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Collective motion over increasing length scales is a signature of the vitrification process of liquids.
We demonstrate how distinct static and dynamic length scales govern the dynamics of vitrifying
films. In contrast to a monotonically growing static correlation length, the dynamical correlation
length that measures the extent of surface-dynamics acceleration into the bulk, displays a striking
non-monotonic temperature evolution that is robust also against changes in detailed interatomic
interaction. This non-monotonic change defines a cross-over temperature T∗ that is distinct from
the critical temperature Tc of mode-coupling theory (MCT). We connect this non-monotonic change
to a morphological change of cooperative rearrangement regions (CRR) of fast particles, and to the
point where the decoupling of fast-particle motion from the bulk relaxation is most sensitive to
fluctuations. We propose a rigorous definition of this new cross-over temperature T∗ within a recent
extension of MCT, the stochastic β-relaxation theory (SBR).

Dynamical processes in a liquid close to the glass tran-
sition become cooperative across spatial regions of in-
creasing extent [1], and it is thus natural to seek an in-
trinsic correlation length whose divergence would signal
the transition. Yet, the hallmark of the glass transition
is a dramatic change in the dynamics that is caused by
only weak changes in the statics. Consistently, attempts
at defining static correlation lengths have found them to
change only weakly close to the (computationally or ex-
perimentally accesible part) of the transition [1–4]. Only
recently it has become clear that in certain perturbed
systems, dynamic correlation lengths can be defined that
display a much more interesting, non-monotonic behavior
[5–7] with a peak at some cross-over temperature.

The prevailing methodology to detect spatial correla-
tions in glassy systems is suggested by the random first-
order theory (RFOT) [8–10]: pinning a subset of particles
in the equilibrium fluid, one examines how the configu-
ration of the rest of particles is influenced [11–15]. While
this point-to-set (PTS) protocol is designed to keep the
static properties of the system in equilibrium, it rep-
resents a strong perturbation of the dynamics [16, 17]:
The freezing of some particles can be viewed as imposing
a zero-temperature region and hence a strong tempera-
ture gradient, yet the associated linear-response regime
shrinks to zero at the glass transition [18]. Since non-
monotonic variations appear more broadly in the non-
equilibrium dynamics of glass formers [19, 20], this ques-
tions whether non-monotonic changes also appear in the
equilibrium dynamics.

We demonstrate here that the study of glass-forming
fluids with a free surface offers a clean way to interrogate
spatio-dynamical correlations in equilibrium. The study
of glassy films per se is an important topic in material
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sciences, e.g., for the fabrication of ultra-stable glasses
[21–23]. We provide here a link of the dynamics in (free-
standing) films to the fundamental features of the glass
transition in the bulk.

In particular we find that the dynamics in fully equi-
librated films is governed by a non-monotonic dynamical
correlation length. We demonstrate that the cross-over
temperature T∗ of maximal dynamical correlations also
governs the shape transition of cooperative rearrange-
ment regions (CRR) of fast particles in the bulk liquids.
This new cross-over point is rationalized in the context
of stochastic β-relaxation theory (SBR), as the point
where the effect of long-range fluctuations is the most
pronounced in the decoupling of fast-particle dynamics
from bulk relaxation.

We study two exemplary glass formers by molec-
ular dynamics (MD) simulations: the Kob-Andersen
Lennard-Jones binary mixture (LJBM) [24], and a model
of the molten CuZr alloy with embedded-atom method
(EAM) many-body interactions [25]. Simulations (using
the LAMMPS package [26]) start in the bulk liquid at
high temperature (T = 0.6 for LJBM; T = 2000K for
CuZr) and zero pressure. A liquid-vacuum interface was
created by an instantaneous increase of the box length
along the z-axis [see the illustration in Fig. 1(a)]. After
re-equilibration, the membranes were cooled down to the
target temperatures in the canonical ensemble (NVT);
data was collected in the microcanonical ensemble (NVE)
over 16 realizations per state point. To check finite-size
effects, we compare simulations of two system sizes: small
systems (S) with Lx = Ly ≈ 13σ, Lz ≈ 31σ and at least
N = 5000 particles; and large systems (L) with Lz ≈ 40σ
and at least N = 7000 particles (where σ is a typical
atomic size, σ ≈ 2.7 Å for CuZr; precise information is
given in Supplemental Material (SM) [27]).

