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Chapter 1

Introduction

Significant uncertainties are still associated with predicting of turbulent boundary-
layer flows over smooth surfaces subjected to an adverse pressure gradient
(APG) and flow separation using statistical turbulence models based on the
Reynolds-averaged Navier-Stokes (RANS) equations. These flows have a high
relevance in many technical applications, e.g., for the flow around aircraft wings,
turbomachinery blades, and wind turbine blades. Among these flows, the
flows around aircraft are special due to their high Reynolds numbers and their
large ratio of surface area to boundary-layer thickness. This makes turbulence-
resolving methods extremely expensive even for a single flow simulation Spalart
[2015], whereas a great many simulations are needed for CFD-based configura-
tive design and optimization of new aircraft concepts. Moreover, improvements
of RANS models in the inner part of the boundary layer are important for
large-eddy simulation (LES) with wall functions (see Tessicini et al. [2007]) and
hybrid RANS/LES methods based on the detached-eddy-simulation approach
(see Shur et al. [2008]). The lack of knowledge about an empirical wall law for
the mean velocity in an adverse pressure gradient is a primary hurdle for the
improvement of RANS turbulence models.
For turbulent boundary-layer flows at zero pressure gradient, there is a wide
consensus that the mean velocity U in the inner part of the boundary layer at
sufficiently large Reynolds numbers can be described by the log law (see Marusic
et al. [2013])

u+ =
1

κ
log(y+) +B . (1.1)

Here y is the wall-distance, and inner viscous scaling u+ = U/uτ , y
+ = yuτ/ν

is used with the wall shear stress τw, the density ρ, the friction velocity uτ =
√

τw/ρ, and the kinematic viscosity ν. The outer edge of the region occupied by
the log law is near y = 0.15δ, with δ being determined from a fit of the composite
law-of-the-wall/law-of-the-wake Marusic et al. [2013]. The region y < 0.15δ will
be referred to as the inner layer.
The resilience of the log law for the mean velocity in an APG is widely reported
in Coles and Hirst [1969], Galbraith et al. [1977], Perry et al. [1966], Alving and
Fernholz [1995], and Johnstone et al. [2010]. The region occupied by the log
law in ratio to δ is found to be reduced, compared to the zero-pressure-gradient
case, as the effect of the APG, e.g., the pressure-gradient parameter in inner
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viscous scaling

∆p+s = ν/(ρu3
τ )dP/ds (1.2)

becomes stronger (see Alving and Fernholz [1995], Knopp [2016]). Here P is
the pressure and s is the wall-tangential direction of the mean velocity as y → 0
(see section 2.1). Some researchers report that a so-called half-power law or
square-root law (abbreviated: sqrt-law) emerges above the log law (see Perry
et al. [1966], Kader and Yaglom [1978], and Telbany and Reynolds [1980], and
Nakabayashi et al. [2004]). To be more precise, these authors used the half-power
law for zero-skin-friction flow by Stratford [1959] (given in equation (2.13) in sec-
tion 2.3). Note that the half-power law is related to the y-scaling of the mixing
length (see Stratford [1959]). This distance-from-the-wall scaling was recently
found for the turbulent structures of the APG flow by Romero et al. [2022]. Al-
ternatively, an extended wall law was applied in the entire inner layer above the
buffer layer (see Szablewski [1960], Townsend [1961], and Afzal [2008]), which
is asymptotic to the log law at low values of ∆p+s and asymptotic to the half-
power law at large values of ∆p+s . (The extended wall law is given in equation
(2.12) in section 2.3). The extended wall law was used in Knopp et al. [2021] to
describe the mean velocity above the log law in an APG. In Knopp et al. [2021]
and in the present work, the designation ”half-power law” is used loosely for
the extended wall law (2.12)).
Regarding the breakdown of the log law in an APG, the work by Alving and
Fernholz [1995] supports the idea of a breakdown if ∆p+s exceeds some thresh-
old, e.g., ∆p+s > 0.05, rather than the onset of instantaneous reverse flow. The
breakdown of a region where u+ grows linearly with log(y+) needs to be dis-
tinguished from a change of κ and B. Regarding the latter, some theoretical
results and experimental observations indicate that the values for κ and B could
change for strong values of ∆p+s (see Nickels [2004], Dixit and Ramesh [2008],
and Knopp et al. [2021]). This question is not studied in the present work,
mainly due to the significant effect of the accuracy to determine uτ on the val-
ues inferred for κ (see Knopp et al. [2021]).
The great question is the existence of a wall-law region in which the mean-
velocity profile depends only on local flow quantities. Such a region was pro-
posed, among others, by Perry et al. [1966], who divided the boundary layer
into a wall region and a historical region. In the wall region, only the local
flow quantities/variables (1/ρ)dP/ds, τw/ρ, ν, and y govern the mean-velocity
profile, and higher derivatives of (1/ρ)dP/ds and τw/ρ could be involved above
a certain wall-distance. In the historical region, the mean-velocity profile is in-
fluenced by upstream events. The existence of a local wall law can be motivated
by and is related to the concept of moving equilibrium. Following Kader and
Yaglom [1978], a boundary-layer flow is in moving equilibrium if the free-stream
velocity U∞ and the kinematic pressure gradient (1/ρ)dP/ds are varying only
slowly with the streamwise coordinate s so that the boundary layer adjusts to
these variations and its structure at any value of s depends essentially on the
relevant local parameters (at the same s) only, not on the upstream history of
the flow.
Similar results were found for Couette-Poiseuille (CP) flow by Telbany and
Reynolds [1980], reporting that the logarithmic layer is eroded, and ultimately
vanishes, as the stress gradient increases in importance. Here the wall-normal
stress gradient is given by the streamwise pressure gradient. Similar results
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were found by Nakabayashi et al. [2004]. Moreover, a correlation is reported
for the y+-location of transition between the logarithmic layer and the so-called
gradient layer (being the half-power law region), i. e., y+ = 90λ−1/2 using the
parameter λ = ∆p+s Reτ,h, with Reτ,h based on uτ and on the channel half-
width h. The systematic reduction of the log-law region and the appearance
of a half-power law for CP flow can therefore be seen as a consequence of the
pressure gradient and not a history effect, as CP flow is a self-similar flow in
dynamic equilibrium in the sense of Gungor et al. [2016]. The findings for CP
flow are seen to support the conjecture of a local wall law.
The present paper describes the first part of a strategy to modify RANS models
for APGs. The strategy consists of three steps:

1. Set-up of a database of turbulent boundary-layer flows in an APG;

2. Development of an (empirical) wall law in an APG;

3. Modification of RANS models to account for the wall law in an APG.

The first two steps are described in the present paper. The third step will be
described in a separate paper.
The present approach to find a wall law in an APG uses a combination of data
analysis and theoretical arguments. A large database from wind tunnel exper-
iments was analysed. The initial preliminary results were presented in Knopp
[2016]. The core of the database is the famous test case collection Coles and
Hirst [1969] published at the seminal 1968 Stanford conference on the compu-
tation of turbulent boundary layers. In this database, only a few mean-velocity
profiles are for large values of ∆p+s > 0.01 at high Re.
As a remedy, a series of joint DLR/UniBw turbulent boundary-layer experi-
ments have been performed since 2011. The geometry model that produces
a strong APG consists of a diffuser type wall segment with convex streamwise
curvature which smoothly joins a flat plate at opening angles of 13.0◦ and 14.4◦,
and 18.6◦ with respect to the wind tunnel wall in the three experiments. The
flat plate is the APG focus region. The first experiment was at ∆p+s up to 0.05
and Reθ up to 18000 (see Knopp et al. [2015]). A small log-law region was
indicated from the diagnostic function for the log law, and a half-power law was
observed above the log law, albeit only over a small region in terms of y+. In the
second experiment, large values of Reθ up to 60000 were reached. A half-power
law region was found from the diagnostic function for the half-power law (see
Knopp et al. [2021]). The values for ∆p+s were reduced to below 0.03 so that
the flow was remote from separation. In the third experiment, the APG was
increased, leading to separation. Preliminary results are shown in Knopp et al.
[2022].
Analysis of the database prompts the following hypotheses about an empirical
wall law for the mean velocity in an adverse pressure gradient:

• The log law in the mean-velocity profile is a robust feature in an APG;

• The log-law region is thinner than its zero-pressure-gradient counterpart
at the same Reτ and does not extend up to y = 0.15δ;

• The extent of the log-law region in ratio to δ is decreasing with increasing
∆p+s ;

5



• An extended wall law (designated loosely as ”half-power law”) emerges
above the log law in a large part of the region the log law occupies at zero
pressure gradient.

Note that an additional hypothesis states that the von Kármán constant κ
changes with ∆p+s and that this can be described by the model by Nickels
[2004]; however, this is not considered in the present work. In the present pa-
per, the focus is directed at the mean velocity in the inner part of turbulent
boundary layers. Recent work focusing mainly on the outer part of the bound-
ary layer in an adverse pressure gradient can be found in Romero et al. [2022],
Maciel et al. [2018], Bobke et al. [2017], Vila et al. [2017], and Vila et al. [2020].
This work is restricted to turbulent boundary-layer flows. Internal flows with
streamwise pressure gradients like Couette-Poiseuille flows (Telbany and Reynolds
[1980]) or flows in divergent channels (Szablewski [1954]) are not considered.
The analysis is restricted to the case of plane-wall, two-dimensional flow. Ef-
fects of streamwise curvature are ignored. The effects of three-dimensional
boundary-layer flows with sweep (Coleman et al. [2019]) and cases with a three-
dimensionality of the flow due to a spanwise expansion of the geometry or span-
wise surface curvature are excluded. Streamwise curvature leads to a departure
from the log law which is increasing with increasing y+. The profile for u+ turns
below the log law in the case of a concave wall and above in the case of a con-
vex wall (see Kim and Rhode [2000]). In three-dimensional turbulent boundary
layer flows, a streamwise and a spanwise component of the mean velocity arise
(defined in a local coordinate system with the x-axis aligned with the freestream
or with the wall shear stress vector), and a spanwise pressure gradient results in
flow skewing (see Devenport and Lowe [2022]). A wall law for the mean-velocity
component aligned with the wall shear stress and the transverse component per-
pendicular to it is described in van den Berg [1973], van den Berg [1975], which
accounts for streamwise and spanwise pressure gradients.
The paper is organized as follows. The theoretical background of boundary-
layer theory, models for the total shear stress, scaling of the inner layer, and
self-similarity is described in section 2. The database of turbulent boundary-
layer flow experiments in APGs is presented in section 3. The methods used
for the evaluation of the mean-velocity profiles are described in section 4. The
results are presented in section 5. The correlations for the wall law in an APG
are given in section 6. An attempt to discuss the issues of a local wall law,
the moving-equilibrium concept, history effects, and effects of the measurement
accuracy is given in section 7. The conclusions are given in section 8.
Finally, as implied in the title, the connection between the present analysis and
RANS turbulence models is briefly described. A preliminary APG modification
was presented for the SST k-ω model in Knopp [2016] and for the SSG/LRR-ω
model in Knopp et al. [2022]. The idea is to use a model augmentation term in
conjunction with a blending function. The augmentation term is added to the
transport equation for the specific rate of turbulent dissipation ω. It is designed
to obtain the assumed solution for the mean velocity and the turbulence quan-
tities in the half-power law region. The blending function is used to activate the
augmentation term only in the half-power law region. It has a value of unity
in the half-power law region, and is zero in the log-law region and for y > 0.2δ.
It is based on the correlations that describe the regions of the log law and the
half-power law as functions of y+, Reτ , ∆p+s and y/δ (see section 6). Addition-
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ally, the calibration of the coefficient of the augmentation term depends on the
empirical value found for the slope coefficient of the half-power law, denoted
here by K. The value of K is determined from the experimental data in section
6.
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Chapter 2

Boundary-Layer Theory

This section presents the theoretical results used for the design and the cali-
bration of the wall law. The boundary-layer approximation is given in section
2.1. A local model for the total shear stress is described in section 2.2. The
structure of the wall law is presented in section 2.3. A modified velocity scale
for the inner layer is described in section 2.4. Some aspects for self-similarity of
the mean-velocity profile are given in section 2.5.

