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ABSTRACT 

The awareness that noise exposure is critical for human health is growing around the globe, and land-use 

regressions (LURs) are becoming a popular tool for producing noise exposure maps. One important factor 

for noise emissions is road traffic. The propagation in this regard is determined by the spatial layout of road 

infrastructure and the surrounding environment, respectively. LURs use geostatistical models and allow to 

extrapolate microphone measurements. In this study, we investigated whether models are prone to sampling 

artifacts. We used yearly averaged Lden simulations, compliant to the European noise directive 2002/49/EG, 

as input for 2000 virtual field campaigns. We permuted different sampling schemes (random, systematic, 

stratified) and sizes (n = 50, 100, 200, 500 to 1000) 100 times. The overall model performances varied 

substantially between 0.61 – 0.95 for R², 1.94 – 7.46 dB(A) for mean absolute error and 2.47 – 10.03 dB(A) 

for root mean squared error. Comparing the eventual model terms using variance analyses (ANOVA), we 

found significant differences between the sampling schemes for traffic information and land cover (e.g. 

vegetated surfaces) features. Simultaneously, less than half of the LURs’ weights differed significantly 

depending on the sampling size. Thus, our experiments give an in-depth view on the mechanics of LUR and 

their sensitivity with respect to sampled training data. 

Keywords: Traffic noise, Exposure Assessment, Sensitivity Analysis 

1 INTRODUCTION 

Modern society beholds ongoing technological developments, increased wealth and mobility. With 

respect to road traffic noise, the WHO considers yearly averaged levels above 53dB(A) being 

unhealthy (1). To investigate the health impact of noise, two approaches exist (2):  first, controlled 

lab experiments, where the biophysical reactions of human bodies to noise exposure can be 

investigated. It is obvious though, that this is impractical for large scale and long-term studies. Thus, 

second, scholars aim to extract information on the noise exposure by the addresses of study 

participants (3–5). To do so, microphones could be deployed in the field; however, this approach is 

limited due to costs and spatiotemporal limitations. In Europe, thanks to the European Noise Directive 

(6, also referred to as END), simulated Lden levels are available for urban agglomerations with a 

population larger than 100,000 (6). This END compliant data can be utilized for health studies (e.g. 

5,7). Other health studies investigate the impact of noise relative to noise exposures mapped using 
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land-use regressions (LUR) (e.g. 8). 

LURs use geospatial information describing the surroundings; indicators such as distance to roads, 

built-up morphology and close by vegetated areas are used as predictors of a statistical model, e.g. 

least-squares (3,9–13). Simplified, noise N is a function of noise emissions E and subsequent 

interactions I when propagating though the environment. After fitting the model, each predictor is 

supplemented with a weight w, such that the complete term may be denoted as N = wEE + wII. In a 

previous study, we have investigated the impact of variances within the response variable and the 

respective spatial transferability (14). Thereby, we permuted sample sizes (n = 50, 100, 200, 500 to 

1000) and sampling schemes (random, systematic, stratified) 100 times and have shown respective 

sampling artifacts. However, the produced 2000 regressions terms themselves had not yet been 

investigated. It stands to reason, that with each respective sampling experiment, an individual 

configuration of weights was produced. We hypothesized to see distinct variations in the respective 

terms again. In particular, though, we assumed that the weights for some predictors are more prone to 

sampling artefacts than others. 

As the maps produced with LURs are used for exposure assessments eventually, knowing their 

robustness is of high relevance with respect to their confidence. Also, having the most imp ortant 

predictors identified, computational costs could be eventually reduced for large-scale applications. 

Therefore, in this study, we investigated the regression terms thoroughly. After visualizing the 

variations, ANOVA was used to pin point the most concerned predictors. 

2 DATA & METHODS 

Large scale noise mapping is often limited by the respective data availability and computational 

resources (15). Mechanically, LURs models are, however, computationally comparable to 

conventional geostatistical modelling and, using satellite data, have been successfully deployed for 

air quality assessment on national scales (16–18). Analog, we strived for Earth observation data and 

other public geodata as input for our model. Methodically, this study continued upon (14); thus, the 

utilized input data and original experimental setup are only summarized. The focus of the study is put 

to the extension of the methodical framework - investigating the regressions’ weights. In compliance 

to the END, all geospatial operations were conducted on a 10 x 10 Meter resolution.  

