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THE INFORMATION GAP  
The necessity of monitoring and expanding the existing Marine Protected Areas has led to vast and high-resolution map products which, even if 
they feature high accuracy, they lack information on the spatially explicit uncertainty of the habitat maps, a structural element in the agendas of 
policy makers and conservation managers for designation and field efforts.   

THE  SUGGESTION 

The target of this study is to fill the gaps in the visualization and quantification of the uncertainty of benthic habitat mapping by producing an 
end-to-end continuous layer using relevant training datasets. 

Introduction 

Methods & Data 

Results 

By applying a semi-automated function in Google Earth Engine’s cloud environment we are able to estimate the spatially explicit uncertainty of 

a supervised benthic habitat classification product. In this study we explore and map the aleatoric uncertainty of multi-temporal data driven, per-

pixel classification . Aleatoric uncertainty, also known as data uncertainty, is part of the information theory that seeks for the data driven random 

and inevitable noise under the spectrum of Bayesian statistics.  

 

Study area: Bahamas’ coastal extent (114,059.25 km2 ) 

Satellite Imagery: 2 year timeseries of Sentinel-2 lvl2a data 

Classification’s training and validation data (figure 1) :  

 Seagrass Sand Coral Rock Source 

Training 

points 500 500 500 500 
Annotation 

Validation 

points 400 400 400 400 

Allen Coral Atlas 1 

https://

allencoralatlas.org/atlas/

#5.45/21.7490/-75.2633  

Figure 1. RGB composite of the study area and reference data for the classification.  
Coordinate system: GCS_WGS_1984 

1.By introducing different bands in each classification we develop 7 
classifications products.  These products carry the categorical (Hard 
Classification) and continuous (Soft Classification) values of the 
classification (figure 2).   

 

2. By calculating the marginal and conditional distribution’s divisions 
given the available training data, we can estimate the Expected Entropy, 
Mutual Information and Spatially Explicit Uncertainty of a maximum 
likelihood model outcome. 

 

3. Moreover, a visual comparison (figure 3) takes place between the 
Spatially Explicit Uncertainty and the True Conditional Probability 
distribution. In order to approximate the true conditional distribution, we 
apply a Gaussian Negative Log Likelihood (NLL)

5 estimation.  

 

 

Figure 2. Hard classification (left) and Soft classification (right) with S2_RGB as input of the 

classification 

 

CROSS-REFERENCE WITH CURRENT LITERATURE 

To visualize spatially the divergence between the soft classification 

values per pixel and the soft classification values per class category, 

we parametrized the NLL as follows :  

    μ(X) = mean soft probability of each classification class 

    Y = soft probability value per pixel of each class 

    i = classification product corresponding to the initial    

   composite that was classified 

    j = classification category 
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Figure 3. Left: Spatially Explicit Uncertainty of the S2_RGB and S2_OBIAnRGBnHSV benthic habitat classifica-

tions. Right: NLL distribution of the probability distribution of the S2_RGB and S2_OBIAnRGBnHSV classifica-

tions. Bottom: Overlay of benthic habitat classification and mutual uncertain regions with value >0.8 of the ensemble 

models of Spatially Explicit  Uncertainty and NLL distribution procedures. 

The overlay of the mutual 

uncertain regions seems to come in 

an agreement with the low user’s 

and producer’s accuracy of the 

ensemble model which indicates 

the coral and seagrass classes as 

the most and second most 

misclassified benthic habitats.  

  

S2_RGB S2_OBIAnRGBnHSV Ensemble model 

User’s accuracy  Coral 
0.316  0.296  0.1  

Rock 
0.464  0.480  0.491 

Sand 
0.940 0.971  0.962 

Seagrass 
0.271 0.287  0.311  

Producer’s 

accuracy 

Coral 
0.393  0.373  0.378  

Rock 
0.715  0.773  0.768  

Sand 
0.67  0.753  0.77  

Seagrass 
0.138  0.103  0.118  

Overall accuracy 
0.479 0.5 0.508 

 

Expected Conditional 

Entropy 
0.092 0.049 0.027 

Mutual information 0.919 0.93 0.935 

Conclusions  
 Our results indicate regions and classes with high and low uncertainty 

that can either be used for a better selection of the training dataset or to 
identify, in an automated fashion, areas and habitats that are expected to 
feature misclassifications not highlighted by existing qualitative 
accuracy assessments. 

 By doing so, we can streamline more confident, cost-effective, and 
targeted benthic habitat accounting and ecosystem service conservation 
monitoring , resulting in strengthened research and policies, globally. 
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DID YOU KNOW?  

To download one Sentinel 2 image, you would need a few minutes. 

To execute the current study through Google Earth Engine, took only  

5 minutes.6  

Expected Conditional Entropy
7 

Predicts the overall data uncertainty of the distribution P(x,y), with 
x:training dataset and y:model outcome. 

Mutual Information
7 

Estimates in total and per classified class the level of independence 
and therefore the relation of y and x distributions. 

Spatially Explicit Uncertainty 

A per pixel estimation of the uncertainty of the classification. 

The aim by implementing the presented workflow is to quantitatively 

identify and minimize the spatial residuals in large-scale coastal eco-

system accounting. 
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