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Abstract: Long-term evolutions of parabolic partial differential equations, such as the heat equation,
are the subject of interest in many applications. There are several numerical solvers marking the
state-of-the-art in diverse scientific fields that may be used with benefit for the numerical simulation
of such long-term scenarios. We show how to adapt some of the currently most efficient numerical
approaches for solving the fundamental problem of long-term linear heat evolution with internal and
external boundary conditions as well as source terms. Such long-term simulations are required for the
optimal dimensioning of geothermal energy storages and their profitability assessment, for which we
provide a comprehensive analytical and numerical model. Implicit methods are usually considered
the best choice for resolving long-term simulations of linear parabolic problems; however, in practice
the efficiency of such schemes in terms of the combination of computational load and obtained
accuracy may be a delicate issue, as it depends very much on the properties of the underlying
model. For example, one of the challenges in long-term simulation may arise by the presence of time-
dependent boundary conditions, as in our application. In order to provide both a computationally
efficient and accurate enough simulation, we give a thorough discussion of the various numerical
solvers along with many technical details and own adaptations. By our investigation, we focus on
two largely competitive approaches for our application, namely the fast explicit diffusion method
originating in image processing and an adaptation of the Krylov subspace model order reduction
method. We validate our numerical findings via several experiments using synthetic and real-world
data. We show that we can obtain fast and accurate long-term simulations of typical geothermal
energy storage facilities. We conjecture that our techniques can be highly useful for tackling long-term
heat evolution in many applications.

Keywords: heat equation; internal boundary conditions; efficient long-term evolution; fast explicit
diffusion; Krylov subspace model order reduction; geothermal energy storage

MSC: 35K05; 65MO06; 65Z05; 93-08; 93-10

1. Introduction

Alternatives to fossil fuel resources are becoming increasingly important. Besides an
efficient generation of energy, it is also important to store it, ideally with minimal losses
over long periods of time. The recent geothermal energy storage (GES) technology shown in
Figure 1 represents a potentially very attractive approach to energy storage. The GES is
realised in natural underground sites, for instance using large soil tanks. Such tanks are
partially surrounded by insulating walls and, depending on their depth, soils with different
heat conduction and capacity properties. It is a very cost effective technology that may be
used in both new construction and refurbishment.

In contrast to classic underground energy storage where tanks are employed that are
fully closed and do not interact with their environment, the technical realisation of GES is
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characterised by a downwardly open heat tank. This is one of the aspects that makes the
technology highly cost effective since it is not required to excavate the ground to a large
degree. It is sufficient to excavate a relatively small area that represents the tank, staying
thereby close to the surface. In the resulting pit, the heating pipes are installed, and one
has to insulate the walls of the pit for instance by use of Styrofoam. The pit is typically
only filled with the original soil. The second aspect that makes the GES technology cost
effective compared to traditional closed thermal storage systems is given by considering the
dimensions needed to provide sufficient capacity to store energy in practice. The advantage
of the open tank is that the heat energy is effectively stored by the earth in and below
the tank, making its capacity extremely high in real application, providing in practice a
multiple of the capacity that is making up the actual tank.

1]

Figure 1. Real-world GES: under the new building (left) and during the renovation beside the
building (right). Source: http://geo-ec.de/erdwaermetank/ (website access date: 25 May 2022).

We are especially interested in the potential of GES to store excess energy generated
during the summer, e.g., by use of solar cells, for heating in winter. This becomes a very
important issue when considering the entire heating system in dependence on weather
conditions, day, night and annual rhythms over one year or even several years in time.
Even though there are already working GES, particularly for single-family homes and
smaller office buildings, well-founded evidence or simulations are required to assess the
profitableness of a GES. This is of great importance with regard to the optimal dimensioning
of the heat tank, which is the most expensive design factor. Moreover, this will also be very
important in order to adopt this technique for large office complexes.

To study the reliability of such systems, it is important to know how they behave over
long time spans for several months or years. The problem may be formulated in terms of a
parabolic partial differential equation (PDE) model given by the heat equation related to space
and time. In order to describe the heat transfer in the GES set-up adequately enough to
tackle this task, the mathematical model including contact and boundary conditions must
first be described. Subsequently, the simulation of heat evolution is run as long as the user
requires. Let us stress in this context that the simulation may not be performed offline, since
the planning of a GES may typically require communication between engineers, architects
and the customer, often directly at construction sites. Thus, the simulation may ideally be
performed at most in a few minutes during the discussion.

The simulation of heat transfer is of fundamental importance in diverse scientific fields;
however, even nowadays it is still a challenging task to devise a method that combines
reasonable accuracy and computational efficiency. Especially, when working with multi-
dimensional problems, the computational performance of a solver is a key requirement.
The long-term integration that needs to be performed in order to simulate seasonal energy
storage represents an additional challenge. Standard methods are not designed to combine
high efficiency and temporal accuracy, so a practical analysis of time integration methods
for the heat equation in the context of GES is absolutely essential.

There exist countless methods to solve the heat equation PDE numerically. As ex-
amples, let us mention finite difference, finite volume or finite element methods, which
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discretise the spatial dimensions into ordinary differential equations (ODEs) according to the
method of lines procedure. Afterwards, the temporal integration can either be performed
explicitly or implicitly. Explicit schemes are based on simple sparse matrix-vector multi-
plications in which the allowed time step size has a rather small upper bound, rendering
the explicit strategy unsuitable for long-term evaluations. On the other hand, the use of
implicit schemes leads to the task to solve a linear system of equations in each time step,
whereby the number of variables related to the multi-dimensional GES may extend up to
several million. The implicit schemes do not suffer from restrictions on the time step size T
in theory, but a fast solver for large sparse linear systems of equations is needed. To this end,
sparse direct [1] or sparse iterative solvers [2] are commonly used. The direct solvers are
characterised by computing very accurate solutions, but may be linked to high algorithmic
complexity. In contrast, iterative methods have low complexity; however, they contain
parameters that make their application not a straight forward task in a challenging setting.
As another numerical aspect that has to be kept in mind when using implicit methods for
applications involving source terms, one has to update the contributions of the sources
using relatively small time intervals for obtaining an accurate simulation.

The classic solvers such as explicit schemes, sparse direct or sparse iterative solvers,
are relatively simple to implement or based on existing sophisticated software packages;
however, as indicated, their efficiency is related to severe time step size restrictions in
the case of explicit methods, or high effort for solving large linear systems of equations
when regarding implicit methods. For making any of these approaches efficient enough to
tackle our application, two widely used techniques in their respective scientific fields called
fast explicit diffusion (FED) and model order reduction (MOR), can be helpful to significantly
reduce the computational effort compared to conventional methods.

The FED approach [3] originating from image processing, combines the advantage of
an explicit evaluation with the possibility to achieve high integration times in just a few
steps of evaluation. The underlying key idea is the use of suitable cycles with varying
time step sizes, relying on a unique mixture of small and very large step sizes. On this
basis, FED is substantially more efficient than the classic explicit scheme and it is based
simultaneously on cheap matrix-vector multiplications. In order to avoid some drawbacks
of the FED method, the advanced fast semi-iterative (FSI) method [4] can be used and is
applied here; however, the design of the cycles requires special consideration.

The MOR methods represent another possible approach for reducing the computa-
tional complexity of PDE simulations. Such techniques can be applied to approximate
the underlying ODE system (i.e., discretised in space but not in time at this stage) by a
significantly reduced system, which is by its reduced dimension naturally much faster to
solve. The idea of the MOR approach is that the reduced semi-discrete model preserves the
main characteristics of the original ODE system. In the last decades, many different MOR
methods have been developed, see, e.g., [5,6] for an overview; however, many of them
are technically based on solving eigenvalue problems, Lyapunov equations or performing
singular value decomposition (SVD), so that many approaches are limited by construction
to the reduction in small- to medium-scale dynamical systems. For solving large-scale
problems, the powerful Krylov subspace model order reduction (KSMOR) methods are most
frequently used due to their superior numerical efficiency in this regime. This technique is
directly related to matching the moments of the ODE system’s transfer function. Common
applications of KSMOR techniques are in the field of circuit simulation, power systems,
micro-electro-mechanical systems and computational electromagnetics, e.g., also linked
to parabolic PDEs [7-10]. Although the basic aspects of the KSMOR technique are well
understood, it is not easy to devise it in a way that yields an efficient scheme for resolving
heat evolution if internal boundary conditions with large input vectors are involved, as in
our case.