2.1 Boundary-Layer Approximation

Two-dimensional, incompressible turbulent boundary-layer flow in a wall-fitted
coordinate system with streamwise wall-parallel direction s, wall-normal di-
rection y and corresponding velocity components U , V is assumed (see Hinze
[1975])

ν
∂2U

∂y2
−

∂u′v′

∂y
=

1

ρ

dPw

ds
+ U

∂U

∂s
+ V

∂U

∂y
+

∂

∂s

(

u′2 − v′2
)

. (2.1)

Here the relation P (s, y) = Pw(s) − ρ v′2(s, y) is used from the integration of
the boundary-layer equation for V . The subscript w indicates values at y = 0.
Integration of (2.1) from the wall to the wall-distance y gives the following
relation for the total shear stress τ

τ

ρ
≡ ν

∂U

∂y
− u′v′ =

τw
ρ

+
1

ρ

dPw

ds
y + Icu(y) + Icv(y) + Ir(y) (2.2)

where τw denotes the wall shear stress and with the following notation

Icu(y) =

∫ y

0

U
∂U

∂s
dỹ , Icv(y) =

∫ y

0

V
∂U

∂ỹ
dỹ , Ir(y) =

∫ y

0

∂

∂s

(

u′2 − v′2
)

dỹ

(2.3)

for the integrated convective term and the Reynolds normal stress term.
Note that in the three-dimensional case, the direction s used in (1.2) is defined
by the direction of the wall-parallel velocity as y → 0 (being the direction of the
skin friction vector).
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2.2 A Local Model for the Total Shear Stress

The next step is to motivate local surface parameters to characterise the different
terms in the mean momentum balance and hence the mean-velocity profile in
the inner layer. A first-order local model for the total shear stress was proposed
by Coles [1956] and Perry [1966]. It is based on the following ansatz for the
mean-velocity profile in the inner layer

U(s, y) = uτ (s) f(y
+(s, y)) , y+(s, y) = uτ (s)y/ν . (2.4)

As described in van den Berg [1973] and Knopp et al. [2015], the mean-inertia
term can be written as

∫ y

0

U
∂U

∂s
dỹ +

∫ y

0

V
∂U

∂ỹ
dỹ = ν

duτ

ds

∫ y+

0

f2 dỹ+ . (2.5)

By substitution of (2.5) into (2.3) and neglecting the contribution of the Reynolds
normal stress term I+r (y+) in (2.3), the result for τ+ = τ/τw is

τ+(y+) = 1+∆p+s y
++∆u+

τ,sI
+
1 , ∆u+

τ,s =
ν

u2
τ

duτ

ds
I+1 =

∫ y+

0

f2dỹ+ (2.6)

showing that the total shear stress in the inner layer not only depends on ∆p+s
but also on the wall-shear-stress-gradient parameter ∆u+

τ,s, which describes the
local flow deceleration. The approximation to neglect I+r (y+) if the flow is far
from incipient separation is supported by the DLR/UniBw experiment II (see
figures 7.1 and 7.2 in Knopp [2019]). Note that in the y+-region where the
mean-velocity profile follows the log law I+1 can be approximated by equation
(8) in Galbraith et al. [1977]

τ+ = 1+∆p+x y
+ +∆u+

τ,x

[

y+
(

k1
(

log y+
)2

+ k2 log(y
+) + k3

)

+ k4

]

(2.7)

for y+ > 30 with constants k1, . . . , k4 depending only on κ and B. The total
shear stress is approximated by a linear relation in e.g. McDonald [1969]

τ+ = 1 + α+y+ , α+ ≡ λ∆p+s , (2.8)

where λ is a constant smaller than one, and α+ ≡ λ∆p+s is called the effective
pressure gradient. For flows in a mild adverse pressure gradient near equilibrium,
λ = 0.7 was proposed in McDonald [1969], and from Perry et al. [1966] a value
of 0.833 can be inferred at the outer edge of the logarithmic layer for the flows
considered in their work. Similar values were found in Knopp et al. [2015]. The
linear approximation (2.8) can be inferred from (2.7) for small values of ∆u+

τ,s

and y+.
A higher-order model for τ+ can be obtained by extending (2.4), motivated by
the dependence of f on ∆p+s in the half-power law

U(s, y) = uτ (s) f(y
+(s, y),∆p+s (s)) , y+(s, y) = uτ (s)y/ν (2.9)

to account for higher-order effects on τ+. The extended model for τ+, which
is described in detail in Knopp et al. [2015], includes the additional local flow
parameter ∆2p+s which involves d2P/ds2. This higher-order local parameter will
be used in the discussion of the conjecture of a local wall law in subsections 7.1
and 7.2. Note that, if the log law is unaltered, then the higher-order contribution
is zero.
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2.3 Log Law/Half-Power Law

For the mean-velocity profile in an adverse pressure gradient, a log-law/half-
power-law structure is assumed, motivated by the findings described in the
introduction

u+ =

{

u+
log if y+ ∈ (y+log,min, y

+
log,max)

u+
sqrt if y+ ∈ (y+sqrt,min, y

+
sqrt,max)

(2.10)

with the log law

u+
log =

1

κ
log(y+) +B (2.11)

and the extended wall law (involving the parameter α+ defined in (2.8))

u+
sqrt =

1

K

[

2
(

(1 + α+y+)
1
2 − 1

)

+ log(y+) + 2 log

(

2

(1 + α+y+)
1
2 + 1

)]

+Bo .

(2.12)

The parameter α+ defined in (2.8). The designation ”half-power law” is used
loosely for the extended wall law.
Note that there is an intermediate region in which neither the log law nor
the half-power law describes the mean velocity. The important parameters
for the calibration are y+log,max and y+sqrt,min. They describe the reduction of
the log-law region, and are supposed to depend, among other effects, on the
pressure gradient and on the Reynolds number. They will be calibrated using
the database. The half-power law is assumed to extend up to the outer edge of
the inner layer. The value for κ is assumed to be constant with κ = 0.41, and K
will be studied in section 6.4. The value of y+log,min is expected to depend on the
Reynolds number and possibly on the pressure gradient, but is not considered
in this work. Note the alternative form of the half-power law by Stratford [1959]
for zero-skin-friction flows

U(y) =
2

K

(

1

ρ

dP

ds

)1/2

y1/2 + C (2.13)

which was recently confirmed by the DNS of Coleman et al. [2017].

2.4 A Velocity Scale for the Inner Layer

The classical velocity scale for the inner layer uτ leads to well-known issues as
the flow approaches separation. As uτ → 0, the profile u+ versus y+ is not
defined. Moreover, boundary-layer parameters involving uτ , e.g.,

Reτ ≡ δ+ =
δuτ

ν
, βRC =

δ∗

ρu2
τ

dPw

ds
(2.14)

and ∆p+s , are approaching zero or infinity. In particular, the Reynolds number
δ+ is found to give decreasing values as the flow approaches separation, whereas
Reθ and Re∗δ are increasing, and ∆p+s and βRC can reach high values mainly
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due to the small values of uτ .
A modified velocity scale for the inner layer was devised in Nickels [2004] as a
part of an analytical model for the mean velocity depending on the local value
of ∆p+s . It involves the quantity y+c , which is associated with the thickness of
the viscous sublayer and related to a critical value of the local Reynolds number
based on the total shear stress (cf. (2.6), neglecting the convective term)

Rec =
uTyc
ν

, uT =

(

τ |y=yc

ρ

)1/2

, τ+|y=yc
= 1 +∆p+s y

+
c . (2.15)

The assumption that Rec has a universal value for all wall-bounded flows (Rec =
12) leads to a cubic equation for y+c , which can be interpreted as the critical
value above which the viscous sublayer becomes unstable,

∆p+s
(

y+c
)3

+
(

y+c
)2

−Re2c = 0 . (2.16)

The only free parameter of this model is Rec, for which the value Rec = 12 was
chosen from zero-pressure-gradient data. The physically relevant solution for yc
is the smallest positive root of (2.16).
The exact solution for yc follows from the formula by del Ferro, Tartaglia, and
Cardano (see Nickels [2004]). For large ∆p+s this solution may be approximated
by

y+c =
Re

2/3
c (∆p+s )

2/3 − 1
3

∆p+s
(2.17)

(see also eq. (10.1) in Nickels [2004]). As uτ → 0 (and ∆p+s → ∞)

uT = uτ (1 + ∆p+s y
+
c )

1/2 → Re1/3c up , (2.18)

i.e., uT converges to the non-zero value Re
1/3
c up. Here up = |ν/ρdPw/ds|

1/3

is the so-called pressure-viscosity velocity by Stratford [1959] and Mellor [1966]
with ∆p+s = (up/uτ)

3.
For 0 < ∆p+s < 0.1, the analytical solution of (2.16) can be approximated by

y+c ≈ Rec(1 + y+c,0∆p+s )
−1/3 , y+c,0 = 16 . (2.19)

Figure 2.1 provides some illustration for y+c (left) and for uT/uτ (right). Note
that, alternatively, the solution of (2.16) can be computed using Newton’s
method, and can be approximated by the maximum of (2.17), (2.19). The
above model could require modification for large values of ∆p+s . A first issue is
that the mean-inertia term can become important and needs to be accounted for
in the approximation of τ+ in (2.15). A second issue concerns possible effects
of incipient separation and instantaneous reverse flow.