The spatially resolved dynamics can be assessed
through the overlap correlation function suggested by
the PTS method [9]: the simulation box is discretized
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FIG. 1. (a) Snapshot of the simulation setup (CuZr system, colors indicating atomic species). (b) Static density profiles ρ(z)
as a function of distance z from the surface along the normal into the bulk, for the CuZr liquid and the Lennard-Jones binary
mixture (LJBM) (in units of the average atomic radius σ, each curve shifted vertically in steps of 0.4/σ3 for clarity). Solid
lines are fits to extract the static correlation length. (c) Decay of the overlap correlation function qc(z, t) (CuZr; T = 810K).
Dashed lines in the inset exemplify stretched-exponential fits of the structural decay, Eq. (1). (d) Static and dynamic parameters
characterizing the overlap correlation function (CuZr; T = 850K). The normalized static overlap qc(z,∞)/qc(∞,∞) (crosses)
follows the normalized density profile ρ(z)/ρ(∞) (line). The normalized change in the relaxation time τov(z)/τov(0) (squares) is
shown in comparison to the corresponding quantity obtained from the z-resolved SISF (circles). (e) and (f): Position-dependent
relative mobility enhancement τ(∞)/τ(z)− 1 (from the layer-resolved SISF) for CuZr and the LJBM.

into small cubic units of size δ (about 0.52σ ≈ 1.4 Å
for CuZr and 0.6σ for the LJBM), and the over-
lap of configurations a time t apart is calculated as:

qc(z, t) = ⟨
∑

i ni(t)ni(0)δ (zi − z)⟩
/
⟨
∑

i ni(0)δ (zi − z)⟩,
where ni = 1 if box i at distance zi from the surface
is occupied by an atom and ni = 0 otherwise, and ⟨·⟩
denotes an average over the simulation ensemble.

The functions qc(z, t) follow a standard two-step re-
laxation pattern of dynamical correlation functions near
the glass transition [Fig. 1(c)]: a short-time relaxation
to an intermediate-time plateau is followed by stretched-
exponential structural relaxation from the plateau. At
long times, qc(z, t) decays to a non-zero z-dependent con-
stant qc(z,∞) that represents averaged density fluctua-
tions: the introduction of a free surface induces a static
density profile ρ(z) [Fig. 1(b)], and we find qc(z,∞) ∝
ρ(z) [Fig. 1(d)]. This is the expected behavior for a sta-
tionary ergodic system. A static correlation length ξstat
characterizes the density profile, extracted from fits of
the form ρ(z) = A(z) exp(−z/ξstat) + ρ(∞), where ρ(∞)
is the density of the bulk liquid. The function A(z) =
A0 sin(2π(z − z0)/dp) captures the pronounced surface-
induced layering effects seen for CuZr [in Fig. 1(b)].
These are in agreement with experiments on metallic [28]
and nonmetallic liquids [29, 30], and grand-canonical MD
simulations of liquid films [31]. The LJBM does not show
pronounced layering [32], so that there A(z) = A0 is used.

In both cases, the static length scale ξstat increases mono-
tonically and mildly across the temperature range that
we investigate (open symbols in Fig. 2). It qualitatively
agrees with standard length scales associated to the bulk
dynamics, such as the one extracted from four-point cor-
relation functions [27], as well as with other computer
simulation results [1, 3, 11].
To obtain the dynamical correlation length, we

parametrize the long-time decay of the overlap correla-
tion function by stretched-exponential functions,

qc(z, t) = q0(z) exp[−(t/τov(z))
β(z)] + qc(z,∞) , (1)

where τov(z) is a z-dependent relaxation time. Similar
τ(z) are obtained from fits to the collective and self-
intermediate scattering function (SISF), or from time-
integrals over the correlation functions that provide
parameter-free proxies for the structural relaxation time
(Fig. 1(d) and SM [27]).
Two spatial regimes emerge in the relative en-

hancement of the mobility µ(z) = 1/τ(z), given by
τ(∞)/τ(z) − 1, at low temperature [Fig. 1(e,f)]: first, a
surface layer extends over the weakly T -dependent static
length scale (z ≲ 2σ for CuZr, and 3σ for LJBM), where
the density profile is strongly perturbed by the pres-
ence of the free surface. We exclude this surface layer
from our analysis, separating statically induced varia-
tions from purely dynamical ones; this is a crucial dis-
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FIG. 2. Temperature dependent statical ξstat(T ) and dynam-
ical correlation lengths ξdyn(T ) near a free surface for the
CuZr (top panel) and the LJBM liquids (bottom panel). The
static correlation length ξstat is extracted from the exponen-
tial decay of ρ(z). Values from the self- (ξsdyn) and collective-
(ξcdyn) intermediate scattering functions are shown in systems
of two different sizes (S: small systems; L: large systems). The
evolution is non-monotonic around a peak temperature T∗ in-
dicated by the dashed vertical lines.

