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A B S T R A C T   

Soil organic carbon (SOC) prediction from remote sensing is often hindered by disturbing factors at the soil 
surface, such as photosynthetic active and non–photosynthetic active vegetation, variation in soil moisture or 
surface roughness. With the increasing amount of freely available satellite data, recent studies have focused on 
stabilizing the soil reflectance by building reflectance composites using time series of images. Although com
posite imagery has demonstrated its potential in SOC prediction, it is still not well established if the resulting 
composite spectra mirror the reflectance fingerprint of the optimal conditions to predict topsoil properties (i.e. a 
smooth, dry and bare soil). 

We have collected 303 photos of soil surfaces in the Belgian loam belt where five main classes of surface 
conditions were distinguished: smooth seeded soils, soil crusts, partial cover by a growing crop, moist soils and 
crop residue cover. Reflectance spectra were then extracted from the Sentinel–2 images coinciding with the date 
of the photos. After the growing crop was removed by an NDVI < 0.25, the Normalized Burn Ratio (NBR2) was 
calculated to characterize the soil surface, and a threshold of NBR2 < 0.05 was found to be able to separate dry 
bare soils from soils in unfavorable conditions i.e. wet soils and soils covered by crop residues. Additionally, we 
found that normalizing the spectra (i.e. dividing the reflectance of each band by the mean reflectance of all 
spectral bands) allows for cancelling the albedo shift between soil crusts and smooth soils in seed–bed conditions. 
We then built the exposed soil composite from Sentinel–2 imagery for southern Belgium and part of Noord- 
Holland and Flevoland in the Netherlands (covering the spring periods of 2016–2021). We used the mean 
spectra per pixel to predict SOC content by means of a Partial Least Squares Regression Model (PLSR) with 
10–fold cross–validation. The uncertainty of the models was assessed via the prediction interval ratio (PIR). The 
cross validation of the model gave satisfactory results (mean of 100 bootstraps: model efficiency coefficient 
(MEC) = 0.48 ± 0.07, RMSE = 3.5 ± 0.3 g C kg–1, RPD = 1.4 ± 0.1 and RPIQ = 1.9 ± 0.3). The resulting SOC 
prediction maps show that the uncertainty of prediction decreases when the number of scenes per pixel increases, 
and reaches a minimum when at least six scenes per pixel are used (mean PIR of all pixels is 12.4 g C kg–1, while 
mean SOC predicted is 14.1 g C kg–1). The results of a validation against an independent data set showed a 
median difference of 0.5 g C kg–1 ± 2.8 g C kg–1 SOC between the measured (average SOC content 13.5 g C kg–1) 
and predicted SOC contents at field scale. Overall, this compositing method shows both realistic within field and 
regional SOC patterns.   

1. Introduction 

Soils have become part of the global agenda for climate-change 
mitigation and adaptation initiatives (Amelung et al. 2020). The role 
of soils in these initiatives is two-fold. Firstly, carbon (C) sequestration 
in soils is part of negative emission options for climate change mitigation 
(Paustian et al. 2016). Secondly, increasing soil organic matter (SOM) 

and hence its main component soil organic carbon (SOC) is crucial for 
the adaptation of agricultural systems to climate change, through its 
effect on soil health via water and nutrient holding capacity and soil 
structure. Implementing effective soil-based climate-change mitigation 
strategies requires the capacity to measure and monitor SOC with 
acceptable accuracy at a low cost and over large areas (Paustian et al. 
2016). Traditional soil mapping techniques have limitations related to 
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financial and time constraints, not being able to meet the spatiotemporal 
resolution required. Existing soil mapping products covering a large 
geographical extent are available either at coarse spatial resolution of 
250 m to 1 km (de Brogniez et al. 2015; Jones et al. 2005), or are based 
on legacy data such as the harmonized World Soil Database (1:5 000 
000; Nachtergaele et al. (2009)). This spatiotemporal resolution is 
insufficient, as changes in SOC are often related to agricultural 

management decisions taken at the field / farm–scale with a realistic 
return on investment in mind. 

Digital soil mapping emerged as an alternative to meet the global 
demand for soil maps (McBratney et al. 2003). Earth observation serves 
as a source of co-variates for digital soil mapping, as satellite images 
allow monitoring over time and over large areas with a resolution that 
allows distinguishing within and between field patterns. Many studies 

Figure 1. (A) Location of the croplands (in black) and the Sentinel 2 tiles (in red) in Belgium and the Netherlands. Zoom on the two study areas: (B) the polders in 
The Netherlands and (C) southern Belgium. In red are the 303 in–situ observations of soil surface conditions and in blue the 124 calibration samples. For each blue 
point in the Belgian loam belt, a soil surface observation was made. The 34 385 REQUASUD validation samples are not shown, as they are uniformly distributed 
throughout the Walloon region. 
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have demonstrated the potential of remote sensing for SOC mapping 
either directly when bare soils are exposed or indirectly quantifying the 
biomass input into the soils (Angelopoulou et al. 2019). However, only a 
limited number of studies have focused on directly predicting soil 
properties for areas larger than 500 km2. Silvero et al. (2021) mapped 4 
815 km2 in southeastern Brazil, Diek et al. (2017) mapped 12 000 km2 in 
the Swiss Plateau and Zepp et al. (2021) mapped 130 000 km2 in the 
German federal state of Bavaria and adjacent areas. These studies all 
used exposed soil composites and therefore provided a nearly contin
uous cover of croplands. Indeed, the area that is likely to be predicted on 
a single remote sensing scene is limited as many pixels are covered by 
crops, and the periods during which exposed soils dominate are 
restricted to short time windows (Zepp et al. 2021). Creating an exposed 
soil composite, i.e. stacking several spatially overlapping images into 
one composite image based on an aggregation function, allows 
combining all exposed soils of all input scenes, thus increasing their 
extent. The soil information that can be derived from the composite 
image is then averaged over multiple years. Averaging over multiple 
years will go at the expense of temporal resolution. However, as SOC 
changes can usually only be observed over a period of 5-10 years, 
integration over five years is not the main constraint for the composite. 
On the one hand, averaging exposed soil spectra over several years 
produces new spectrally enhanced data, which are less sensitive to 
seasonal differences in soil surface conditions. On the other hand, it has 
been shown that SOC prediction models are strongly hindered by at
mospheric disturbance (varying with season, clouds, sun azimuth and 
elevation), as well as by varying surface conditions due to roughness, 
moisture or crop residue cover (Castaldi et al. 2019a; Gholizadeh et al. 
2018; Vaudour et al. 2019). Ultimately, a spectrum does not necessarily 
reflect the pure soil signal at least for an important fraction of the 
cropland area. Besides atmospheric correction and cloud masking, a 
common approach relies on the empirical definition of a spectral index 
threshold that is used to differentiate between soils in suitable and un
suitable conditions. Well-known indexes are the normalized difference 
vegetation index (NDVI) (Loiseau et al. 2019; Rogge et al. 2018), the 
bare soil index (BSI) (Diek et al. 2017), the normalized burn ratio 
(NBR2) (Demattê et al. 2018; Gallo et al. 2018), and Sentinel–1 derived 
volumetric soil moisture per pixel (Vaudour et al. 2021). So far, index 
thresholds are chosen on trial and error basis, where the threshold 
providing the best model performance is usually selected e.g. (Castaldi 
et al. 2018; Dvorakova et al. 2021; Vaudour et al. 2021). The extent to 
which these index thresholds distinguish between different soil surface 
conditions is rarely reported and may also be specific for pedoclimatic 
zones. 