2.5 Self-Similarity

The existence of a wall law, which depends only on local flow parameters at the
corresponding nearest wall point, is related to the question of self-similarity of
the mean-velocity profile in the inner layer. Self-similarity is associated with a
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Figure 2.1: Behaviour of y+c (left) from (2.16), (2.17), (2.19) and modified ve-
locity scale uT (right).

state of a dynamic equilibrium of (2.1) in the sense that the streamwise vari-
ation of the relative magnitude of the different terms of the mean momentum
balance (pressure gradient, mean inertia, viscous stresses and Reynolds stresses)
is negligible with respect to other terms (see Gungor et al. [2016], Rotta [1950],
and Clauser [1954]). The classical approach is to seek a similarity solution of
the form

U(s, y) = Ue(s)f
′(η) , u′v′ = u2

t (s) t(η) , η(s, y) =
y

δ(s)
. (2.20)

Note that the choice for ut for a self-similar scaling of the Reynolds stresses
is still open in the literature (see Elsberry et al. [2000]). Then consider (2.1),
with the streamwise gradients of the Reynolds stresses being neglected. They are
included in the study by Elsberry et al. [2000], Kitsios et al. [2017]. Substitution
of (2.20) yields (see e.g. Dixit and Ramesh [2008])

−
δUe

ν

dδ

ds
[f ′′f ] +

δ2

ν

dUe

ds

[

(f ′)2 − f ′′f − 1
]

= f ′′′ +
Ueδ

ν

(

ut

Ue

)2

t′ . (2.21)

A similarity solution exists only if the coefficients are independent of s

β1 ≡
δUe

ν

dδ

ds
= const , βH ≡

δ2

ν

dUe

ds
= const , β3 ≡

Ueδ

ν

(

ut

Ue

)2

= const .

(2.22)

If all conditions are met, then the flow is self-similar in the inner and outer
layer, whereas, if only βH is independent of s, then the flow is self-similar only
in the outer part, as described in Kitsios et al. [2017], Vila et al. [2020]. Note
that βH is the Hartree parameter in the laminar case. It can be written as

βH =
δ2

ν

dUe

ds
= −∆p+s Re2τ

(

uτ

Ue

)

. (2.23)

and alternatively in the form βH = −βRC Re2τ Re−1
δ∗ . Traditionally, βRC is seen

to be the governing parameter of the similarity solution, although there are
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two parameters arising for the mean-inertia and for the pressure-gradient terms
and a third parameter for the Reynolds shear stress, in agreement with the
findings of (2.6). Note that the additional assumption of a power law behaviour
of Ue(s) ∼ sm and of δ(s) leads to the relation β1 = 1 − βH . An additional
constraint is that Reδ = Ueδ/ν and uτ/Ue are constant in streamwise direction
(involving the choice ut = uτ ). The latter condition implies that ∆p+s and ∆u+

τ,s

are in a constant ratio, which can be seen from the relation

∆u+
τ,s = −

u2
τ

U2
e

∆p+s +
νUe

u2
τ

d

ds

(

uτ

Ue

)

. (2.24)

This implies a similarity solution for τ+ in (2.6) for y+ large enough so that
viscous effects lose leading order influence. The condition dReδ/ds = 0 is rather
restrictive, and implies that β1 = −βH . The resulting equation for (2.21) has
a non-trivial solution only for sink flows, i.e., in a favourable pressure gradient
(FPG), in the case of a smooth wall.
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Chapter 3

Database

A database study was performed to account for the variety of turbulent boundary-
layer flows in an APG and the richness of the parameter space. Based on the
assumption that an asymptotic structure of the mean velocity profile arises only
for sufficiently large Re, the focus is on mean-velocity profiles from experiments
with Reθ > 8000. Moreover, two data sets from experiments and DNS for small
Re are included to assess the validity of the wall law for small Re.

3.1 Experimental Data

The database covers the famous test-case collection Coles and Hirst [1969]. pub-
lished at the 1968 Stanford conference on the computation of turbulent bound-
ary layers. Additionally, the more recent experiments by Samuel and Joubert
[1974], Skare and Krogstad [1994], Marusic and Perry [1995], and Romero et al.
[2022] are used. Two joint DLR/UniBw turbulent boundary-layer experiments
designed to yield data for ∆p+s > 0.01 are also included. The database is re-
stricted to boundary layers, i.e., Couette-Poiseuille flows are not considered. For
the data in the collection by Coles and Hirst [1969], their identifiers (IDENTs,
abbreviated IDs) are used to denote the flows and the streamwise positions. The
test-cases used from the 1968 Stanford data collection are given in table 4.1-4.2.
The flows by Clauser and by Bradshaw are equilibrium flows. The equilibrium
flows by Clauser Clauser [1954] in a mild APG (2200) and in a moderate APG
(2300) are used. From the work by Bradshaw, the equilibrium flows in a mild
APG (2500) Bradshaw [1966] and in a moderate APG (2600) Bradshaw [1965]
by Bradshaw & Ferriss are used. Regarding the streamwise evolving flows, the
data by Ludwieg & Tillmann, Perry, Schubauer & Klebanoff, Bradshaw, and
Schubauer & Spangenberg are considered. The turbulent boundary-layer flows
by Ludwieg & Tillmann Ludwieg and Tillmann [1949] are in a mild (1100) and
in a strong (1200) APG. The turbulent boundary layer by Perry Perry [1966] is
in a decreasing APG and at large values for Reθ and βRC. High values for Re,
βRC and ∆p+s were also reached for the boundary layer on a large airfoil-like
body (2100) by Schubauer & Klebanoff Schubauer and Klebanoff [1950]. The
flow 3300 by Bradshaw Bradshaw [1967] develops from initially constant pres-
sure into an equilibrium flow in a moderate APG. From the work by Schubauer
& Spangenberg Schubauer and Sprangenberg [1960], flow B in a moderate APG
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(4500) and flow E in a mild APG (4800) are used.
Moreover, some more recent experiments are used (see table 4.1-4.2). The flow
by Samuel & Joubert is in an increasing APG to study the effect of d2P/ds2.
Samuel & Joubert Samuel and Joubert [1974] studied a turbulent boundary-
layer flow in an increasing APG with both dP/ds and d2P/ds2. The flow by
Marusic & Perry Marusic and Perry [1995] was at Reθ up to 19200. The equilib-
rium flow by Skare & Krogstad Skare and Krogstad [1994] reached high values
for both ∆p+s = 0.012 and Reθ up to 54300. In the experiment at the University
of New Hampshire (UNH) by the group of Klewicki Romero et al. [2022], the
APG was mild and 20600 < Reθ < 26500.
Moreover, two joint DLR/UniBw turbulent boundary-layer experiments are con-
sidered. They were designed to study the mean-velocity profile in the inner layer
at large values of ∆p+s and Reθ. The DLR/UniBw experiment I was at an inflow
velocity U∞ up to 12m/s, and in the APG region values of ∆p+s up to 0.045
and Reθ up to 18000 were obtained (see Knopp et al. [2015]). The DLR/UniBw
experiment II was at inflow velocities 23m/s and 36m/s, leading to ∆p+s > 0.01
and Reθ up to 60000 in the APG region (see Knopp et al. [2021]).
Two data sets at small Re are included. For the wind tunnel experiment by
Nagano et al. Nagano et al. [1991] the mean-velocity profiles are for 481 ≤
Reτ ≤ 639, 1290 ≤ Reθ ≤ 3350 and 0.009 ≤ ∆p+s ≤ 0.025. For the DNS of a
turbulent boundary layer with separation and reattachment by Coleman et al.
Coleman et al. [2018], Reτ is up to 880 and 2000 ≤ Reθ ≤ 6400 in the APG
region, and ∆p+s is increasing from 0.001 to values exceeding 1 as the flow is
approaching separation. Note that the low-Re data are used only in section 7.3
to assess the validity of the wall law for small Re. The test cases and their
acronyms are summarised in table 4.1-4.2.

3.2 Boundary-Layer Characterisation

The characterisation of turbulent boundary-layer flows in adverse pressure gra-
dients using suitable boundary-layer parameters is still open (cf. Vila et al.
[2017]). The parameter space is much wider than for the zero-pressure-gradient
case. Figure 3.1 (left) shows βRC versus Reθ. Each symbol corresponds to a
mean-velocity profile. The number of data points for Reθ > 30000 is small.
The strength of the APG felt in the inner layer can be described by ∆p+s . The
values of ∆p+s plotted against Reτ are shown in figure 3.1 (right). Only in a
small number of experiments are values of ∆p+s > 0.02 reached.
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Figure 3.1: Characterisation of the turbulent boundary-layer flows in the
database.
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Chapter 4

Methods for Data
Evaluation

This section describes the methods used for the evaluation of the data. The
methods to determine the friction velocity uτ and the boundary-layer thickness
δ are described in section 4.1. Section 4.2 describes the methods used to identify
the regions of the log law and the half-power law. Finally, the assessment of the
data in the region of the half-power law is described in section 4.3.

4.1 Fit to the Law-of-the-Wall/Law-of-the-Wake

In the collection by Coles & Hirst Coles and Hirst [1969], the boundary-layer
thickness δ, the wake factor Π, and the friction velocity uτ were determined
such that the root-mean-square (r.m.s.) deviation of the data from the law-of-
the-wall/law-of-the-wake

u+ =
1

κ
log(y+) +B +

2Π

κ

(

sin
(πη

2

))2

, η =
y

δ
(4.1)

is minimised. The values κ = 0.41 and B = 5.0 by Coles & Hirst were used
for all cases throughout this work, except for the experiments by DLR/UniBw
experiments and by UNH and the two flows at small Re, for which almost direct
values for uτ are provided. A similar evaluation as in Coles and Hirst [1969]
was provided for the flows by Skare and Krogstad [1994] and Marusic and Perry
[1995]. Note that the recently proposed methods to determine the boundary-
layer thickness by Coleman et al. [2018] and Vinuesa et al. [2016] are not used
in the present method, as they require additional data which are not available
for most of the old data sets in the database.
The first step was a review of the values reported for δ, Π, and uτ . First, the
mean-velocity profiles were plotted in viscous units and compared with the log
law to assess uτ . The original values for uτ could be supported and were used
for the data analysis. This concurs with the result by Patel [1965], reporting an
uncertainty within 6% for ∆p+s < 0.015 for the Preston tube. This was seen to
be acceptable, given the different sources of uncertainties.
The next step was to review the values for δ. The aim was to ensure comparable
and consistent values for δ among all test cases. The mean-velocity profiles
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in viscous units were compared with (4.1) in the law-of-the-wake region, and
overall, the values reported for δ and Π were found to give a good agreement.
For some data sets, minor adjustments in δ by visual inspection were applied
to obtain a similar matching between the experimental data and (4.1) near the
boundary-layer edge. This is summarised in table 4.1-4.2, which is explained at
the end of this section.

