

# Optimal operation of a conceptional industrial energy system including a high temperature heat pump, thermal energy storage and wind power

Jasper Walden, Anselm Glade, Jens Gollasch, A. Phong Tran, Martin Bähr, Tom Lorenz

German Aerospace Center (DLR) Institute of Low-Carbon Industrial Processes Department of Simulation and Virtual Design Jasper.Walden@dlr.de



# Knowledge for Tomorrow

### Optimal operation of a conceptional industrial energy system Introduction

- Currently process heat is provided by combustion based technologies
- Future industrial plants are likely to have onsite renewable energy sources
- I. What could an **electrified** industrial energy system look like?
- II. How to model **nonlinear** component part load performance efficiently?
- III. How to optimally operate the system with **fluctuating input parameters** to minimize  $CO_2$  emissions?



Distribution of energy end-uses in the U.S.

Rissman, J., et al.: "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070". *Applied Energy*, p. 15, 2020



#### **Optimal operation of a conceptional industrial energy system** I. What could an electrified industrial energy system look like?



• Constant steam demand (215 °C, 4.5 MW<sub>th</sub>) of an industrial application





#### **Optimal operation of a conceptional industrial energy system** I. What could an electrified industrial energy system look like?



- Constant steam demand (215 °C, 4.5  $MW_{th}$ ) of an industrial application
- System is powered by wind turbine & grid electricity



#### **Optimal operation of a conceptional industrial energy system** I. What could an electrified industrial energy system look like?



- Constant steam demand (215 °C, 4.5  $MW_{th}$ ) of an industrial application
- System is powered by wind turbine & grid electricity
- TES integrated with thermooil loop to control charging and discharging operation
- 75 °C air as heat source for the HTHP





| Design-<br>parameters | Value |
|-----------------------|-------|
| COP [-]               | 1.45  |
| P <sub>el</sub> [MW]  | 3.2   |
| Pressure<br>ratio [-] | 3.5   |
| $\eta_{HP}$ [%]       | 56.8  |





- Recuperated, reverse Brayton Cycle HTHP with air as working medium
- Modelled in process simulation software Ebsilon
  - Compressor part load performance by compressor map
  - Heat Exchanger with constant area & heat transfer coefficient





 Map HTHP operating behaviour into nonlinear algebraic surrogate model by parameter variation







- Sensible Thermal Energy Storage based on EnergyNest Concrete Storage
- Simple TES model based on the effectiveness of heat transfer
- Uniform storage temperature







- Hourly historical data for:
  - Wind speeds
  - Electricity price
  - Grid emission factor



# Optimal operation of a conceptional industrial energy system

III. How to optimally operate the system with fluctuating input parameters to minimize CO2 emissions?





#### **Optimal operation of a conceptional industrial energy system**

III. How to optimally operate the system with fluctuating input parameters to minimize CO2 emissions?



#### **Optimal operation of a conceptional industrial energy system** Conclusions

- A conceptual industrial energy system based on a hybrid electricity source was introduced
- Nonlinear HTHP part load behavior can be mapped into algebraic surrogate models
- Optimal operation and TES show a high potential to reduce the CO<sub>2</sub> emissions
- Basis for many future research topics: e.g. online optimization, design optimization, process integration







# **Questions?**



Jasper Walden Jasper.Walden@dlr.de +49 355 355645 18

German Aerospace Center (DLR) Institute of Low-Carbon Industrial Processes Department of Simulation and Virtual Design

# Knowledge for Tomorrow