tinction from PTS-based analyses and recent theoretical
approaches [33–35] (see SM [27]). More importantly, an
intermediate z-range with a much slower decay opens at
lower temperatures (T ≲ 1000K for CuZr, T ≲ 0.45 for
LJ). This intermediate regime expands as T is lowered.
Here, ρ(z) ≈ ρ(∞), and thus this is the regime where
an intrinsic dynamical correlation length ξdyn can be ex-
tracted from the exponential decay of µ(z), viz.

µ(z) = C exp[−z/ξdyn] + µ(∞) . (2)

Note that this fitting formula differs from the double ex-
ponential function utilized in PTS (see SM [27]). One
already anticipates from Fig. 1(e–f) that ξdyn shows a
non-monotonic temperature dependence: curves for in-
termediate temperature (around T = 850K in the CuZr
liquid; around T = 0.4 in the LJ binary mixture) extend
further into the bulk than those both at higher and at
lower temperatures.

The resulting dynamical correlation lengths ξdyn dis-
play clear maxima at a temperature T∗ (Fig. 2). Both
above and below T∗, the dynamic and static (symbols
with dashed lines in Fig. 2) correlation lengths become
similar. In particular, below T∗, ξdyn decreases towards
the smaller static one, ξstat, again. This is not a finite-
size effect: only around the maximum in ξdyn, some slight
effects of system size (in line with those expected from
conventional four-point correlations in supercooled liq-
uids [36–38]) are seen that disappear both at higher and
at lower temperatures, and thus give additional evidence
that the dynamical correlation length peaks at T∗. In
both the CuZr and the LJBM system, we note that the
peak observed in ξdyn over ξstat is at least a factor of 2.
Both systems show very different layering propensity in

the density profiles [Fig. 1(b)] and hence demonstrate the
robustness of the maximum in ξdyn across systems with
different surface interactions.
We now demonstrate the intimate link of the maxi-

mum in the dynamical correlation length near the sur-
face with a cross-over point that governs the bulk dy-
namics. Such a link is remarkable, because the point of
maximal correlation length, T∗, is clearly above the Tc

of mode-coupling theory (MCT), to which candidates of
dynamical changes in the bulk have so far been linked.
One example is a change in morphology of the CRR as
suggested by RFOT [39].
We identify CRR as nearest-neighbor clusters of fast

particles in simulations of the bulk systems. Following
established procedures [40, 41], fast particles are defined
as those that, during the time interval corresponding to
the average structural relaxation time, move significantly
farther than what is expected from the average mean-
squared displacement. Clusters are defined by fast par-
ticles initially closer than the first minimum position in
the pair distribution function. To quantify the geometric
shape of these clusters, we consider the ratio of their cor-
relation length to the expected spherical size: In analogy
to percolation theory [42], the average cluster correlation
length is given by

ξ2cl =
∑

s
R2

g,ss
2P (s)/

∑
s
s2P (s) , (3)

where the sums run over the individual clusters of size s
whose probability of occurence is P (s). The radius of gy-

ration of such a cluster isR2
g,s =

1
2s2

〈∑
ij∈s(ri − rj)

2
〉
s
,

where r is the position of particles at the initial time for
the considered relaxation time interval. The sum runs
over all particles i, j that are part of the cluster, and
⟨· · · ⟩s denotes the average over all clusters of size s. The
expected linear dimension of a spherical cluster of size Rs

in turn is defined by ⟨s⟩ = (4π/3)ρnR
3
s, where ρn is the

number density, and ⟨s⟩ =
∑

s≥2 s
2P (s)/

∑
s≥2 sP (s) is

the average cluster size. The ratio, ξcl/Rs, can then be
used as a proxy to measure the anisotropy of the fast-
particle regions.
As spatial correlations grow with decreasing temper-