The NBR2 is computed as the normalized difference between two 
SWIR bands. It was initially defined by van Deventer et al. (1997) for the 
Landsat TM to detect crop residue cover for fields under conservation 
tillage. It has also shown to be able to detect moist soil (Demattê et al. 
2018), because the SWIR bands are on the shoulders of the water ab
sorption feature (Musick and Pelletier 1988). Given the high temporal 
and spatial resolution needed for SOC mapping with composite imagery, 
the multispectral instrument (MSI) aboard the Sentinel–2 (S–2) 
constellation was chosen. The S–2 constellation is composed of twin 
satellites S–2A and S–2B in the same orbit and phased at 180◦ (Drusch 
et al. 2012). Together, they provide time series with high revisit fre
quency (five days at the equator). The S–2 MSI has 13 spectral bands of 
which four cover the visible spectral range (440 nm to 670 nm), six 
cover the red–edge and the near infra–red spectral range (700 nm to 
1000 nm) and three bands cover the shortwave infra–red spectral range 
(1300 nm to 2200 nm). SOC shows a relationship with electromagnetic 
radiation in all these spectral regions (Ben-Dor et al. 1997). The S–2 
mission has already shown to be promising for SOC mapping. Gholiza
deh et al. (2018) obtained good results when predicting SOC in a 0.93 
km2 cropland field in Czech Republic (RPD = 1.92, RMSE = 0.8 g C 
kg–1). Castaldi et al. (2019a) predicted SOC for a 10 000 km2 area in 
Northern Germany with good accuracy when NBR2 thresholding was 

applied (RPD = 2.3, RMSE = 13.4 g C kg–1). Vaudour et al. (2021) used 
an S–2 exposed soil composite to predict SOC in the Versailles Plain (221 
km2), France (RPD = 1.4, RMSE = 3.7 g C kg–1, R2 = 0.5). Dvorakova 
et al. (2021) obtained good results when predicting SOC on an S–2 
exposed soil composite in central Belgium (3 630 km2) using NBR2 
thresholding (RPD = 1.6, RMSE = 3.6 g C kg–1, R2 = 0.56). 

McBratney et al. (2003) have stated that digital maps of soil prop
erties should be accompanied by a spatial measure of their associated 
uncertainty. This uncertainty of prediction must be assessed to charac
terize the quality of the prediction maps and these limits allow the user 
to define whether the product is suitable for the intended use (Gomez 
et al. 2019; McBratney et al. 2003). Compared to the common model 
performance indicators such as MEC, RMSE, RPD or RPIQ which are 
calculated only from points for which the reference values are known, 
the uncertainty maps can be calculated for all new predictions. One of 
the rare examples of uncertainty quantification for soil prediction from 
imaging spectroscopy is provided by Gomez et al. (2015). They analyzed 
the uncertainties that affect clay content mapping from VNIR/SWIR 
airborne data. Brodský et al. (2013) have evaluated the spatial uncer
tainty of the SOC prediction maps acquired by means of field spectros
copy covering a single cropland field in the Czech Republic. 

In response to the scarcity of SOC maps accompanied by the uncer
tainty of prediction, this study aims to predict SOC from an S-2 exposed 
composite and quantify the uncertainty for the croplands in parts of 
Belgium and The Netherlands. The first part of this study consists of 
gathering in–situ field observations of soil surface conditions of crop
lands (notably crop residues, soil moisture and soil crusts), and linking 
them to remote sensing information, more specifically the NBR2 index. 
Once a NBR2 threshold based on field observations is found that allows 
eliminating soils in unsuitable conditions for SOC prediction from 
remote sensing, the exposed soil composite is created using this 
threshold. The second part of this study focuses on uncertainty assess
ment for SOC prediction maps from an S–2 exposed soil composite. Here 
we use bootstrapping to vary the calibration data set and quantify the 
effects on SOC prediction. Given the large storage and high computing 
power needed for the creation of an exposed soil composite, the Google 
Earth Engine cloud computing platform (Gorelick et al. 2017) is 
employed for processing bare soil surface spectra using S–2 multi
–temporal data. The composite is used to predict SOC over large areas: 
16 900 km2 in southern Belgium, and 6 350 km2 in the Dutch polders. 
These zones were selected because of their large cropland extent (5 370 
km2). 

2. Materials and Methods 

2.1. Study site 

The study was conducted in Wallonia, southern Belgium and in part 
of Noord-Holland and Flevoland in the Netherlands (Figure 1). The 
study area in Wallonia covers 16 900 km2. There is an increase in pre
cipitation (from 800 to 1 200 mm) and a decrease of mean annual 
temperature (from 10 to 8 ◦C) from the northwest to the southeast 
(Chartin et al. 2017). Sandy loam soils are dominant in the north west 
(haplic Luvisols, WRB (2014)), silty soils in the center and shallow silt 
loam and stony soils in the south east (dystric Cambisols, WRB (2014)). 

A shift from intensive arable agriculture to more extensive cattle 
breeding can be observed along the same gradient (Chartin et al. 2017). 
Winter cereals, sugar beet, maize and potatoes are the dominant crops, 
grown in a three–year rotation. Most soils are under conventional tillage 
using a moldboard plow. The croplands amount to 3 878 km2. 

The study area in the Netherlands contains four polders, which were 
reclaimed from the IJsselmeer during the 20th century (Figure 1B) 
(Waterman et al. 1998). The oldest polder Wieringermeer (drained in 
1930) covers 200 km2 and is part of the province Noord-Holland. The 
Noordoostpolder was drained in 1942 and spreads across 480 km2. The 
Flevoland polder was reclaimed in two parts: East Flevoland drained in 
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1957 (540 km2) and South Flevoland drained in 1968 (430 km2) 
(Waterman et al. 1998). The soils are calcareous and relatively young, 
with predominantly loamy soils with clayey intrusions (Fluvisols and 
Gleysols, WRB (2014)). The agriculture is intensive, with maize, winter 
wheat and potatoes being the dominant crops. As both the Dutch and 
Belgian study areas are dominated by conventional agriculture, soil 
properties are uniform in the top 0-20 cm due to repeated tillage 
(Meersmans et al. 2009). 