Let us also mention that there exist other popular strategies to speed up diffusion
processes. For instance, the alternating direction implicit method and its variations [11,12]
or also operator splitting methods, such as additive operator splitting [13,14] or mul-
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tiplicative operator splitting [13,15]. The main idea of these techniques is to split the
multi-dimensional problem into several one-dimensional problems which can then be
efficiently solved using tridiagonal matrix algorithms; however, this approach induces a
splitting error that increases with the magnitude of the time step size T. Moreover, external
and internal boundary conditions have to be treated very carefully, which makes these
methods difficult to apply in our setting.

1.1. Our Contributions

The long-term simulation of the heat equation related to the GES application requires
advanced numerical methods specifically designed for the intended purpose. The main
goal of this work is to discuss which methods are suitable for long-term simulations as
appearing in real-world applications as considered here, and how they need to be used for
the fundamental problem of heat evolution with internal and external boundary conditions
as well as source terms. In this context, let us note that the methods we rely on are variations
of schemes that already exist in the previous literature, and we show how to adapt them in
order to obtain efficient schemes for the GES application. In some more detail, we provide
the contributions below.

Considering our GES application, we precisely elaborate the complete continuous
model and the corresponding discretisation, which is an important component for the
numerical realisation. Especially, the matching conditions at the occurring interfaces lead
to a large-dimensional input vector; therefore, they require special care when adapting the
KSMOR technique. Since the long-term simulation of a three-dimensional GES is linked
to extreme computational costs, it is a highly relevant point of interest if the model itself
could be reduced for computational purposes. As one of our contributions, we demonstrate
that the application of a two-dimensional and linear heat equation proves to be absolutely
sufficient for the considered long-term simulation in our application. The latter is validated
on real-world data by using temperature probes of a real, three-dimensional test field.
The linear and dimensionally reduced model can then be used practically in place of the
real (3D nonlinear) model, for either simulation purposes or parameter optimisation.

Let us turn to the numerical contributions of this work. We provide a comprehensive
overview of the numerical solvers from various scientific areas that could be employed
to tackle the intended task. In doing this, we thoroughly discuss the methods and the
arising challenges in connection with long-term simulation of a GES. In order to improve
the performance of the FED method, which has shown some promising first results [16]
(comparing the implicit Euler method and the FED scheme for a simple synthesis experi-
ment), the recent FSI scheme is employed. We show how to use the FSI method to parabolic
problems including sources/sinks, relying on the discussion in [17]. Apart from that, we
modify the original KSMOR technique for systems with a large number of inputs in a
similar way as proposed in [9]. In this context, let us note that we provide here to our best
knowledge the first very detailed exposition of this kind of approach. We validate our
numerical findings at the hand of two experiments using synthetic and real-world data, and
show that one can obtain fast and accurate long-term simulations of typical GES facilities.

In total, we give a detailed overview of relevant, modern numerical solvers that can
be helpful for tackling long-term heat evolution in many engineering fields. For a complete
insight into the methods regarding theoretical and numerical aspects, we refer the interested
reader to [18].

1.2. Paper Organisation

This work is organised as follows. The Section 2 contains the continuous model
description including modelling the external and internal boundary conditions, and we also
inform about generating the initial heat distribution. Afterwards, we recall the numerical
realisation by spatial and temporal discretisation in Section 3. In Section 4 an extensive
overview of the numerical solvers is given, we discuss the methods FED, FSI, direct solvers,
iterative solvers, KSMOR and KSMOR*. The experimental evaluation presented in Section 5
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focuses on simulation quality and efficiency of the numerical solvers, by comparing two
experiments. The paper is finished by a summary with our conclusion.

2. Continuous-Scale Mathematical Model

As indicated, the GES concept is especially designed for seasonal heat storage, so that a
particular challenge is the long-term simulation. The underlying PDE for simulation of heat
transfer is the heat equation which is a classic and thoroughly studied equation; however,
a complete setup that covers a realistic scenario also includes heat sources and sinks,
multiple boundary conditions and other physical properties such as the heat dissipation
which may vary in space and time. The basic model equation that we consider in this
manuscript is thus given by

pcopu(x, t) = div(AVu(x, t)) + f(x,t), (x,t) € Qx [0, t] (1)

with thermal conductivity A, density p, specific heat capacity c and heat source/sink f. In
general, the physical quantities A, p and ¢ may vary in space and time and may even depend
on the current temperature u in this equation. In addition, various boundary conditions
including Dirichlet-, Neumann- and Robin boundary conditions will be needed. Indeed,
the different regions depicted in Figure 2 consist of different media and thus, their heat
transfer properties are different. This implies that interface boundary conditions are needed
in our model.

Above ground

Insulating wall — Upper ground

— Lower ground

Figure 2. Cross-section as a schematic representation of a 3D-GES. The upper ground often has
different properties than the lower ground. The heat tank is filled with upper ground, includes a
heat source/sink and is downwardly open. Accordingly, the heat flows into the tank from below or
inversely. Each interface exhibits different transition properties that need to be modelled into the heat
flow equations.

2.1. Basic Model for Describing the Geothermal Energy Storage

As already mentioned, we aim to tackle the long-term evolution of heat in a GES as
sketched in Figure 2. In the following, the physical variables A, p and c are assumed to
be constant and non-zero. These assumptions are reasonable in our near ground scenario
even though the physical quantities are not perfectly constant, however, the temperature
fluctuations are so small in the regime we are interested in, such that they may hardly cause
any difference in the solutions of the PDE. In addition, we assume the surrounding soil
to be non-porous and that seeping rainwater has no influence on the long-term evolution
of the GES. The latter influence factor has only a short-term effect on the underground
temperature, see [19].

Lastly, an important condition within the model of the GES is related to the ground-
water, which may have a strong effect on the temperature distribution in the underground.
In this work, we assume that the flowing groundwater has a large distance to the heat tank,
so that one can specify isothermal boundary conditions for the lower ground boundary in
our 3D model. The latter assumption facilitates not only the consideration of a pure heat
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equation without a convection term, but based on this we may also neglect the percentage
of water in the soil for specification of heat conductivity.

These assumptions ensure that the surrounding soils can be considered as homoge-
neous isotropic media. With this setup we define the thermal diffusivity a := % and (1)
can be rewritten into the following linear model PDE:

oru(x,t) = alu(x,t) + f(::ét), (x,t) € QO x [0, tf] 2)

which has to be considered for each region sketched in Figure 2. The function f represents
various simply modelled heat sources and sinks. Furthermore, an initial heat distribution
u(x,0) and boundary conditions (interface, border) are required as explained below.

We note that a more realistic source term model with heat exchanger pipes for the
storage’s charging and discharging is considered in the work [20], in which the authors
focus in particular on the numerical simulation of the short-term behaviour of the GES.

2.2. Modelling of Interface Conditions

Concerning the interface conditions setup, we follow the general modelling framework
as described, for instance, in [21]. The interface x = x; between two solids, where no heat is
lost when considering the flux between them, can be modelled by means of the following
boundary conditions:

=20 (anu(l))

A®) (anuW)

®)

Xi Xi

Here, u®) and u() are the solutions for the individual regions and where 9d,, denotes
the derivative in outer normal direction.

Considering more specifically the contact between the upper ground and the lower
ground, we assume that contact is perfect and that heat transfer is continuous, so that it
additionally follows at the interface

u® (x;, 1) = u® (x;,t) 4)

In contrast, the interface involving the insulating walls is subjected to thermal contact
resistance, which in general may lead to a discontinuity in heat transfer, and yields the
condition

A®) <anu(k)>

= ae(u® —u®), 20 (3,

= &, (u(l) — u(k)) ()

Xi Xi

with a contact heat transfer coefficient o, > 0.

Consequently, the interaction between different types of soils at interface x; can be
modelled by Equations (3) and (4). Based on this, the interface between soil and insulation
is modelled via (3) and (5).

2.3. Modelling of Boundary Conditions

External boundary conditions must also be specified within the model, compare
Figure 2; therefore, we have to fix conditions situated on 0(), actually at the top, at the
bottom and at the sides.

The upper domain boundaries (i.e., between upper and above ground, cf. Figure 2) are
characterised such that the soil of the upper ground is not under roof of other structures.
Thus, time-dependent Robin boundary conditions

_a® (a,,uUf))

=y (u(") — TA(t)> (6)

Xi

are considered at the interface between the topmost layer of ground and the air above,
where Ty (t) is the ambient temperature on the earth surface and a4 the heat transfer
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coefficient, see [21]. The coefficient a4 can either be assumed constant or dependent on
current weather conditions.