Spatially, we focused our investigations on the German city Koblenz. We did so, as the city 

provided us with an area-wide, highly resolved noise map for training and validation. In 2022, 

Koblenz had 113,844 inhabitants living on 105 km² (19). The city has heterogenous types of built-up 

structures, ranging from a historic city center, industrial areas and low dense suburban formations. At 

the same time, with both, its rivers and forests, it features different natural environments embodied in 

a fluvial shaped topography.  

2.1 Predictor Variables 

Of all noise emitting sources, road traffic is affecting most people in Europe (20). Along this 

priority, information regarding its respective emissions is available in public datasets. The 

OpenStreetMaps (OSM) project holds information on the spatial layout of streets attributed with street 

type, number of lanes, speed limits and sometimes even road surface materials. Using ANOVA, we 

had previously shown that the road types Motorway, Trunk, Primary, Secondary, Tertiary and 

Residential have distinct mean noise levels on the roads themselves and can be used as proxy in LURs 

(14). After tunnels were excluded (as in 21), we integrated the road infrastructures in to our LUR in 

two fashions: First, as ushered by Harouvi et al. (12), the log-transformed distance to the next road of 

the respective type was used. Second, with respect to cumulated road exposures, the road length 

multiplied with their lanes within a given radius (9–11,13,21–23) was summarized. Based on 

preceding literature (3,9–11,13,21–23) and in relation to the logarithmic behavior of noise propagation 

(24), we used systematically scaled moving window radii ranging between 12.5 and 1600 Meters. 

Once emitted, a soundwave propagates through the environment. In an urban context, buildings 

and their respective volume therefore are essential (17,25,26). Heutschi et al. (27), for example, stress 

the unfavorable effects of dense street canyons. Opting for the highest data quality, building footprints 

and their respective height (Level-Of-Detail-1, LoD1) were retrieved from the Federal Agency for 

Cartography and Geodesy (28). The topographic position index was computed according to Weiss (29). 

Positive values depict superior locations with a lot of air volume available, while negative values 
occur when a pixel is lower than its surrounding. With respect to scope, the same moving window 

radii were chosen as defined above. Analog, the surrounding topography was integrated into the 



 

 

geostatistical model based on satellite derived height information. During data harmonization, the 

original EU-DEM (30) was rescaled to 10 x 10 Meter using bilinear interpolation.  

Last but not least, propagating sound interacts with the ground surface. Plain and solid surfaces 

help noise traveling over long distances, while soft and porous material have sound absorbing effects 

(31–33). That said, we had previously produced a remote-sensing-derived land-cover classification 

(34), including seven land-cover classes expected to be relevant for noise mapping: These are artificial 
land such as paved roads and built-up areas, water areas, open soil as most commonly found on 

agrarian fields and opencast mines, as well as four classes differentiating vegetative biomass and its 

seasonality. Although this level of detail is not included in END compliant maps, we stress the proven 

correlation of biomass and sound attenuation (33,35). During data harmonization, we computed the 

respective fraction for each land-cover class using the moving window radii described above.  

As computing multiple, systematically scaled radii introduced strong correlating covariates, we 

selected the most relevant scale a priori following the descriptions of Ragettli et al. (21) and Liu et 

al. (23). Eventually, 21 features were considered in our experimental setup (see Table 1). 

Table 1 – Overview of investigated parameters, their source and properties 

Source  Feature  Attribute  Units  Min.  Max.  

OSM  

Motorway  

Proximity  log(m)  0  3.99  

Length800  m  0  17,609  

Trunk  

Proximity  log(m)  0  3.744  

Length400  m 0  9,343  

Primary  

Proximity  log(m)  0  3.67  

Length100  m 0  1,762  

Secondary  

Proximity  log(m)  0  3.65  

Length1600  m 0  16,990  

Tertiary  

Proximity  log(m)  0  3.48  

Length1600  m 0  28,002  

Residential  
Proximity  log(m)  0  3.30  

Length800  m  0  21,673  

BKG  LoD1  TPI800  /  −1.77  44.20  

Copernicus  DEM  TPI1600  /  −114.62  121.66  

Weigand et. al. (34)  

Artificial land  Mean800  %  0  94.28  

Open soil  Mean1600  %  0  1.32  

High, seasonal veg.  Mean800  %  0.25  96.67  

High, perennial veg.  Mean1600  %  0.01  16.96  

Low, seasonal veg.  Mean1600  %  0.04  72.53  

Low, perennial veg.  Mean800  %  0  66.01  

Water areas  Mean400  %  0  3.99  



 

 

2.2 Experimental Setup 

2.2.1 Sampling Noise Simulation Data 
Conventionally, LURs are used to extrapolate in-situ measurements (3,9–13,21–23). Reviewing 

the respective literature though showed sample sizes ranged from 40 (Girona in 10) to 1296 (Shanghai 

in 3) and sample location was more often stratified (3,9,10,13,21–23) than random (12). Stratification 

can be applied e.g. by using land-use classes as strata (13) or based on population (as in 3,22). 

