DLR Institute of Remote Sensing Technology Photogrammetry and Image Analysis Department (PBA) Team: Optical Remote Sensing of Water Bodies (BA)

First Steps in Estimating the Spatial Uncertainty of Maximum Likelihood Tasks in a Cloud-based Environment in Context of Marine Remote Sensing

Spyros Christofilakos

How accurate is a classification, spatially?

How accurate is a classification, spatially?

Accuracy assessment is spatially bound

Goal of the research

 Develop a semi-automated workflow to estimate the spatial explicit uncertainty of classification and regression procedures that take place in coastal ecosystems

- Develop a semi-automated workflow to estimate the spatial explicit uncertainty of classification and regression procedures that take place in coastal ecosystems
- 1) Highlight the uncertain areas

Goal of the research

- Develop a semi-automated workflow to estimate the spatial explicit uncertainty of classification and regression procedures that take place in coastal ecosystems
- 1) Highlight the uncertain areas
- 2) Acquire training data from the uncertain areas and re-train the model

Goal of the research

- Develop a semi-automated workflow to estimate the spatial explicit uncertainty of classification and regression procedures that take place in marine ecosystems
- 1) Highlight the uncertain areas
- 2) Acquire training data from the uncertain areas and re-train the model
- 3) Be able to tell how accurate is the classification/regression spatially (EU Habitats Directive)

Study Areas

CLASSIFICATION

· Task: Benthic Habitat classification

Case study: Bahamas

 Satellite Data: Four years timeseries of Sentinel-2 system, lvl-2A data

Validation Points: 300 per classTraining Points: 1000 per class

(Allen Coral Atlas)

REGRESSION

· Task: Satellite Derived Bathymetry

· Case study: Belize, Quirimbas (Mozambique)

Satellite Data: Two years timeseries of Sentinel-2 system, lvl-2A data

Validation Points: 800 (777 after rescaling)

· Training Points: 3200 (3110 after rescaling)

Blume, Alina (2021) Development of cloud-native and scalable algorithms to estimate seagrass composition and related carbon stocks in support of the Nationally Determined Contributions of the Paris Agreement. Master's, University of Aachen. (https://elib.dlr.de/148787/)

N. Marc Thomas et all., (2020).SPACE-BORNE CLOUD-NATIVE SATELLITE-DERIVED BATHYMETRY (SDB) MODELS USING ICESat-2 and SENTINEL-2

Uncertainty in classification Benthic habitat Classification

Uncertainty in regression

Bathymetry regression with Random Forest classifier of 20 trees

```
Point (-87.8995, 17.195) at 76m/px

*Pixels

*sdb.Depth: Image (1 band)

Depth: 5.7685227394104

*sdb.DepthTrees: Image (1 band) 

10.0

75
```


Uncertainty in regression

Bathymetry regression with Random Forest classifier of 20 trees

```
Point (-87.8995, 17.195) at 76m/px

*Pixels

*sdb.Depth: Image (1 band)
    Depth: 5.7685227394104

*sdb.DepthTrees: Image (1 band) 

10.0

7.5
```


Results: Accuracy Assessment in Classification

OBIA			
	Initial Classification	Retrained from Uncertain Areas It(0.25)	Accuracy Gain
Overall Accuracy	57.83%	62.08%	4.25%
User's Accuracy	53.82%	60.30%	6.48%
Producer's Accuracy	54.00%	67.33%	13.33%

Results: Accuracy Assessment in Regression

Quirimbas

ОВІА				
model	Initial Regression	Retrained from Uncertain Areas It(0.25)	Accuracy Gain	
MeanSqr Error	2.6328	2.1955	0.4373	
r_sqr	0.6289	0.6162	0.0127	

Belize

OBIA				
model	Initial Regression	Retrained from Uncertain Areas It(0.25)	Accuracy Gain	
MeanSqr Error	1.2306	1.1479	0.0827	
r_sqr	0.6104	0.6026	0.0078	

Uncertainty in Regression (Belize)

Uncertainty in Regression (Quirimbas)

Conclusions and Future Steps

• Spatial Explicit Uncertainty seems as a promising variable to improve the understanding of remote sensing data, models, applications.

- i) Experimentation with larger training dataset
- ii) Experimentation with PlanetScope data (3m)

Thank you!

Uncertainty in classification Head or Tails?

- 1) Possible outcome: Head, Tails
- 2) Probabilities of the outcome: P(H)= 50%
 P(T)=50%
- 3) Shannon's Entropy

$$E(x) = -\sum_{i=1}^{N} P(x_i) * \log_2 P(x_i)$$

$$-\sum_{i=1}^{2} P(x_i) * \log_2 P(x_i)$$
-0.5
0
0.5

Data Pre-processing

Training Dataset

60% for initial training

30% for retraining the model

10% for indivindual uncertainty

Data Processing

Results: Accuracy Assessment in Classification

OBIA	lt: Less than	gt: Greater than						
model	Retrained from Uncertain Areas It(0.25)	Initial Classification	Retrained from Uncertain Areas It(0.5)	Retrained from Uncertain Areas It(0.75)	Retrained from Uncertain Areas gt(0.25)	Retrained from Uncertain Areas gt(0.5)	Retrained from Uncertain Areas gt(0.75)	Classification with 90% of Data
Overall Accuracy	62.08%	57.83%	60.92%	58.83%	59.58%	60.42%	58.83%	59.17%
	Percentage Gain	4.25%	1.17%	3.25%	2.50%	1.67%	3.25%	2.92%
User's Accuracy	60.30%	53.82%	58.86%	55.56%	53.94%	56.01%	57.19%	56.37%
	Percentage Gain	6.48%	1.44%	4.74%	6.36%	4.29%	3.11%	3.93%
Producer's Accuracy	67.33%	54.00%	62.00%	61.67%	61.67%	59.00%	61.67%	59.00%
	Percentage Gain	13.33%	5.33%	5.67%	5.67%	8.33%	5.67%	8.33%

RGB	lt: Less than	gt: Greater than						
model	Retrained from Uncertain Areas It(0.5)	Initial Classification		Retrained from Uncertain Areas lt(0.75)	Retrained from Uncertain Areas gt(0.25)	Retrained from Uncertain Areas gt(0.5)	Retrained from Uncertain Areas gt(0.75)	Classification with 90% of Data
Overall Accuracy	59.33%	56.92%	56.75%	56.83%	57.17%	57.67%	58.25%	57.25%
	Percentage Gain	2.42%	2.58%	2.50%	2.17%	1.67%	1.08%	2.08%
User's Accuracy	48.35%	44.62%	45.08%	44.44%	45.28%	46.73%	47.73%	47.19%
	Percentage Gain	3.74%	3.27%	3.91%	3.07%	1.62%	0.62%	1.16%
Producer's Accuracy	58.67%	48.33%	47.33%	48.00%	46.33%	50.00%	49.00%	47.67%
	Percentage Gain	10.33%	11.33%	10.67%	12.33%	8.67%	9.67%	11.00%