2.2. Field data 

A total of 303 observations of the soil surface were made in the 
Belgian loam belt region (red points on Figure 1C). The data were 
collected on nine occasions from October 2019 to April 2021 (Table 1). 
The locations were chosen at least 20 m from the field border in order to 
avoid mixed pixels. For each field observation, an RGB geo–referenced 
(7–8 m precision) photo was taken with a smartphone. For each obser
vation we assigned a yes/no variable according to the state of the surface 
conditions (i.e. seedbed, crop residues, moist soils, growing crops and 
soil crust). The soil was categorized as moist if puddles were visible or if 
a color difference could be attributed to partial drying of the soil surface. 
Ultimately, observations with mixed soil surface conditions (e.g. pres
ence of vegetation on wet soil, etc.) were discarded. At some of the lo
cations, if the conditions allowed it (field was not freshly seeded or 
vegetation has not developed yet), soil samples were taken in March 
2021, avoiding field edges. In total 51 pseudo-random (given site 
availability) surface soil samples (0–10cm) were collected (Figure 1C, 
referred to as the Belgium calibration dataset). Each sample consists of 
five sub–samples collected within a circle of 5 m radius centered on the 
geographical position of a sampling plot, which was recorded by a 
Garmin GPS with 3 m precision. The sub–samples were then thoroughly 
mixed and stored in a plastic bag. 

Additionally, 73 geo–referenced soil samples (referred to as Dutch 
calibration dataset) were collected in June 2021 on the S–2 tile T31UFU 
(Figure 1B). These samples were selected so that (1) they were located in 
croplands and (2) they covered the principal component space 
computed from the spectra on a S–2 T31UFU image acquired on 
05–04–2020. This image was selected because of the large extent of 
exposed soils, and the dry conditions preceding the acquisition date. The 
first two principal components characterizing 70% of the original S-2 
image were retained to describe the spatial variability, and 100 locations 
were selected for sampling. Given the non-accessibility of some of the 
locations, 73 out of the 100 locations were sampled. In total 124 samples 
were available for calibration in Belgium and The Netherlands. The 
reason for joining these datasets was to increase the SOC variability in 
the calibration dataset. 

The model predictions were validated on an external and indepen
dent dataset. The results from routine analyses for fertilizer advice are 
available in a database of the REQUASUD network since 2005 (https:// 
www.requasud.be/, accessed date: 30 November 2021). The soil data 
refer to composite samples covering an entire field (or a soil series 
within a field). A total of 34 385 cropland fields were sampled from 2017 

until 2021 (referred to as the REQUASUD independent validation 
dataset). 

2.3. Laboratory analyses 

All samples (i.e. the Belgium and the Dutch calibration datasets) 
were air–dried, gently crushed and passed through a 2 mm sieve. SOC 
was analyzed by dry combustion, using a VarioMax CN Analyzer (Ele
mentar Analysensysteme GmbH, Hanau, Germany), as detailed in Shi 
et al. (2020). For samples showing reaction with 10% HCl (1 out of the 
51 samples from the Belgian calibration dataset and 62 out of the 73 
samples from the Dutch calibration dataset), carbonate content was 
measured using a modified pressure–calcimeter method (Sherrod et al. 
2002). Then, SOC was obtained by subtracting the inorganic carbon 
from the total carbon content. The SOC content of the composite samples 
of the REQUASUD independent validation dataset is measured via sul
fochromic oxidation (ISO 14235) or dry combustion (ISO 10694) (Genot 
et al. 2012). 

To evaluate the general accuracy of the prediction, the difference for 
all samples between predicted and measured SOC contents (i.e. the 
residues) of the external independent dataset was calculated (equa
tion1). 

Residues = SOCmeasured − SOCpredicted (1)  

2.4. Remote sensing data 

Remote sensing data were obtained using the Multi–Spectral In
strument (MSI) on board of the Sentinel 2–A (S–2A) and S–2B platforms, 
as the S–2 mission is a constellation with twin satellites. The MSI has 13 
spectral bands, including four bands of 10 m resolution and six bands of 
20 m resolution (see Drusch et al. (2012) for a detailed description of the 
MSI). S–2 imagery was obtained as Level–2A product; i.e. geometrically, 
radiometrically and atmospherically corrected using sen2cor, in the 
Google Earth Engine (GEE) environment (COPERNICUS/S2_SR). Seven 
S-2 tiles 31UFU, 31UES, 31UER, 31UFS, 31UFR, 31UGS and 31UGR 
were used. A cloud mask precomputed with the s2cloudless Python 
package, and available as GEE COPERNICUS/S2_CLOUD_PROBABILITY 
product, was used to remove pixels affected by clouds (pixels with 
‘probability’<30 were kept). We used nine bands (B2, B3, B4, B5, B6, 
B7, B8, B11 and B12) resampled to 20 m resolution. The images were 
masked using the Walloon cropland map extracted from the Land Parcel 
Information system for Wallonia in 2019 (http://geoportail.wallonie.be, 
accessed date: 28 January 2021) and the Dutch cropland map 2017 from 
the Ministry of Economic Affairs and Climate (https://data.overheid.nl, 
accessed date: 5 July 2021). 

2.4.1. Sentinel–2 single date imagery 
The S–2 spectrum was extracted for each of the 242 geo-referenced 

field observations to link these with S–2 imagery. For each field obser
vation, the closest S–2 acquisition date was selected (Table 1). The time 
difference in ground campaign and image acquisition was in the ma
jority of cases not more than two days (Table 1). However, at three 
occasions the S-2 image was acquired more than three days after the 
ground campaign. It was ensured that the weather conditions between 
the ground campaign and image acquisition remained similar. Fields 
that were in seedbed condition during the ground campaign and for 
which the image was acquired more than two days ahead of time (this is 
the case for the October field campaign) were not included in the sample 
to minimize the chance of false observations, as it is not possible to know 
how long ago the field was ploughed. 

The normalized reflectance is derived to highlight the spectral shape 
and reduce the amplitude of variation of the spectra (equations (2) and 
(3); Rogge et al. (2018)): 

Table 1 
The acquisition date of the geo-referenced field observations, versus the acqui
sition date of the Sentinel–2 (S–2) imagery.  

Number of pictures Field date Closest S–2 acquisition date 

24 18 October 2019 13 October 2019 
12 27 March 2020 26 March 2021 
16 1 April 2020 5 April 2020 
41 2 April 2020 
27 4 April 2020 
107 31 March 2021 31 March 2021 
37 1 April 2021 
22 26 April 2021 25 April 2021 
17 29 April 2021 27 April 2021  
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Meanreflectance =
SUMb∈[1,Nb]reflectanceb

Nb
(2)  

Normalizedreflectanceb =
reflectanceb

Meanreflectance
(3) 

where Nb is the total number of bands, and b ∈ [1, Nb] is the band 
number, and varies from 1 to 9 (B2, B3, B4, B5, B6, B7, B8, B11 and 
B12). 

