
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Uncertainty Quantification and Global
Sensitivity Analysis of a Lagrangian
Acoustical-meteorological Coupled

Simulation

Hessel Juliust





Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Uncertainty Quantification and Global Sensitivity
Analysis of a Lagrangian Acoustical-meteorological

Coupled Simulation

Author: Hessel Juliust
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisors (DLR): Dr. Katharina Elsen

Dr. Arthur Schady
Advisor (TUM): Dr. Tobias Neckel
Submission Date: October 29th, 2022





I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

October 29th, 2022 Hessel Juliust





Acknowledgments

This thesis is part of my studies at the Technical University of Munich (TUM). The re-
search reported in this thesis was carried out at the Institute of Atmospheric Physics at the
German Aerospace Center (IPA-DLR) Oberpfaffenhofen.

In this opportunity, I would like to to thank Dr. Katharina Elsen and Dr. Arthur Schady as
my advisors from DLR who have given me this opportunity to do research on this partic-
ular topic and for their willingness to provide assistance whenever I encounter difficulties
on every scale. I am also thankful to Dr. Tobias Neckel as my advisor from TUM for the
supports and discussions especially regarding to the uncertainty quantification.

Additionally, I would like to express my gratitude to Claussen-Simon-Stiftung for the sup-
ports for the first 4 semesters by Master Plus Scholarship. Last but not least, I am very
grateful to my family and friends especially my mom for their supports throughout my
studies.

vii



”I think that when we know that we actually do live in uncertainty, then we ought to admit it; it
is of great value to realize that we do not know the answers to different questions. This attitude of
mind – this attitude of uncertainty – is vital to the scientist, and it is this attitude of mind which
the student must first acquire”

-Richard P. Feynman
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Abstract

The sound propagation model supports acoustic noise pollution studies. Since most
of the noise sources are located outdoors, an acoustical-meteorological coupled simula-
tion is required. However, meteorological parameters are always uncertain and can af-
fect model output. In order to ensure that proper conclusions will be obtained from the
simulation, an uncertainty analysis should be carried out. However, such an analysis is
still rarely applied in the research field. Therefore, this thesis addresses the question of
which approach is suitable for analyzing the uncertainty and sensitivity of a particular
acoustic-meteorological coupled model. In this study, the uncertainty of the Lagrangian-
based acoustical-meteorological coupled model is analyzed.

This study focuses on the methods of Monte Carlo and the generalized polynomial
chaos expansion, both of which make it possible to obtain the first statistical moment and
the Sobol’ sensitivity indices for uncertainty and sensitivity analysis, respectively. These
methods are applied to acoustical-meteorological simulations with several hill topogra-
phies and also with several variations of meteorological parameters. The results are com-
pared and it is observed that both methods can be applied. The generalized polynomial
chaos expansion method produces similar results to the Monte Carlo method but with
lower computational costs. The results also show the same pattern as other studies on the
meteorological effects on sound propagation for specific test cases.
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1. Introduction

The noise caused by wind turbine is a major concern since the number of onshore wind
power plants increases and small turbines are substituted by higher and more powerful
ones, therefore reliable noise predictions are needed [ 15 ]. Sound waves are generated by
the interaction between the wind and the rotating blades (aerodynamic noise) or by other
sources at the turbine and propagate through the atmospheric boundary layer. The out-
door propagation of sound is strongly determined by characteristics of the atmosphere
and the underlying ground [ 7 ].

Various models have been developed to simulate the sound propagation which also in-
cluded the effects of the meteorological condition (or usually refer as acoustical-meteorological
coupled simulation), for example AKUMET (sound ray particle based) [ 17 ], AKU3D (sound
wave PDE, FDTD solver based) [ 2 ], or other commercial industrial software. Meteorolog-
ical conditions are rarely constant, thus these models are subjects to uncertainties even
though the results of these models are merely values of sound pressure level (SPL), with-
out information on how uncertain these values are. These uncertainties that propagate
through the model might affect the output and could affect the reliability of the simula-
tions thus might also cause a misleading conclusions.

How meteorological conditions affects the sound propagation have previously been
studied many times, such as by Heath [ 14 ] which explained the effect of wind and tem-
perature and by Heimann [ 15 ] which studied the case of wind turbine on the top of a
hill using 9 test cases which included the variation of  geostrophic wind speed, horizontal
large-scale pressure gradient, background temperature gradient,  dew point difference and

 roughness length . These mentioned scenario are usually specific examples and can only
be transferred to limited extent according to the local meteorological conditions. However,
the uncertainties of sound pressure level that is caused by multiple meteorological condi-
tion samples with a certain distribution of the uncertain inputs have never been studied
before, particularly the one that is simulated by the Lagrangian sound particle model. If
the uncertainty can be quantified, then an additional action can also be done in order to
reduce the sound pollution.

More to that, uncertainties that are propagated through the model may originate from
many different parameters. Therefore, one parameter affects uncertainty to the model
differently to other parameter and this property can described by it’s sensitivity metric.
Therefore, other than the analysis of the uncertainty, the sensitivity of the parameters
should also be analyzed.

In this research, the model to be analyzed is AKUMET, since it has been used for many
researches and the meteorological fields on the whole domain can be generated by certain
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1. Introduction

parameters only. Inspired by this fact, there are questions that will be discussed in this
thesis, namely:

1. How to quantify the uncertainty of the sound pressure level, which is the output of
AKUMET that is affected by the uncertain meteorological or topographical parame-
ters?

2. How to quantify the sensitivity of uncertain meteorological or topographical param-
eters?

3. Which uncertain meteorological or topographical parameters that cause a lot of un-
certainty in the output sound pressure level?

4. How do the uncertain input parameters affect the behaviour of the sound pressure
level output?

The first and second research questions are answered by comparing different methods of
uncertainty quantification and sensitivity analysis. The methods under consideration are
Monte Carlo method and generalized polynomial chaos expansion (gPCE) method with
the pseudo-spectral approach. After the first two questions are answered then the third
question will be answered by doing the sensitivity analysis with the 2-dimensional setup
and with the most extreme variability of parameters that can exist in the real world. The
goal is, since the 2-dimensional and 3-dimensional use the same model, the sensitivity
should be similar. For the fourth question, various cases of acoustical-meteorological sim-
ulation are studied and comparisons with previous research about effects of meteorologi-
cal variability on sound propagation are done. Since most human activities are carried out
at the ground level, the research for this thesis mostly focuses on the analysis of the ground
level, especially for the 3-dimensional setup rather than the whole domain of sound prop-
agation, even though the source of the sound is located above the ground.

The thesis is structured as follows. After introduction of the thesis from this first section,
section  2 gives a theoretical overview about numerical quadrature and orthogonal poly-
nomial for the basis of the generalized polynomial chaos expansion method with pseudo-
spectral approach and ray acoustic in general for the Lagrangian based sound propagation
model. The discussion in section  3 , focuses on the methods of uncertainty quantification
and sensitivity analysis. In section  4 , an explanation of AKUMET as the sound propagation
model is given, namely the governing equation and it’s parameters that will be varied for
the uncertainty and sensitivity analysis. Also on the fourth section, the uncertainty quan-
tification programming libraries and the parallel computing method to assist the research
are described. In the end of the fourth section, all scenario for uncertainty quantification
and sensitivity analysis for this research are described. Finally, the results of this research
and their relevance are discussed along with possible outlook for further research.
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2. Theoretical Foundation

2.1. Numerical Quadrature and Sparse Grids

In this section quadrature rules that are used for approximating a definite integral of a
function f(x) will be discussed. These quadrature rules would be used for computing the
coefficient of a chaos polynomial that is used to do the uncertainty quantification.

2.1.1. Gauss–Legendre Quadrature

A Gaussian quadrature rule with an n-point quadrature nodes is a quadrature rule that
evaluates an integral as the sum of a finite number of terms [ 37 ]. The most common
domain of integration for such problem is [−1, 1], and the quadrature rule is written as
follows: ∫ 1

−1
f(x) dx ≈

n∑
i=1

wif(xi). (2.1)

The integral is approximated by the weighted sum wi of function values at specially se-
lected nodes. The usual chosen quadrature nodes xi are the roots of an orthogonal polyno-
mial. Here, roots of Legendre Polynomials will be used (hence the name Gauss-Legendre
Quadrature) since it is able to approximate an integral of polynomials of degree 2N+1 de-
gree relatively accurate byN+1 quadrature nodes. A compact expression for the Legendre
polynomials is given by Rodrigues’ formula as follows:

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (2.2)

The weightswi are obtained by solving the linear equation with the Legendre Polynomials,
its roots and its integrals by  2.1 or by using [ 1 ] :

wi =
2(

1− x2i
)
[P ′

n (xi)]
2 . (2.3)

In order to approximate integral over [a, b] instead [−1, 1], change of interval can be done
by this following way: ∫ b

a
f(x)dx =

∫ 1

−1
f

(
b− a

2
ξ +

a+ b

2

)
, (2.4)

with dx
dξ = b−a

2 .
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2. Theoretical Foundation

2.1.2. Clenshaw–Curtis and Fejér Quadrature

Clenshaw–Curtis quadrature is quadrature rules to integrate a function f(x) by changing
the variable x = cos(θ) [ 27 ]. Same as previous part, it is usually written for integration
over the interval [-1,1] (which re-scaling can also be performed). This quadrature rule can
be written as follows: ∫ 1

−1
f(x)dx =

∫ π

0
f(cos θ) sin(θ)dθ. (2.5)

Since cosine series for f(cosθ) is known therefore:

f(cos θ) =
a0
2

+

∞∑
k=1

ak cos(kθ), (2.6)

thus the integral approximation becomes:∫ π

0
f(cos θ) sin(θ)dθ = a0 +

∞∑
k=1

2a2k
1− (2k)2

, (2.7)

with the coefficients as follows:

a2k ≈ 2

N

f(1) + f(−1)

2
+ f(0)(−1)k +

N/2−1∑
n=1

{f(cos[nπ/N ]) + f(− cos[nπ/N ])} cos
(
nkπ

N/2

) .
(2.8)

This is actually connected with the Chebyshev polynomials Tk(x), since :

Tk(cos(θ)) = cos(kθ). (2.9)

Hence, the cosine series above is really an approximation of f(x) by Chebyshev polyno-
mials as follows:

f(x) =
a0
2
T0(x) +

∞∑
k=1

akTk(x). (2.10)

Therefore, what is done here is integrating approximate expansion of f(x) in terms of
Chebyshev polynomials. The points that are evaluated (xn = cos(nπN )) are the extremas of
the Chebyshev polynomial. The reason that Clenshaw–Curtis quadrature is also needed
in the context of uncertainty quantification is that when dealing with quadrature approxi-
mation in order to get the coefficient for polynomial chaos expansion, the curse of dimen-
sionality is often found particulary when increasing the dimension of the variables. By
Clenshaw-Curtis, there will be a nested evaluation points which means in case of multi-
dimensional quadrature, evaluation points coincide with other evaluation points and this
reduces a lot of function evaluation when multidimensional quadrature is performed.