The lateral domain boundaries on d() are generally unknown and may be affected by
various factors, such as for instance border-near basements. Ideally, we assume that there
exist no anthropogenic influences; therefore, we specify within the model time-dependent
Dirichlet boundary conditions in the form of undisturbed ground temperatures T (t, x),
which also depend on space (i.e., on depth in the ground, in meters) in the following form:

(t—1) x
ty, g

Ty (t,x) =6 — 56 exp((f) cos [27‘( } + Gx (7)
8

with average ambient temperature 6, amplitude of monthly fluctuations in ambient tem-
perature 66, measure of lagging ambient temperature in depth é,, number of hours in year
t,, time lag between the time of the lowest annual temperature f and geothermal gradient

G¢. Thereby, the value (5g is given by
/ t,A
5y = 3600t ®)
mTpc

In particular, the lateral boundary condition (7) depends on the location of the installed
GES due to the location-dependent parameters 9,60, d¢ and Gy.

Finally, the lower domain boundaries are given by time-independent and constant
Dirichlet boundary conditions in form of groundwater temperatures

Tew(t) =8 )

2.4. Generating the Initial Heat Distribution

The initial condition of the GES model problem, which corresponds to the initial
temperatures at time ¢t = 0, is generally not known. In practice, initial temperatures may
only be determined by mounting temperature sensors s at some grid points. In the presence
of sensor data, the initial temperature is known in some places x; € Qg C (), but most of
the initial heat distribution u(x,0) remains unknown. One possibility is to estimate the
unknown temperatures by interpolation using the given data. In doing so, the interpolation
task can be realised by PDE-based image inpainting, also known as Laplace interpolation,
see, e.g., [22,23]. More precisely, image inpainting is a process in order to reconstruct or
fill-in missing parts in the inpainting domain Q\Qg in a way that is undetectable to the
casual observer.

To this end, in turn, the heat equation can be used. In the simplest case of applying
linear diffusion, the initial heat distribution is obtained as the steady state solution, i.e.,

u(x,0) := lim #(x, t) (10)

t—o0
of the heat evolution that is described by
ol (x, t) = Aul(x,t), Vx e Q\Qg

i(x,0) =0, Vx € O\Qk (11)
i(x,t) =35(x), Vx € Qg

with suitable boundary conditions on d(). In other words, the temperature sensors on Qg
are interpreted as thermostats that are kept at a fixed temperature at any time, and are thus
modelled as Dirichlet boundary conditions.
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2.5. Summary on Modelling

For the correct modelling of the GES application, various boundary conditions must
be carefully treated. We briefly summarise the mathematical modelling in Table 1 below.

Table 1. Summary of the GES model presented in Section 2 regarding boundary conditions and their
specific region, type as well as the corresponding equation.

Boundary Conditions Region Type Equation
Top Time-dependent Robin 6)
External Bottom Time-dependent Dirichlet (7)
Lateral Time-independent Dirichlet ©)
Internal Soil-Soil Continuous heat transfer (3), (4)
Soil-Insulation Discontinuous heat transfer 3), (5)
Initial Complete Laplace interpolation (10)

3. Discretisation of the Continuous-Scale Model

In this section, we provide the basic discretisation of the underlying continuous GES
model, characterised via linear heat Equation (2), different interior (3)—(5) and exterior
(6)-(7), (9) boundary conditions and initial heat distribution (10). In doing so, we describe
the discretisation aspects in space and time in detail in the following subsections.

The underlying computational domain (cf. Figure 2) is given by a cuboid type form,
so that we apply standard finite difference schemes for the discretisation of the continuous
model, which will be sufficient for the application in this work.

3.1. Discretisation in Space

For reasons of simplicity, we consider in the following the two-dimensional rectangular
domain (x,y) = [x1, Xx] X [y1,Ym]| € Q with an equidistant mesh size h = Ax = Ay > 0in
x- and y-direction, where u; ;(t) denotes an approximation of the unknown function u at
grid point (x;,y;) and time ¢. For convenience only, we use the abbreviation u; ; := u; j(t).

The approximation of the spatial partial derivatives uyy and uyy in (2) using standard
central differences leads to

dul-,j _ aui+1'j + Ui—1, + Ujjt1 + Ujj—1— 4ui,]- . &
dt h? pc

(12)

where f; ; is the discretised heat source/sink.

As mentioned before, the interaction between different types of soils is modelled by
Equations (3) and (4). In particular, we assume that no grid point is located exactly at
the interface x;. Exemplary, we define the interface as x; := (x;, iy y;), which is centrally

located between the grid points (x;,y;) and (x;11,y;). Discretising (3) at the interface
x; between two layers, denoted here as “k” and “I”, using the forward and backward
difference results in

(k)

ui+1’j—u.+l. _;,_l‘_ i;j
(k) h ! 2 ] — /\(l) ! 2 ]h (13)
2 2
Due to (4), we have ufi)l ;= ufi)l ;= ug for the fictitious value uj at the interface,
2 2
which can then be calculated via
(k),, (k) 1,1
y = A Uit +A Ui 14)
A0 A0

The latter scheme is visualised on the left in Figure 3. Let us mention that the discreti-
sation can also be achieved without using a fictitious value if one assumes that a grid point
lies on the interface, see [24].
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Layer [ Layer k Layer [ Layer k
A0 Ak A0 A k)
ull
us / el
h _/ h 2
«“K——0 ° ° *«“——0 [ °
Uj—1,j Uj,j Uit1,j Uit Ui—1,j Wij  NBi+1,j Uit
”ml
45,
(Xi41.9)) (Xiy 1.9

Figure 3. Schematic sketch at the interface x; = (x;_ 1 yj) between layers k and [ using the proposed
finite difference scheme at grid points (dots) and equidistant mesh size h. Left: Discretisation of
the interaction between different types of soils leads to fulfilling the matching conditions (3) and
(4) around the fictitious interface point, and defining the value u] using the Formula (14). Right:
Discretisation of the interaction between soil and insulation leads to fulfilling the matching conditions
(k) O]

(3) and (5) around the fictitious interface points, and defining left and right values Uiy and Wiy
27. 27

using the system of linear Equation (18).

In contrast, modelling the relation between soil and insulation, condition (4) must be
replaced by (5). Discretisation of (5) at x; using the forward and backward differences gives

(k) (k)

ui-‘rl,j uH,l,]‘ I k
P S U (ugj%’j - ul&_)%’],) (15)

NI=

which can be rewritten as

A k) K ! A
(h - Dcc> u§+)%,j + (xcuf_g%,j = Tuz‘(+)1,j (16)

Moreover, the Equation (13) can be transformed into

A0 A0
(k) (l) u®) o
+ Wu — z+1] + W ij

(17)

(k)

Equations (16) and (17) form a system of linear equations for the two unknowns L ;
27
0

and u.’; . by means of
+24

A (k) O AD (D)

1 A | (Vi Uit am
= (18)

2A(K) Mo, A0 (k)
BT e & Misl R
. . KA )

The latter system has a unique solution for a, # % and can be solved with

Cramer’s rule. The used scheme at the interface including a jump condition is shown on
the right in Figure 3. We mention that another possible discretisation is presented in [24].

Lastly, the exterior boundary conditions must be discretised. In case of the upper
domain boundaries at the topmost layer of ground, interfaces x; = (x;, ) and fictitious
values ul(lfi "
discretisation

fori=1,...,

(ayu(k)>

n are again incorporated. Using the standard first-order spatial

u® )
~ Tim im
= 4 O(h) (19)

(xi/ym)
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linked to the discretised condition (6) as
k

— AWK (ayu(k)) =0y (ul(nz — TA(t)) (20)

(xiym)

leads to "

(k) _ (k) &a (. (k)

Uimt1 = Yim — W (ui,m - TA(t)) (21)

Let us note that, when using first-order discretisations, the accuracy at the boundary is
formally by one order worse than the error of the boundary-free discrete equation; however,
it is a matter of definition of boundary location to understand the same finite difference
expression as a central discretisation of the derivative between the considered points, which
is again of second order—this means we do not have to expect any error deterioration.
What is important here is the symmetry preservation of the underlying Laplacian matrix L,
which, for later application of the numerical solvers, is of great importance.

The remaining conditions concerning the lateral and lower domain boundaries are
fixed via

(k) _ () - -
i =ty = Tg(tdj) =Ty, j=1,...,m (22)

(k) _

ug=8 i=1...,n (23)

where d; is the depth of the j-th grid layer. Let us mention that the three-dimensional case
can be handled analogously.

3.2. Arising System of Ordinary Differential Equations

Let us now summarise the components of the proposed two-dimensional discretisation
(12), (14), (18) and (21)—(23) which end up in a semi-discrete ODE system. In particular,
a function defined on all grid points may be represented by now as an N-dimensional
vector

u(t) = (ur(t),...,un(t)" (24)

where N is the total number of all grid points with linear grid point numbering from top
left to bottom right.