The Normalized Burn Ratio 2 (NBR2) spectral index was calculated 
for the 242 S–2 spectra (equation (4); van Deventer et al. (1997)): 

NBR2 =
ρSWIR1 − ρSWIR2

ρSWIR1 + ρSWIR2
(4) 

where ρ is the surface reflectance (%) of the shortwave infrared 
(SWIR) spectral regions (i.e. SWIR1=B11 and SWIR2=B12 for the MSI 
on board of the S–2 constellation). The NBR2 index was then compared 
amongst the five soil surface categories, with the aim to obtain an 
NBR2threshold value that separates moist soils and soils with crop residues 
from the other categories. 

2.4.2. Sentinel–2 multi–temporal series 
We used Sentinel–2 spectra acquired during the spring months from 

2016 to 2021 (March, April and May) to build the exposed soil com
posite in the GEE environment by a pixel based multi–temporal analysis. 
The compositing refers to the process of combining spatially overlapping 
images into a single image based on an aggregation function, in this case 
the mean. The mean was chosen because it is the most common 
approach in soil compositing for the moment (Diek et al. 2016; Rogge 
et al. 2018; Vaudour et al. 2021). In total, 158 images per S–2 tile were 
used. We focused on the spring months because this is the period in 
temperate cropping systems when the maximum extent of bare soil oc
curs during preparation for and sowing of the summer crops (e.g. sugar 
beet, potato, maize). Moreover, the soil surface dries out quickly during 
sunny conditions that are required for a cloud free S2 image and the sun 
zenith angle is already high (avoiding the winter months when sun 
zenith angle drops below 70◦). The low sun zenith angle hampers the 
correct estimation of atmospheric parameters used for converting Lev
el–1C to Level–2A product (Vermote et al. 2016). Then the spectra were 
normalized (equations (2) and (3)), and the NBR2threshold was applied to 
mask out moist soils and crop residues. Additionally, the NDVI (Rouse 
et al. 1974) was calculated (equation (5)): 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(5) 

where ρ is the surface reflectance (%) of the red and near–infrared 
(NIR) spectral regions (i.e. Red=B4, NIR=B8 for the MSI on board of the 
S–2 constellation). NDVI values range between –1 and 1, where higher 
values of NDVI indicate extensive green vegetation coverage. Choosing a 
threshold NDVI value is required for masking green vegetation. The 
threshold was determined by (i) visually inspecting the S–2 RGB images 
and by (ii) minimizing the ‘salt–and–pepper’ patchiness of the resulting 
mask. For all images, pixels with NDVI values above 0.25 were consid
ered as pixels containing green vegetation. Overall, only the pixels 
which comply with the following conditions were kept: no clouds, ∈
cropland, NDVI < 0.25, NBR2 < NBR2threshold. The NBR2threshold used 
was found following the methodology in section 2.4.1. Since an image 
collection from spring months 2016–2021 was used (in total 158 images 
per tile), it is very likely that several dates comply with the above- 
mentioned conditions for a pixel, i.e. the number of scenes per pixel >
1. Therefore, we computed the mean reflectance value for each band per 
pixel. This mean value represents the final exposed soil composite, 
which was used for SOC prediction. Note that as cloud shadows have not 
been removed, they might affect the composite. However, we hypoth
esize that the effect of shadows strongly decreases when averaging 
multiple S-2 spectra into the final composite. For further analysis, the 
number of scenes contributing to the mean spectrum of each pixel was 

calculated and stored in a database. 

2.5. SOC prediction models 

Exposed soil composite reflectance values (Section 2.4.2) were 
regressed against topsoil SOC contents from the corresponding pixels in 
the calibration dataset (n=124) in order to calibrate a SOC model. 
Partial least squares regression (PLSR) was then chosen to construct the 
SOC prediction models. The PLSR approach uses the full spectrum to 
establish a linear regression model where the significant spectral in
formation is contained in a few orthogonal factors, called latent vari
ables (LV) (Nocita et al. 2014; Wold et al. 2001). Because a limited 
number of samples were available, they could not be partitioned into 
calibration-validation datasets. Therefore, a ten–fold–cross–validation 
procedure was adopted to estimate the prediction capability of the PLSR 
model for the training set. With this method, the dataset is divided 
randomly into ten parts. Nine of those parts were used for training, and 
one part was reserved for testing. This procedure was repeated ten times, 
each time with different partitioning of the original dataset. 

The PLSR analyses were performed using the ‘pls’ package developed 
in an R environment. To avoid over– or under–fitting, the optimal 
number of LV was determined as the one producing a model having the 
minimal Root Mean Square Error (RMSE) of cross–validation, while the 
maximum number of LV’s was set at five in order to avoid over-fitting 
the model. The Variance Importance Projection (VIP) index was calcu
lated in order to detect the main spectral regions involved in the SOC 
prediction. Spectral bands with VIP values greater than one were 
considered important in the PLSR model. 

The quality of model fit was assessed using the following parameters: 
Model Efficiency Coefficient (MEC) which is the equivalent of the R- 
square of predicted and observed values computed against the 1:1 line , 
Root Mean Square Error (RMSE), Ratio of Performance to Deviation 
(RPD) and Ratio of Performance to Interquartile Range (RPIQ) of ten–
fold cross–validation (equations (6)–(9)): 

MEC = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − y )

2 (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)2

n

√
√
√
√
√

(7)  

RPD =
SD

RMSE
(8)  

RPIQ =
IQ

RMSE
(9) 

where ŷ = predicted value, y= mean observed value, y = observed 
values, n = number of samples with i = 1, 2, …, n, and SD the standard 
deviation and IQ the interquartile range (quartiles 0.25 and 0.75) of the 
observed values. Thresholds for RPD can be found which classify the 
models into three categories: non reliable when RPD < 1.4, fair when 1.4 
< RPD < 2 and excellent when RPD > 2 (Chang et al. 2001). Minasny 
(2013), however, considers these thresholds to be arbitrary. We will, 
therefore, not use the thresholds as model performance indicators, but 
provide these for comparison with the literature only. According to 
Bellon-Maurel and McBratney (2011), RPIQ index is a more realistic 
evaluation of a model, when working with non-normal data. 

Additionally, each set of calibration samples was subject to boot
strapping to stabilize the prediction model performance, and to calculate 
the variance of prediction, which is an input in the measure of uncer
tainty (Malone et al. 2011). Bootstrapping consists of repeatedly 
calculating a given statistic from a series of subsamples obtained by 
randomly resampling with replacement an initial dataset (Efron and 
Tibshirani 1993). Hence, 100 PLSR models were created (100 boot
straps), each with a different calibration dataset of 124 samples, drawn 
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with replacement from the original sample that has the same sample 
size. These models were applied to the exposed soil composite, resulting 
in 100 SOC prediction maps of the area. 