Fejér quadrature rules is very similar to Clenshaw–Curtis quadrature (also was pro-
posed earlier which was in 1933). Fejér’s quadrature rule is nearly identical to Clen-
shaw–Curtis with the only difference is that the endpoint f(−1) and f(1)) are set to zero
[ 38 ] and it means that Fejér quadrature used only the interior extrema of the Chebyshev
polynomials.
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2.2. Orthogonal Polynomials

2.2. Orthogonal Polynomials

In this section orthogonal polynomials that are used for approximating a random process
of a probability distribution function will be discussed. These polynomials which are writ-
ten here will be used for the uncertainty quantification method.

2.2.1. Legendre Polynomials

Legendre polynomials are a system of complete and orthogonal polynomials. Legendre
polynomials are defined as an orthogonal system with respect to it’s weight function
w(x) = 1 over the interval [−1, 1] [ 3 ]. Pn(x) is the Legendre polynomial with order n
with the definition as follows:∫ 1

−1
Pm(x)Pn(x)dx = 0, if n ̸= m. (2.11)

Figure  2.1 shows the plot of Legendre polynomials until it’s fifth order.

Figure 2.1.: Plot of Legendre Polynomials until fifth order.

2.2.2. Hermite Polynomials

Hermite Polynomials (The probabilist’ one) are a system of also an orthogonal polyno-
mials. Hn(x) is the Hermite polynomial with order n with the definition as follows [ 39 ]:

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 . (2.12)

Figure  2.2 shows the plot of Hermite polynomials until it’s fifth order.
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2. Theoretical Foundation

Figure 2.2.: Plot of Hermite Polynomials until fifth order.

2.3. Coupled Meteorological and Acoustical Simulations

The meteorological model that is coupled with the acoustical simulation is a mesoscale
meteorological model, since it is a meteorological model which cover a limited area of 1
to 1000 km horizontal extension, thus topographic features such as mountains, valleys,
coasts and varying land are the caused of distinct patterns of meteorological variables
[ 17 ]. Meteorological mesoscale models are based on a set of physical equations which
describe the conservation of momentum, mass, and internal energy. Since these equations
are non-linear, a numerical solutions are usually required if a most accurate simulation is
needed [  28 ]. Since the effect of the topographic features are included, the sound acoustical
simulation is then also affected by the topography.

2.3.1. Lagrangian Based Sound Propagation Model (Ray Acoustics)

There are many methods to simulate sound propagation which mostly are PDE-based
model which solve the wave or Hemholtz equation [ 29 ]. However not all available models
are suited to realistic meteorological conditions over complex topography, the problem is
vary from models cannot consider in-homogeneous atmospheric condition until difficulty
to simulate high frequency [ 17 ].

Ray Acoustics

Sound propagation can also be modeled as ray tracing instead of wave model. The impor-
tant part of ray acoustic is the concept of wave front and ray path. A wavefront is a surface
that move along at which a wave feature (usually peak) is being simultaneously received.
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2.3. Coupled Meteorological and Acoustical Simulations

An illustration at fig  2.3 shows an example that if the time history of wave pressure has a
single pronounced peak at x at time τ(x), the set of all points satisfying t = τ(x) describes
the corresponding wavefront at time t. Wavefronts propagate with speed c if it is observed

Figure 2.3.: Illustration of the concept of a wavefront in order to show points which the
wavefront simultaneously passes receive the same waveform feature at the
same time [ 29 ].

in a coordinate system in which the propagation medium appears at rest. [ 29 ]
If a medium is moving with velocity n, the wave velocity cn seen by observer moving

with the moving medium becomes v + cn in a coordinate system at rest. Here n is the
unit vector normal to the wavefront which coincides with the direction of propagation if
the coordinate system is moving with the local ambient moving medium velocity v. The
direction of propagation observed by a stationary observer is not the same as that of n.
A ray path xp can be defined as a point at a wave front and the relation of it’s derivative
with the vector normal to the wavefront n, the velocity of the moving medium v and the
velocity of the propagated wave c is written as follows:

dxp(t)

dt
= v + cn. (2.13)

An illustration at fig  2.4 shows an example that if the point XP (t) moves with velocity
cn + v such that it is always on wavefront τ(x) = t. Here, the properties of n can also be

7



2. Theoretical Foundation

written as follows:
dn

dt
= −∇⃗c− nv. (2.14)

Figure 2.4.: Illustration concept of a ray path [ 29 ].

8



3. Uncertainty Quantification and Sensitivity
Analysis

3.1. Uncertainty Quantification

Uncertainty quantification (UQ) is the quantitative characterization of uncertainties in
both computational and real world applications. The goal is to determine how certain
outcomes are if some aspects or inputs of the system are not exactly known. This research
is focused on forward propagation of uncertainties which means to quantify uncertainties
in system output(s) that is propagated from input(s) which has uncertainty. Analysis of the
influence on the outputs from the parametric variability listed in the sources of uncertainty
is done.

Figure 3.1.: Illustration of forward propagation uncertainty quantification scheme.

As an equation, problem at figure  3.1 can be expressed as:

Y = f(X). (3.1)

with Y is our quantity of interest (QoI) and X is the parameter(s) with uncertainty. The
statistical moments of Y are then analyzed [ 33 ]. This approach requires the uncertainty

9



3. Uncertainty Quantification and Sensitivity Analysis

of input parameter X to be known, because X is treated as a random variable with a cer-
tain distribution. The probability density function of X is obtained by experiment or by
Bayesian Inversion approach by means to get the input distribution [ 33 ].

One famous example is the calculation of the uncertainty propagation for the inverse
tangent function using partial derivatives. Let f be:

f(x) = arctan(x),

where ∆x is the absolute uncertainty on our measurement of x. We have the derivative of
f(x) with respect to x is:

df

dx
=

1

1 + x2
.

Therefore, we have the absolute propagated uncertainty ∆f as:

∆f ≈ ∆x

1 + x2
.

However, the real world problems are not as simple as inverse tangent function since the
multiple inputs and more complex functions. Therefore, the quantification of the uncer-
tainty cannot be done easily by calculating its mathematical derivative.

If the probability density function (PDF) of the input is known, then the input can be
propagated with the uncertainty through the model. There are two approaches of prop-
agating the uncertainty in the forward model namely intrusive and non-intrusive ap-
proaches. Intrusive approach requires access to the model in order to determine the QoI,
whereas non-intrusive approach consider the function f as only as a black box (can be
done without any knowledge about the mechanism of the function f ) and only the input
is needed.

The categorisation of techniques of UQ through a model differs among research com-
munities, according to [ 33 ] those approaches are categorized as follows:

• Sampling based methods: Sampling methods evaluate a model multiple times for
different sets of input values. The results are collected and described statistically.
One example of sampling based method is Monte Carlo methods.

• Spectral representations: These methods are based on a series of polynomials (spec-
tral representation) which are used to represent the random process and often re-
ferred to as (generalized) polynomial chaos expansions. The spectral representations
are used to calculate the uncertainties or statistics for the model response.

• Direct evaluation: This statistical properties are calculated directly from the stochas-
tic equations of the model. Sometimes dealing with the closure problem is needed
because deriving statistical moments usually necessitates knowledge about proper-
ties of higher moments which means for linearly parameterized model, the uncer-
tainty output is computed explicitly.

10



3.1. Uncertainty Quantification

• Perturbation methods: Taylor expansion is done to the the function and the uncer-
tainty is derived from that truncated Taylor expansions and characterized by mean,
variance, or covariance. The problem with this method is that information about the
shape of the probability density function of the output cannot be obtained.

In the case of this research, direct evaluation and perturbation methods are not applica-
ble because neither can the writer access nor alter the code of the non-linear model, nor
expanding it with the Taylor expansion. With that limitations, the sampling based and
spectral representations methods will be used.

3.1.1. Monte Carlo Methods

Monte Carlo methods are a class of computational algorithms that are using a repeated
random sampling to obtain numerical results. For example when it’s used for numerical
integration we can approximate the true integration value I as Îf as follows:

I :=

∫ 1

0
f(x) dx ≈ Îf =

1

N

N∑
i=1

f(xi). (3.2)

We can also calculate its root mean squared error (RMSE) as follows:

RMSE :=

√
E[(I − Îf )2] =

σf√
N

≈
σ̂f√
N
, (3.3)

with:

σ̂f
2 =

1

N − 1

N∑
i=1

(f(xi)− Îf )
2. (3.4)

Monte Carlo Methods for UQ

The algorithm of Monte Carlo methods for uncertainty quantification is similar to integra-
tion value. The difference is that instead of function evaluation to approximate integration
value, function or evaluation is done in order to get the statistical properties. The algo-
rithm for Monte Carlo methods for uncertainty quantification is written at algorithm  1 .

Quasi Monte Carlo

Quasi-Monte Carlo method (QMC) is a modified Monte Carlo methods which using low-
discrepancy sequences (also called quasi-random sequences or sub-random sequences)
instead of sequences of pseudo-random numbers.