The proposed spatial discretisation of the GES by applying finite differences on a
regular grid with constant grid size & results into an ODE system, one ODE for each grid
point, with the notation 1 = % as follows:

u(t) = Lu(t) + Kyuy (t) + Koup(t) + KaTa(t) + Kgw8 + Ko Tg(t) + Kf f(t) (25)

with temperature vector u € RV, temperature vectors u; € R" (continuity condition)
and uy € R" (discontinuity condition) for fictitious points at the two different types of
interfaces, ambient temperature T4 € R, groundwater temperature g € R, undisturbed
ground temperature vector

To(t) = (Tg, (1), .., Te (1)) € R™ (26)

and source/sink vector f € R™. The conditions at the lateral boundaries on Q) considered
here are identical, therefore it is sufficient that the input vector T is of size m. At this point
it should be mentioned that the values for 7 and m depend on the user-defined size setting
of the insulating walls and geometry setting of the considered source/sink, respectively.
The matrices L € RN*N K, € RN*" K, € RN*7 and Ky € RN* collect the terms
of the basic discretisation and are not shown in detail. The remaining matrices, which
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correspond to the ambient temperature, the groundwater temperature and the undisturbed
ground temperature, have the following simple structure:

1 0
0 :
E 0
b = nm
_fal 1 U L [ N
Ky =— Kow = = Ky =—=| On-= 27
A pCh 0 ’ gWw 12 : ’ g 2 NIZm,m (27)
. m,m
: 0
0 L

with K4, K¢y € RN, K, € RNxm  the identity matrix I, € R™ ™. the null matrix

"

ON_2mm € RIN=21X and where a, p,c depend on material parameters. The mark ”—
within (27) indicates that the discretisation points of the underlying rectangular computa-
tional domain are considered row by row. Finally, the discrete initial condition is given by
(10) with 4% := u(x,0).

3.3. Time Integration

The application of the proposed spatial discretisations leads to the ODE system (25),
which can be represented as

u(t) = Lu(t) + Kw(t), te (0,tr], u(0) = u°, w(0) = w° (28)

with input matrix and input vector

K = [K1, Ko, Ka, Kgw, Kg, Kpl, - w0(t) = (w1 (), ua(8), Ta(8), & To (1), £(H) T (29)

Thereby, we specify the input matrix K € RN*? with p = n +7 +2 + m + /i1 and make
use of stacked vectors for defining w(t) € R”. Let us comment that the time-dependent
large-scale input w(t) controls the model by boundary conditions and heat sources/sinks.
Further we note, although the matching conditions at the interfaces corresponding to u;
and u, are not user-defined controls, one has to handle these as indirect inputs. In addition,
the Laplacian matrix L is symmetric and negative definite which is large, sparse and
structured. The definiteness follows directly from its strictly diagonal dominance and
negative diagonal entries according to Gershgorin’s circle theorem [25].

The most frequently used class for solving a system of ODEs are time stepping meth-
ods, in which the time variable in (28) is discretised by 0 = tg < t; < --- < t; = tf. Discrete
time stepping methods of ODEs can be achieved using standard numerical integration
so-called time integration methods; for an excellent overview, we refer to [26,27]. Let us
briefly recall the standard methods that we apply in this work. Common time integration
schemes are the explicit Euler (EE) method, the implicit Euler (IE) method and the trapezoidal
rule known as Crank—Nicolson (CN) method. Usually, the implicit CN method is preferably
used compared to IE due to its second-order convergence in time and at the same time
marginally higher computational costs. Consequently, besides the EE method, we consider
here only the CN method for the numerical solution of the underlying model problem. Let
us note that the IE method has been investigated in our previous conference paper [16].

To apply time discretisation methods, time intervals Iy = [f, tx, 1] are defined in order
to subdivide the complete integration time [0, tf] into a partition. The resulting numerical
methods then generate approximations u(#;) at the different time levels ;. We mention
that uniform partitions of time intervals are used in this work.
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3.3.1. Explicit Euler

The use of the fundamental lemma of calculus for the left-hand side and the left-hand
rectangle method for the approximation of the integral on the right-hand side of (28) over
the time interval I} gives

tet
/ Lu(t) + Kuw(t) dt ~ tLu(ty) + tKw(t,) (30)
te

with the uniform time step size T = #;,1 — t,. Finally, using the notation u(f;) =

u*, w(ty) = wk, the well-known fully discrete EE method
w1 =(I 4+ 7L)u* + TKw* (31)

with k € {0,...,] — 1}, the identity matrix I € RN*N and the given data u® = u(0), w’ =
w(0) is obtained. Due to the fact that the values #* and w* at time t; are known, the new
values #**1 at time t;; can easily be computed by simple sparse matrix-vector multiplica-
tion. Schemes in this form are known as explicit methods and are well-suited for parallel
computing such as graphics processing units (GPUs); however, it is well-known that explicit
methods such as EE are only conditionally stable, see, e.g., [28] and the stability requirement
leads to a severe limitation in the size of the time step 7. In general, the typical time step size
restriction has a rather small upper bound in the case of stiff ODE systems, more precisely
the stability requirement, which depends quadratically on the spatial grid size, yields a
time step size limitation Tmax. As a consequence, explicit schemes are usually considered to
be extremely inefficient numerical methods from a computational point of view.

3.3.2. Crank—Nicolson

Moreover, aside the limitation on the stability requirement on 7, the EE method
is additionally characterised just by first-order approximation to the exact solution. A
common alternative is the implicit CN method, which is second-order in time and moreover
numerically stable. Applying the trapezoidal rule for the integral approximation of the
right-hand side of (28) gives

tet1
/ Lu(t) + Keo(t) dt ~ 7 (Lu(tesn) + Lu(t) + Keo(te1) + Keo(t)) (32)

tk

which leads to the popular fully discrete CN scheme
(1= 3L =(1+ SL)u* + 3K (w1 + ) (33)

Computing the values #*1 at time f;; requires the solution of a system of linear
equations as well as a sparse matrix-vector multiplication in each time step. Consequently,
this scheme is more numerically intensive than the EE method; however, the considerable
advantage of an implicit method is the numerical stability independently of the time step
size T, cf. [28]. At this point, it should be noted that the CN method is sensitive to problems
with discontinuous initial conditions and can lead to undesirable oscillations in the numerical
solution, but this is not the case with the GES application.

3.4. Summary on Discretisation

To solve the GES model problem numerically, the continuous PDE model must be
discretised. Using the method of lines, i.e., discretising the spatial derivatives first, a semi-
discretised system of ODEs (28) with only one independent variable is obtained. Afterwards
an approximate solution for the initial value ODE problem must be computed; therefore,
a temporal grid is introduced. Time integration methods are typically used to design a nu-
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merical scheme. Here, we recalled the first-order EE scheme (31) and the second-order CN
method (33). These baseline schemes are mainly used in our work for comparison purposes.

4. Numerical Solvers

As seen in the last section, the temporal integration can either be achieved explicitly or
implicitly. For both approaches, there exist several numerical solvers, which have different
advantages in terms of computational effort and accuracy of the computed solution.

Classic explicit schemes require low computational effort when resolving one time step,
but they are just conditionally stable and may suffer from small time step size restrictions.
In order to improve the performance, we have shown in our conference paper [16] the
useful application of FED. To overcome drawbacks of this method, we highlight some
relevant properties of the FSI method that have not been discussed in this context earlier.
Furthermore, we introduce for the first time KSMOR methods in connection with the
GES application. Due to large input vectors (29) within the semi-discrete GES model the
use of KSMOR leads to new challenges. For this reason, we follow a recent approach [9]
to enhance the efficiency of the original technique. Finally, the viability of the modified
KSMOR method is demonstrated using a test example.

In the following, we provide a comprehensive overview of numerical solvers for
solving the underlying GES model problem, for a deeper insight see [18].

4.1. Explicit Methods

Explicit methods are simple iterative schemes of the form such as (31); however,
in general, the time step size restriction Tmax has a rather small upper stability bound and
makes these methods unsuitable for long-term simulations. An alternative is the use of fast
explicit methods, namely FED or FSI, which are well-known in image processing.

Let us mention that the knowledge of the value of Tmax is necessary for using FED
as well as FSI; however, this poses no problem because the step size Tmax is limited with
respect to the largest modulus of the eigenvalues of L; therefore, using Gershgorin’s circle
theorem, it is possible to obtain an estimate of the upper bound for Tmax to ensure stability.

4.1.1. Fast Explicit and Fast Semi-Iterative Diffusion

The FED and FSI methods are recent schemes from image processing. For a detailed
presentation, we refer to the manuscripts [3,4,18,29] and the excellent monograph [17].
The core idea behind FED (see Appendix A.1 for a brief insight) is to consider an EE scheme
and interleave time steps that significantly violate the upper stability bound Tmax with
small stabilising steps. The idea is related to super time stepping methods as presented
much earlier in [30]. Overall, the FED method benefits from its explicit scheme structure
and is therefore also well-suited for modern parallel architectures such as GPUs, see [29,31].
In addition, this method is also appealing because its implementation causes almost no
overhead compared to the classic EE scheme.