2.6. SOC maps and their uncertainty 

The 100 SOC prediction maps were averaged at each point in space in 
order to obtain one prediction value per pixel (Figure 2), while the 
variance of the 100 predictions as well as the mean squared error (MSE) 
estimated from the cross-validation were used to quantify uncertainty 
(Malone et al. 2016). An overall prediction variance at each pixel is the 
sum of the random error component (MSE) and the bootstrap prediction 
variance as follows (equation (10); Malone et al. (2016)): 

VARall = VARboot +MSEvali (10) 

where VARall is the overall variance i.e. the sum of the variance of the 
100 bootstrap predictions and MSEvali the mean squared error estimated 
by validation. To derive the 90% prediction interval, the square root of 
the variance estimate is multiplied by the z value that corresponds to the 
90% probability (z=1.64), to calculate the Standard Error (SE, equation 
(11)): 

SE =
̅̅̅̅̅̅̅̅̅̅̅̅̅
VARall

√
× z (11) 

The Upper and Lower Prediction Limits (UPL and LPL) are then 
calculated (equations (12) and (13)): 

UPL = MEANboot + SE (12)  

LPL = MEANboot − SE (13) 

Where MEANboot is the mean bootstrap prediction. The Prediction 
Interval Range (PIR) is then the difference between the UPL and LPL 
(equation (14)): 

PIR = UPL − LPL (14) 

Here, we express the model output uncertainties as the PIR (Malone 
et al. 2011). To assess whether a link exists between the number of 
scenes per pixel and the uncertainty, 5000 points were randomly 
selected within the croplands of the loam belt (2500 points) and the 
croplands of the polders of Flevoland and Wieringermeer in the 
Netherlands (2500 points). For each of these points, new composites 
were created from the S-2 time series (Section 2.4.2), where the number 
of scenes per pixel included in the calculation of the composite varied 
from 1 to N. The composite spectra were calculated as follows: for each 
of the 5000 points of Datasetn, randomly extract n ∈ [1,N] spectra from 
the Sentinel–2 time series, and calculate the mean of the selected spectra 
if n > 1. Hence, n represents the number of scenes per point (Figure A1). 
For example, the points in Dataset4 contain the mean of four spectra 
randomly selected from the Sentinel–2 time series for each of the 5000 
points. The PLSR model with bootstrapping as described above was then 
applied to the 5000 points of each dataset, creating a database of SOC 
predictions with dimensions N x 5000 x bootstraps. Given the large 
computational load of this procedure, the number of bootstraps was set 
to 50 and N was set to 24. To guarantee that the datasets were balanced, 
it was ensured that each of the 5000 randomly extracted pixels appeared 
on at least 24 scenes. Finally, the uncertainty is calculated for each point 
of each Datasetn. Based on this, the minimal number of scenes per pixel 
Fmin which allows to minimize the uncertainty of SOC predictions is 
found. All pixels for which the number of scenes on the exposed soil 
composite < Fmin are then eliminated. Since SOC predictions per pixel 
might suffer from noise, due to for example mixed pixels, the SOC pre
diction information is aggregated per field. This also allows validating 
the results against the independent REQUASUD dataset which provides 
SOC content of composite samples collected in 34 385 fields. After 
eliminating pixels for which the number of scenes < Fmin, the 100 SOC 
prediction maps are each averaged per field, providing 100 mean values 

Figure 2. General flowchart for the SOC modelling from the exposed soil composite.  
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per field. Fields which contain less than 10 pixels were eliminated to 
avoid errors due to mixed pixels in such very small fields. 

3. Results and discussion 

3.1. In–situ observations of soil conditions 

Out of the 303 soil surface observations 242 presented only a single 
type of disturbance: (a) seedbed (n=76), (b) crop residues (n=38), (c) 
moist soils (n=13), (d) growing crops (n=10), and (e) soil crust 
(n=114). The 242 extracted S–2 spectra were classified into five classes 
based on the observations of the surface conditions (Figure 3), and the 
spectra were normalized (equations (2) and (3)) and averaged per 
category (Figure 4). The spectrum of a soil in seedbed condition is the 
desirable shape for soil property prediction from remote sensing. The 
spectrum of vegetation shows recognizable features in the visible and 
infra–red region, with high absorption in B4 due to photosynthetic ac
tivities and high reflectance in B8 due to leaf structure (spongy meso
phyll; Figure 4) (Rouse et al. 1974). The NDVI was designed to quantify 
this increase in reflectance and spectra affected by vegetation can be 
differentiated from exposed soils with an NDVI threshold. The spectrum 
of a soil crust has an overall higher albedo than a spectrum of a soil in 
seedbed condition, but has a similar shape (Figure 5A). According to the 
literature, the effects of crusts on reflectance are mainly translated in a 
change of albedo, with absorption features varying slightly at 1450 nm 
and 1900 nm (Ben-Dor et al. 2003). Since these spectral regions are not 
corresponding to any of the S–2 MSI band, we hypothesize that 

structural crusts in the loam belt region in Belgium only affect the soil 
albedo, and the albedo shift can be corrected for by spectral normali
zation (Figure 5B). This hypothesis still has to be studied in other 
geographic conditions. For example, the colonization of physical soil 
crusts by algae or lichens in semi-arid and arid regions induces a large 
spectral variability at 550, 680 and 750 nm, due to chlorophyll ab
sorption (Chamizo et al. 2012). This chlorophyll absorption feature 
might be observable on S-2 spectra, and a simple spectral normalization 
will not be enough to mask such biological soil crusts. Additionally, soil 
albedo is not only affected by soil crusts. In fact, Muller and Décamps 
(2001) observed strong impact of soil moisture on soil albedo, and 
Franceschini et al. (2015) observed that the albedo decreases when SOC 
and clay content increases. Therefore, by normalizing the spectra, the 
albedo effect caused by soil crust, soil moisture, but also by SOC are 
eliminated. This might lead to a reduction in the predictive power of the 
SOC models which use normalized spectra as input. 

Finally, the spectra of moist soils and soils with crop residues (i.e. 
non–photosynthetically active vegetation) show a higher absorption in 
B12. For crop residues this absorption feature is due to the structural 
compounds of cellulose, hemicellulose and lignin found in dry residues 
at 2100 nm (Daughtry et al. 1996). The higher absorbance in B12 for 
moist soils is a result of the strong absorption band between 1750–2000 
nm due to water, that also impacts the adjacent wavelength regions 
covered by B11 and B12. Hence, the NBR2 index, which quantifies the 
difference between B11 and B12 shows a stronger response to spectra 
affected by soil moisture and crop residues, rather than to spectra of soil 
crusts and of soils in seedbed conditions (Figure 6). Given the high 

Figure 3. Examples of the five categories of soil surface conditions in Belgian croplands.  