11



3. Uncertainty Quantification and Sensitivity Analysis

Algorithm 1 Algorithm of Uncertainty Quantification with Monte Carlo

Require: N number of sample, f probability distribution function
Generate a sample of the input random variable Z ∈ Rd,distributed according to f ,
for k = 0 to N − 1 do

Run the model with these parameters Z(i)

Get the model output as u
(
Z(i)

)
end for
Compute the statistical properties of the Qols as the results of all the model run of the
samples, e.g, E[u(Z)] ≈ 1

N

∑N
i=1 u

(
Z(i)

)
.

Koksma–Hlawka inequality and Low-Discrepancy Sequences

The basic idea of QMC comes from the Koksma–Hlawka inequality when we assume that
V (f) is constant and we minimize the error by reducing DN i.e. by lowering the discrep-
ancy of {xi}Ni=1 that is done by making it ”better” spaced. [ 23 ]

Theorem 3.1 (Koksma–Hlawka inequality). Let V (f) the variation of f,

DN = supA⊂[0,1]

∣∣∣ card(A)
N − vol(A)

∣∣∣⇒ DN is the discrepancy of {xi}Ni=1 .

Hence, we have the relation of sampling quality as follows:∣∣∣I − l̂f

∣∣∣ ≤ V (f)DN . (3.5)

Sobol’ sequence

The intuition of the Sobol’ sequence is to subdivide each dimension in 2N points. i.e. we
have:

x, y, z, . . . ∈
{
k

2N
, k ∈

[
0.2N − 1

]}
.

The sequence is then associated an index n ∈
[
0 . . . 2N − 1

]
with a single tuple p =

(xn, yn, zn, . . .). In order to select each element of the tuple to ensure a good distribution,
generative matrices Cx, Cy, Cz, . . . that convert the binary representation of the index n to
the binary representation of the position on each dimension are used.

xn =
N−1∑
k=0

tk2
−k−1, with t = n×Cx, (3.6)

with tk the k-th element of t = [t0, . . . tN−1]. Note that the matrix multiplication above is
done in modulo 2. [ 24 ]

12



3.1. Uncertainty Quantification

Figure 3.2.: Comparison of the pseudo-random sampling and sampling with Sobol’ Se-
quence.

3.1.2. Generalized Polynomial Chaos Expansion

Since in order to perform UQ using MC, a repeated high-number of sampling is needed,
problem occurs when facing a program which takes (a lot of) time to be run even though
can be parallelized. The idea is to construct another system that the uncertainty can be eas-
ily quantified either by having faster running time or its statistical properties can be easily
obtained. The idea is then a further mathematical tools are needed to replace this sampling
process. Wiener used Hermite polynomials to represent Gaussian stochastic process and
later, this is generally known as generalized polynomial chaos expansion (gPCE) and there
exist many more polynomials to represent other stochastic process. [ 40 ]

To describe the method, the previous problem  3.1 is modified to multiple variables with
variable(s) which are deterministic and independent are denoted as t and variable(s) which
are uncertain are denoted as ω. The stochastic model is now written as:

Y = f(t, ω) (3.7)

The spectral expansion method in general or in this gPCE works similarly to the Fourier
series. However, different with Fourier series which is a sum that represents a function
with a sinusoidal function, Y is represented with a polynomial instead, as follows:

f(t, ω) =

∞∑
n=0

f̂n(t)ϕn(ω) ≈
N−1∑
n=0

f̂n(t)ϕn(ω) (3.8)

ϕn(ω) are polynomials of degree n and f̂n(t) are coefficients that only depend on t (which
at this point are still unknown) and the sum itself is always truncated after N terms in
order for it to be able to be computed (which raises a truncation error). The polynomials

13



3. Uncertainty Quantification and Sensitivity Analysis

Distribution Type of Polynomials
Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

Table 3.1.: Commonly appear distribution and the polynomials that can be used to repre-
sent it [ 40 ].

ϕn(ω) are chosen according to the PDF of ω [ 20 ] and list of polynomials that can be used to
represent often used distribution are listed in  3.1 .

Pseudo-spectral Approach

After choosing the right basis polynomial for the spectral expansion, the coefficients f̂n(t)
still need to be computed. It is no coincidence that all the polynomials which have been
mentioned above are orthogonal since the orthonormality of the basis can be exploited to
calculate the coefficients f̂n(t). In function space the inner products of two function p(ω)
and q(ω) with a weight function ρ(ω) is:

< p(ω), q(ω) >ρ=

∫
supp(ρ)

p(ω)q(ω)ρ(ω)dω, (3.9)

with
< p(ω), q(ω) >ρ= 0, (3.10)

if p(ω) and q(ω) is orthogonal to each other. Therefore, with the fact that the basis polyno-
mial ϕn(ω) are orthogonal to each other, we have:

< ϕi(ω), ϕj(ω) >ρ=

∫
ϕi(ω)ϕj(ω)ρ(ω)dω = γiδij ∀ϕ0, ϕ1, . . . , ϕN−1, (3.11)

γi =< ϕi(ω), ϕi(ω) >ρ, (3.12)

with γi the normalization constant which is 1 if the polynomial is also normalized. Since
the polynomials that represent commonly appear distribution are also normalized, we
assume that every ϕi(ω) is normalized and we have:

< ϕi(ω), ϕj(ω) >ρ= δij . (3.13)

This property then is used to compute the coefficients f̂n(t). Inner product is now done to
the both side of the equation  3.8 and we have:

<
N−1∑
n=0

f̂n(t)ϕn(ω), ϕm(ω) >ρ=< f(t, ω), ϕm(ω) >ρ . (3.14)

14



3.1. Uncertainty Quantification

Since f̂n(t) is constant we can move the inner product inside the sum and obtain as follows:

N−1∑
n=0

f̂n(t)< ϕn(ω), ϕm(ω) >ρ︸ ︷︷ ︸
δnm

=< f(t, ω), ϕm(ω) >ρ, (3.15)

⇒ f̂n(t) =< f(t, ω), ϕn(ω) >ρ, (3.16)

⇒ f̂n(t) =

∫
Ω
f(t, ω)ϕn(ω)ρ(ω)dω. (3.17)

It can be seen now that problem arises since f(t, ω) is only available as a black box since
we want a non-intrusive approach, therefore the solution is using numerical quadrature
such as Gaussian quadrature in  2.1.1 or Clenshaw-Curtis/Fejér Quadrature in  2.1.2 .

Statistical Properties Computation

For our polynomials we have:
ϕ0(ω) ≡ 1, (3.18)

and also :
E [ϕ0(ω)ϕn(ω)] =< ϕ0(ω), ϕn(ω) >ρ . (3.19)

Since the expectation value of our model is also the expectation value of our spectral ex-
pansion we can write it as:

E[f(t, ω)] ≈ E

[
N−1∑
n=0

f̂n(t)ϕn(ω)

]
=

N−1∑
n=0

f̂n(t)E [1 · ϕn(ω)] . (3.20)

By  3.18 we can also write equation above as:

E[f(t, ω)] ≈
N−1∑
n=0

f̂n(t)E [ϕ0(ω)ϕn(ω)]︸ ︷︷ ︸
=δ0

= f̂0(t). (3.21)

Thus we obtained that the mean of the model is just the 0th order f̂ coefficient. To get the
variance, we also write the variance formula in terms of the spectral expansion also with
the knowledge that the expectation value of the model is f̂0(t) and we have the equation
as follows:

Var[f(t, ω)] = E
[
(f(t, ω)− E[f(t, ω)])2

]
≈ E

(N−1∑
n=0

f̂n(t)ϕn(ω)− f̂0(x)

)2
 . (3.22)
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3. Uncertainty Quantification and Sensitivity Analysis

Since the mixed terms is zero due to orthogonality we have:

Var[f(t, ω)] =
N−1∑
n=1

f̂2n(t)E
[
ϕn(ω)

2
]︸ ︷︷ ︸

=1

=
N−1∑
n=1

f̂2n(t), (3.23)

which shows that the variance is just summation of the square coefficient of the spectral
expansion without the 0th term. This shows that for gPCE method the statistical properties
of a model can be computed easily. The full length algorithm to computer the coefficient
f̂n(t) can now be written as in algorithm  2 with N is the maximum order of polynomials
and K is the number of quadrature points. There any already many cases of UQ using
gPCE for non-linear model for example gPCE for hydrology model [ 4 ] and crowd simula-
tion [ 30 ], thus given the idea that similar setup can also be performed for this research.

Algorithm 2 Algorithm of Uncertainty Quantification with gPCE

Require: N − 1,K − 1
generate polynomials ϕi
for k = 0 to K − 1 do

generate xk, wk ▷ xk and wk are quadrature points and weights
evaluate f(t, xk)

end for
for n = 0 to N − 1 do

compute f̂n(t) ▷ Computing the coefficients
if n ≥ 1 then

compute f̂2n(t) ▷ Computing the square for the variance
end if

end for
for n = 0 to N − 1 do

compute f̂2n(t) ▷ Computing the coefficients
end for
compute

∑N−1
n=1 f̂

2
n(t) ▷ Computing the variance

In case of multivariate models, expanding the model using gPCE is also possible. The
difference is that the random variable ω is changed to a random vector ω, where for exam-
ple if there are d random variables, we would we have:

ω1, ω2, . . . , ωd ∈ ω,

which we also have the multi index n as:

n = (n1, . . . , nd) ∈ Nd
0.

The polynomials are also multivariate which are products of the univariate polynomials,
i.e:

ϕn(ω) = ϕn1 (ω1) · · ·ϕnd
(ωd) ,

16



3.2. Sensitivity Analysis

which is still orthogonal (also normalized in case of polynomials that would be used in
this research) polynomials and therefore can also be written as:

< ϕn(ω), ϕm(ω) >w= δnm, δnm = δn1m1 · · · δndmd
.

Hence, the multivariate polynomial chaos expansion is:

f(t, ω) ≈
∑
n

f̂n(t)ϕn(ω), (3.24)

with the approximation to get the coefficient f̂n by the pseudo-spectral approach as fol-
lows:

f̂n(t) ≈
∑
k

f (t,xk)ϕn (xk)wk. (3.25)

3.2. Sensitivity Analysis

According to [ 5 ], sensitivity analysis is defined as study to evaluate the impact of varying
some input parameters on some output response . Most of the sensitivity analysis met in
the literature are based on derivative which is computationally expensive though effec-
tive [  32 ]. The practices developed for sensitivity analysis are often categorized as local or
global.

