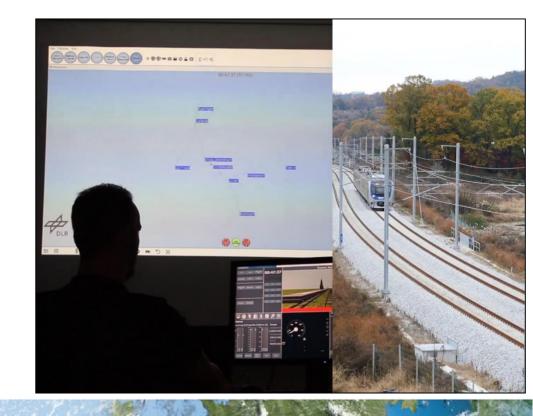
Implementation of a Remote Control Workplace to Realize Remote Train Control over 5G-Network in Real-World Testing

Niels Brandenburger, Friedrich Maximilian Strauß, Igor Bier

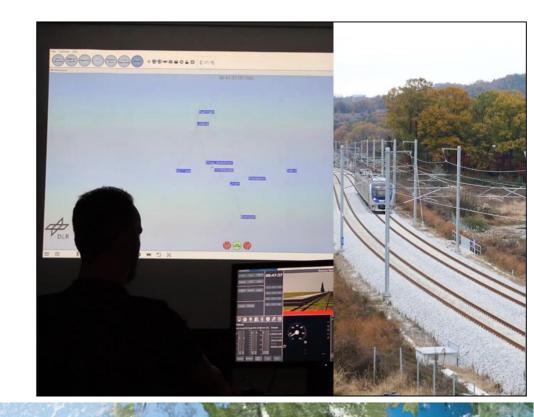
Institute for Transportation Systems German Aerospace Centre



Knowledge for Tomorrow

Remote Control via 5G Network – Real World Testing Agenda

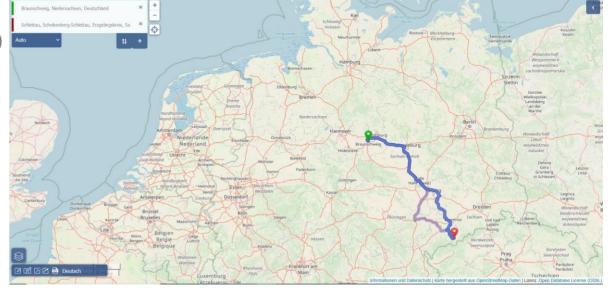
- Subject Rationale
- The 5G-Reallabor Project
 - 5G quality benchmarking and homologation concept
 - Field-Testing
- Scenario-based user requirements
 - Information Requirements
 - Control Requirements
 - Safety requirements (related to mobile network)
- Broaden the horizon Next steps



Remote Control via 5G Network – Real World Testing Subject Rationale

- Assuming Grade of Automation (GoA; IEC 62267) 3-4 in mainline service, a fall-back solution for unattended rolling stock malfunction is vital
- Basically, two options exist:
 - · Get expertise to the site physically
 - Get expertise there virtually
- Since, virtual expertise seems more feasible (time, available resources, etc.), we focus on the virtual approach, keeping the other as a further fall-back layer
- Thus, remote diagnosis, recovery and control provided by centralised experts out of an operational centre emerged as a research topic*. "The Train Operator" was born...

*e.g. Brandenburger, N., & Naumann, A. (2018). Towards remote supervision and recovery of automated railway systems: The staff's changing contribution to system resilience. In Proceedings of the International Conference on Intelligent Rail Transportation (pp. 1-5). IEEE.



Remote Control via 5G Network – Real World Testing The 5G-Reallabor Project

- Overarching Project Rationale
 - Demonstrate 5G capabilities in real-world applications
- Signalling and remote control in automated rail as one possible application of 5G technology
 - Remotely controlling a train in Saxony from Brunswick
 - Remote Recovery
 - Remote Shunting
 - By now, note the developments around FMRCS (!)
- In 2020, we presented the project goals at RHF BS 2020
 - 5G network quality benchmarking
 - homologation concept
 - Deriving user requirements for the workplace
 - Field-Testing remote control
- Two years later, most results are available now

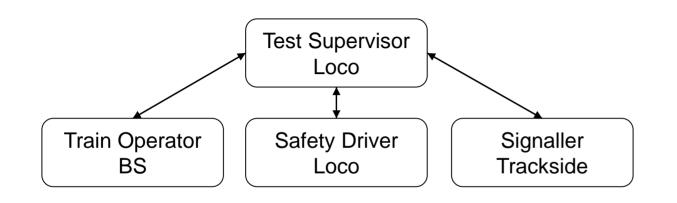
Remote Control via 5G Network – Real World Testing 5G Network Quality Benchmarking/ Homologation Concept

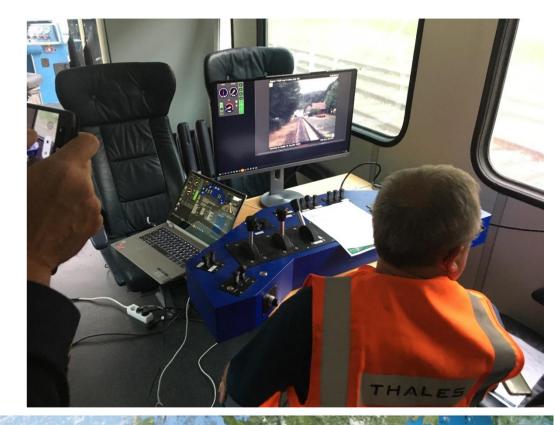
- 5G Network Quality Benchmarking (ongoing untill 06/2023)
 - Set-up of communication infrastructure in Saxony and Brunswick, GER
 - Skripting the testcases (uplink, downlink, interaction)
 - Since 04/2022 we are continuously sending and receiving various package sizes
 - Logging vital parameters such as latency, bandwidth, paket loss
- Homologation concept (finished)
 - Based on EN 50126 (RAMS) and EN 50128 (safety-critical software development) a safety assessment for remote control via (public) mobile network has been delivered