Theoretically, also systematic, grid based, sampling could be conducted as well. As we want to assess 

in this study the uncertainties within the regression’s terms introduced by varying sampling designs, 

we reproduced this range using an END compliant map as reference. Such maps are produced using 

highly accuracy engineering methods to simulate noise emission and its propagation using ray-tracing 

simulations (36,37). Also, the source specific map allows controlling the emitters in our experiments. 

For our study area, the road Lden 2017 ranged from 12.8 to 88.3 dB(A). 

Although, by using an existing map, no new exposure information is produced, subsampling it 

repeatedly allowed investigating the LUR models thoroughly. We varied the sample sizes from n being 

50, 100, 200, 500 or 1,000 and compared four sampling schemes (random, systematic, stratifiedLden, 

stratifiedUrb.Atl., see Figure 1a). As strata for the latter we used Lden classes or 22 different LU/LC 

classes defined by the Urban Atlas (38) respectively. Each configuration was repeated 100 times such 

that in total 2,000 different sample sets, further referred to as virtual field campaigns, were conducted.  

Looking at the overall Koblenz data set first, a mean Lden value of 51.0 (standard deviation = 11.1) 

was computed by an engineering bureau. Compared thereto, Figure 1b depicts that both stratified 

approaches tend to have had higher mean values, stratifiedLden in particular. True for all sampling 

schemes and also important for this study as well, small sample sizes tended to vary more over the 

100 repetitions. Staab et al. (14) had consequently used a two-sided t-test to determine if the virtual 

field campaigns were representing the total population well. Almost all sample size and repetitions 

were significant (p > 0.05) for systematic sampled data sets, but most random and smaller 

stratifiedUrb.Atl. sample sets could be considered representative as well (Figure 1c). 

2.2.2 Modeling 
While some modern machine learning methods have more predictive power, others excel with their 

interpretability (39). That said, we chose linear least squares regression in order to investigate the 

models’ weights depending on our various sampling experiments. At the same time, their low 

computational costs suited well to our experiments being repeated 2000 times. Most important for 

putting our findings into context though, linear regressions are commonly deployed in the noise 

mapping context (3,9–13). As the prerequired assumptions for least squares were met by most 

predictors, and keeping the focus on sampling artefacts, we selected a consistent feature set and did 

not consider forwards- (as in 3,10,11,13,21,40) or backwards-selecting implementations (9,12,22,23).  

Eventually, each models’ coefficient of determination (R2), root mean squared error (RMSE) and 

mean absolute error (MAE) was computed (see summary in Table 2). Again, a high variance 

introduced by sampling artefacts was found. With regard to sampling scheme, we found that random 

and systematic sampling resulted in lower R² compared to stratified sampling approaches. Higher 

RMSE and MAE scores stand out at stratifiedLden only. Overall, R² tends to decrease at larger sample 

sizes. It ranged between 0.61 at random Sampling, n = 500 and seed 68 and 0.95 for stratifiedLden 

sampling, n = 50, seed = 50. Vice versa, RMSE and MAE both tend to be lowest at small sample sizes 

but increases steadily (for details see 14).  

2.3 Regression Term Assessments 

To deepen our knowledge on LUR artefacts introduced by different sampling settings, we took a 

specific look into the regression terms. With each virtual field campaign, an individual model with its 

respective term was produced. Following a deductive approach, first the regression terms itself are 

inspected, before an analysis of variance (ANOVA) confirms the observed trends.  

Within the term, for each selected variable, an individual weight (also known as estimate) and p -

value was computed. These weights were then compared across the sampling configurations, by 

aggregating them. For visualization, we used violin charts highlighting the most frequent estimates, 

further annotated with quartiles and mean values. We expected to see higher variances at smaller 

sample sizes, converging later. Making a priori assumptions concerning the effect of different 

sampling schemes though was difficult. Having had a look at the mean Lden values of stratifiedLden, 

we could only assume the respective regression terms aligning to very loud levels such as emitted in 

close vicinity to road infrastructure. 