Nevertheless, the FED scheme has two major drawbacks from a numerical point of
view. Although the internal stability of the scheme is theoretically fulfilled, FED is highly
sensitive to numerical rounding errors. Thus, a rearrangement of varying time step sizes
is required in order to avoid serious accumulation of rounding errors. As a consequence,
such a rearrangement can yield highly unstable intermediate solutions, and therefore the
input w* should be kept constant within a FED-cycle (cf. (A2)) and is only updated after a
full cycle. For this reason, the well-performing FSI scheme is better suited for solving GES.

Fast Semi-Iterative Diffusion

In order to reduce numerical rounding errors and simultaneously to increase the
approximation quality, FSI uses a semi-iterative approach where the new value u**1 is
computed via #* and #*~1. For linear problems L(#*) = L and time-independent inputs
w(t) = w, one can even show that FED and FSI yield identical results. In contrast to FED,
the FSI scheme only uses stable time step sizes and ensures internal stability so that strong
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numerical rounding errors can be avoided. As a result, no rearrangements of time step
sizes are necessary and updates of the input vector w* within one cycle are allowed. Based
on these properties, the proposed FSI scheme is highly beneficial.

In total, the cyclic FSI scheme, more detailed described in works [4,17,18], for the m-th
cycle with cycle length n is given by

u" k= gy [(I + TL)u"k + Tme'k} +(1—a)u™t (k=0,...,n—1)

with

ot mo [ [ 1 1] ak+2 3 (34)
T T W M 2 27 R 2k43 T Ma(n+1)

w™k = w"(ck), Ccxp1=oax(ck+7)+ (1 —ag)ckq, co=c_1=0

where M is the number of outer FSI cycles, tr the stopping time, Tmax the theoretical upper
bound for a stable EE scheme and w"* is the input at the increment parameter c; of the
m-th cycle. Increasing the number of cycles M, whereby n becomes smaller, improves the
approximation quality, but is directly connected with higher computational costs.

Although FSI requires an additional computation of the sum of two vectors, the com-
putational costs are less than FED because non-varying time step sizes are used within
the matrix-vector multiplications in (34), meaning I + TL must be computed only once.
Another benefit of FSI is its straightforward use for nonlinear problems L(u¥), where the
scheme allows us to perform nonlinear updates within one cycle.

The accelerated explicit methods FED and FSI can be applied for parabolic problems
whenever the matrix L is symmetric. It can then be shown that the iterates u#**! are stable
in the 12 sense. Furthermore, we emphasise that a constant step size T < Tmax often yields
stability in the /o, sense.

Let us also note that FED and FSI are mainly applied to problems in image processing
or computer vision, see, e.g., [4,32,33]. However, the schemes can be applied to many
parabolic problems, including time-dependent boundary condition, also in an engineering
context as demonstrated in this work. Beyond this, FSI can also be translated to neural
architectures and thus offers a high level of practical relevance, we refer the interested
reader to the current work [34].

We point out that the mentioned explicit generalisations such as FED and FSI have
a natural weakness. Both methods perform inefficiently for highly non-uniform meshes,
especially when also very small grid widths arise, compare [35]. This is based on the fact
that the (minimum) spatial mesh width and the allowed time step size of explicit methods
are coupled. In this work, however, it is sufficient to consider (relatively) uniform grids in
the context of the GES application.

4.2. Implicit Methods

As mentioned in Section 3.3, the CN method is an implicit scheme and results in a
system of linear equations. More precisely, (33) can be expressed as a linear system

Ax=b (35)

using the notation A = [ — JLand b = (I + IL)uf + %K(wkH + wk). The underlying
constant matrix A € RN*N is symmetric, positive definite and also large, sparse and
structured. Implicit methods are unconditionally stable independently of the time step size
T, but solving linear equations requires significant computational effort and therefore a fast
solver for large sparse systems of linear equations is necessary. Moreover, the choice of
the time step size T has to take into account since an increase in T leads to a less accurate
solution, see, e.g., [14]. The linear system (35) can be solved with sparse direct and sparse
iterative solvers.
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4.2.1. Sparse Direct Solvers

The application of sparse direct solvers, generally related to Gaussian elimination
and lower-upper (LU) factorisation, compute highly accurate solutions (except of numerical
rounding errors) and are predestined for solving a linear system with multiple right-
hand sides. In that case, the underlying symmetric matrix A will be factorised (Cholesky
factorisation) just one time, and subsequently for each right-hand side, the system is solved
by forward and backward substitution; however, a fast computation requires a complete
factorisation, which may use substantial memory. Another drawback in this context is that
the factorisation is harder to optimise, since the factors usually do not preserve the sparsity,
and to design a parallelised version. Consequently, the memory and runtime depends on
the size of the underlying system. We refer the reader to [1,36] and the reference therein for
more details on sparse direct methods.

4.2.2. Sparse Iterative Solvers
The general idea of iterative methods is to successively compute a sequence of approxi-
mate solutions {x; }, starting from a given initial xo, which converges to x* = A~ b, i.e.

X0, X1, .+, Xk P v eRN:AY = b (36)

In particular, sparse iterative solvers are less accurate compared to direct methods but
are very fast in computing approximate solutions. These are built on sparse matrix-vector
multiplication and are therefore also easier to optimise and parallelise. They require much
less memory space and are thus inherently attractive candidates for multi-dimensional
simulations. Although iterative solvers are characterised by low algorithmic complexity,
the convergence of the iteration procedure is not guaranteed. Overall, the runtime of
iterative methods depends on the data, size, sparsity and required accuracy and makes
these methods a tool that is not straightforward to use. For a more detailed insight into
iterative methods, we refer to [2,37,38].

Conjugated Gradient Method

We propose to employ the well-known conjugate gradient (CG) method of Hestenes
and Stiefel [39] (see Appendix A.2 for a brief insight), which is still an adequate iterative
solver for problems involving large sparse symmetric and positive definite matrices. For
the CG method, one can show that the approximate solutions x; (in the I/-th iteration) are
optimal in the sense that they minimise the so-called energy norm of the error vector [40].
In other words, the CG method gives in the /-th iteration the best solution available in the
generated subspace. Without computational rounding errors, the theoretical convergence
will be achieved at latest after the N-th step of the method if the sought solution is in RN,

Applying the CG method practically requires a stopping criterion. Typically, the relative
7, b—Ax
it = L
computations but somewhat worse results. Usually, ¢ = 10~ is used, nevertheless the
selected value will depend on the problem being solved. Previous works [16,41] built upon
the discrete Laplacian operator validated a favourable acceptance range of e € [1072,1073].

Although the CG method relates to ideal theoretical properties, in practice, numerical
rounding errors appear and one may suffer from convergence problems for very large
systems. Thus, a preconditioning is recommended to enforce all the beneficial properties of
the algorithm, along with fast convergence.

residual |

< e is used in practice. Increasing ¢ leads naturally to faster

Preconditioned Conjugate Gradient Method

In simple terms, preconditioning is used to reduce the condition number of the system
matrix and consequently improve the performance of the Krylov solver. The combination
of CG and the preconditioning technique is known as the preconditioned conjugate gradient
(PCG) method. The basic idea of preconditioning is to multiply the original system Ax = b
from the left with a matrix P that is close to A~!. The modified system PAx = Pb is
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generally better conditioned (small condition number close to one) and is much more
efficient to solve; however, PA is typically not sparse, symmetric and positive definite, so
the CG method cannot be applied; therefore, a fwo-sided preconditioner preconditioning
strategy must be chosen.

The main challenge is to construct a suitable preconditioner P with a good cost
balance for the computation of the preconditioner itself and the resulting efficiency per
PCG iteration. Dealing with parabolic PDEs and underlying symmetric matrices, the
incomplete Cholesky (IC) decomposition and its variation modified incomplete Cholesky (MIC)
decomposition is often used for constructing a common and very efficient preconditioner
for the CG method [2,41,42], see Appendix A.3 for a brief insight. Using the PCG method
leads to a potentially better convergence rate and speeds up the CG method dramatically,
but requires fine-tuning of another parameter.

Let us mention that there exists another class of efficient solvers to approximate the
solution of a sparse system of linear equations, called multigrid methods, see, e.g., [43].
These methods are predestined to solve elliptic PDEs, however, they also may work fast
for other types of PDEs. Multigrid methods and extensions of it can be used as solver
itself or also as preconditioner for PCG, cf. [42,44,45]. Due to the large variety of different
multigrid methods it is beyond the scope of this work to investigate also the use of those
methods here.