β

δ
δ

δ δ

β

δ

Figure 4.1: Comparison of δ99.5 and δ (left) and y+log,max/δ versus βRC (right).

The evaluation of uτ and δ was different for the UNH experiment Romero et al.
[2022] and for the DLR/UniBw experiments Knopp et al. [2015] and Knopp
et al. [2021]. For the UNH flow, the values for uτ were determined by matching
the hot-wire data for the mean velocity with the LES mean-velocity profiles by
Bobke et al. [2017] for y+ < 40. Note that the values for uτ were confirmed by
the author using the Clauser-chart method (CCM) with κ = 0.41 and B = 5.0
in the region where the mean velocity follows the log law. The relative deviation
in uτ was found to be below 1.5%. Regarding the boundary-layer thickness, the
values by Romero et al. [2022] are used, which were determined using an indirect

method involving the profile for u′2 (see Romero et al. [2022]). The values were
supported by the evaluation of δ99.5 by the author, although, following Romero
et al. [2022], the measurement resolution near the boundary-layer edge was a
little bit too coarse for the evaluation.
For the DLR/UniBw experiment II at x = 9.944m, uτ was determined using
oil film interferometry (OFI) and from the 2D µPTV and 3D LPT data using
an (almost) direct method based on a least-squares fit of the data with the
mean-velocity profile by Nickels for y+ < 20 (see Knopp et al. [2021]). For the
other positions, uτ was determined from the 2D2C PIV data using the standard
CCM. For the boundary-layer thickness δ99.5 was used, as a close matching with
(4.1) could not be obtained, possibly due to history effects. Note that for all
flows, δ99.5 was found to be in close agreement with δ (see figure 4.1 (left)).
The data evaluation is summarised in table 4.1-4.2. The fourth column gives
the source for the value used for uτ . In the fifth column, the method used to
determine the boundary-layer thickness is specified. Here δ denotes the approach
by Coles and Hirst [1969]. The values used for δ are given in the sixth column.
These are mainly the values by Coles and Hirst [1969], although the recomputed
values (denoted by re) are used for some of the streamwise evolving flows. For
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the flow by Marusic & Perry, the recomputed values are used. For the flow by
Samuel & Joubert, δ was determined by the author. The next column gives
the maximum deviation for δ in percent between the original value and the
recomputed value. The number in brackets gives the number of mean-velocity
profiles for which the deviation is greater than 1%. This shows that the deviation
between the values by Coles and Hirst [1969] and the recomputed values is
small compared to the other sources of uncertainties. Note that for the flow
by Marusic & Perry, the deviation between the original values for δ and the
recomputed values was smaller than 8% for the last four profiles in the region
of the strongest APG. The next column specifies the values for κ and B used
to determine the extent of the log-law region y+log,max (see the next subsection).
The log-law with κ = 0.41 and B = 5.0 by Coles & Hirst is denoted by ”Coles
and Hirst [1969]”, whereas ”fit” indicates that κ and B are fitted to the mean-
velocity profile, which is described in detail in the next section. The last column
summarises the assessment for the calibration of the half-power law using the
criteria C1 - C4 described in subsection 4.3.

Table 4.1: Summary of the data evaluation and the acronyms used in the figure
legends.

Acro- Author(s) Ref. Val.
nym for uτ

Br1 Bradshaw, mild Bradshaw [1966] Coles and Hirst [1969]
BrF Bradshaw & Ferriss Bradshaw [1965] Coles and Hirst [1969]
Cl1 Clauser, mild Clauser [1954] Coles and Hirst [1969]
Cl2 Clauser, moderate Clauser [1954] Coles and Hirst [1969]
LT1 Ludwieg & Till., mild Ludwieg and Tillmann [1949] Coles and Hirst [1969]
LT2 Ludwieg & Till., strong Ludwieg and Tillmann [1949] Coles and Hirst [1969]
Pe Perry Perry [1966] Coles and Hirst [1969]
SKl Schubauer & Klebanoff Schubauer and Klebanoff [1950] Coles and Hirst [1969]
SS1 Schubauer & Spang., B Schubauer and Sprangenberg [1960] Coles and Hirst [1969]
SS2 Schubauer & Spang., E Schubauer and Sprangenberg [1960] Coles and Hirst [1969]
Br2 Bradshaw Bradshaw [1967] Coles and Hirst [1969]
SJ Samuel & Joubert Samuel and Joubert [1974] Samuel and Joubert [1974]
MP Marusic & Perry Marusic and Perry [1995] Marusic and Perry [1995]
SKr Skare & Krogstad Skare and Krogstad [1994] Skare and Krogstad [1994]
RK Romero & Klew. (UNH) Romero et al. [2022] Romero et al. [2022]
DM1 DLR/UniBw I Knopp et al. [2015] Knopp et al. [2015]
DM2 DLR/UniBw II 23m/s Knopp et al. [2021] Knopp et al. [2021]
DM3 DLR/UniBw II 36m/s Knopp et al. [2021] Knopp et al. [2021]
Na Nagano et al. Nagano et al. [1991] Nagano et al. [1991]
CSR Coleman et al., case C Coleman et al. [2018] Coleman et al. [2018]
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Table 4.2: Summary of the data evaluation and the acronyms used in the figure
legends.
Acro- Val. ∆δmax

2 κ, Criteria
nym for δ for δ (n)3 B calibrat.
Br1 δ Coles and Hirst [1969] 3.4(3) 0.41, 5.0 − − −+
BrF δ Coles and Hirst [1969] 2.5(3) 0.41, 5.0 − − ++
Cl1 δ Coles and Hirst [1969] 2.6(1) 0.41, 5.0 − + −+
Cl2 δ Coles and Hirst [1969] 1.1(1) 0.41, 5.0 + − ++
LT1 δ re 2.5(2) 0.41, 5.0 + + ++
LT2 δ re 0.3(0) 0.41, 5.0 − − ++
Pe δ re 2.2(2) 0.41, 5.0 + + +−
SKl δ re 1.5(2) 0.41, 5.0 + + ++
SS1 δ Coles and Hirst [1969] 0.2(0) 0.41, 5.0 − − ++
SS2 δ Coles and Hirst [1969] 0.1(0) 0.41, 5.0 − − ++
Br2 δ Coles and Hirst [1969] 5.0(2) 0.41, 5.0 − − −+
SJ δ re - 0.41, 5.0 + + ++
MP δ re 15.5(6) 0.41, 5.0 + + ++
SKr δ Skare and Krogstad [1994] - 0.41, 5.0 + + ++
RK Romero Romero et al. [2022] - fit + − −+
DM1 δ99.5 Knopp et al. [2015] - fit + + +−
DM2 δ99.5 Knopp et al. [2021] - fit + + +−
DM3 δ99.5 Knopp et al. [2021] - fit + + +−
Na δ99.5 re - fit

CSR δ̃99.5
1 Coleman et al. [2018] - fit

4.2 Identification of Log Law and Half-Power

Law

The next step was the identification of the log-law and the half-power law re-
gion. The log-law region is referred to as the region in which the mean-velocity
profile can be fitted by a log law. The half-power law region is defined analo-
gously. The notation introduced in section 2.3 is used. For illustration, figure
4.2 shows the mean-velocity profiles for the flow by Ludwieg & Tillmann (1108)
at ∆p+s = 3.05× 10−3, Reθ = 25870 and Reτ = 5031 (left) and for the flow by
Samuel & Joubert at ∆p+s = 0.00735, Reθ = 13804 and Reτ = 2990 (right).
For the evaluation of y+log,max, for each mean-velocity profile, the maximum wall-

distance was determined up to which the experimental data for u+ follow the
log law (2.11). The method to determine y+log,max was based on visual inspection

and the determination of the y+-position, where a best-approximation polyno-
mial through the data points above the log-law region smoothly joins the log
law. The results for y+log,max are plotted against βRC in figure 4.1 (right). Here
κ = 0.41 and B = 5.0 was used in (2.11) for all flows, except for the flows by
DLR/UniBw and UNH. Note that the influence of using a fitted value for κ
versus a constant value is discussed below for the DLR/UniBw experiment and
in section 7.3.
For the flows by DLR/UniBw and UNH, uτ was determined independently of
the assumption of the log law. The profiles for u+ show a departure from the
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Figure 4.2: Left: Ludwieg & Tillmann, mild APG (1108) at ∆p+s = 3.05× 10−3

and Reτ = 5031. Right: Samuel & Joubert, mild APG at ∆p+s = 7.35 × 10−3

and Reτ = 2990.

log law with κ = 0.41 and B = 5.0. An iterative method was used to determine
the fitted values for κ and B and y+log,max simultaneously under the constraint

to minimise the least-squares error in the y+-interval used for the fit, which was
successively adjusted.
For the DLR/UniBw experiment, a study was made to assess the sensitivity of
y+log,max on details of the method used. The details are given in appendix B. The

main conclusion is that the sensitivity of y+log,max on details of the evaluation is
small for the DLR/UniBw flow compared to the uncertainties of the older flows
in the data base (see section 6.5).
The outer edge of the half-power law is assumed to extend up to y = 0.2δ. The
motivation for this assumption is the observation that the half-power law, if
fitted up to y = 0.15δ, describes the mean-velocity profile even up to y = 0.2δ.
The choice of y = 0.2δ has the advantage of increasing the number of data
points for the half-power law fit compared to y = 0.15δ.
The inner edge of the half-power law, denoted by y+sqrt,min, is determined iter-
atively. In the first step, the two data points below and above y = 0.15δ are
chosen and a preliminary fit is computed. Then this stencil is extended suc-
cessively above and below y = 0.15δ. The points with the smallest y+ value
are removed if such improves the overall fit; alternatively additional points are
included successively if they are in agreement with the fit. For the final eval-
uation of the half-power law and after a comparison among all test cases, the
outer edge is set to the constant value y = 0.21δ. For the inner edge, the value
determined by the iterative method described above is employed. The results
are shown in figure 4.3. In case the above method does not identify two points
for the half-power law fit below y = 0.21δ, the outer edge is increased, but these
data sets are then used with special care (see criterion C1 in section 4.3). Such
can concern data sets whose log-law region is thick and extends to y = 0.15δ.
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Figure 4.3: Inner edge (left) and outer edge (right) used for the fit to the half-
power law.