Remote Control via 5G Network – Real World Testing Field-Testing Remote Control (ongoing)

- (Quite some) Preparations, such as
 - Defining operational scenarios and compile test cases to test catalogue
 - Defining system architecture and functionality
 - Contracting industry partners (Thales, Railergy, YASC)
 - System refinement and developement
 - Pre-Release Testing
 - Software only
 - Physical safety feature test
 - Single location testing according to test catalogue
- Initial Field-Testing in Elmstein (August 2022)
 - Video shared on my LinkedIn profile
- Major Field-Testing Event in Brunswick/Saxony (22-23.11.2022)

Control Center	Control Center	Software	In- Vehicle RTO	Conventional
Hardware	Software	Interface	Software	Vehicle Software




Remote Control via 5G Network – Real World Testing Field-Testing Remote Control (ongoing)

• Field-Testing roles and setup

Control Center Hardware	Control Center Software	Software Interface	In- Vehicle RTO	Conventional Vehicle Software
----------------------------	----------------------------	--------------------	-----------------	----------------------------------

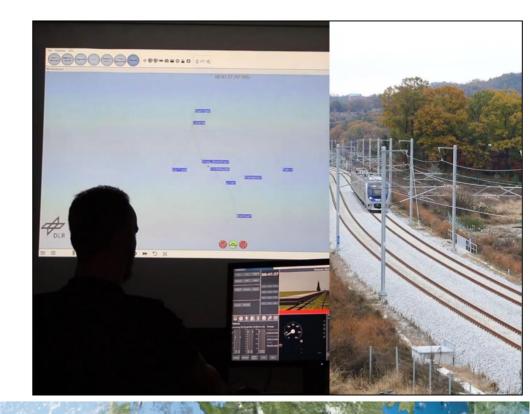
- Turning to the heavy part of it...
 - the train operator and it's workplace!
- Research question: What does the operator need to remotely control the train safely and correctly during the scenarios?
- Method: Remote Recoverv **Scenarios** Remote Shunting Speed control Tasks • etc... Traction Subtasks Braking • etc... Information Requirements Control Safety

• Systematic aggregation of functional requirements for each subtask in three categories (information, control, safety)

				User Red	quirements 5G-Reallabor		
D 🔽	Scenario 🔄	Task	Subtask	T Category	 Requirement 	 Safety Impact 	Functional Prior Information Source
12	2 Remote Recovery	Take over	Request Take over	Control	The operator can request control from remote workplace	10	8 Not applicable
13	3 Remote Recovery	Take over	Request Take over	Safety	The operator's request for control is granted only if video feed available	10	8 Network status data
14	4 Remote Recovery	Take over	Request Take over	Safety	The operator's request for control is granted only if parking brake is o hold		8 Vehicle data
15	5 Remote Recovery	Take over	Request Take over	Safety	The operator's request for control is granted only if VoIP connection on		6 Network status data
16	6 Remote Recovery	Take over	Request Take over	Safety	The operator's request for control is granted only if test supervisor approves	10	3 Procedure
					The operator's request for control and the status of control is displayed at the remote workplace		
17	7 Remote Recovery	Take over	Request Take over	Information	and inside the locomotive	10	8 In-vehicle RTO Software

- Information Requirements (excerpt)
 - Video footage
 - Vehicle status data
 - Including traction/ braking
 - ATP data (ETCS)
 - Network status data
 - VolP
 - Checklists
- Control Requirements (excerpt)
 - Modus of control
 - Speed control
 - Direction of Travel
 - Choosing Camera
 - Vehicle functions
 - Horn, Light, Door
- Safety Requirements related to mobile network connection loss

- Concerning the desirable video quality (information requirements) there is still an online choice- reaction time study going on
 - https://ts.dlr.de/survey/5greallabor/
 - Feel free to participate
- Aim is to establish the effect on bitrate and frames per second in railway video footage on human perception qualtiy



Remote Control via 5G Network – Real World Testing Broaden the horizon – Some next Steps

- Project ATO-Cargo
 - One year trial phase of ATO and remote control fall-back layer in 2025 sidelining regular freight service on Betuwe route (NL)
 - Industry Partners: DB Cargo, ProRail, (.. tba)
 - After very elaborated requirement derivation, procurement processes conclude end of Nov 2023
- Project TRACO (DLR internal)
 - Substancial simulator study on shift- length and operator workload, fatigue, performance
- Project ARTE
 - Real-world testing with main focus on operational roles and procedures for ATO
 - Industry partner: ALSTOM
 - Please direct further questions to Anja Naumann
- Basically, the fun has just started...

Implementation of a Remote Control Workplace to Realize Remote Train Control over 5G-Network in Real-World Testing

Thank you for your questions/ feedback/ criticism!

More research on ResearchGate...

Niels.Brandenburger@dlr.de

Knowledge for Tomorrow