Global Sensitivity Analysis

Local sensitivity analysis methods vary the uncertain on one parameter, hence the infor-
mation about the sensitivity of the model is valid only for a restricted range of the chosen
parameter. Global sensitivity analysis methods instead take into account the uncertainty
of multiple parameters and therefore allowing the sensitivity analysis on the whole inter-
val of the uncertain parameters. Other than that, by doing global sensitivity analysis, the
information about the interaction among the parameters on the output are also acquired.
[ 32 ]

By these facts, global sensitivity analysis serves better for the this research because the
model has many input parameters that might interact. There are many methods of global
sensitivity analysis such as regression-based and variance-based methods [ 36 ]. Linear re-
gression methods however are not available when analyzing non-linear model [ 36 ]. The
later is also chosen for this research since the variance of the model can be easily acquired
as the post processing of the UQ which are mentioned at  3.1 (more explanations at subsec-
tion  3.2.1 and  3.2.1 ).

3.2.1. Variance Based Sensitivity Analysis

Variance-based methods analyze the effect of the variance in the input to a model on the
variance of the output [ 32 ]. A metric of how sensitive a parameter is usually represented by
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3. Uncertainty Quantification and Sensitivity Analysis

Sobol’ Indices [ 35 ]. As the method of UQ has been discussed in previous section, with both
the used methods (MC and gPCE), the Sobol’ Indices can be obtained even though the way
to obtain those are totally different. This gives a huge advantage for the computational cost
because the sensitivity analysis then can be obtained only as a byproduct of the uncertainty
quantification.

Sobol’ Representation

Sobol’ Representation which also sometimes called High Dimensional Model Representa-
tion (HDMR) is a way to construct an expansion of the function f which has d uncertain
input parameters ω (ω1 . . . ωd ∈ ω). Similar with previous section about UQ, here f from
equation  3.1 is expanded by its uncertain parameter as follows [ 33 ]:

f(t,ω) =f0(t) +
d∑

i=1

fi (t, ωi) +
∑

1≤i<j≤d

fij (t, ωi, ωj)+∑
1≤i1<...<is≤d

fi1,...,is (t, ωi1 , . . . , ωis) + . . .+ f12...d(t, ω),

(3.26)

where f0(t) is the mean, fi(t, ωi) are functions with 1 uncertainty input and fij(t, ωi, ωj) are
functions with 2 uncertainty input and so on. The functions fi(t, ωi) represent independent
contribution due to individual parameters, while functions with more uncertain variables
(Such as fij) represent the interactions of multi variables on the response f . Based on the
assumption that higher-order interaction terms have negligible effect, then equation  3.27 

while emitting t is approximated as:

f(ω) ≈ f0 +
d∑

i=1

fi(ωi) +
∑

1≤i<j≤d

fij(ωi, ωj). (3.27)

The variance of the equation is estimated as follows:

Var[f(ω)] ≈
d∑

i=1

Var[fi(ωi)] +
∑

1≤i<j≤d

Var[fij(ωi, ωj)], (3.28)

dividing all by the total variance Var[f(ω)] yields:

1 ≈
d∑

i=1

Var[fi]

Var[f ]
+

∑
1≤i<j≤d

Var[fij ]

Var[f ]
(3.29)

⇒ 1 ≈
d∑

i=1

Si +
∑

1≤i<j≤d

Sij , (3.30)
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or for simplicity just:

1 =

d∑
i=1

Si +
∑

1≤i<j≤d

Sij , (3.31)

where:

Si =
Var[fi]

Var[f ]
, Sij =

Var[fij ]

Var[f ]
.

Equation  3.31 defines the relation of ratio of partial variances with the total variance. Now
we have Si as the first order Sobol’ indices which measure individual contributions by
measuring the variance of the model response when a single input parameter ωi varies.
Next, the Total sensitivity indices STi which characterize individual contributions and also
its interaction between other input parameters can also be calculated by adding the higher-
order interaction terms. By these definitions we can also write the expression of Si and STi

as follows:

Si =
Var[E[Y | ωi]]

Var[Y ]
, (3.32)

STi = 1− Var[E[Y | ω∼i]]

Var[Y ]
=

E[Var[Y | ω∼i]]

Var[Y ]
. (3.33)

Here it has been shown that in order to get the Sobol’ indices, only variance and partial
variance are needed and there are many ways to approximate those values [ 31 ].

Monte Carlo Variance Based Sensitivity Analysis

Saltelli et al. proposed a method to calculate the partial variances that are needed for
sensitivity analysis which lead to relatively more accurate results [ 31 ]. It is proposed that
to calculate the first Sobol’ Indices, the approximation as follows is used:

Var[E[Y | ωi]] =
1

N

N∑
j=1

f(B)j

(
f
(
A

(i)
B

)
j
− f(A)j

)
. (3.34)

In order to approximate the partial variance to calculate the total sensitivity indices the
partial variance approximation that is proposed to be used is the one that is proposed by
Jansen [ 22 ] which is:

Var[E[Y | ω∼i]] =
1

2N

N∑
j=1

(
f(A)j − f

(
A

(i)
B

)
j

)2

. (3.35)

A, B are N × k dimensional sample matrices of input parameters (N is the sample size
and k is the number of input parameters). Elements of matrices A and B are generated
randomly by a distribution or can also be generated by using low discrepancy sequences
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3. Uncertainty Quantification and Sensitivity Analysis

[ 34 ]. A(i)
B is a matrix which its column i are elements of matrix B and all other k 1 columns

are elements of matrix A. It is more intuitive to show these as matrix form as follows:

A =

 ωA
11 · · · ωA

1k

· · · · · · · · ·
ωA
N1 · · · ωA

Nk

 ,
B =

 ωB
11 · · · ωB

1k

· · · · · · · · ·
ωB
N1 · · · ωB

Nk

 ,
A

(i)
B =

 ωA
11 · · · ωB

1i · · · ωA
1k

· · · · · · · · · · · · · · ·
ωA
N1 · · · ωB

Ni · · · ωA
Nk

 .
This also shows how many times the model is evaluated which is (2 + d)N times.

gPCE Based Sensitivity Analysis

Sudret proposed a method to calculate the Sobol’ Indices by the byproduct (coefficients)
of gPCE method [ 36 ]. Since the Sobol’ representation of the model f from equation  3.27 is
analogous to gPCE representation from equation  3.24 , it is proposed to use the coefficients
of the gPCE representation to calculate the Sobol’ indices. The Sobol’ indices Si is then
computed as follows:

Si(t) =
Di(t)

Var[f(t,ω)]
, Di(t) =

∑
n∈Ai

f̂2n(t), (3.36)

where Ai depends on the order of the contribution, which for the first order:

Ai =
{
n ∈ Nd

0 : ∀j ̸= i,nj = 0,ni ̸= 0
}
, (3.37)

and for the higher contribution:

Ai =
{
n ∈ Nd

0 : ni > 0
}
. (3.38)

Since it is known now that the computational cost of gPCE is for estimating the gPCE co-
efficients, therefore it is also the computational cost of the gPCE based sensitivity analysis
and a little addition of post processing (no further model run required).
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4.1. Sound Propagation Model

In this subsection the sound propagation model based on a publication by Heimann [ 17 ]
will be explained. The sound propagation model that will be analyzed here is an acoustical-
meteorological coupled model. As it has been mentioned, the atmospheric model that will
be used is a mesoscale model, thus the effect of topography can be seen.

4.1.1. AKUMET

AKUMET is a Lagrangian based sound propagation model which based on ray acoustic.
AKUMET simulates the propagation of sound over hilly terrain on an inhomogeneous
atmosphere. It calculates the sound pressure amplitude p at designated receiver points (or
also all grid points).

Initialization

For AKUMET, x1 and x3 are the horizontal and vertical coordinates, respectively and
H(x1) is the height of the terrain. The sound is emitted from an acoustical source at
x⃗s = (xs1;xs3) and is located at a height hs = xs3 − H (xs1) above the ground. The
sound energy dispersion is simulated by releasing a large number N of sound particles
simultaneously at time t = 0 at the position of the source. The emitted sound can also be
composed of different frequencies fi(i = 1, . . . , n). The frequency-dependent fraction of
sound pressure of each particle j(j = 1, . . . , N) is defined as follows:

pj(f) =
1

N

√
2ρscsJo(f). (4.1)

with ρs, cs and Jo are the air density, the sound speed at the source, and is the sound
intensity at the distance so from the source, respectively.

Geometrical spreading

Particles which pass through a spherical sampling area of radius d around a receiver point
x⃗r decreases it’s sound pressure as it’s travel through the distance between the source and
the receiver. The sound pressure amplitude at the receiver is given by the equation as
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follows:

p (f, x⃗r) =
∆ψso
d

Nr∑
j

Wj · pj(f), (4.2)

with Wj = a2 (1− dj/d) is a weighting factor with a2 = 1 for a point source, dj ≤ d is
the minimum distance between a passing particle and the receiver, rj is the path length
between source and receiver and ∆ψ is the limiting launching angles.