4.3 Data Assessment for the Half-Power Law
Region

For the calibration of the half-power law, the individual mean-velocity profiles
need to be assessed, so that only the suitable ones are considered for the cal-
ibration. The number of data points in the half-power law region Nsqrt is an
important quantity for the assessment, and is shown in figure 4.4 (left). This
number can become large if Reθ is large, if y+sqrt,min is significantly smaller

than 0.15δ+, or if the wall-normal spacing between adjacent data points ∆y+

is small. The largest values for Nsqrt are reached for the DLR/UniBw experi-
ment II, exceeding 80 for the 2D2C PIV measurements and 250 for the 3D LPT
measurement technique. For some mean-velocity profiles, the number of data
points for the half-power law fit is only two. This small number can be due to
a large spacing ∆y+ in conjunction with a thin half-power law region, or to the
Reynolds number being insufficiently large. Interestingly, the half-power law fit
is found to give a reasonable description even for these mean-velocity profiles.
These profiles are considered with special care (see criterion C2 below) for the
calibration of the wall law in sections 5 and 6.
A theoretical criterion for a half-power law in the form (2.13) was proposed by
Yaglom [1979]. Based on the three length scales δν = ν/uτ , δp = ρu2

τ/(dP/ds),
and δ, the criterion can be written in the form δν ≪ δp ≪ δ (cf. Kader
and Yaglom [1978], Yaglom [1979]), or alternatively in the form ∆p+s ≪ 1 and
δ+∆p+s ≫ 1 (see Alving and Fernholz [1995]). The values of δ+∆p+s versus ∆p+s
are shown in figure 4.4 (right) for the mean-velocity profiles in the database.
From figure 4.4 (right) the downstream profiles of most data sets are meeting
the criterion δ+∆p+s > 15 (see criterion C3 below), albeit a value of several tens
is not considered to be very high by Yaglom [1979]. However, δ+∆p+s > 100 is
reached only for a few mean-velocity profiles.
To summarise: for the assessment of the half-power law region, the following
criteria are used:

• C1: Two data points in the half-power law region below y/δ = 0.21 and
ysqrt,max/δ ≤ 0.21 in figure 4.3 (right);

24



∆ ∆
δ

∆
Figure 4.4: Number of data points Nsqrt in the half-power law region (left) and
δ+∆p+s versus ∆p+s (right).

• C2: Nsqrt ≥ 3 for most of the mean-velocity profiles (see figure 4.4 (left));

• C3: δ+∆p+s > 15 for at least two mean-velocity profiles (see figure 4.4
(right));

• C4: No significant history effects in the APG region.

The assessment of these criteria is given in the last column of table 4.2. An
additional minor criterion is the smoothness of the data, i.e., the spreading
(or wiggles) of the data points around a smooth fit through the data points
should be small. The calibration of the half-power law relies mainly on the data
sets that satisfy all criteria. These are the flows by Perry, Skare & Krogstad,
Schubauer & Klebanoff, Ludwieg & Tillmann (mild), Marusic & Perry, and
Samuel & Joubert. The mean-velocity profiles by Perry, Skare & Krogstad, and
Schubauer & Klebanoff are at a high Re, exhibit a relatively thick half-power
law region and match all criteria C1 - C4. Among them, the lowest number of
data points is for the case by Schubauer & Klebanoff, being only between three
and five due to the large ∆y+-spacing. Note that some of the mean-velocity
profiles by Perry, by Schubauer & Klebanoff, and by Skare & Krogstad show
some wiggles. For the experiments by Marusic & Perry and by Ludwieg &
Tillmann, the region identified for a half-power law fit has a significantly large
extent, despite the moderately large Re.
Some of the flows are not considered for the final calibration of the half-power
law (see table 4.1-4.2), violating already criteria C1 and C2. An additional
difficulty is caused by the substantial wiggles in the data observed for the flows
by Clauser and by Schubauer & Spangenberg. Nevertheless, these flows are
useful to assess the calibration found for the more suitable data sets.
An important conclusion is the difficulty in assessing the half-power law for flows
in mild and moderate APGs for the present database. At small and moderate
∆p+s -values, high values of Re are needed to obtain a significant extent of the
half-power law region given the criterion C3. Moreover, a high spatial resolution
is needed to achieve a sufficiently large number of data points in the half-power
law region. New experiments could shed more light on this issue.
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Chapter 5

Results and Analysis

This section describes the results of the data evaluation and their analysis. The
log-law/half-power-law fit for a variety of mean-velocity profiles of the database
is illustrated in section 5.1. The robustness of the log law and the reduction of
the extent of the log-law region in an APG are described in section 5.2.

5.1 Mean-Velocity Profiles

This section illustrates the wall law and the results of the fitting method de-
scribed in section 4. First, two examples at moderately large values of ∆p+s
are shown. The mean-velocity profile for the flow by Marusic & Perry Marusic
and Perry [1995] at x = 3.08m, ∆p+s = 7.55 × 10−3 and at moderately large
Reθ = 19188 and Reτ = 3406 is shown in figure 5.1 (left). The profile for
the flow by Perry at ∆p+s = 7.85 × 10−3 and high values of Reθ = 73201 and
Reτ = 7926 (ID 2907) is given in figure 5.1 (right). Subsequently, profiles at

Π Π

Figure 5.1: Left: Marusic & Perry at ∆p+s = 7.17 × 10−3 and Reτ = 3406.
Right: Perry (ID 2907) at ∆p+s = 7.89× 10−3 and Reτ = 7926.

large values of ∆p+s are studied. For the equilibrium flow by Skare & Krogstad,
the mean velocity profile at ∆p+s = 0.012, Reθ = 49107 and Reτ = 5117 is
given in figure 5.2 (left). Finally, the mean-velocity profile for the DLR/UniBw
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experiment I for U∞ = 12m/s at ∆p+s = 0.049, Reθ = 20784 and Reτ = 2376 is
shown in figure 5.2 (right).

Π
µ

Figure 5.2: Left: Skare and Krogstad at station 4 at ∆p+s = 0.012 and Reτ =
5117. Right: DLR/UniBw flow I for U∞ = 12m/s at ∆p+s = 0.049 and Reτ =
2376.

The log law in the mean velocity is found to be a robust feature for all flows.
The region occupied by the log law is observed to be a large part of the inner
layer for moderate values of ∆p+s , but is found to be significantly smaller than
0.15δ for ∆p+s > 0.01. For y+-values above the log-law region, the mean ve-
locity turns upward above the log law and can be fitted by a half-power law.
The upward turn above the log law in the inner layer is found to be increas-
ing with increasing values of ∆p+s . The increase of the upward turn can be
described by the half-power law and its dependency on ∆p+s . In the following,
these qualitative observations are studied in more detail.

5.2 Reduction of the Log-Law Region

The question is as to whether the log-law region extends up to y/δ = 0.15 as
for ZPG. The results for ylog,max/δ versus ∆p+s are shown in figure 5.3 (left).
Error bars for the individual test cases are included, as described in section 6.5.
The log-law region extends up to y/δ = 0.15 only for the equilibrium flows in a
mild APG by Bradshaw and Clauser (see figure 5.3 (left)). For the equilibrium
flows in a larger APG by Bradshaw, Clauser, and Skare & Krogstad, ylog,max/δ
is found to be reduced already at the first measurement position in the APG
region.
Next, consider the flows which evolve from a region of almost ZPG and then
enter the APG region. These are the flow by Ludwieg and Tillmann in a mild
APG, the flows B and E by Schubauer & Spangenberg, the flow by Marusic &
Perry, and the flow by Schubauer & Klebanoff. For these flows, the outer edge
of the log law is near 0.15δ in the ZPG region, and a clear reduction is already
found at the first measurement station in the APG region (see figure 5.3 (left)).
In the flow by Marusic & Perry, the first measurement station is in the ZPG
region with ylog,max = 0.14δ, whereas, at the next measurement station in the
APG region, ylog,max/δ is found to be reduced to 0.1. For the flow by Schubauer
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& Klebanoff, the flow is initially at an FPG over a streamwise length of 8 ft,
then develops at almost ZPG over a length of 10 ft before entering into the APG
region. In the rear part of the ZPG region, the thickness of the log-law region
is larger than 0.15δ in the ZPG region, and ylog,max/δ is reduced to 0.1 at the
first station in the APG region. For the flow by Ludwieg & Tillmann in a mild
APG, a continuous reduction of ylog,max/δ in streamwise direction is found from
initially 0.15 to values below 0.08. For the flow by Perry, ylog,max/δ is around
0.1 at the first measurement station which is already located in the APG region
at βRC = 2.3.
The DLR/UniBw experiment necessitates some additional comments. The flow
passes a region of mild convex curvature and streamwise changing pressure gra-
dient from favourable to adverse before entering the APG focus region, Here
the mean-velocity profile for u+ shows a significant deviation from the log law
even below y+ = 200 and a remarkably large reduction of the log-law region
(see figures 13 and 14 in Knopp et al. [2021]). Therefore, the low values found
for ylog,max/δ are supposed to be influenced by history effects.

∆

δ

∆

δ

Figure 5.3: Reduction of the extent of the log-law region in an APG in two
different scalings.

To summarise, the values for ylog,max/δ are found to be decreasing with increas-
ing values of the pressure-gradient parameter, both in terms of ∆p+s and βRC.
The overall observation is that ylog,max/δ is below 0.11 for ∆p+s > 0.005 and
βRC > 4.5, and below 0.08 for ∆p+s > 0.015 and βRC > 12.
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Chapter 6

Correlations for a Wall Law

Now the aim is to describe the empirical correlations of the wall law. The
functional form of the correlations is described in 6.1 The final calibration is
based on a data fit. The correlations are described in sections 6.2 and 6.3. The
analysis of the slope coefficient K of the half-power law (2.12) is given in section
6.4. The uncertainties are estimated and discussed in section 6.5.

6.1 Theoretical Considerations

The functional form of the correlations is prompted by two heuristic arguments,
i.e., a similarity argument and a scaling argument.