 

 

Figure 1 – Summary of different sampling schemes (a, where colored background refers to Lden and Urban 

Atlas classes) and respective average Lden per sample (b) compared to overall data set (dashed line) and its 

standard deviation (yellow to purple colors), using a two-sided t-test eventually (c). 

Second, we particularly highlighted systematic differences based on the sampling design. We 

therefore utilized a multivariate analyses of variance (ANOVA) using sample size and sampling 

scheme as grouping variables. For each predictor it compared, whether the 100 guessed estimates per 

repetition had different means depending on the sampling design. A p-value below the confidence 

interval of 0.05 was interpreted as being significant. That means, that changing sample size or 

sampling scheme respectively would lead to a different estimate for this specific predictor. An ad -hoc 

Tukey test was computed where necessary, to pin point exceptional differences. 

Table 2 – Statistical summary of accuracy metrics across all 2,000 experiments 

 Min 1st Qu. Median Mean 3rd Qu. Max 

R² 0.6084 0.6994 0.7593 0.7618 0.8086 0.9517 

RMSE 2.474 5.473 6.119 6.132 6.637 10.031 

MAE 1.938 4.031 4.460 4.582 4.882 7.462 



 

 

3 RESULTS 

With this study, we aimed at deepening the previous experiments by Staab et al. (14) using END 

compliant maps for spatial extrapolations. We did so by investigating 2,000 LUR models produced to 

understand model variabilities as a function of sampling configurations.  

3.1 Mean LM weights   

Due to the intuitive interpretability, we scrutinized the intercept of the models first. Spread along 

the Y Axis, Figure 2 shows the estimated intercept value in dB(A). With values ranging between -2.1 

and 329.0, these were on average - 153.2 dB(A) -, relatively high. Starting from here, the predicted 

noise levels will be lower when adding the rest of the term. At a sample size of 50, these estimates 

were found to highly vary and one can barely see differences between the colored sampling schemes. 

If at all, random sampled field campaigns lead to on average higher intercept estimates (mean 157.1) 

compared to systematic (mean 148.4), stratifiedLden (mean 153.8) and stratifiedUrb.Atl. (mean 142.5) 

experiments. With increased sample sizes though, the variance decreased and this observation 

solidified. Id est, at sample sizes of 1,000, the mean estimate is 7.7 dB(A) higher for stratifiedLden and 

-5.3 dB(A) lower at stratifiedUrb.Atl. compared to random sampling (mean 152.9dB(A); 153.7 dB(A) 

for systematic sampling). With the related ANOVA, we only found significant differences in regards 

to sampling scheme. The Tukey test pointed out that these differences stand out for stratifiedUrb.Atl. in 

comparison to the other three approaches, as well as significant differences between estimates derived 

from stratifiedLden and systematic field campaigns. 

 

Figure 2 – Violin plots showing most frequent (width) estimated intercept value (Y axis) at different sample 

sizes (X axis) and sampling schemes (color). Vertical lines depict quartiles whereas cross (x) shows mean. 

Looking at the estimated weights for our road variables (Figure 3), variance decreased at larger 

samples sizes, too. The distinct information was most visible at sample size of 1000. Thus, we focus 

in the following on describing these results in particular: Beginning with the log transformed distance 

to the closest road (Figure 3, left side), the mean estimate was negative for motorways, trunks, 

primary-, secondary and residential roads. This result is plausible as it would have predicted high Lden 

values at close vicinity to these roads and the emitted sound levels decrease naturally over larger 

distances. In the following, we will refer to this effect as ‘geometrical attenuation’. Physically, this 

effect is by nature constant and independent of the source. As part of a linear regression model though, 

the different estimates in the term rather correspond to respective emission levels of the source itself. 

A glimpse at the labeled Y-Axis of Figure 3 shows that the estimates for log-transformed distance to 

motorways were lowest. With respect to residential roads though, this rational was inverse and the 

estimates tended to even be positive. Looking at the mapped data, we could see this road type was 

most frequently appearing in residential areas. We thus comprehend a close vicinity to residential 

roads to proxy quiet areas and interpreted the estimate as confirming successful noise reduction 



 

 

management (e.g. speed limits), whereas increased noise levels were found at larger distances to 

Figure 3 – Violin plots showing most frequent (width) estimated values (Y axis) for road variables (log 

transformed distance to closest road left and summed road length right) at different sample sizes (X axis) 

and sampling schemes (color). Vertical line 



 

 

residential areas only. For a better readability, we will reference hereto as the ‘residential area effect’. 