Refraction

As it has been mentioned in ray acoustic section, if there exist gradients in the wind field
or temperature field the particles move along refracted rays. Ray vector x⃗j(t) is the path
of the jth particle and its unit vector normal to the wavefront is n⃗j(t). From the restriction
to two dimensions follows that xj2 = nj2 = 0. We have again the differential equation for
the rays and normal vector as follows:

dx⃗j
dt

= v⃗ + cn⃗j , (4.3)

dn⃗j
dt

= −∇⃗c−
3∑

i=1

nji∇⃗vi, (4.4)

with c the speed of sound depends on variable as follows:

c =
√
κRLT . (4.5)

κ, RL and T are the ratio of specific heat capacities, the gas constant of dry air and the
temperature, respectively. These differential equations are numerically integrated for all
particles and are repeated until the particle has left the model domain. The jth particle
travels the distance rj every time step which is computed as follows:

rj(t+∆t)− rj(t) = |x⃗j(t+∆t)− x⃗j(t)| = |v⃗ + cn⃗j(t)|∆t, (4.6)

The phase angle φj that is needed to simulate interference is also changing every time step
and is computed as follows:

φj(f, t+∆t)− φj(f, t) =
2πf

c
|v⃗ + cn⃗j(t)|∆t. (4.7)

Sound Pressure Level

The model calculates the sound pressure p at a grid point as a result of ray spreading
or other physical effect such as reflection, interference, or absorption. The frequency-
dependent sound pressure p (f, x⃗r) at any receiver point x⃗r is determined by the super-
position of the contributions of all sound particles j which pass the receiver point within
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a distance d and is computed as follows:

p (f, x⃗r) =
∆ψso
d

N∑
j

(
Wjpj exp

[
−A(a)

j (f, t)
]
×

A
(d)
j (f, t) ·A(r)

j (f, t) exp
[
i
(
φj(f, t) + δφ

(r)
j (f, t)

)]
).

(4.8)

Parameters which account for reflection A(r)
j (f, t) and δφ

(r)
j (f, t) also absorption A(a)

j (f, t)

are defined in the next subsection but A(d)
j (f, t) which account for diffraction will not be

discussed since the diffraction setting is not used in this research.

Boundary condition of the ground

There are two boundary conditions which are analyzed for this research namely total
ground absorption and complex impedance ground. Total absorption of particles to the
ground is used in order to model a ground that is ideal and reduces noise, whereas a com-
plex impedance ground is used since it makes the particles loses sound pressure level and
also changes the phase, yet still reflects those upwards according to the incident angle,
which is close to reality. This complex impedance ground governs by the widely used
complex reflection coefficient for spherical waves that is computed every time a particle
hit the ground according to its angle of incident ϕj . The complex reflection coefficient is
computed as follows:

Q (f, ϕj) = Rp (ϕj) + [1−Rp (ϕj)]F (w). (4.9)

Rp is called the plane-wave reflection coefficient for locally reacting ground, which is cal-
culated as follows:

Rp (ϕj) =
sinϕj − β

sinϕj + β
. (4.10)

β is the (complex) normalized admittance of the ground. F (w) is the boundary loss func-
tion which is calculated as follows:

F (w) = 1 + i
√
πw exp

(
−w2

)
erfc(−iw), (4.11)

with the numerical distance w is given by:

w =
√
0.5ikrj(t)(sin(ϕ) + β)2, (4.12)

where k = 2πf/c is the local wave number. The parameters A(r)
j (f, t) and δφ

(r)
j (f, t) (am-

plitude and phase) initially are set to :

A
(r)
j (f, t = 0) = 1,
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and
δφ

(r)
j (f, t = 0) = 0.

These will remain unchanged until there is a particle that hits the ground and is reflected.
Afterwards, these will be changed according to:

A
(r)
j (f, t+∆t) = A

(r)
j (f, t) · |Q(f)|, (4.13)

δφ
(r)
j (f, t+∆t) = δφ

(r)
j (f, t) + arg[Q(f)]. (4.14)

Absorption in the air

Sound waves are continuously losing energy due to absorption in the air. The value of
absorption coefficient α depends on temperature T , relative humidity U , and frequency f .
The attenuation due to absorption in the air is computed as follows:

A
(a)
j (f, t+∆t) = A

(a)
j (f, t) + α(f, T, U) (rj(t+∆t)− rj(t)) . (4.15)

4.2. Uncertainty Quantification and Sensitivity Analysis Library

Gödel listed several several open-source frameworks for uncertainty quantification [ 13 ].
Since the goal of the research is to do both uncertainty quantification and sensitivity anal-
ysis, we need frameworks which can accommodate both. Other than that, in connection
to our problem there are requirements that have to be passed. For Monte Carlo case, other
than generating random sampling, it is required to be able to generate low discrepancy
sampling (for quasi-Monte Carlo) as well as generate sampling matrix for Monte Carlo
based sensitivity analysis. For generalized polynomial chaos expansion case, other than
creating orthogonal polynomial and calculating the coefficients, framework that offers also
sparse grids creation is also preferred.

It is also preferable if the framework is available for Python language since even though
AKUMET is written in Fortran, the script to call it many times and the script to modify
the input parameters are written in Python. By these mentioned requirements, SALib
(Sensitivity Analysis Library) [ 19 ,  21 ] and Chaospy [ 9 ,  8 ] are chosen.

SALib

SALib is a sensitivity analysis library framework for Python framework that is developed
by University of California and University of Oxford. SALib does not directly analyze
the mathematical or computational model. The way SALib works is by generating the
input parameters for the model using one of the sample functions (randomized or low-
discrepancy sequences) and computing the sensitivity indices from the model outputs.
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SALib also provides several sensitivity analysis methods, such as Sobol, Morris, and FAST.
[ 19 ,  21 ]

The sensitivity analysis that is used for this research is Sobol’ sensitivity analysis and the
sampling that is used for this research is also used for uncertainty quantification. Hence,
SALib satisfies all requirements that are needed for Monte Carlo based uncertainty quan-
tification and sensitivity analysis of this research.

Chaospy

Chaospy is a library framework for Python language that is used also for performing un-
certainty quantification and Sobol’ sensitivity analysis using polynomial chaos expansion.
It includes a full suite of tools for doing polynomial sampling creation, quadrature cre-
ation, polynomial chaos expansions with dependent variables, and also even sparse grids
creation. [ 9 ,  8 ] Hence, Chaospy satisfies all requirements that are needed for gPCE based
uncertainty quantification and sensitivity analysis of this research.

Verification of the Used Uncertainty Quantification and Sensitivity Analysis Library

To verify the used frameworks, an uncertainty quantification and Sobol’ sensitivity analy-
sis of a mathematical function will be done. As it is often used by the UQ community, the
mathematical function that will be analyzed is Ishigami function as follows:

f(x) = sin (x1) + a sin2 (x2) + bx43 sin (x1) (4.16)

The Ishigami function is often used to since it has a strong non-linearity and non-monotonicity
properties. In order to verify these frameworks, comparison of uncertainty quantification
and sensitivity analysis of equation  4.16 will be done in manually written Monte Carlo
method, Sobol’ sequences sampling quasi-Monte Carlo method using SALib and gPCE
pseudospectral method using Chaospy. The input values x1, x2 and x3 are following the
distribution as follows:

x1 ∼ U(−π, π),

x2 ∼ U(−π, π),

x3 ∼ U(−π, π).

The standard Monte Carlo method used 100.000 samples, while the QMC used 32.768
samples and the gPCE uses 9th order of the Gaussian quadrature which means 1.000 sam-
ples. Note that this number of samples means number of a models which are needed to be
run. For this mathematical case, it means how many times a function evaluation is done.
The result of the comparison of these uncertainty quantification results are written in table

 4.1 . It is shown that the results are similar and in similar order (even though it can be
further improved if using more samples or higher polynomial order for gPCE). This leads
to a conclusion that this uncertainty quantification library frameworks can be used for the
context of our research.
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MC QMC gPCE
Mean 3.500370649 3.500071058 3.499999

Variance 8.912312986 8.915974509 8.79899942

Table 4.1.: Comparison of mean and variance values as the result of uncertainty quan-
tification using manually written code Monte Carlo method (MC), Sobol’ se-
quences sampling quasi-Monte Carlo method using SALib (QMC) and gPCE
pseudospectral method using Chaospy (gPCE).

MC (Manually) QMC (SALib) gPCE (ChaosPy)
Si x1 0.21928696 0.21461107 0.221447607

x2 0.68691114 0.68693592 0.682769706
x3 0.00082069 −0.00589628 5.54× 10−30

ST x1 0.31330746 0.31330746 0.31723029
x2 0.6869165 0.6869165 0.68276971
x3 0.0946538 0.0946538 0.09578269

Table 4.2.: Comparison of first (Si) and total (ST ) Sobol’ sensitivity indices values as the
result of uncertainty sensitivity analysis using manually written code Monte
Carlo method (MC), Sobol’ sequences sampling quasi-Monte Carlo method us-
ing SALib (QMC) and gPCE pseudospectral method using Chaospy (gPCE).

The sensitivity analysis by post-processing of previous uncertainty quantification pro-
cess is also done. Comparison of Sobol’ indices calculated by these 3 methods are shown
in table  4.2 . Same case with the uncertainty quantification, it is shown that the results are
similar and in similar order (except for x3 which is super close to 0). This leads to a con-
clusion that this sensitivity analysis library frameworks can be used for the context of our
research.

4.3. Parallel Computing

Since both uncertainty quantification and sensitivity analysis algorithm are able to be par-
allelized, efforts are also made to parallelized the sampling processes. Python language
are used since as it is mentioned before that even though AKUMET is written in Fortran,
Python is used to write the input files and also to automatically run AKUMET multiple
times in the Linux server.

4.3.1. Multiprocessing in Python

Multiprocessing is a feature of a system to support more than one processor run at the
same time. In a multiprocessing system, applications are broken to smaller functions or
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routines that run independently in a way that the operating system allocates these process
to the processors [  12 ]. The Python multiprocessing library is part of the standard library of
the Python. It implements the shared memory programming paradigm which means that
the programming of a system that consists of one or more processors that have access to a
common memory [ 41 ].

Parallelizing UQ Process

As it can be seen for uncertainty quantification for both gPCE (algorithm  2 ) and Monte
Carlo algorithm (algorithm  1 ), there exist a loop for which the function evaluations (or
model run in this context) are done. This is the part that will be parallelized since as it has
been mentioned before that the model run is the part which takes a lot of computational
efforts. The method of multiprocessing that is used is map method. This map method
returns a list of the results obtained by executing the function in parallel against each of
the items in the iterable parameter [ 41 ]. The usage of this method is written as follows:

pool.map(func, iterable, chunksize=None)

The func parameter is the subroutine to be executed and the iterable is the parameters to
the function. This multiprocessing method divides the iterable into a number of chunks.
Afterwards, those are submitted to the process pool as separate tasks. The size of these
chunks can also be specified by setting chunksize to a positive integer. [ 41 ]

In the case for this research, the func parameter that is passed, is the Python subroutine
to run AKUMET on the Linux server and the iterable are the values which are generated
either by Chaospy or SALib. The model is then run in the Linux server and the values
of sound pressure level in each grid are the output which values are used in the post
processing for uncertainty quantification and sensitivity analysis.