4.3. Model Order Reduction (MOR)

The introduced implicit methods have to handle large sparse systems, whereby the
computational costs are directly linked to the number of grid points that result from the
spatial discretisation. A potential alternative to implicit solvers are MOR techniques,
which are frequently used in different research fields such as control system theory, circuit
design, fluid mechanics, thermal flow problems or computational biology for reducing the
computational complexity of numerical simulations. The basic idea of MOR techniques is to
approximate the original high-dimensional ODE system (28) by a very low r-dimensional
dynamical system

iy (1) = Loy (1) + Kyw(t)

(37)

v, (t) = Vue(t), u,(0) =u"™
with reduced vector u,(t) € R”, projection matrix V € RN andr < N, L, e R"™*", K, €
R™P, y,(t) € RN, a0 € R" so that the main characteristics of the original ODE system are
preserved. The latter procedure is described in more detail in Appendix A .4. In this work,
we are generally interested in the complete temperature distribution so that the introduced
output vector y(f) is of full dimension (which is a difference to some other works found in
the literature).

In fact, MOR methods can be seen as a kind of preprocessing when using time integra-
tion methods that reduce computational complexity by reducing the number of describing
equations of a large dynamical system. Usually, MOR methods are based on projections
and existing techniques can be classified into balancing-based methods and moment-matching
methods or in SV D-based methods and Krylov-based methods. The classification is not always
consistent in the literature, for a general overview see, e.g., [5,46,47].

Let us emphasise that projection-based MOR methods are characterised by the way
of constructing the projection matrix. Common and widely used approaches in context of
simulation of parabolic PDEs are modal coordinate reduction (MCR) [35], balanced truncation
(BT) [8,10], proper orthogonal decomposition (POD) [10,48,49] and KSMOR [7-10].

When dealing with linear large-scale dynamical systems, the KSMOR technique is
generally the method of choice, since its construction is based on computationally efficient
Krylov subspace methods and is therefore the most efficient MOR method. In the following,
a brief introduction is provided, for more details, we refer the reader to Appendix A.5 or,
e.g., to [50-53].
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4.3.1. Krylov Subspace Model Order Reduction (KSMOR)

The idea of KSMOR methods is to construct a reduced order model such that the
moments of the reduced transfer function H matches the moments of the original transfer
function H up to a certain degree. In this context, the transfer function describes the
input—output behaviour of the system in the frequency domain.

First of all, let us mention that many MOR methods, also moment-matching techniques,
assume zero initial condition, i.e., u® = 0; therefore, by use of the coordinate transformation
i(t) = u(t) — u® the original multi-input-complete-output (MICO) system (A8) must be
translated into

(38)

i(t) = Lii(t) + Lu® + Kuw(t)
y(t) = a(t) +u’, #(0) =0

where the non-zero initial condition now appears on the right-hand side of the ODE system,
as firstly introduced in [54]. The transformed system (38) with zero initial conditions can
be rewritten as

i(t) = La(t) + Ka(t)
y(t) = a(t) +u° #(0)=0
where K = [K, Lu®] and @(t) = [w(t),1]".
Using the Laplace transform, the transfer function of the original system can be
expressed in the frequency domain via H(s) = (s — L)~ 'K. As already mentioned, the key

idea of KSMOR is based on moment matching. In particular, the moment expansion of the
transfer function around a (complex) frequency o is defined as

(39)

H(s) = — Y my(o)(s — o)F (40)
k=0

where the coefficients m(c) = (L — oI)~**tVK are called the moments of the transfer
function. On this basis, the concept of MOR by means of moment matching is to approximate
the transfer function (40), in which the intended reduction focuses on matching the first
moments around ¢. More precisely, the aim is to construct a reduced system (37) so that its

- 00
transfer function H(s) = — Y. fi;(0) (s — o)¥ matches the first g moments of the original
k=0

transfer function:
mp(o) =mi(c), k=0,...,q—1 41)

In this work, we apply the one-sided Arnoldi approach, i.e., W = V, which amounts
to constructing an orthogonal basis using the input block Krylov subspace

range(V) = K, ((L —ol)L(L— 01)412) (42)

Due to the fact that K € RN*(P*+1) is a matrix, the projection matrix V € RN*" with
dimension r = (p + 1)g is computed by the block Arnoldi algorithm [55] and the reduced
system leads to

{ﬁr(t) = Lrﬁr(t) + Krﬁ’(t) (43)

§r(t) = Vi, (t) +u°, #:(0) =0

with L, = VLV € R™*" and K, = V'K € R™*(P+D) | In summary, the reduced system
(43) approximates the original system (A8) in the sense that their first § moments match.
Subsequently, the reduced system can be efficiently solved using an implicit time inte-
gration scheme (in this work the CN method) via a direct solver and LU-decomposition.
After computing the solution of the reduced model, the original solution can be recovered
via #(t) ~ Vii,(t) and u(t) = u(t) + u°.

A parameter still to be determined is the choice of the expansion point . The value
of o corresponds to the frequencies contained in the original model, so that small values
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approximate low frequencies and large ¢ higher frequencies. The underlying heat evolution
is characterised by a rather slow dynamic, therefore approximating the system at the
frequency ¢ = 0 is a natural choice. In particular, the inverse (L — ¢I)~! does not exist for
o = Aj, where A; corresponds to an eigenvalue of L.

Treatment of a Large Number of Inputs

A significant weakness of KSMOR arises when dealing with dynamical systems
that contain high-dimensional input vectors. To retain high computational efficiency the
KSMOR techniques typically require a relatively small number of inputs (small input ma-
trix). The efficiency limitations caused by the large-scale input can be explained as follows:
first, a large number of inputs leads to higher computational costs when constructing the
Krylov subspace (42). Second, every input eventually needs to be expanded in terms of
several moments, so that the order r of the reduced system grows significantly with the
number of inputs.

In general, it is assumed that the number of inputs is quite small and usually inde-
pendent of the fineness of the grid; however, the GES application considered in this work
cannot guarantee this feature. In particular, the input size depends on the user-defined
dimensions of the heat tank and the incorporated insulating walls, which have to fulfil the
matching conditions described in Section 2.2. Based on these considerations, the KSMOR
method should not be applied directly and a method adaptation with respect to large-scale
inputs is absolutely necessary.

At present, there exists no universal procedure to tackle the problem of a large in-
put dimension, and how to deal with this issue also generally depends on the model
problem. Some investigations [9,56-61] have been performed in the past. The proposed
methods [56-58,60], see also [62] for an overview, are based on the approximation of the input
matrix using the dominant singular vectors of the transfer function at the steady state. Usually,
these approaches are limited to systems with a high correlation between the various inputs
and outputs, which is not the case for thermal systems as considered here. Another method
is based on the superposition principle to linear systems introduced in [59]. The reduction
is performed separately using each column of the input matrix so that the original system is
approximated by the summation of the output responses of each of the single-input reduced
systems. As a result, the original multi-input system is decoupled into separate single-input
systems. The superposition approach leads to the fact that the same number of moments is
matched and a reduced system of the same order is built. Consequently, in order to attain
the same accuracy this technique reduces the computational complexity for systems with a
large number of inputs compared to the standard KSMOR method. Nonetheless, the super-
position principle for systems with large-scale inputs remains computationally intensive for
practical purposes.

The recently proposed approach by [9] is similar to ours. The basic idea is to use an
input matrix reduction based on a snapshot matrix linked with computing the dominant
singular vectors. We also make use of snapshots here, but in order to reduce the computa-
tional costs we neglect the SVD and use the snapshot matrix directly. The idea of using the
snapshot matrix directly is applied to a nonlinear input problem in [61], where the authors
proposed to use the weighted average of these snapshots to form a single input; however,
this is not an appropriate approach for this application.

4.3.2. Modified Krylov Subspace Model Order Reduction (KSMOR*)

Let us now propose a heuristic procedure to resolve the problem of a large number
of inputs that incorporates some technical novelties. In doing so, we only adapt the input
matrix explicitly for the subspace construction procedure (42). For the description we are
returning to the ODE system (28), in particular to the part of the control term. For simplicity,
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we represent the p-dimensional input vector w(t) and the corresponding input matrix
K € RN*P by

w(t) = (wi(t),..., wp(t)) , K=K Ky -+ K, (44)

withK; e RN fori=1,..., p. As is known, the computational costs for the construction of
V = K4((L—0oI)7Y, (L — oI)~IK) for large values p are immense.

To motivate our proposed heuristic procedure, we assume that the input vector is
time-independent, i.e., w(t) = w, then the input matrix K from (44) could be assembled via

Kw=:K e RN (45)
which would be accompanied by very low computational costs for generating
V=K, ((L —ol)7L(L— 01)41?) (46)

However, when executing the latter approach the discrepancy between the subspaces
Vand V may be large due to the dimensional difference between the matrix K and the
vector K. In other words, the dimensional difference can be comprehended as a kind of
information loss and affects the moment matching process.