Comparing the different sampling schemes next, we again saw conformity between  random and 

stratified sampling, but distinct deviations for the two stratified schemes. Looking at stratifiedLden 

first, the geometric attenuation effect was stronger compared to random sampling for motorways, 

primary- and tertiary roads and less with respect to trunks and secondary roads. Also, the residential 

area effect was most significant here. Estimates derived from samples using the stratifiedUrb.Atl. 

scheme showed a comparably mellow residential area effect and less geometric attenuation for all 

road types but motorways. Generally spoken, the variance analyses and the subsequent Tukey test 

confirmed significant different estimates for most road types and each potential comparison but 

random and stratified sampling. The only exception hereto was found for primary roads, where the 

estimates of stratifiedLden were similar to the two. 

Furthermore, observable trends for cumulated road lengths solidified at larger sample sizes. It is 

notable though, that the variances for stratifiedLden experiments was generally bigger compared to the 

other 1,400. With respect to the Y Axis of Figure 3, right side, readers need to aware of the predictor 

units (Meters) relative to radius and the respective value range (c.f. Table 1). Significant differences 

can be seen for the estimates derived regarding the cumulated motorway length within an 800 Meter 

radius. Systematic and random sampling both tended to have slightly higher values compared to the 

two stratified approaches. Looking at TrunkLength400 next, stratifiedLden’s mean was -0.00006 at n = 

1000, while positive for the others (random = 0.00027, systematic = 0.00024, stratifiedUrb.Atl.= 

0.00028). Having investigated the mean estimates with respect to primary roads next, the values at 

stratifiedUrb.Atl were significantly higher compared to the ones derived using the other schemes. The 

mean estimates for SecondaryLength1600 was highest at stratifiedUrb.Atl. sampling (mean = -0.00027 at n 

= 1000), while the Tukey test depicted the others to be compared thereto significantly lower. For 

tertiary roads, the mean estimates at n = 1000 were -0.00042 and -0.00043 at random and stratified 

sampling, but as low as -0.00062 stratifiedLden and only -0.00024 using stratifiedUrb.Atl.. Last but not 

least, with respect to the sum of residential roads length within an 800 Meter radius, stratifiedLden 

stood out. Here, the mean estimate at n = 1000 was 0.0005, while only about half that much at the 

other three sampling configurations.  

Reviewing the estimated weights for the nine environmental predictors (Figure 4), variance was 

decreasing at larger samples sizes again. It is interesting to note though, that the variance tended to 

be higher for stratifiedLden in general though. The estimates regarding the topographical position index 

derived from the built-up model (LoD1TPI800) tended to be rather negative. This corresponds to sound 

pressure levels being predicted to be higher in street canyons. Vice versa though, the TPI  derived from 

the digital elevation model at a 1,600 Meter radius (DEMTPI1600) has slight positive values for random 

and systematic sampling. The comparably larger positive values for stratifiedLden would have led to 

higher predicated noise levels in superior locations. Interestingly, only statifiedUrb.Atl. showed a 

distinct tendency for negative estimates, such that noise levels were higher in valleys. The mean 

estimates with respect to the surrounding landcover fractions of artificial land were very close to zero. 

With respect to these fractions ranging between 0 and 100 percent, a weight of -0.044, such as found 

at n = 1000 for both stratified approaches equally, led to a reduction of -4.4 dB(A) in the extreme 

cases of fully impervious surfaces (e.g. in the city center). An increased amount of open soil within 

the range of 1,600 Meters led to increased noise levels. Although physically, such materials have a 

sound absorbing effect, comparing it to the mapped data, we could see that this land cover class was 

most commonly located in disperse industrial and agricultural areas such as found along the major 

roads. High, seasonal and low, perennial vegetation both tended to decrease noise predictions, while 

the estimates were inconsistent for high, perennial vegetation and gravitated to be positive for low, 

seasonal vegetation. It was previously discussed though (14), that vegetation does only play a minor 

role in END compliant noise mapping. Thus, drawing conclusions from these estimates is difficult. 

Most probably, high vegetation factions rather indicated periphery. The estimates with respect to water  

areas within a neighboring scope of 400 Meters inclined to be positive for all schemes but 

statifiedUrb.Atl. sampling. This is logical, as water surfaces in general allow sound travel further 

distances.  

3.2 LM Terms ANOVA 

Summarizing the conducted ANOVA, differences in sampling scheme and sample size were pin 
pointed (Figure 5). Where p is below 0.05, a significant difference was found to at least one group. 