6.1.1 Similarity Arguments

The first step is to find the basic functional dependency using arguments from
the self-similarity analysis in section 2.5. From this analysis, it is expected
that y+log,max will depend on the Reynolds number and on the pressure-gradient
parameter, in agreement with Yaglom [1979], Wei et al. [2005a], and Klewicki
et al. [2009]. The first assumption is that βH is the most important parameter
for the solution of (2.21). Note that the precise definitions of the parameters in
(2.22) are still open due to the question of a self-similar scaling for the Reynolds
stresses. As a remedy, an empirical data analysis is pursued. Consider the
reduced Hartree parameter

−βH,red = ∆p+s Re2τ (6.1)

based on (2.23). This neglects the influence of uτ/Ue. Note that uτ/Ue is
expected to be relevant for the outer layer as it determines the wake factor Π.
For the inner layer, the influence of uτ/Ue is assumed to be small at the moment.
The functional dependency of the log law and the half-power law is irrespective
of its formulation in terms of u+(y+) and f ′(η). Strict self-similarity in the
entire boundary layer would imply the existence of a correlation ηlog,max(βH,red)
as well as for ηsqrt,min. Then the following ansatz is made

ηlog,max =
y+log,max

Reτ
= Cβq

H,red = CRe2qτ
(

∆p+s
)q

(6.2)
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with q ∈ R to be determined. The next idea is to determine the value of s (later
being related to q) so that the plot of y+log,max/Resτ versus ∆p+s gives the least
amount of spreading among the flows at different Reτ in the database. This
prompts the assumption y+log,max ∼ Resτ . Then q can be inferred from

η+log,max = CRe2qτ
(

∆p+s
)q

=
y+log,max

Reτ
∼ Res−1

τ ⇔ q =
s− 1

2
. (6.3)

The least amount of spreading was found for s = 1/2 (see figure 5.3 (right) and
Knopp et al. [2022]), in agreement with the Reτ -dependency found in Wei et al.
[2005a], Klewicki et al. [2009], Romero et al. [2022]. The intermediate result is

y+log,max = CRe2q+1
τ (∆p+s )

q , q = −
1

4
. (6.4)

6.1.2 Scaling Arguments

The simplification of using (6.1) neglects an additional Re-dependence involved
in uτ/Ue. Therefore, (6.4) is revisited and modified using the ansatz

y+log,max = CRe2q
′+1

τ

(

∆p+s
)q′′

(6.5)

with s = 2q′ + 1. A relation for q′′ can be found from a scaling argument.
Consider the boundary-layer parameters in the modified scaling for the inner
layer (see section 2.4) for the Reynolds number based on uT

δ+T =
δuT

ν
= δ+

uT

uτ
(6.6)

and for the pressure-gradient parameter in the modified inner scaling

∆p+s,T =
ν

ρu3
T

dPw

ds
= ∆p+s

(

uτ

uT

)3

=

(

up

uT

)3

. (6.7)

When approaching separation, ∆p+s,T → 1/Rec = 1/12 due to (2.18) and does

not approach infinity. Similarly δ+T → Re
1/3
c δup/ν does not go to zero. Written

in modified inner scaling, relation (6.5) becomes

y+log,max,T = CRe2q
′+1

T (∆p+s,T)
q′′

(

uτ

uT

)2q′−3q′′

. (6.8)

The explicit dependence on uτ/uT disappears if q′′ = 2q′/3. The choice q′ =
−1/4 based on s = 1/2 leads to q′′ = −1/6. Note that the dependency on
(uT/uτ )

−2q′+3q′′ is only mild for q′′ = −1/5 (with −2q′ + 3q′′ = −0.1) and
q′′ = −0.13 (with −2q′ + 3q′′ = 0.11) found below.

6.2 The Extent of the Log-Law Region

Motivated by these heuristic arguments, we obtained the final calibration mainly
from the data fit, which is shown in figure 5.3 (right)

y+log,max = 1.78Re1/2τ (∆p+s )
−1/5 . (6.9)
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Note the change of the correlation (6.9) compared to the prior work in Knopp
[2016], due to a revised analysis of the database and accounting for Re-effects.
The variability of the data points and possible reasons for the deviation from
(6.9) are discussed in sections 7.1, 7.2, and 7.3. The variability is due, on the
one hand, to the uncertainty in the data and in the method used to determine
the extent of the log-law region, and, on the other hand, to possible additional
physical effects and parameters beyond ∆p+s and Reτ unaccounted for in (6.9).

6.3 Variation of the Half-Power Law Region

The correlation for the beginning of the half-power law region is obtained in a
similar manner to that employed for (6.9), using a data fit and guided by the
heuristic arguments above. The same dependency on Reτ as in (6.9) is used.
The dependency on ∆p+s is a compromise due to the spreading in the data. The
correlation becomes

y+sqrt,min = 4.05Re1/2τ (∆p+s )
−0.13 . (6.10)

The result is shown in figure 6.1 (left). Large symbols are used to highlight the
data sets used with the highest priority for the calibration. Additional data are
needed for ∆p+s < 0.002 and ∆p+s > 0.03 at high Re.

∆

δ

∆

Figure 6.1: Variation of y+sqrt,min/(δ
+)1/2 (left) and results for K (right) using

large filled symbols to highlight the data sets used for the calibration.

6.4 The Slope Coefficient of the Half-Power Law

In the half-power law (2.12), the question is as to whether K can be described
by a constant or follows a functional dependency, e.g., K = f(∆p+s ). For each
profile of the database, the value for K was determined by a least-squares fit
of (2.12) to the experimental data in the half-power law region. Note that K
depends on the choice for α+ in (2.12). As in all the present work, α+ = ∆p+s
is used both for equilibrium flows and streamwise evolving flows. The results
for K are shown in figure 6.1 (right). The data sets used for the calibration
(SKr, SKl, MP, SJ, LT1) satisfy all criteria C1-C4 and are plotted using large
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filled symbols. The data sets by Perry and the DLR/UniBw experiments are
considered at a lower priority, due to supposed history effects, and are plotted
using small filled symbols. The other data sets not used for the calibration are
plotted using open symbols. The values for K are found to scatter around a
value of K = 0.45 ± 0.15. The variability in K is assumed to be due, on the
one hand, to an uncertainty in the data and in the method of determining K
(see section 6.5), and possibly, on the other hand, to differences in the flow
characteristics (see sections 7.1-7.3).
For comparison, values reported in the literature for flows with non-zero skin
friction are K = 0.48± 0.03 in Townsend [1961], K = 0.48 in Perry [1966], and
values between 0.41 and 0.51 in Szablewski [1960]. For large values of ∆p+s δ

+,
values reported are K = 0.447 in Kader and Yaglom [1978] and K = 0.57 in
Afzal [2008]. Note that the values obtained for K depend on the form of the
half-power law, i.e., (2.12) or (2.13), and on the region used for the least-squares
fit. For example, if the half-power law fit is applied above the log-law region,
as proposed by Perry [1966], then smaller values are obtained than if the fit is
applied to all data in the inner layer above the buffer layer, as used e.g. by
Afzal [2008]. Different proposals for a functional dependency of K by Kader
and Yaglom [1978] and Afzal [2008] were tested, but did not lead to a smaller
spreading in the results.
To summarise, a constant value for K = 0.45± 0.15 is advocated, whose mag-
nitude is congruent with previous findings in the literature.

6.5 Discussion of the Uncertainties

The variability of the results due to the uncertainty in the data and in the
method for the data evaluation needs to be studied. First the uncertainties for
y+log,max and y+sqrt,min are discussed. The first aspect is the uncertainty due to

the distance ∆y+ between adjacent data points, which is given by the resolution
of the measurement. The second aspect is the uncertainty due to the wiggles of
the individual data points within each mean-velocity profile, i.e., their spread-
ing around a smooth profile curve, leading to an additional contribution to the
uncertainties.
The results for the extent of the log-law region with the estimated uncertainty
bars are shown in figure 5.3 (right). For each mean-velocity profile, the deviation
of the most likely value for y+log,max from the minimum and maximum possible
value was determined, yielding the basic uncertainty. Additional contributions
to the error bars are an estimated relative uncertainty of 10% in δ, of 6% in uτ ,
and of 1% in ν. The correlation is within or close to the uncertainty bars for
most of the profiles except for the flows Br1, BrF, Cl1, DM2, and DM3. The
results for the beginning of the half-power law region with the estimated error
bars are shown in figure 6.1 (left). The deviations will be discussed below in
subsections 7.1, 7.2, and 7.3.
Concerning the variability of K, two contributions are studied. The first aspect
is the uncertainty of ∆p+s , which affects the value inferred for K. A relative
uncertainty for ∆p+s of 25% was assumed, corresponding to an average relative
uncertainty of 5% in dP/ds, of 6% in uτ and of 1% in ρ and ν. A Monte-Carlo
type approach yields an uncertainty of up to 11% for K. The second aspect is
the lower and upper bound used for the half-power law fit. This was varied by
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adding and/or removing the first and/or the last data point in the half-power
law region using a Monte-Carlo type approach. This uncertainty was found to
become large for profiles having a small number of data points in the half-power
law region and for profiles exhibiting discernible oscillations. The details of the
uncertainty estimates are described in appendix A.
The values for K with the error bars are shown in figure 6.1 (right). The spread-
ing of the data points for K is within the uncertainty bars. The values for the
flow by Perry are found to be larger than K = 0.45, whereas the values for the
DLR/UniBw flows are smaller than for most of the other flows. This difference
indicates that the value of K could be influenced by additional physical effects.
This issue is discussed in sections 7.1 and 7.3.
To summarise: the spreading of the data around the correlations (6.9), (6.10)
and aroundK = 0.45 occurs mostly within the uncertainty bars. The deviations
for the DLR/UniBw flow II will be studied in detail in subsection 7.3.
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Chapter 7

Discussion of the Wall Law

Some aspects and issues of the wall law are worth discussing. These are the
subject of this section. The conjecture of a local wall law is described and
discussed in section 7.1. Higher-order local effects and history effects are studied
in section 7.2. The influence of the measurement accuracy improvement between
the oldest and the more recent data and the comparison with data for low-Re
flows are studied in section 7.3. The question of the breakdown of the log law
law-of-the-wall is discussed in section 7.4. Finally, the log-law/half-power-law
is compared to the law-of-the-wall/law-of-the-wake in section 7.5.