Figure 4. Mean Sentinel–2 (S–2) spectra for each 
category of the five soil surface conditions in the 
Belgian loam–belt. For the sake of clarity of the 
figure, the standard deviation of the spectra is 
only provided for the spectrum of a soil in 
seedbed conditions, i.e. the optimal condition for 
soil mapping from remote sensing imagery. The 
green vertical bands indicate the S–2 B4 and B8 
used to calculate Normalized Difference Vegeta
tion Index (NDVI) and the brown vertical bands 
are S–2 B11 and B12 used to calculate Normal
ized Burn Ratio 2 (NBR2).   
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absorption of photosynthetically active vegetation in B12 due to high 
water content, the NBR2 index is also important for vegetation. ANOVA 
analysis of soils with crust and in seedbed conditions against moist soils, 
vegetation and crop residues showed a significant difference in NBR2 (at 
α=0.10 significance level). An NBR2 threshold of 0.05 was found to be 
able to differentiate soils with crust and in seedbed conditions from 
moist soils, vegetation, and crop residues (Figure 6). 

3.2. Exposed soil composite comparison with in–situ soil observations 

An exposed soil composite image for the areas of interest was built 
from the S–2 image collection (Figure 1). The pixels which complied 
with the following conditions were kept: no clouds, ∈ cropland, 
NDVI < 0.25, NBR2 < 0.05. For comparison with the soil surface cate
gories, the composite spectra for 242 in–situ observation locations were 
averaged per class. The mean normalized spectrum showed a close 
resemblance to a spectrum of a soil in seedbed conditions and soil crusts 
(Figure 7). The widespread occurrence of soil crusts during the spring 
months is reflected in the spectra of the composite, although the dif
ference to the spectra of the seedbeds is minimal. Overall, the combi
nation of a NBR2 < 0.05 threshold and spectral normalization increases 
the likelihood of including only spectra in suitable conditions in the 
exposed soil composite. 

An important step in the methodology was the definition of thresh
olds to discriminate soils from other targets (vegetation, wet soils and 
crop residues). These thresholds are site specific, and no rule of thumb 
exists to adjust them according to regional or local spectral patterns 
(Demattê et al. 2020). The common NDVI thresholds used in the liter
ature for vegetation masking are 0.20 (Gholizadeh et al. 2018; Gomez 
et al. 2016; Lagacherie et al. 2019), 0.25 (Demattê et al. 2018; Dvor
akova et al. 2021; Žížala et al. 2019), 0.30 ((Gomez et al. 2019; Safanelli 
et al. 2020) and 0.35 (Castaldi 2021; Castaldi et al. 2019a). The choice of 
stricter thresholds to minimize the inclusion of pixels with disturbing 

effects is made at the expense of the extent of the area that can be 
mapped (Vaudour et al. 2021). Here, NDVI < 0.25 represents a good 
trade-off between mappable area and effectivity (evaluated visually) to 
mask vegetated surfaces. The NBR2 threshold to discriminate moist soils 
and crop residues was defined based on field observations, and was set to 
0.05 (Figure 6). Vaudour et al. (2021) used NBR2 < 0.053 to detect bare 
soils. They defined the index value as the first quantile of the NBR2 
distribution across S-2 images of the Versailles Plain, France. Demattê 
et al. (2018) stated that the use of 0.075 as NBR2 threshold provides the 
best association between laboratory and Landsat 5 spectra in a 14,614 
km2 area in southeastern Brazil. Castaldi et al. (2019a) tested different 
NBR2 thresholds and found that NBR2 < 0.05 improves SOC prediction, 
but reduces the area for which SOC can be mapped in Demmin, Northern 
Germany. Ultimately, the choice of thresholds used to mask unwanted 
pixels is bound to have an effect on the exposed soil composite, whether 
on its quality or its spatial extent. Given that both study areas (southern 
Belgium and the Dutch polders) have similar climate conditions and are 
both dominated by intensive arable cropping systems, we assumed 
similar thresholds for NDVI and NBR2. In total 83% of the total cropland 
area was included in the exposed soil composite when using NDVI <
0.25 and NBR2 < 0.05. The number of observations per pixel varied, 
with 18% of pixels having less than seven observations per pixel 
(Figure 8). 

3.3. SOC prediction models 

The general statistics of the calibration datasets and the two inde
pendent validation datasets are shown in Table 2 and Figure 9. The SOC 
content of the 124 calibration points was on average 14.2 g C kg–1 and 
was rather variable: variation coefficient (CV) of 29% (Table 2). The 
exposed soil composite obtained in section 3.2 provided a good basis for 
SOC mapping over large areas. The average prediction accuracy of the 
100 ten–fold–cross validation runs yielded an MEC of 0.48 ± 0.07, 

Figure 5. (A) Sentinel–2 (S–2) spectra for the same location extracted at two dates: 26 March 2020 (orange line) with a soil crust, and 28 March 2020 (brown line) in 
seedbed condition. (B) The same S–2 spectra but normalized. 

K. Dvorakova et al.                                                                                                                                                                                                                             



Geoderma xxx (xxxx) xxx

9

RMSE of 3.5 ± 0.3 g C kg-1, RPD of 1.4 ± 0.1 and RPIQ of 1.9 ± 0.3 
(Figure 10A). In 71% of all cases, the best performance of the PLSR 
model was obtained when using four LVs. The accuracy is comparable to 
the one obtained by Vaudour et al. (2021), who applied an NBR2 
threshold to S-2 composite imagery to create bare soil composite. They 
obtained R2 = 0.53, RMSE = 3.2 g C kg–1 and RPD = 1.46 and covered 
34.28 km2 of croplands in the Versailles Plain, France. 

The VIP pointed to the relative importance of S–2 bands B2, B11 and 
B12 in the model (i.e. VIP > 1; Figure 10B). This is in agreement with 
previous studies (Castaldi et al. 2016; Dvorakova et al. 2020). In 
particular B11 and 12 are also the ones that react to disturbing effects 

from residues and soil moisture (see section 3.2). This underlines the 
importance of the NBR2 threshold to remove pixels with residue cover 
or moist pixels in order to avoid using these for SOC prediction models. 

3.4. SOC maps and their uncertainty 

Three maps were constructed: i) mean SOC content map, ii) a map of 
the number of scenes per pixel of the exposed soil composite and iii) a 
map visualizing the PIR of the SOC prediction (Figure 11). According to 
Gomez et al. (2015) there are five sources of uncertainty in soil property 
mapping from remote sensing: i) uncertainty of the spectra linked to 
device repeatability and ii) spatial positioning; iii) uncertainty of the 
reference lab values; iv) uncertainty of the model building linked to the 
choice of calibration set and v) choice of model dimension. Here we used 
the bootstrapping method (100 bootstraps, section 2.4.2) to assess the 
uncertainty linked to the model building (iv). Given the spectral stability 
of the exposed soil composite and the radiometric stability and spatial 
resolution (20 m) of S–2 MSI (Drusch et al. 2012), the uncertainty 
related to the spectra (i) and its positioning (ii) was neglected. We also 

Figure 6. Normalized Burn Ratio (NBR2) for the 242 in–situ soil surface ob
servations in the Belgian loam belt, categorized into five classes. An 
NBR2=0.05 threshold can separate vegetation, crop residues and moist soils 
from soils with crusts and in seedbed condition. 