4.4. Uncertainty Quantification and Sensitivity Analysis of
AKUMET

This study is divided into 2-dimensional and 3-dimensional study. Both are using the same
Lagrangian sound propagation model, thus our hypothesis suggests that the sensitivity of
the parameter would be similar. In addition, the main differences of 2 and 3-dimensional
cases are that for 3-dimensional study, more cases will be studied since the real world
applications are 3-dimensional. Since the real world applications are mostly characterizing
the sound pressure level on ground level, therefore the particles that are propagated from
the source, are only propagated downwards half circle for 2-dimensional and half sphere
for 3-dimensional.
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4.4.1. 2-Dimensional Cases

Since the running time of one simulation for 2-dimensional case is only a couple of sec-
onds (mostly 10 until 20 seconds), Monte Carlo simulation can be applicable, thus also
an uncertainty quantification and sensitivity analysis for high uncertain dimension can be
done. Another thing only for 2-dimensional case is that additional uncertain dimension
which is the variability of the topography complexity (that is not a parameter that already
exist in AKUMET) can be introduced. The measure of the complexity of the topography
is using geometrical tortuosity τ which is the arc-chord ratio or the ratio of the length of
the curve L to the distance between its ends L0 (as in figure  4.1 ) [ 11 ]. This relation can be
easily written as follows:

τ =
L

L0
(4.17)

This measure is normally used to characterized how complex path through a porous medium.

Figure 4.1.: Scheme of the measurement of geometric tortuosity.

Here, geometric tortuosity is also used since it can describe how winding a 2-dimensional
topography is and therefore become our metric of topography complexity. In order to get
various 2-dimensional topography which also could represent the real case, slicing of 3-
dimensional topography of Vale do Cobrão in Portugal that was also used for wind energy,
atmospheric and noise research [ 10 ,  6 ] will be acquired. The example results of the sam-
pling are shown in figure  4.2 , which look realistic even though having different complexity
level. All y directions of this topography are sliced thus resulting of 201 different level of
complexity with the maximum value 1.4427545 and the minimum value 1.4227340. These
values become the bound of the uniform distribution that are used later.

Since there are no real world 2-dimensional case, the uncertainty in the input parameters
are using the most extreme realistic possible parameter as a bounds of uniform distribu-
tion. Full descriptions of the uncertainty in the input parameters are shown in table  4.3 .
Other than that, since the topography is main factor that causes a huge meteorological vari-
ability [ 6 ], another setup without varying the topography complexity is also done since we
already expect the topography is the most sensitive parameter and the sensitivity of other
parameters then can be analyzed.
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Figure 4.2.: Examples of three 2-dimensional topography with differences in complexity
level (τ), which are 1.43868 (top), 1.42555 (middle) and 1.4388 (bottom).

The poi of interest (PoI) of this analysis are sound pressure level of all used grids which
are available. In addition to that, sound pressure level on the ground will be the focused
area since most human activities are done on the ground level. Other than that, a variation
of boundary condition at the ground will also be tested to study the uncertainty of both
cases. All these analysis that mentioned above will use quasi-Monte Carlo method since
the model run for 2-dimension is fast. Since the 2-dimensional and 3-dimensional cases are
based on the same model, the sensitivity analysis results of the 2-dimensional model will
be used to reduce the uncertainty dimension for 3-dimensional case so that the number of
samples that are needed, are reduced. gPCE based uncertainty quantification with 1 vari-
able will also be performed in order to compare it with Monte Carlo based results to show
that even for this case (uncertainty quantification of Lagrangian based sound propagation
model), these 2 uncertainty quantification methods show similar results.
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Parameter Symbol Distribution Unit
Speed of sound CEXP U(330, 360) m/s
Vertical gradient of the speed of sound CEXPZ U0, 5) 1/s
Temperature TEXP U(15, 25) ◦C
Vertical gradient of the temperature TEXPZ U(−20, 20) K/km
Relative humidity RFEXP U(65, 75) %
Wind speed at 10 meters height UEXP U(0, 10) m/s
Wind direction VEXP U(268, 270) ◦

Surface roughness Z0EXP U(0.1, 0.6) m
Air resistance on the ground SIGEXP U(290, 300) KPas/m−2

Topography complexity τ U(1.4227340, 1.4427545) −

Table 4.3.: The uncertainty of the input parameters for 2-dimensional case with also varia-
tion of topography.

4.4.2. 3-Dimensional Cases

There are many setup cases for 3-dimensional. Since the real world is three dimensional,
the goal of uncertainty quantification in 3-dimensional is to do it in the real topography.
The uncertainty quantification with 3-dimensional topography of Vale do Cobrão will be
the final goal of 3-dimensional case. The research at Vale do Cobrão [ 10 ] or we refer as the
project name which is Perdigão, also measured the variability data of the meteorological
condition namely the wind speed, temperature gradient, and wind direction. Hence, this
data is enabling this research to select the certain distribution to model the uncertainty of
the uncertain input parameter.

3 Levels of Topography

The first cases that would be analyzed in the 3-dimension case is the 3 levels case of to-
pography. The first level would be a simple hill that is artificially created by Gaussian dis-
tribution (figure  4.3 ), the second level is the projection of the topography that is used on
2-dimension case but equal on z direction which makes it a wavy topography (figure  4.4 )
and the third would be the actual topography of Vale do Cobrão (figure  4.5 ). In this anal-
ysis, only 1 variable that is the most sensitive after the topography would be used (results
from 2-dimensional case). All sources of sound would be at the center of the topography
and the winds are always flowing from left to right. Each cases will be divided again into 3
different simulation which are with distribution from Perdigão (1 specific frequency only
and the whole third octave band) and with mean value from Perdigão but with a low vari-
ance value in order to just analyze an uncertainty that is caused by a measurement error
and not the variability of the meteorological condition itself. All setup of 3-dimensional
cases are recapped at table  4.4 . Therefore, in total there are 9 cases of 3-dimensional setup.
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Figure 4.3.: Simple topography of a hill that is artificially created by Gaussian distribution
in order to show that the source at the middle of the the topography will be
located at the highest point of the topography.

Figure 4.4.: Topography of a wavy hill that is artificially created by projecting topography
in 2d case in order to show that the source at the middle of the the topography
will be located at the highest point of the topography but on one direction still
have the same height.
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Figure 4.5.: Real topography of Vale do Cobrão with the source at the middle of the the
topography which is the highest point of the topography.

Topography Frequency
Range

Uncertainty
Dimension

Uncertainty Distribution Source

Level 1 100 Hz 1 Distribution by Perdigao Data
Level 1 100 Hz 1 Mean by Perdigao data but low variance
Level 1 3rd Octave

Band
1 Distribution by Perdigao Data

Level 2 100 Hz 1 Distribution by Perdigao Data
Level 2 100 Hz 1 Mean by Perdigao data but low variance
Level 2 3rd Octave

Band
1 Distribution by Perdigao Data

Level 3 100 Hz 1 Distribution by Perdigao Data
Level 3 100 Hz 1 Mean by Perdigao data but low variance
Level 3 3rd Octave

Band
1 Distribution by Perdigao Data

Table 4.4.: List of setup that are used for 3-dimensional uncertainty quantification case.

4.5. Inverse Rosenblatt Transformation

If the covariance of the chosen distributions causes big value of matrix condition number,
expansion generation will also likely be prone to error and the precision will drop quickly
as well with the truncation of polynomial order. However, for gPCE (particularly when
using ChaosPy library), there exist a workaround for this phenomenon namely Inverse
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Rosenblatt transformation.
The trick is to create a proxy distribution that behaves nicely (for example Gaussian

distributions). The polynomials, nodes and weights are then generated and those are used
instead of the one of interest. Finally the nodes are transferred back to the domain of
interest using Inverse Rosenblatt Transformation. Code example of this trick is displayed
at source code  4.1 .

1 import chaospy
2

3 define solves(someinput):
4 #some function
5

6 dist1 = chaospy.Normal(3,2303)
7 #First distribution with big variance compare to the mean value
8

9 dist2 = chaospy.Normal(5,4)
10 #Second distribution with variance value comparable to the mean value
11

12 dist3 = chaospy.Normal(2,0.001)
13 #Third distribution with low variance compare to the mean value
14

15 distJ = chaospy.J(dist1, dist2, dist3)
16 #Joint distribution of the distributions
17

18 dist_proxy = chaospy.J\
19 (chaospy.Normal(0, 1), chaospy.Normal(0, 1), chaospy.Normal(0, 1))
20 #Creation of distributions which are behave nicely as a proxy
21

22 poly = chaospy.orth_ttr(order=3, dist=dist_proxy)
23 #Generating polynomials from the proxy distribution
24

25 nodes_proxy, weights = chaospy.generate_quadrature\
26 (order=5, dist=dist_proxy, rule='gaussian')
27 #Creating nodes for the proxy distribution
28

29 nodes = distJ.inv(dist_proxy.fwd(nodes_proxy))
30 #Getting the quadrature nodes from the proxy distribution
31

32 approx = chaospy.fit_quadrature(poly, nodes_proxy, weights,solves())
33 expected_pce = chaospy.E(approx, dist_proxy)

Source Code 4.1.: Inverse Rosenblatt transformation that can be applied in ChaosPy
Python library in order to reduce error that is caused by big value of
matrix condition number.
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5.1. Parallelization

The analysis of parallelization is only done in 2-dimensional case. The reason is that 3-
dimensional case model run takes a lot of times (4 to 12 hours depends on the number of
particle which is chosen), while 2-dimensional model could be run in less that 1 minutes
(since it needs fewer particle) but still able to represent the parallelization result of the
model since it is the same simulation (only differs in dimensional setting) and the sam-
pling process of both methods (Monte Carlo and gPCE) should be embarrassingly parallel
[ 26 ]. Table  5.1 shows the speedup of each number of processes (cores) that are used for the
sampling process. The speedups that are achieved, are close but not exactly linear. This
happened since the parallelization is done only to the sampling part of the code (which
for 2-dimensional simulation only takes 2-3 seconds) and not the part of generating ran-
dom samples, calculating the statistical properties or transmitting the randomly generated
parameters to the Linux server in order for it to run the model, hence according to the
Amdahl’s law [ 18 ], the speedup cannot be fully linear. Other than that, error in the server
connection which resulting to reiterate a model run also happened multiple times which
the running time also accumulated to this calculation.