7.1 Conjecture of a Local Wall Law

The main conjecture is the existence of a wall law for the mean velocity in the
inner layer, which is governed mainly by local parameters and whose leading
order effects can be described by ∆p+s and Reτ . Here Reτ is considered as a
local parameter, as it depends on the local value of δ, albeit δ is not a quantity
of the near-wall flow and depends on the flow history. The need for Reτ is
described in the work by Wei et al. [2005a] and Klewicki et al. [2009]. Higher-
order effects are assumed to slightly alter the wall law. Higher-order local effects
are the mean flow acceleration described by the parameter ∆u+

τ,s, and the effects
of an increasing or decreasing APG, described by ∆2p+s based on d2P/ds2. The
local flow parameters and their order of importance can be inferred from the
models for the total shear stress (see section 2.2). The first-order approximation
is the linear stress distribution τ+ = 1 + ∆p+s y

+, and ∆p+s appears as the
leading order parameter. The deviation from the linear relation is due to the
contribution of the mean-inertia term. The relative importance of the mean-
inertia term increases with increasing y+. Therefore ∆u+

τ,s is interpreted as a
second-order parameter. Additional higher-order effects can be inferred from
(??) and involve the parameter ∆2p+s .
History and non-equilibrium effects can cause additional changes of the wall
law. In streamwise evolving flows, the changing flow parameters can cause
an imbalance between the different terms in the mean momentum equation.
History effects are due to the finite response time of the flow to imbalancing
effects (see Gungor et al. [2016]). The response time of the mean flow is different
in the different regions of the boundary layer, and the mean-velocity profile is
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the cumulative result of local conditions and history effects (see Gungor et al.
[2016]). An attempt to describe the response time of the local mean flow uses
the eddy turn-over time Tt.o. = κy/u∗ (see Sillero et al. [2013]). The eddy turn-
over length δt.o. = UTt.o. is the streamwise travelling distance of the local mean
flow U(y) within Tt.o.. By using u∗ = τ1/2 based on the total shear stress τ in
conjunction with (2.8), the following estimate for δt.o. as a multiple of δ at the
wall-distance η = y/δ can be obtained

δ+t.o.(η)

δ+
=

κu+η

(1 + α+ηδ+)1/2
. (7.1)

Following Sillero et al. [2013], the flow tends to relax to equilibrium within 2τt.o..
The evaluation of δt.o./δ using (7.1) leads to the estimate 2δt.o. ≈ δ for η = 0.1
and 2δt.o. ≈ 2δ for η = 0.2 for ∆p+s ' 0.004. This leads to the assumption that
the flow in the inner layer relaxes rapidly, although not instantaneously. History
effects are expected to be more relevant in the half-power law region than in the
log-law region. The outer part of the inner layer can be influenced by history
effects of the outer layer, given that the inner and outer layers are connected
by an overlap region and that history effects are more prominent in the outer
layer. In the outer layer, significant development distances are required for the
large-scale turbulent motion to adjust to the local pressure-gradient conditions
and for the mean flow to ”forget” perturbations (see Marusic et al. [2015]), and
the prior path of βRC-values was found to be relevant for the history effects (see
Bobke et al. [2017] and Vila et al. [2017], and Vila et al. [2020]).
The conjecture of a local wall law, the systematic reduction of the log-law re-
gion, and the appearance of a half-power law above the log law for turbulent
boundary-layer flows are seen to be in concurrence with the findings for Couette-
Poiseuille (CP) flow by Telbany and Reynolds [1980] and Nakabayashi et al.
[2004], as described in the introduction. Note that CP flow is a self-similar
flow in dynamic equilibrium within the meaning of Gungor et al. [2016]. This
supports the proposition that the wall law is a first-order effect of the pres-
sure gradient and not a history effect, given the applicability of the ”moving-
equilibrium” concept, as described in section 7.2.
Another issue is the onset of reverse flow as discussed in Alving et al. [1990]. In
the experiment by Dengel and Fernholz [1990] the occurrence of the first reverse-
flow events was found to coincide with the vanishing of the log law, whereas in
the modified experiment Alving et al. [1990] the lack of a logarithmic region
appeared to be caused by the strong ∆p+s -value.

7.2 Discussion of Higher-Order Local and His-

tory Effects

The variability of ylog,max, ysqrt,min and K due to possible higher-order local ef-
fects depending on, e.g., ∆u+

τ,s and ∆2p+s , and history effects is discussed. The
question is whether any systematic trends can be found.
For this purpose, the data of figure 5.3 (right) are depicted again in figure 7.1
using two highlighted groups of data for greater clarity. The equilibrium flows
are highlighted in figure 7.1 (left) and the streamwise evolving flows are high-
lighted in figure 7.1 (right). The highlighted data sets are plotted using large
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symbols and include error bars, whereas the other data sets are plotted using
small symbols and without error bars.

∆

δ

∆

δ

Figure 7.1: Reduction of the log-law region highlighting in large symbols the
equilibrium flows (left) and the streamwise evolving flows (right) for the data
of figure 5.3 (right).

The variability of the extent of the log law is studied first. The equilibrium flows
in a mild APG show slightly larger values for y+log,max/(δ

+)1/2 compared to the
streamwise evolving flows in a mild APG (see figure 7.1 (left)). Streamwise
evolving flows are at larger negative values of ∆u+

τ,s than equilibrium flows (see
(2.24)), implying an increased relative importance of mean inertia. However,
similar differences cannot be observed for ∆p+s > 0.01. Moreover, a clear effect
of ∆2p+s cannot be identified from the flows by Perry and by Samuel & Joubert.
For the variability of y+sqrt,min/(δ

+)1/2, similar observations can be made.

The significantly lower values found for y+log,max/(δ
+)1/2 for the two DLR/UniBw

experiments are supposed to be due to history effects originating from a region
of convex curvature and streamwise changing pressure gradient upstream of the
APG region. Note that the ratio of δ to the radius of curvature was increased by
a factor of two in the DLR/UniBw experiment II compared to the experiment
I. This could explain the larger effects observed for the experiment II. The role
of the measurement accuracy is discussed in section 7.3.
The variability of K in figure 6.1 (right) is supposed to be attributed to both
higher-order local and history effects. Both are expected to be increasing with
increasing wall-distance. Equilibrium flows and streamwise evolving turbulent
boundary-layer flows cannot be clearly distinguished. The largest values for K
are found for the flow by Perry Perry [1966]. The values at the first three sta-
tions (which are at the lowest ∆p+s -values) could be influenced by history effects
due to the flow acceleration upstream of the APG region. The measurements
are on a 5m-long flat plate at an incidence angle of 9.5◦ in the centre of the
wind tunnel. The flow is expected to be strongly accelerated in the leading-edge
region, before entering the APG region. This could lead to history effects. Fur-
ther downstream, the relatively large values for K could be influenced by the
upstream values of K, as well as by the decreasing APG, indicating a possible
effect of d2P/ds2. For the DLR/UniBw experiment, the relatively small values
for K are supposedly due to history effects of the upstream region of streamwise
convex curvature and streamwise changing pressure gradient as well as the re-
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laxation from curvature in conjunction with the streamwise changing pressure
gradient from favourable to adverse. Moreover, the outer part of the inner layer
and hence parts of the half-power law region are probably influenced by history
effects of the outer layer.
To summarise, no systematic trends of the variability of ylog,max, ysqrt,min and
K on higher-order local effects can be found. History is found to have an effect,
but more data sets are needed to find systematic trends. This leads to the con-
clusion that a more refined model than (6.9), (6.10) cannot be found given the
uncertainties of the present data sets.
Finally, it is worth to comment on flow situations, for which substantial de-
viations from the local wall law can be expected. A rapid change in uτ or
in the pressure gradient over a short streamwise distance compared to δ (see
Spalart [2010]) is expected to cause a significant departure from the ”moving-
equilibrium” state. Another situation beyond the scope of the present wall law
is the initiation and growth of a new internal boundary layer beneath an exist-
ing turbulent boundary layer due to an abrupt change of surface curvature (see
Baskaran et al. [1987]).

7.3 Measurement Accuracy and Low-Re Effects

The values for y+log,max/(δ
+)1/2 for the DLR/UniBw data are found to be signif-

icantly lower than for the other flows. Although a physical explanation for this
can be given, it is worthwhile to investigate as to whether, between the oldest
and the more recent data, there is also an influence of the measurement accuracy
improvement. For this purpose, the results of figures 6.1 and 7.1 are revisited.
The more recent experimental data sets by Skare & Krogstad, Marusic & Perry,
Samuel & Joubert and the DLR/UniBw flows are highlighted in figure 7.2 (left)
using large symbols. Moreover, the DNS data by Coleman et al. Coleman et al.
[2018] and the experiment by Nagano et al. Nagano et al. [1991] at low Re are
included and highlighted. The dashed line is for the value C = 1.78 found in
(6.9). The dash-dotted line is for C = 1.68, which is only a small modification
to improve the agreement with the highlighted data. The first conclusion is that
the correlation is useful over a large range of Re, as the low-Re data are close
to the high-Re data. The second conclusion is the suggestion that the constant
in (6.9) be changed to C = 1.68.
Now the role of the measurement accuracy and the details of the method to
determine y+log,max are studied. On the one hand, the number of data points in
the log-law region is increased for the more recent data. For example, Marusic
& Perry achieved 13 data points in the log-law region below y+log,max = 252 at

∆p+s = 7.5× 10−3 compared to four points for Schubauer & Spangenberg (flow
E) at a similar ∆p+s . This difference is due to the improvements of the measure-
ment probes, and to considering lower values for Re. The larger number of data
points gives a more critical view on the r.m.s. deviation between the u+-profile
and the log law. This can lead to smaller values for y+log,max.
To illustrate, consider the DLR/UniBw flow II data for U∞ = 36m/s. The
results denoted by DM3v use an enlarged interval for the least-squares fit of u+

to the log law up to y+ = 250 (see table B.1). The idea is to emulate possible
effects of the least-squares fit method used by Coles & Hirst. The increased
interval yields larger values for y+log,max/(δ

+)1/2, reducing the deviation to the
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Figure 7.2: Influence of measurement accuracy on y+log,max/(δ
+)1/2 (left, some

acronyms omitted in legend) and of small Re for y+log,max/(δ
+)1/2 (left) and

y+sqrt,min/(δ
+)1/2 (right).

other flows. However, this is at the cost of a larger r.m.s. deviation and hence
questionable. It is concluded that the measurement accuracy can explain in
parts the deviation of the DLR/UniBw data. However, such cannot explain the
full deviation, indicating that additional physical effects are causing the large
bulk of the deviation.
It is worth commenting on the use of κ = 0.41 and B = 5.0 for the older
flows. An indirect method for uτ might mask the subtle changes of κ and B in
situations in which the mean velocity deviates from the universal log law (see
Wei et al. [2005b]). Note that for the flows by Marusic & Perry and Samuel
& Joubert, the agreement with the log law with κ = 0.41 and B = 5.0 is very
good. However, this does not contradict the possible change of κ with ∆p+s
proposed by Nickels [2004], as the relative change of κ would be only 4% for
∆p+s < 0.0075 according to Nickels [2004]. For the flows by Skare & Krogstad
and by Perry, as well as that by Perry it cannot be decided whether fitted values
for κ and B should be preferred over the values by Coles due to the wiggles in
the u+-profile. The changes of y+log,max if fitted values for κ and B are used,
are well within the error bars. Moreover, for the old data, changes of κ and B
could be masked by near-wall measurement errors in the mean velocity using
Pitot tubes, as recently revealed by Bailey et al. [2013].
The results for y+sqrt,min/(δ

+)1/2 for the low-Re flows are included in figure 7.2
(right). The data by Nagano and by Coleman et al. are highlighted using large
symbols. They evince good agreement with the other data at moderate and
high Re as well as with the correlation (6.10).
To summarise, the focus on the more recent data sets and the use of two flows at
low Re confirm the results found in section 6. As a minor change, the constant
C in (6.9) is changed from 1.78 to 1.68.
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7.4 On the Breakdown of the Log Law for ∆p+s >

0.05

The hypothesis of the breakdown of the log law, if ∆p+s exceeds some threshold,
e.g., ∆p+s > 0.05 (see Alving and Fernholz [1995]) is considered. The breakdown
of the log law is understood here as the breakdown of a log-linear region u+ ∼
log(y+), and is distinguished from a change of κ and B. Correlation (6.9) yields
y+log,max = 3.24(δ+)1/2 for ∆p+s = 0.05. This implies that the log law extends up

to y+ = 92 for Reτ = 800, indicating a rather thin region, whereas it extends
up to around y+ = 162 for Reτ = 2500 reached in the DLR/UniBw experiment
I. Here, it is noteworthy that the outer edge of the log law in an APG from
(6.9) is even smaller than the widely believed start of the log-law region in ZPG
flows (see Wei et al. [2005a] andMarusic et al. [2013]).
Finally, note that the Thompson profile family Thompson [1967], a popular wall
law of the 1960s, assumes the existence of the universal log law up to a fixed
value of y/δ = 0.05. The elevation of the Thompson profile above the log law
is small below the y+-values found from (6.9) (cf. figures 3 and 4 in Galbraith
et al. [1977]).
To conclude, (6.9) is seen to be in agreement with the previous work by Alving
and Fernholz [1995], Thompson [1967], and Galbraith et al. [1977].