Figure 7. Mean Sentinel–2 (S–2) 
spectra of the two soil surface conditions 
encountered in the Belgian loam belt 
which are suitable for soil mapping from 
remote sensing: seedbed and soil crust. 
The black spectrum is a mean S–2 
exposed soil composite spectrum of 
spring months 2016–2021 which is used 
for soil organic carbon mapping. The 
green vertical bands indicate the loca
tion of S–2 B4 and B8 used to calculate 
Normalized Difference Vegetation Index 
(NDVI) and the brown vertical bands are 
S–2 B11 and B12 used to calculate 
Normalized Burn Ratio 2 (NBR2).   

Figure 8. Percentage of mapped cropland surface by the exposed soil com
posite in southern Belgium and the Netherlands for groups of pixels with the 
same number of observations. 

K. Dvorakova et al.                                                                                                                                                                                                                             



Geoderma xxx (xxxx) xxx

10

neglected the uncertainty related to the reference lab values (iii), as it is 
not strictly related to spectral modelling. 

Higher uncertainty values were generally observed for field borders 
(Figure 11B bottom), where the number of contributing scenes is low 
(Figure 11B top) and pixels can represent a mixture of the surface con
ditions in both of the adjacent fields. Additionally, mixed pixels were 
excluded from the calibration dataset and the PLSR model is therefore 
not trained to predict mixed pixels. Several techniques exist for spectral 
unmixing, i.e. the separation of a pixel spectrum into its pure component 
endmember spectra, and the estimation of the abundance value for each 
endmember (Plaza et al. 2009). These techniques are however compu
tationally intensive and require a large dataset of training samples. 

The southern part of the SOC prediction map of the Belgian loam belt 
shows spots with higher SOC content within the fields (Figure 11b). 
These are the remains of pre–industrial charcoal kilns. On bare cropland 
soil, the enrichment with charcoal appears as circular black spots up to 
40 m in diameter. The charcoal has been mixed through the topsoil by 
repeated tillage over time (Hardy et al. 2019). The uncertainty map of 
SOC prediction displays patterns linked to the number of scenes per 
pixel. Large uncertainty (average PIR = 14 g C kg–1) is observed in the 
western part of Noord-Holland (Figure 11A bottom), compared to the 
neighboring Wieringermeer polder with smaller uncertainty (average 
PIR = 11 g C kg–1). This large uncertainty coincides with a small number 
of scenes contributing to the composite map (Figure 11A top). This small 
number of scenes is linked to the early season cropping leading to high 
NDVI values on the spring composite. Spring–blooming bulbs, such as 

Table 2 
General statistics of the soil organic carbon (SOC) content of the model cali
bration soil samples and the independent validation soil samples. Skewness is 
calculated via Fisher’s moment coefficient. (SD = standard deviation, CV =
coefficient of variation)   

n Min* Max* Mean* SD* CV 
(%) 

Skewness 

Calibration 124 7.2 28.2 14.2 4.9 34 1.0 
Independent 

validation 
REQUASUD 

34 
385 

3.0 67.0 13.5 4.8 35 3.0 

*Expressed in gC kg–1 

Figure 9. Frequency distribution of soil organic carbon (SOC) contents of the 
model calibration dataset (n=124) and the external validation dataset 
REQUASUD (n=34,385). 

Figure 10. (A) Measured against predicted soil organic carbon content (SOC) 
of one (randomly chosen) of the 100 partial least squares regression (PLSR) 
model runs (10–fold cross validation). The model performance indicators refer 
to the average values of the 100 PLSR models. The blue line is the 1:1 line, the 
red line is the regression line. (B) Distribution of model performance indicators 
obtained from the 100 PLSR models. (C) Mean Variance Importance in Pro
jection (VIP) scores for the 100 PLSR model runs. Predictors with VIP values 
greater than one (area above the horizontal line in the plot) were considered 
significant for the PLSR model. The width of the bars represents the width of the 
Sentinel–2 bands. 
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tulips, are widespread in the sandy region bordering the coast. Overall, it 
can be seen that uncertainty hardly decreases for pixels representing the 
mean spectrum of six or more images (Figure 12). Such a threshold is not 
commonly specified. Castaldi (2021) for example arbitrarily chose three 
scenes as a minimum for an exposed soil composite and Zepp et al. 
(2021) suggested considering the number of cloudless scenes per pixel as 
an internal quality measure. We observed that setting the threshold of 
minimum six scenes can lower the mean PIR of the prediction maps from 
15.0 to 12.4 g C kg–1 (Figure 12). This has, however, an effect on the 
total surface of croplands covered by the SOC prediction map: 83% 
without threshold versus 65% if at least six scenes per pixel are required. 
The pixels for which less than six scenes are available are generally field 

borders (mixed pixels, Figure 11B), soils with bad drainage (removed by 
the NBR2 threshold), and fields where farming practices do not allow 
full exposure during spring months (removed by the NDVI or NBR2 
thresholds, Figure 11A). 

A map of the mean SOC content per field was constructed by aver
aging SOC predicted values per field entity, to allow an independent 
validation with the REQUASUD dataset. The coverage of the mean SOC 
map is lower than the one of the per pixel map. This is because for a 
number of fields the conditions for predicting the SOC were not met i.e. 
number of scenes per pixel > 5, minimal count of pixels per field unit, or 
both. The validation against an independent dataset with 34 385 sam
ples (REQUASUD) showed a Gaussian distribution with a relatively 

Figure 11. Spatial patterns (from top to bot
tom) of the number of scenes per pixel, the 
predicted soil organic carbon (SOC) and the 
uncertainty (expressed by PIR; see equations 
10-15) of the SOC predictions resulting from 
partial least squares regression model with 
100–fold bootstrapping. (A) Noord-Holland in 
the Netherlands, (B) fields in the vicinity of 
Beuzet village in the Walloon region 
Belgium). Grid units are in meters from the 
origin of the projection. Projection: Trans
verse Mercator, Projected coordinate system: 
WGS_1984_UTM_Zone31N.   
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small bias of 0.5 g C kg–1 ± 2.8 g C kg–1 (Figure 13). From the distri
bution it can be seen that 95% (1.96 × SD) of fields are correctly pre
dicted within an interval of ±5.5 g C kg–1 and 68% (1 × SD) of samples 
are correctly predicted within th interval of ±2.8 g C kg–1. 

For the mean SOC content per field, 95% of samples have an error 
below 5.5 g C kg–1 (Table 3, Figure 14). The good performance of the 
SOC prediction for a large area (5,370 km2 of croplands) is partially 
attributed to the similarity of soil types, and the low SOC contents (the 
measured SOC values range from 5 to 30 g C kg–1), making a single PLSR 

Figure 12. The uncertainty (expressed by Prediction Interval Ratio (PIR); equations 10-15) of 100 soil organic carbon (SOC) predictions resulting from a partial least 
squares regression model with 50–fold bootstrapping as function of the number of scenes per pixel in the exposed soil composite used for SOC prediction. 