Number of Process Time (s) Speedup
1 41275 −
2 22543 1.83096516

4 11938 3.457484306

6 6991 5.904083486

8 5643 7.314451116

10 4795 8.608018279

12 3740 11.03621595

Table 5.1.: Table of speedup of Monte Carlo process with 1792 samples by different number
of processes (cores) compare to single process.

35



5. Results and Discussions

5.2. 2-Dimensional Cases with All Possible Meteorology and
Topography Uncertainty

It has been mention in subsection  4.4.1 that there will be no uncertainty quantification for
this scenario, since the goal of this analysis is to prove the hypothesis that the topography
is the most sensitive parameter. All the uncertain input parameters is written in table  4.3 .

5.2.1. Sensitivity Analysis

Figure  5.2 shows the Sobol’ indices of each uncertain parameters. It is shown that when
the topography is also varied, it becomes the most sensitive parameter. The first and total
order Sobol’ indices also show similar pattern, thus give understanding that the interac-
tion terms do not influence strongly to the variance. This result proves the hypothesis that
mentioned above and confirms that topography is the most important aspect that affects
outdoor sound propagation, even though there exist other varying meteorological con-
dition. However this should not be a problem in a real world case simulation since the
topography is usually fixed and certain if the study is done at land.

Figure 5.1.: First order Sobol’ sensitivity indices (left) and total order Sobol’ sensitiv-
ity indices (right) of all used meteorological input parameters of AKUMET
including topography that are obtained using Monte Carlo method and
Jansen/Saltelli approximation [ 22 ,  31 ].
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Fixed Topography

5.3. 2-Dimensional Cases with All Possible Meteorology
Parameters Uncertainty with Fixed Topography

Here, the uncertain parameters will be the same as previous study which are those which
are written in table  4.3 , with the exception for the topography complexity τ which is set
to be constant to have the 2-dimensional topography as figure  5.2 . Both uncertainty quan-
tification and sensitivity analysis will be done in this study since the effects of variation
of meteorology in a 2-dimensional fixed topography is also studied [ 16 ] as a simplified
of phenomenon that happen in the real world. Other than that, sensitivity of parameters
outside the complexity of topography are also needed in order to assist further research in
3-dimensional case, so that the uncertainty dimension is reduced (thus also the computa-
tional cost).

Figure 5.2.: Topography and sound source of uncertainty quantification for 2d-simulation
scenario.

5.3.1. Uncertainty Quantification

There are 2 uncertainty quantification cases which are a ground boundary condition which
absorbs particle when particle that hits it (total absorption) and the one that using complex
impedance boundary condition (from subsection  4.1.1 ). The analysis of total absorption is
done since it is a simplified case and shows a smooth sound propagation level profile,
but it is also unknown how uncertain the sound pressure level if this boundary condition
is applied when there exist uncertainties on the input parameters. Complex impedance
ground boundary condition is studied since it’s close to reality [ 17 ] and the study of a

37



5. Results and Discussions

model that is close to reality should also be able to assist the research in the real physical
world since presumably it shows similar result or pattern with a real life measurement.

It is shown both in figure  5.3 and figure  5.4 (note that the plot of standard deviation is
set to maximum of 4 dB to make the the lower standard deviation more visible, since the
high standard deviation (larger than 8 dB) are located at the boundary grid on the top of
the source that are not taken into account) that SPL in both ground boundary conditions
have larges uncertainty in the  up-wind (left side on the figure, since the wind goes from
the left side to the right side with details on wind speed profile on figure  B.1 ) and long
field region. This result shows consistency with [ 15 ] which mentioned that up-wind and
long field region are more affected by variations of meteorological condition.

For total absorption ground boundary condition case, there are simple deviations which
are shaped like a ray patterns which looks more visible the farther it is from the sound
source. This pattern exist because the uncertainty in input parameters cause the variation
of how fast the particles hit the ground since as it is written before in  4.1.1 that wind speed
vectors have influence. Since no particles are reflected after hitting the ground with this
ground boundary condition, more particles hit the ground faster means also less particles
that propagate in the domain, thus also less sound pressure level.

For total complex impedance ground boundary condition case, there are a lot of devi-
ation that happen above the ground as well. This pattern exist with the same reason as
before, which is because the uncertainty in input parameters cause the variation of how
fast the particles hit the ground since as it is written before in  4.1.1 that wind speed vectors
have influence. However, since particles are reflected after hitting the ground with this
ground boundary condition, more particles are causing interference effect and according
to it’s phase, can cause higher or lower sound pressure level. The particles are reflected
depending on their angle of incident ϕj thus showing more weird interference pattern.

5.3.2. Sensitivity Analysis

The sensitivity analysis is done as a post processing of uncertainty quantification data, thus
having the same case as before but only done for complex impedance ground boundary
condition since it’s the more realistic model. Figure  5.5 shows the Sobol’ indices of each
uncertain parameters. It is obtained now that the wind speed uexp does have the most
contribution on the total variance or the most sensitive model because of its unmatched
Sobol’ index. This results motivates to do another uncertainty quantification since the
dimensionality of the uncertainty now can be reduced into only 1 dimension which means
only uexp as a variable with uncertainty.
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Topography

Figure 5.3.: Plot of mean values of SPL on every coordinates (A) and standard deviation of
SPL on every coordinates (B) as a results of Monte Carlo uncertainty quantifi-
cation using 45056 samples with total absorption ground boundary condition.

5.4. 2-Dimensional Cases with Wind Speed only as Uncertain
Paramater with Fixed Topography

Reducing the dimensionality is important since doing uncertainty quantification for 3-
dimensional is also planned and therefore can reduced the number of samples that are
needed. Here, comparison with gPCE will also be shown. Since the Sobol’ index is high,
a smaller range of uncertainty will be used in order to simulate error because of measure-
ment and not error because of the atmospheric wind variability. The variation of the speed
of wind therefore will be as follows:

x1 ∼ N (5.248, 0.5),

with the mean values of wind speed obtained from real data from Vale do Cobrão [ 10 ].
The result of uncertainty quantification for the whole domain is shown in figure  5.6 . Both
pattern of mean and standard deviation look similar to  5.4 , therefore analysis of the uncer-
tainty of the model will be focused only in the uncertain uexp.
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Figure 5.4.: Plot of mean values of SPL on every coordinates (A) and standard deviation of
SPL on every coordinates (B) as a results of Monte Carlo uncertainty quantifi-
cation using 45056 samples with complex impedance ground boundary condi-
tion  4.4.1 .

5.4.1. Uncertainty Quantification at the Ground Level

Since the region that is most needed to be studied is the ground level, this region will be
focused more in this section. Figure  5.7 shows the result of SPL at the ground level with
several example of wind speed at it’s mean using Monte Carlo.

It is shown that at up-wind region, a wider variation of SPL are more observed than in
 down-wind region, especially the farther it is from the location of the source. It is observed
that at down-wind region near the source, the variation of wind speed does not really affect
the value of SPL.

Comparison of Monte Carlo and gPCE

In this subsection, the 2 mentioned uncertainty quantification methods will be compared.
The uncertainty quantification of Monte Carlo data (8032 samples) are still used and will
be compared to gPCE with order 10 quadrature, which means 20 quadrature point, thus
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Figure 5.5.: First order Sobol’ sensitivity indices (left) and total order Sobol’ sensitiv-
ity indices (right) of all used meteorological input parameters of AKUMET
with fixed topography that are obtained using Monte Carlo method and
Jansen/Saltelli approximation [ 22 ,  31 ].

20 times model run (20 samples). The comparison results of mean and variance as the
ground level are shown in figure  5.8 and figure  5.9 . The results show for mean values,
the result of gPCE and Monte Carlo almost identical even though gPCE needs only 1

400
samples that Monte Carlo needs. For Standard deviation, we observe that both methods
shows the same pattern but sometimes differs. However, the pattern of standard deviation
is similar. Therefore, it can be concluded that uncertainty quantification using gPCE are
useful for the research and can be applied also for 3-dimensional case.

5.5. 3-Dimensional Cases

The results of uncertainty quantification of 3 levels of topography are shown at figure  5.10 

for the mean values and figure  5.11 for the standard deviation values. The results for
3-dimensional are unexpected, it is found that the uncertainties are not as big as in the
2-dimensional cases. Both figure  5.10 and  5.11 show the results of the uncertainty which
are using the distribution that are achieved from Perdigão project data and the others are
put at the appendix ( B.3 ,  B.4 ,  B.5 ,  B.6 ,  B.7 and  B.8 ). In addition to the fact that the result of
sensitivity analysis of the 2-dimensional cases shows the speed of wind at 10 meters height
is the most sensitive parameter, it is also chosen since our knowledge that wind speeds are
always varying (data is shown at  B.2 ). The mean figures that are shown in figure  5.10 

show an intuitive results since it looks similar to the result when the uncertain inputs are
changed to the deterministic with the mean values as it’s deterministic values. In order to
check the results, another comparison is done. Since the 2-dimensional simulation, uses
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Figure 5.6.: Plot of mean values of SPL on every coordinates (A) and standard deviation of
SPL on every coordinates (B) as a results of Monte Carlo uncertainty quantifica-
tion using 8032 samples with complex impedance ground boundary condition
but with only little uncertainty in wind speed.

the slice of Vale do Cobrão’s topography (which slice is shown in figure  5.12 ) and uses the
same parameters as the 3-dimensional one, we can slice the 3-dimensional results at the
same point and compare the data. Figures  5.13 shows this comparison and it is shown
that the mean data has similar pattern (even more at the down-wind case) and gives an
understanding that the model is running correctly. However it is also shown in figure  5.13 

that the standard deviation values for the 3-dimension differ a lot even in different order.
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Figure 5.7.: Plot of mean values of SPL at ground level compare to SPL at the ground level
with variation of uexp, a more focused version of figure  5.6 .

