site I  and (b) Site II with different numbers of Monte Carlo iterations.   2 