Figure 13. A comparison of the residues between the predicted and the 
measured SOC contents of the external validation dataset obtained from 
REQUASUD. The blue dashed line is 1 × SD, the red dashed line 1.96 × SD. 

Table 3 
Statistics of the soil organic carbon (SOC) content prediction and the uncertainty 
(%) for the pixel–based approach and for field–based approach. (SD = standard 
deviation)  

Approach n  mean median SD 

Per–pixel 11,235,492 pixels SOC (g C kg–1) 14.1 13.3 4.7 
PIR (g C kg-1) 12.4 11.8 1.6 

Per–field 92,451 fields SOC (g C kg–1) 13.6 12.7 3.2  
Validation (n=34 
385) 

Residues (g C kg–1, 
eq.1) 

0.7 0.5 2.8  

Figure 14. Distributions of the uncertainty (expressed by Prediction Interval 
Ratio (PIR), Equations (10)–(15) of 100 soil organic carbon (SOC) predictions 
resulting from a partial least squares regression model with 100–fold boot
strapping performed at the scale of a pixel in southern Belgium loam belt and 
the Dutch polders (for the extent of croplands see Figure 1). 
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model sufficient to capture the variability. For a larger area, splitting 
into several models based on ancillary variables (e.g. soil type or prin
cipal component analysis) should be considered (Castaldi et al. 2019b; 
Stevens et al. 2012). 

Overall, a five–year S–2 spring composite image has shown to be 
appropriate for SOC prediction of loamy soils in Belgium and the Dutch 
polders with 5.5 g C kg–1 accuracy at the field level. SOC monitoring, 
however, relies on repeatability over time, with as main purpose change 
detection (Andries et al. 2021). This requires consistency of calibration 
and validation datasets, and suitable accuracy. As a matter of fact, 
comparison between 2009 and 2015 LUCAS surveys showed limited 
changes in SOC over the six years period (Fernandez Ugalde et al. 2020). 
The pixel SOC prediction map demonstrated large uncertainty: mean 
PIR = 12.4 g C kg–1, while mean predicted SOC = 14.1 g C kg–1 (Table 3, 
Figure 13). Hence, PIR represents on average 88% of the predicted SOC 
value. While the mean SOC map might be a useful product to quantify 
average SOC at regional or national level, local soil monitoring of SOC is 
rendered obsolete with such high PIR values (Kempen et al. 2019). As 
suggested by Chen et al. (2022), it should be discussed whether PIR 
should be calculated at 90% prediction intervals, or should be narrower 
to be useful for decision-making. For some decision makers, 75% pre
diction interval might be adequate (Chen et al. 2022). Validating models 
by region is an alternative to improving the uncertainty, as regional MSE 
tends to be lower (Brungard et al. 2021). Lower MSE decreases the 
variance (equation (10)), resulting in an overall lower uncertainty. 

The accuracy of SOC content prediction maps at field level (± 2.8 g C 
kg–1; Table 3) should in theory be small enough to detect the effects of 
management practices on SOC contents in the short to mid-term (5-10 
years). In fact, van Wesemael et al. (2019) have shown that fields in the 
Belgian loam belt converted to conservation agriculture for at least 10 
years had more than 4 g C kg–1 higher SOC contents than comparable 
fields under conventional agriculture. The average SOC contents per 
field can be used for decision making at the regional scale e.g. to char
acterize the SOC contents in croplands for a region with similar soils and 
climate or as a proxy for SOC stocks. Obviously, the bulk density, ver
tical gradient in SOC content and the stone content are additional var
iables that are not provided by the current spectroscopic approach. 
Garten Jr and Wullschleger (1999) were among the first to calculate a 
minimum detectable difference (MDD) for SOC inventories. MDD de
termines the level of SOC change that could theoretically be detected for 
each unit. The challenge associated with MDD is the large number of 
independent soil samples that is required (Smith et al. 2020). The UN 
Sustainable Development Goal (SDG) 15.3.1 defines areas of degraded 
land as the ones suffering from more than 10% average net reduction in 
SOC stocks (Sims et al. 2020). Here we provide a large inventory of SOC 
content data that could be used as a proxy for SOC stock in such MDD 
calculations. For example, the MDD of the SOC content prediction of 
1000 randomly sampled fields (selected by conditioned Latin hypercube 
on spatial coordinates, Minasny and McBratney (2006)) in the loam belt 
is 0.35 g C kg–1 for an average SOC content of 12.5 g C kg–1. This means 
that SOC content change of 2.8% can be detected, which is well below 
the 10% of the SDG 15.3.1. 

It remains to be seen whether the detection limit of SOC prediction 
models from exposed soil composite is low enough to detect SOC stock 
changes in croplands, and what the appropriate period of time is to 
acquire a minimum of six valid scenes per pixels in the exposed soil 
composite. Furthermore, the methodology used for SOC modelling has 
to be consistent in every way, if a time series of SOC maps is to be 
compiled. As addressed by Zepp et al. (2021), larger and standardized 

validation and calibration datasets are needed, to produce large–scale 
SOC predictions (national to European–wide), in a consistent manner. 
Last but not least, de Gruijter et al. (2016) have shown that SOC pre
diction maps and associate error variances can be used as a source of 
univariate information for sampling stratification. Taking prediction 
errors into account in soil sampling strategy minimizes sampling vari
ance and creates optimized stratification, leading to better performing 
models (de Gruijter et al. 2016). 

4. Conclusion 

Earth observation serves as a valuable base for digital soil mapping, 
as satellite images allow monitoring over time and over large areas with 
a resolution that allows distinguishing within and between field pat
terns. Creating an exposed soil composite, i.e. stacking several spatially 
overlapping images into one composite image based on an aggregation 
function, allows combining all exposed soils of all input scenes, thus 
increasing their extent. The resulting composite spectrum however does 
not necessarily reflect the pure soil signal at least for an important 
fraction of the cropland area. We have found that applying an NBR2 <
0.05 threshold and normalizing the S–2 spectra allow obtaining a 
reasonable soil reflectance signal, where crop residues and moist soils 
are excluded, and crusts are corrected for. Using these criteria in Google 
Earth engine, we built an exposed soil composite from Sentinel–2 im
agery (covering the spring periods of 2016–2021), mapping 5,370 km2 

of croplands in Belgium and the Netherlands. The exposed soil com
posite was used to produce SOC prediction maps, accompanied by a 
measure of uncertainty. This compositing method showed both realistic 
within field and regional SOC patterns. An accuracy of 5.5 g C kg–1 was 
reached at the field level for 95% of samples. The uncertainty of pre
diction was assessed via the PIR. On average, PIR represented 88% of the 
predicted SOC value. Such high uncertainty values render local SOC 
monitoring obsolete, however given the high accuracy of the SOC map, 
it may be a useful product to quantify average SOC at regional and na
tional level. 
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Appendix A 

Figure A.1 

Figure A1. General flowchart for creating composites for assessing the link between uncertainty and number of scenes per pixel.  
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