Therefore, we modify this idea for simplification by building a compromise between
V and \7, and construct a new input matrix K € RN*s where the columns lie in a s-
dimensional subspace of K with s < p. Here, similar to the POD technique, the realisation
of this procedure is based solely on snapshots from a numerical simulation of the dynamical
system. More precisely, using snapshot data

wi(t) wi(t2) w1 (ts)
wa(t) wa(tz) -+ wa(ts)

W= [w(t),w(t),..., w(t)] = [ ws(tr) ws(t2) - ws(ts) | € RP*S (47)
wp(ty) wp(ta) -+ wp(ts)

generated by a simulated model, we can construct the snapshot-based input matrix K
and the subspace V via K = KW and V = K4((L — o)1, (L — 0I)7'K), respectively.
The original KSMOR method is then continued with K and w(t). This means, the methods
KSMOR and KSMOR* differ only in the computation of the subspaces V and V, which are
based on the corresponding input matrices.

It should be noted that for the proposed approach a numerical simulation is necessary
in this work, because the temperature vectors u; and u, within (29) are not known a priori.
The viability of the modified KSMOR method is demonstrated using a test example in the
Appendix A.6.

4.4. Summary of Numerical Solvers

The particular challenge is to find an efficient numerical method in connection with the
long-term simulation of a GES. Although many numerical methods have been developed,
there is no class of methods that can be considered superior for stiff linear ODE systems,
since the correct choice of the method used strongly depends on the underlying model
problem. We briefly summarise the main properties of the introduced numerical solvers in
Table 2 below, a more detailed summary can be found in Appendix A.7.
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Table 2. Summary of numerical solvers presented in Section 4, focusing on classic explicit (EE) and

implicit (CN) methods as well as two popular techniques, namely the fast explicit methods (FED and
FSI) and the Krylov-based model order reduction techniques (KSMOR and KSMOR¥).

Solver

Pros

Cons

EE

Explicit method

Easy to implement and
well-suited for parallel
computing

Suffers from severe time
step size restriction to sat-
isfy numerical stability,
therefore impractical for
stiff ODEs

CN

Implicit method

No time step size restric-
tion

Linear systems
can  be efficiently
solved by a factori-
sation/preconditioning
technique (precomputed
once only)

Requires the solution of
many large sparse lin-
ear systems (updating
external sources at rela-
tively small time inter-
vals), therefore results in
high computational ef-
fort

FED

Accelerated explicit
method

Easy to implement and
well-suited for parallel
computing

Highly sensitive to nu-
merical rounding errors
Not practical for ex-
tremely stiff problems

FSI

Accelerated explicit
method

Easy to implement and
well-suited for parallel
computing

Ensures (numerical) in-
ternal stability

Not practical for ex-
tremely stiff problems

KSMOR

Stability ~ preservation
(one-sided  projection
method)

Typically, only a small di-
mension is required to
construct an accurate re-
duced order model in a
highly efficient manner

Not practical for a large
number of inputs

KSMOR*

Stability =~ preservation
(one-sided  projection
method)

Typically, only a medium
dimension is required to
construct an accurate re-
duced order model in a
highly efficient manner
Applicable for models
with many inputs

Globally accurate solu-
tions are provided only
for a reasonable high
number of snapshots and
Krylov subspaces
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5. Comparison of Solvers for Long-Term GES Simulation

The numerical long-term simulation of the GES model considered in this work, is
mainly focused on the explicit FSI method, the implicit sparse direct/iterative solver and
the KSMOR* technique, introduced in the section before. In the following, we evaluate the
proposed numerical solvers by two different experiments and assess their performance
in terms of approximation quality and central processing unit (CPU) time. As methods of
choice we consider:

1.  EE method. An estimation of the upper bound Tmax is necessary.

2. FSI scheme. By knowing Tmax, the number M of cycles is the only tuning parameter.

3. Sparse direct solver applied to the implicit CN method (called direct CN). The internal
MATLAB-function decomposition including a Cholesky factorisation is used. The
tuning parameter is the time step size 7.

4.  Sparse iterative solver using PCG applied to the implicit CN method (called iterative
CN). User-defined parameters are time step size T and the tolerance £ > 0; the latter
quantity is required to terminate the algorithm. The preconditioners IC or MIC are
employed for PCG. Another tuning parameter y > 0 is required, which corresponds
to a numerical fill-in strategy IC(y) or MIC(y).

5. KSMOR* method. This technique can be tuned by the number of projection subspaces
K, and snapshot data W = [w(t1), w(tp),. .., w(ts)] used. The selected expansion
point is fixed to ¢ = 0. The sparse direct solver is applied to compute the Krylov
subspace generated by the block Arnoldi method. The reduced model is then solved
via direct CN scheme for a chosen T.

To evaluate the accuracy of the methods, the solution of the EE scheme is used as
reference. Based on a simplified GES application without a source term, we first examine
the optimal selection of some important parameters within the methods used. Second, we
validate the method performances on real data including sources. In addition, a uniform
grid with Ax = Ay = h is considered in all experiments and the evaluation is measured by
the Ly-error defined as

—i)? (48)

between the reference solution u and the numerical solution #.

Let us mention that to evaluate the accuracy of the methods, we also consider a simple
artificial setup in Appendix B, where the solution can be stated in closed form. Furthermore,
we note that all experiments were performed in MATLAB R2018b with an Intel Xeon(R)
CPU E5-2609 v3 CPU. All CPU times presented incorporate the modelling (linear system,
preconditioning and reduction) and the numerical resolution; therefore, the performances
are easily comparable.

5.1. Geothermal Energy Storage Simulation without Source

First, we consider the simulation of a GES under real-world conditions without
sources/sinks. The heat tank is assumed to be placed underground, closed on its sides
and upwards, compare Figure 2. The lower part is open to accommodate for the heat
delivery. The thermophysical properties of the materials used are assumed to be constant
and are given in Table 3. In this setup, we specify that the upper and the lower ground have
the same material properties, and further parameters are fixed to #c = 0.5 and a4 = 10.
As mentioned in Section 2.3, the external conditions are given via time-dependent Robin
(6), time- and space-dependent Dirichlet (7) and non-homogeneous Dirichlet boundary
conditions (9) with g = 10.
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Table 3. Thermophysical properties of the materials involved for the synthetic experiment.

. Conductivity Density Specific Heat Diffusivity
Material/Layer A (W/(mK)) p (kg/m®) ¢ (J/(kgK)) a (m?2/s)
Water':(?itlurated 23 2100 1143 958 x 107
Insulation walls 0.03 100 1000 3x1077

For the evaluation, a two-dimensional rectangular domain is considered given by
[0,15] x [0,10] in meters, whereby the heat tank with size 5 x 1.5 m has an installation
depth of 1.5 m. The thickness of the insulation is determined to 12 cm. Moreover, a mid-size
model problem is considered by setting i = 0.04 cm (N = 94376 grid points) and the
stopping time is assumed to be tr = 2.609 x 10° s (around 30 days). As initialisation,
the temperature is simply fixed to 30 degrees for the heat tank, 20 degrees for the insulation
and 10 degrees otherwise.

Let us first discuss the spatial dimensioning of the underlying model. The orig-
inal geothermal field is given in 3D, but it is clear that its fundamental simulation is
computationally more expensive than a two-dimensional model. In fact, however, a full
three-dimensional simulation is not necessary, which can be explained as follows: the con-
sidered model problem is isotropic, homogeneous, linear and characterised by an almost
symmetrical structure (concerning the spatial environment) with slow heat propagation
(low diffusivity). This allows the physical behaviour of the three-dimensional continuous
model to be approximated by considering a cross-section of a 3D geothermal field in 2D,
especially when dealing with long-term evolutions. The proposed heuristic approach can
be theoretically supported by a closer look at the fundamental solution (heat kernel) of
the linear heat equation. More precisely, the fundamental solution is radial in the spatial
variable, but depends on a dimensional-dependent scaling factor, see, e.g., [63]. Aside from
the purely physical justification, we confirm the reduction in the spatial model dimensions
by comparing the results in 2D and 3D using the EE method. Further in the paper, we show
that the approach is justified by taking real data into account.