Looking at the estimated intercept for example, p < 0.001 stresses a highly significant difference 



 

 

 

Figure 4 – Violin plots showing most frequent (width) estimated intercept value (Y axis) for environmental 

predictors at different sample sizes (X axis) and sampling schemes (color). Vertical lines depict quartiles 

whereas cross (x) shows mean. 

between the sample schemes, but not with respect to sample size (p = 0.101) and the ad-hoc Tukey-

test has highlighted, where such differences occurred. In summary, it is shown that almost every 

estimate was influenced by the chosen sample scheme. Nevertheless, with respect to sample size, this 

was true for approximately every second estimate only. 

4 DISCUSSION 

In this study, we utilized 2,000 virtual field campaigns to investigate sampling effects on the 

eventual regression terms in LURs. Using ANOVA, we proved significant biases by sampling scheme 



 

 

for almost all predictors and the same was true for nine of 22 predictors with respect to sample size. 

However, the interpretation of these results also requires a discussion of the methodological 

background.  

First of all, the use of END compliant road traffic noise simulations from the city of Koblenz as 

training data kept the emitting sources constant and allowed for a rigorous repetition of drawing 

samples. We are aware though, that these samples differentiate from in-situ microphone measurements 

in regards to sematic content, observation period and expenditures when collecting very larg e sample 

sizes They can, for example, also measures soundscapes (c.f. 41). Also, the physical reachability of 

sample locations may be blocked due to access restrictions or the natural landscape. With respect to 

the investigated sampling schemes, we did only compare the three basic types identified. Population-

weighted location-allocation, as conducted by Ragettli et al. (21), may be allocated into the group of 

stratified sampling, but was not reproduced here to limit the extent of conducted experiments. 

Nevertheless, we want to stress its semantic relevance for epidemiological studies. 

Second, the 105 km² test site, Koblenz, is relatively small. So far, we argued, that with its 

heterogeneous urban morphology and landscape structure, it is an interesting test site for our 

experiments. Looking at the high variances of small sample sizes (i.e. n = 50), we assume the observed 

effects were stressed by this heterogeneity. While we thus overall promote sample sizes should be as 

large as possible, a limited scope of sample might be sufficient for small and homogenous research 

areas. This can particularly be true, if an appropriate sampling scheme was chosen, representing the 

population well.  

Third, a comprehensive data set was compiled spanning twelve road traffic noise emission 

variables and nine predictors depicting the natural and buil t-up environment. However, the various 

scales selected using univariate regression models (as suggested by Ragettli et al. (21) and Liu et al. 

(23)), may have been biased by multifactorial relationships (14). Furthermore, no additional feature 

selection, as in forwards- or backwards selective regression, has been conducted, which may have 

preserved some covariances within the experiment. While we are aware these are decreasing the 

interpretability of the terms, a reduction was difficult to place within the setup as the selected 
predictors would possibly change between each iteration. Another approach would be switching to 

advanced machine learning models as presented by Liu et al. (23), but computing 2,000 random forests 

Figure 5 – Plot showing p-value (X axis) of ANOVA investigating estimates of predictors (Y axis) 

depending on the grouping variables sampling scheme and sample size (shape). Gray vertical line denoting 

0.05 threshold for variable significance. 



 

 

would have bound large computation resources. That said, the insights of this study allow the sampled 

data set constant in future studies and focus on such developments. 

5 CONCLUSION 

Lately, LURs are a trending topic in noise mapping for large-scale areas. With our previous study 

investigating spatial transferability (14) and the methodical addition on the regression terms 

themselves investigated in this study, we begin to understand the inside mechanics of LUR. By 

comparing 2,000 sample data sets, we have seen significant changes in the eventual regression terms. 

Some studies though use supervised LUR (e.g. 3), defining a terms direction a priori, e.g. log 

transformed distance to road should have a negative estimate and is excluded from the model elsewise. 

Rationally, this approach makes sense. With our experiments, we found regression weights varying 

across the zero line at smaller sample sizes particularly. Additionally, particular considering the 

surrounding environment at an extended radius may introduce proxy biases as well. Most important 

though, our experiments showed that the chosen sampling scheme can bias the prediction. Only 

systematic sampling was found to retrieve robust sample sets unbiased by the sample size. We 

therefore conclude that previously published studies have produced valuable noise maps with respect 

to their research aims. However, based on the findings of our study we want to stress that the 

interpretation of the respective terms and cross comparisons in general, requires to take the effects of 

the sampling schemes into account. We conclude that only a systematic analysis will allow, the 

estimated weights to highlight factors relevant in urban planning. 
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