Figure 5.8.: Comparison of mean value of SPL at ground level by using Monte Carlo
method (8032 samples) and gPCE method (20 samples).

Figure 5.9.: Comparison of standard deviation value of SPL at ground level by using
Monte Carlo method (8032 samples) and gPCE method (20 samples).
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Figure 5.10.: Plot of mean values of SPL on every coordinates at the lowest ground with
different topography which are (A) simple topography, (B) wavy topography
and (C) Vale do Cobrão topography when the speed of wind at 10 meters is
uncertain (N (5.248, 0.5)) using gPCE method with 20 samples.
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Figure 5.11.: Plot of standard deviation values of SPL on every coordinates at the lowest
ground with different topography which are (A) simple topography, (B) wavy
topography and (C) Vale do Cobrão topography when the speed of wind at
10 meters is uncertain (N (5.248, 0.5)) using gPCE method with 20 samples.
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Figure 5.12.: Marked by the red line is the slice of the 3-dimensional topography that is
used as input topography for the 2-dimensional simulation.

Figure 5.13.: Comparison of standard deviation and mean values at one level of the 2-
dimension simulation with the slice of Vale do Cobrão’s topography uses
as input topography, compares to the 2-dimensional slicing of 3-dimensional
simulation results with the Vale do Cobrão’s topography full 3-dimensional
topography as input topography (which slice is shown in figure  5.12 ).
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The uncertainty quantification and sensitivity analysis method chosen for this study proved
to be functional. Both methods, Monte Carlo and gPCE show similar results and both can
be used to analyze the uncertainty and sensitivity of Lagrangian-based sound propagation
models which takes meteorological conditions into account. Another important finding is
the fact that because of many of the uncertain parameters cannot be reduced and uncer-
tainty quantification using gPCE method does not require a lot of samples, quantifying the
uncertainty using gPCE method in every research that uses acoustic-meteorology coupled
model can be done as a complement to a normal simulation where usually only the value
of the sound pressure level is obtained without any information of it’s uncertainty (for ex-
ample the standard deviation of the sound pressure level), even though it is well known
that meteorological values are uncertain.

6.1. Conclusion of The Specific Results

Specifically from the 2-dimensional case, it is evident that the topography is the most im-
portant parameter to be looked on to reduce the uncertainty of the model. After the to-
pography is made to be fixed/constant, the Sobol’ sensitivity index of the speed of wind
at 10 meters from the ground is shown to be the highest and not comparable to other pa-
rameters. Reducing the uncertainty of the speed of wind is not easy since in every outdoor
case, the speed of wind is always changing. In 2-dimensional case, it is confirmed that the
pattern of uncertainty of AKUMET follows the uncertainty of the real world sound prop-
agation model ([ 15 ] as reference). Even in the case of low input uncertainty, the up-wind
and long-field regions experience great uncertainty only with variations in wind speed.

However, in the case of 3-dimensional for all different kind of topography (even when
the topography of Vale do Cobrão is used), the values of the standard deviation are un-
usually small (order of 10−12), even when the uncertain input parameter which is chosen
has the highest Sobol’ sensitivity index. Many scenario have been tested by changing the
input parameters that is object to uncertainty and also the frequency of the sound wave,
but those results still show small standard deviations while the mean plots look intuitively
correct. This usually indicates the robustness of the model, however this does not seem to
fit with the physical reality and further investigation of this result is needed. This results
serve as preliminary results which was using Sobol’ Indices from 2-dimensional case as
reference and this is proven to be not correct thus, there is a possibility that the uncertainty
of 2-dimensional and 3-dimensional model behave differently. Therefore, the uncertainty
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and sensitivity analysis results that can be said as reliable results are the cases from 2-
dimension one.

6.2. Outlook

The first outlook for the future work is obviously about the 3-dimensional model. Since the
analyzed results are always on the lowest ground, there probably could be an unknown
effect of the model that has not yet known. The other thing is the creation of the meteo-
rological field that AKUMET performs before the sound propagation simulation is done,
could also be analyzed deeply.

For 2-dimensional case, a variation of a topography that includes a barrier can also be
done in order to understand how a topographical barrier properties (height, how close
the receiver/source to the barrier and reflection/absorption properties) might affect the
sound pressure level. Also for all cases in this research, a non-moving receiver and source
are always used and a moving one might also be interesting to study since many studies
about noises also consider a moving receiver or source (for example the noise that came
from traffics [ 25 ]).

In this study, a forward model has always been used since the input distribution of un-
certain parameters are known. There actually exist other uncertainty quantification meth-
ods that can be tested such as Bayesian inversion which is a backward model or other
gPCE methods such as point collocation or stochastic Galerkin approach.
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A. Detailed Descriptions

Parameter Symbol Si ST
Speed of sound cexp 6.82E− 09 4.14E− 12

Vertical gradient of the speed of sound cexpz 0.00E + 00 0.00E + 00

Temperature texp 1.26E− 03 1.73E− 03

Vertical gradient of the temperature texpz 6.85E− 03 9.10E− 03

Relative humidity rfexp 2.57E− 05 1.75E− 05

Wind speed at 10 m height uexp 3.48E− 01 4.28E− 01

Wind direction vexp −1.27E− 05 1.89E− 06

Ground roughness z0exp 1.05E− 02 1.91E− 02

Air resistance on the ground sigexp 0.00E + 00 0.00E + 00

Topography complexity τ 5.48E− 01 6.33E− 01

Table A.1.: Table of first order and total order Sobol’ sensitivity indices of all used meteoro-
logical input parameters of AKUMET including topography that are obtained
using Monte Carlo method and Jansen/Saltelli approximation [ 22 ,  31 ].

Parameter Symbol Si ST
Speed of sound cexp 2.14E− 08 7.99E− 12

Vertical gradient of the speed of sound cexpz 0.00E + 00 0.00E + 00

Temperature texp 3.89E− 03 4.47E− 03

Vertical gradient of the temperature texpz 2.56E− 02 3.03E− 02

Relative humidity rfexp 7.77E− 05 7.32E− 05

Wind speed at 10 m height uexp 9.28E− 01 9.37E− 01

Wind direction vexp −3.91E− 05 1.06E− 05

Ground roughness z0exp 3.25E− 02 3.90E− 02

Air resistance on the ground sigexp 0.00E + 00 0.00E + 00

Table A.2.: Table of first order and total order Sobol’ sensitivity indices (right) of all used
meteorological input parameters of AKUMET that are obtained using Monte
Carlo method and Jansen/Saltelli approximation [ 22 ,  31 ].
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A. Detailed Descriptions

Parameter Symbol Value Unit
Speed of sound cexp 340 m/s

Vertical gradient of the speed of sound cexpz 5 1/s

Temperature texp 18 ◦C

Vertical gradient of the temperature texpz 2 K/km

Relative humidity rfexp 60 %

Wind speed at 10 m height uexp RV m/s

Ground roughness z0exp 0.3 M

Air resistance on the ground sigexp 300 KPaSM−2

Table A.3.: Chosen meteorological parameters when uncertainty quantification with only
the speed of wind as the parameter with uncertainty is done.
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B. Complementary Results

Figure B.1.: Plot of the profile of the speed of wind at every point of the domain when the
sample generator set the speed of wind at 10 meters (uexp) to 4.21 m/s and at
other height is calculated logarithmically.

Figure B.2.: Data of wind speed at Vale do Cobrão [ 10 ].
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Figure B.3.: Plot of mean values of SPL (100 Hz frequency) on every coordinates (A) and
standard deviation of SPL on every coordinates (B) when the speed of wind
at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncertainty
quantification with 20 samples at level 1 topography.

Figure B.4.: Plot of mean values of SPL (Whole third octave band) on every coordinates
(A) and standard deviation of SPL on every coordinates (B) when the speed of
wind at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncer-
tainty quantification with 20 samples at level 1 topography.



Figure B.5.: Plot of mean values of SPL (100 Hz frequency) on every coordinates (A) and
standard deviation of SPL on every coordinates (B) when the speed of wind
at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncertainty
quantification with 20 samples at level 2 topography.

Figure B.6.: Plot of mean values of SPL (whole third octave band) on every coordinates
(A) and standard deviation of SPL on every coordinates (B) when the speed of
wind at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncer-
tainty quantification with 20 samples at level 2 topography.



Figure B.7.: Plot of mean values of SPL (100 Hz frequency) on every coordinates (A) and
standard deviation of SPL on every coordinates (B) when the speed of wind
at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncertainty
quantification with 20 samples at level 3 (Vale do Cobrão) topography.

Figure B.8.: Plot of mean values of SPL (whole third octave band) on every coordinates
(A) and standard deviation of SPL on every coordinates (B) when the speed of
wind at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncer-
tainty quantification with 20 samples at level 3 (Vale do Cobrão) topography.



Figure B.9.: Plot of mean values of SPL (whole third octave band) on every coordinates
(A) and standard deviation of SPL on every coordinates (B) when the speed of
wind at 10 meters is uncertain (N (5.248, 2.8639)) as a results of gPCE uncer-
tainty quantification with 20 samples at level 3 (Vale do Cobrão) topography
but with ground boundary condition set into total absorption.





Glossary

dew point temperature at which air must be cooled to become saturated with water va-
por, with the assumption of constant air pressure and water content.  1 

down-wind in the same direction to that in which the wind is blowing; with the wind.  40 

geostrophic wind a wind which is resulted from an exact balance between the Coriolis
force and the pressure gradient force.  1 

roughness length a parameter of a vertical wind profile equations that model the hori-
zontal mean wind speed nearby ground.  1 

up-wind in the opposite direction to that in which the wind is blowing; against the wind.
 38 
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