7.5 Comparison with the Law-of-the-Wall/Law-

of-the-Wake

Finally, it is worth discussing the log-law/half-power-law in comparison with
the composite profile by Coles (4.1) (see Coles and Hirst [1969], Perry et al.
[1994]). The latter is attractive, as it describes the mean-velocity profile across
the entire boundary layer. Moreover, it can be used to derive a relation for the
total shear stress (see Perry et al. [1994]) similar to (2.6), but ranging from the
wall up to the boundary-layer edge. For the Coles wake parameter Π, different
empirical correlations have been proposed to describe the effect of the pressure
gradient. One example is the relation for Π being a function of βRC and uτ/Ue

by Perry et al. [1994].
Regarding their descriptive accuracy, both the composite profile by Coles and
the log-law/half-power-law can be fitted to the data in order to give a close
agreement for equilibrium flows and for flows near equilibrium with moderate
values of the pressure-gradient parameter. The log-law/half-power-law describes
the experimental data up to 0.2δ and is found to be close to the composite pro-
file by Coles for most mean-velocity profiles of the database. On the other hand,
the blending of the log law and the half-power law is found to be more flexible
for flows in a strong pressure gradient, significant effects of the mean-inertia
term, and/or departure from equilibrium and history effects.
Another advantage of the half-power law compared to the wake function is that
the latter requires an empirical correlation for Π to account for the upward turn
of the mean-velocity profile above the log law. The upward turn is increasing
with increasing magnitude of βRC and ∆p+s , and can be accounted for by making
Π a function of, e.g., βRC (see Perry et al. [1994]). On the other hand, the slope
of the half-power law is already parametrised by ∆p+s and does not involve such
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a calibration, as K can be described by a constant value for flows in ”moving
equilibrium” (see section 6.4).
The half-power law is attractive, as it provides a simple analytical relation for the
mean-velocity gradient dU/dy in wall-normal direction, which is the dominant
contribution to a boundary-layer approximation and appears in the production
term of the turbulent kinetic energy and in the equation for the turbulent dissi-
pation ǫ and the specific rate of dissipation ω in statistical turbulence modelling
based on the RANS equations.
Another advantage of the log-law/half-power-law is that it retains the log law
unaltered. On the other hand, the wake contribution can be found to alter the
mean velocity in the log-law region for strong values of the pressure gradient and
large values of Π. However, any final assessment and conclusion are difficult,
given the uncertainties in the data. To conclude, both approaches are seen to
be complementary and have their own areas of application.
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Chapter 8

Conclusion

An empirical wall law for the mean streamwise velocity for turbulent boundary-
layer flows in an adverse pressure gradient is presented from a database analysis
and from scaling and similarity arguments. The wall law describes the inner
20% of the boundary layer and is composed of a log law and a half-power law
above the log law. For the slope coefficient of the half-power law K, a value of
K = 0.45± 0.15 is found, in agreement with previous findings in the literature.
An empirical correlation for the reduction of the log-law region in ratio to the
boundary-layer thickness is proposed. The leading order parameters are the
pressure-gradient parameter ∆p+s and Reτ . The results support the conjecture
of the existence of a local wall law for the mean velocity and the moving equilib-
rium concept by Kader and Yaglom [1978]. Systematic changes of the wall law
due to higher-order local effects and significant differences between equilibrium
flows and streamwise evolving flows cannot be identified, given the uncertain-
ties in the data. History effects are expected to be larger in the half-power law
region than in the log-law region and contribute to the variability observed for
K.
The correlation proposed for the erosion of the log-law region in an adverse
pressure gradient can describe the hypothesis of the breakdown of the log law,
if ∆p+s exceeds some threshold, e.g., ∆p+s > 0.05, as described by Alving and
Fernholz [1995]. Moreover, the correlation implies that strict self-similarity of
the mean-velocity profile in the inner layer cannot be expected, given the same
value of the Rotta-Clauser pressure-gradient parameter βRC alone, in agreement
with the findings reported in Bobke et al. [2017], Vila et al. [2017], and Vila
et al. [2020].
The correlation to describe the reduction of the log-law region in an adverse
pressure gradient could also be of interest for experimental methods. The cor-
relation could be used as an initial guess to identify the region of data points
to which the Clauser-chart method can be applied to determine the friction ve-
locity.
For future research, additional experimental data over a range of Reynolds num-
bers and pressure gradients would be greatly appreciated to support and to
possibly improve the correlations found in the present work, in particular for
mild pressure gradients and towards separation. Moreover, the wall law could
be extended by accounting for non-equilibrium effects.
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Appendix A

Uncertainty Estimation

The uncertainty estimation for the slope coefficient K of the half-power law
(2.12) is summarised in table A.1. The sensitivity of K on ∆p+s is found to be
increasing from around 9% for ∆p+s = 0.005 to 11% for ∆p+s = 0.015. The
sensitivity of K on the lower and upper bound of the interval Isqrt used for
the half-power law fit was studied using a Monte-Carlo type approach, where
ǫ(Isqrt) = ∆y+i denotes the variation of Isqrt by adding and/or removing one
measurement point at the lower and/or upper bound of Isqrt, as described in
section 6.5. The values found for the confidence intervals for the levels 60%,
80%, and 95% are given in the table. The total uncertainty (denoted by ǫsum)
is the sum of ǫ(∆p+s ) and ǫ80(Isqrt). As an exception, ǫ95(Isqrt) is used for the
flow by Marusic & Perry, due to the low values for this test case.

Table A.1: Uncertainty estimation for the method to determine K of the half-
power law (2.12).

Author ID ǫ(K) due to ǫ(K) due to Sum ǫ(K)
ǫ(∆p+s )=0.25 ǫ(Isqrt) = ∆y+i

ǫ60 ǫ80 ǫ95 ǫsum
Ludwieg & Tillmann, mild 1100 8.8% 13.1% 21.8% 29.1% 30.6%
Ludwieg & Tillmann, strong 1200 9.1% 13.7% 20.8% 39.0% 29.9%
Schubauer & Klebanoff 2100 11.2% 11.0% 21.8% 23.1% 33.0%
Perry 2900 11.1% 6.7% 13.9% 28.2% 25.0%
Samuel & Joubert - 9.4% 3.6% 9.7% 14.0% 19.1%
Marusic & Perry - 9.5% 3.1% 5.0% 8.5% 18.0%
Skare & Krogstad - 10.9% 5.8% 16.9% 28.9% 27.8%
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Appendix B

Sensitivity Study of the
Method for y+

log,max

The sensitivity study described in section 4.2 for y+log,max for the DLR/UniBw
experiment at U∞ = 36m/s is summarised in table B.1. The different values for
y+log,max were obtained by a variation of the interval (y+min, y

+
max) used to compute

the least-square fit of the u+-profile to the log law as described in section 4.2.
The results for y+log,max are given in the last column. The values obtained for κ
and B from the fit are also given in the table.

Table B.1: Sensitivity study for y+log,max for the DLR/UniBw experiment at
U∞ = 36m/s.

U∞ x in Meas. techn. Method Log law Log law κ B y+log,max

in m/s m for U for uτ fit y+min fit y+max (fit) (fit) log law region
36 9.944 3D LPT dir. 86 154 0.379 3.45 174
36 9.944 3D LPT dir. 86 185 0.372 3.20 193
36 9.944 3D LPT dir. 86 215 0.364 2.92 195
36 9.944 3D LPT dir. 86 250 0.353 2.49 225
36 9.944 3D LPT CCM 86 154 0.369 3.69 160
36 9.944 3D LPT CCM 86 185 0.360 3.34 184
36 9.944 2D PIV CCM 86 185 0.325 1.86 183
36 10.02 2D PIV CCM 80 150 0.316 1.49 203
36 10.02 2D PIV CCM 80 185 0.317 1.51 204
36 10.02 2D PIV CCM 80 215 0.315 1.34 210
36 10.02 2D PIV CCM 80 250 0.312 1.06 248

For y+max = 185 the r.m.s. deviation is relatively small and u+ follows the log
law up to significantly larger y+-values (y+log,max up to 200) than used for the fit.

For y+max up to 215, the changes of y+log,max are much smaller than the changes of

y+max. For high values y+max = 250, the r.m.s. deviation becomes larger and the
increased values for y+log,max are more questionable. The assessment of the r.m.s.

51



deviation is possible only thanks to the large number of data points in the log-law
region and the smoothness of the data. Note that such is not possible for most
of the old data sets in the database. The changes of y+log,max are much smaller
than the changes in κ and B. The values for κ and B are adversely affected by
the lower resolution of the 2D PIV method (compared to the highly-resolved
3D LPT data), by a too large interval for Ifit, and by the indirect method to
determine uτ (see Knopp et al. [2021]). Note that the resolution of the 2D PIV
method was too low in the log-law region for an accurate determination of κ
and B. If uτ is determined from the CCM, then the y+log,max-values are reduced
by around 6%, due to the reduction of uτ for the CCM compared to the direct
method (see the results for x = 9.944m in table B.1).
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C. S. Vila, R. Örlü, R. Vinuesa, P. Schlatter, A. Ianiro, and S. Discetti. Adverse-
pressure-gradient effects on turbulent boundary layers: Statistics and flow-
field organization. Flow, Turbul. Combust., 99:589–612, 2017.

S. Vila, R. Vinuesa, S. Discetti, A. Ianiro, P. Schlatter, and R. Örlü. Experimen-
tal realisation of near-equilibrium adverse-pressure-gradient turbulent bound-
ary layers. Exp. Therm. Fluid. Sci., 112:109975, 2020.
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