ature, ξcl also grows monotonically [43]. But the as-
pect ratio of clusters, ξcl/Rs, evolves non-monotonically
[Fig. 3(a)], with a maximum at the same temperature
T∗ > Tc where also the dynamical correlations show
a maximum. Thus we argue that the non-monotonic
change in ξdyn is intimately related to the shape tran-
sition of bulk CRR.
Typical shapes of fast-particle clusters in the bulk

demonstrate the shape transition [Fig. 3(b–d)]: at high
temperatures, clusters are small and of a random-walk
like fractal structure. As the temperature is lowered, the
clusters increase in size, and at temperatures below T∗,
they are relatively compact objects. Around T = T∗, the
aspect ratio is largest: as the clusters grow in average
size upon lowering the temperature, this growth first oc-
curs through a string-like extension of the clusters; only
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below T∗, a more isotropic growth of the clusters is seen.
While the string-like motion of atoms is well known in su-
percooled liquids [40, 41, 44, 45], the transition back to
more compact (albeit larger) CRR at low temperatures
is a more striking result of our study.

Within RFOT the shape change of CRR arises from
a competition between string-like particle motion and a
free-energy cost associated to the large interfacial area of
these strings [39]. However, the shape-transition point
was conjectured to be the MCT-Tc, while we find it to
be the T∗ that was identified in the glassy films. As we
show next, it is clearly distinct from Tc and yet rigorously
defined within the MCT framework.

The emergence of large CRR signals heterogeneities
in the dynamics that inter alia lead to a breakdown of
the Stokes–Einstein (SE) relation [37, 46–48]: the fast-
particle dominated diffusivity decouples from the bulk
relaxation that is governed by the slow particles [49, 50].
The stochastic β-relaxation theory (SBR) [51–53], a re-
cent extension of the asymptotic laws of MCT, rational-
izes the crossover from regular to fractional SE relations
[54], as arising from long-wave length fluctuations in the
local dynamical order parameter (see [27] for details).
The scaling function of SBR can be evaluated numeri-
cally to yield both D and η ∼ τ , and the result (solid
line in Fig. 4) matches the simulation data.

We expect the point of maximal dynamical correla-
tions to be that where changes in the fast-particle dy-
namics (quantified by the diffusivity) are most sensitive
to changes in the bulk dynamics (using viscosity as a
proxy). This is indicated by the point where the change
in δ = log(D/T ) with v = log(η) has the strongest sensi-
tivity to control parameters. SBR predicts the derivative
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FIG. 4. Diffusivity D versus viscosity η for the bulk liquids
(symbols), compared with the prediction from stochastic β-
relaxation theory (solid line, using the MCT exponent param-
eter λ = 0.75). CuZr data have been scaled by factors µ0 and
η0 to match LJ units. Dotted lines are the SBR asymptotes
for the SE relation, D/T ∼ η−1, at high temperatures, and
a fractional law, D/T ∼ η−0.56, at low temperatures. Red
circles mark the MCT-Tc, and T∗ predicted from SBR (max-
imum slope in the inset); arrows indicate the T∗ from ξdyn in
Fig. 2.

ϵ = −dδ/dv to cross over from ϵ = 1 at high temperatures
(the ordinary SE relation, Dη ∼ T ) to an effective expo-
nent ϵ = x < 1 at low temperatures: the fractional SE
relation, D/T ≈ η−x, with the exponent x given by the
MCT exponent parameter λ [54]. The strongest slope in
this cross-over curve (inset of Fig. 4) defines T∗ in good
agreement with the observed maximum in ξdyn and the
shape transition in the CRR (marked by a circle and ar-
rows, respectively, in Fig. 4). This T∗ is strictly higher
than Tc because within SBR, non-mean-field fluctuations
of the local glassiness have a finite variance and trigger
a decoupling of the fast-particle dynamics already above
the mean-field Tc.

In conclusion, we find a dynamical correlation length
with non-monotonic temperature dependence to govern
the dynamics of equilibrium free-surface films of glass for-
mers. We demonstrate that the non-monotonic change
in dynamical correlations as measured near the surface
is linked to a non-monotonic shape evolution, i.e., a
string-to-compact shape transition, of cooperative rear-
rangement regions in the bulk. This transition occurs at
a distinct temperature T∗ above the MCT-Tc. It can
be identified as the point where the balance of liquid-
and glass-like fluctuations in the system is most sensi-
tive to a change in control parameter, and it can be rig-
orously defined within the recently developed stochastic
β-relaxation theory.
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