Results on EE

According to Gershgorin’s circle theorem the time step size restriction for the two-
dimensional model problem is given by Tmax2p ~ 417.44 s. Consequently, 6250 iterations
have to be performed to reach the final stopping time fr, whereby the corresponding CPU
time of EE amount to 11.1 s. In contrast, the upper stability bound of the underlying
three-dimensional problem is determined with T,y 3p ~ 278.15 so that 9380 iterations for
the simulation are necessary. In this case, the discrete domain is defined by N = 35, 485,376
grid points, which enlarges the size of the system matrix considerably and thus increases
the computational effort. Consequently, the entire simulation requires around 20,000 s
which is considered unsatisfactory. As expected, Figure 4 confirms the use of a two-
dimensional model as a substitute. First, it shows almost equal radial thermal behaviour
when comparing the 2D and 3D models, in which the latter is evaluated via a cross-
section along the middle of the 3D-GES. Second, a comparison of two artificial temporal
temperature profiles S1 and S2 demonstrate the expected similarities of the 2D and 3D
simulation results. Of course, there are slight deviations in heat evolution between the
2D and 3D models, but the benefit of computational performance is more valuable than
computing an extremely accurate 3D long-term simulation. Overall, we consider the
dimensionality reduction in the model as a pragmatic proceeding to obtain fast and accurate
enough long-term simulations of typical GES. In the further course, we compare the
proposed methods using the 2D-GES model on both synthetic and real data.
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Figure 4. Results of the GES experiment without source: visual representation of the 2D and 3D
solution at tr = 2.609 x 10° by applying the EE method for # = 0.04. (a) Result of the 2D model
after 6250 iterations with Tyaxop = 417.44. (b) Result of the 3D model after 9380 iterations with
Tmax,3D = 278.145, visualised in form of a cross-section along the middle of the 3D-GES. (c¢) Temporal
temperature profile S1 fixed in the centre of the heat tank. (d) Temporal temperature profile S2 fixed
in the centre between heat tank and bottom border.

Let us emphasise that for the following evaluations of the solvers no analytical solution
is available and a reference solution is required. In general, the EE method provides the most
precise solution (cf. Appendix B) that can be used as reference solution for a fair comparison.
To this end, we assess the Ly-error at a fixed moment in time and the corresponding CPU
time between the solutions of EE and the tested solver for the experiment without source
term. In doing so, we do not consider a full error computation along the temporal axis
because the methods yield completely different sampling rates, which potentially leading
to unfair comparisons.

Results on Iterative CN

We now study the iterative solver and its parameters involved. For this purpose, the in-
fluence of the stopping criterion on the accuracy and the CPU time is analysed in Figure 5.
The value e = 10~ provides the best trade-off and is assumed to be fixed for all following
tests. Due to the size of the system matrix a preconditioning is suitable. By consideration of
the specified preconditioners, Figure 6 shows that MIC(10~2) outperforms both CG and
IC(1073). Based on this investigation, we use MIC(10~2) for all further experiments.

To demonstrate the beneficial applicability of the CN method in general, we compare
its results with those of IE in Appendix C.1.
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Figure 5. Results of the two-dimensional GES experiment without source: comparison of the Ly-error
and the corresponding CPU time for iterative CN using the CG method and different values ¢ at
tr = 2.609 x 10° for h = 0.04. The reference solution is computed with the EE method. The choice
¢ = 10~ provides the best trade-off.
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Figure 6. Results of the two-dimensional GES experiment without source: comparison of the Ly-error
and the corresponding CPU time using iterative CN at tr = 2.609 x 10° for i = 0.04. The stopping
criterion is fixed to e = 10~%. The reference solution is computed with the EE method. Left: Iterative
CN is computed using IC-preconditioner for different drop tolerances . The choice 7 = 1073
provides the best trade-off. Right: Iterative CN is computed by IC(10~3) and MIC-preconditioner for
different drop tolerances 7. A value for ¢ € [10~3,1072] is optimal.

Results on KSMOR*

Due to external, lateral time- and space-dependent Dirichlet boundary conditions
and internal matching conditions, the model has to deal with many inputs. In particular,
the input variable results in @(t) € R1%, with u,(t) € R%? and T,(t) € R®!, while 1
does not have to be taken into account due to the identical material properties of both soils
(upper and lower ground).

To overcome the efficiency limitation of KSMOR (see Appendix C.2) we apply the
KSMOR* approach, proposed in Section 4.3.2. In doing this, we initially set 4 = 2 and vary
the size of the snapshot data as visualised on the left in Figure 7. Obviously, increasing s
leads to better approximations; however, a saturation occurs for high values s, for which
s = 20 provides the best performance trade-off. In a second test, we increase the number
of subspaces q for s = 20 used, see on the right in Figure 7. As expected, increasing the
moment matching property improves also the accuracy. Unfortunately, large values g
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are associated with high computational costs. Overall, KSMOR* is much more efficient
compared to the original KSMOR method (cf. Appendix C.2).

600 — 600
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CPU time in seconds CPU time in seconds
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Figure 7. Results of the two-dimensional GES experiment without source: comparison of the L,-error and
the corresponding CPU time using KSMOR* at tr = 2.609 x 10° for i = 0.04. The reference solution is
computed with the EE method. Left: KSMOR* is applied with ¢ = 2 and a varying size of snapshot data
for s = {5,10,20,50}. Right: KSMOR* is used by constructing subspaces with s = 20 for ¢ = {2,3,5}. The
best compromise in performance is achieved with s = 20 and g = 3. Compared to the original KSMOR
method (cf. Appendix C.2), the approximations are computed dramatically fast.

5.1.1. Comparison of the Solvers

Finally, a full comparison of the methods tested—direct CN, iterative CN using
MIC(10~2), FSI and KSMOR*—is shown in Figure 8.

600

400 || & .

200

10 15

CPU time in seconds

‘‘‘‘‘ MIC(1072) - Direct CN KSMOR* — FSI

Figure 8. Results of the two-dimensional GES experiment without source: comparison of the Ly-error
and the corresponding CPU time between MIC(10~2), direct CN, KSMOR* and FSI at tp = 2.609 x 106
for h = 0.04. KSMOR™* is performed with g = 3 and s = 20. The reference solution is computed with
the EE method. The FSI method clearly outperforms all other methods.

Solving the CN method with the sparse direct solver is more efficient than with the iterative
solver. Only for more accurate solutions, which correspond to small time step sizes 7, both
implicit solvers perform comparably well due to a faster convergence of the iterative solver.

The KSMOR* technique, in which the parameters s = 20 and g = 3 are fixed, achieves
the worst performance in comparison to the other methods. In contrast to the investi-
gated test example in Section 4.3.2, the selected number of snapshots has to be relatively
large. In combination with the number of Krylov subspaces directly related to expensive
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offline precomputations and the additional enlargement of the reduced solution (A15),
the KSMOR* approach cannot maintain the efficiency of the other solvers.

The results in Figure 8 clearly demonstrate the superior efficiency of FSI, which
outperforms all other methods. This is mainly explained by two facts: first, FSI is an
accelerated explicit method and is built on cheap matrix-vector multiplications. Second,
the input w(t) can be updated within one FSI-cycle. Further, it is this update process,
including the external and internal boundary conditions, that is of great importance for an
accurate approximation. In this context, we also show a performance comparison of the
two fast explicit solvers FED and FSI in Appendix C.3.

We would like to point out once again that the generated results are based on a mid-size
model problem. In Appendix C.4, we additionally present that the same solver performances
are preserved for a large-scale problem for which we repeat this experiment on a finer grid.

5.1.2. Observations on KSMOR*

From an engineering point of view a more detailed investigation of the approximation
behaviour regarding the underlying model shows that small values s and q are deemed
appropriate. A visualisation of the results between the absolute differences of EE and
KSMOR* for h = 0.04 and a different number of s and g is shown in Figure 9. As expected,
increasing the number of snapshots s or subspaces g leads to better results in terms of
the maximum error and the L-error. An individual change of s and g leads to a kind of
saturation behaviour, so that both parameters require relatively large values for a very
accurate approximation.

Moreover, a reasonable number of snapshots s is significantly important because less
data lead to strong artefacts at the interfaces where the matching conditions between differ-
ent materials have to be fulfilled. This observation is a consequence of the proposed input
matrix reduction, which clarifies the interdependence between snapshot data and the errors
at the interfaces. Due to the fact that small values of s and g only influence the area around
the interfaces (cf. Figure 9), which is generally negligible for a reasonable reproduction of
the long-term GES simulation, the use of KSMOR* appears to be significantly appropriate.

Based on the presented findings, we investigate the performances of FSI, direct CN
and KSMOR* with s = 10 and g = 2 on real data.
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Figure 9. Cont.
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Figure 9. Results of the two-dimensional GES experiment without source: visual comparison
(absolute differences) of the results between EE and KSMOR* for varying number of s and g at

= 2.609 x 10° for i = 0.04 with T = 2609. The visualisations are ordered from left to right by
s = {5,10,20} and from top to bottom via ¢ = {2,3,5,10}. Special care must be taken in rating
the visualisations, because no uniform temperature scaling between the absolute differences of the
solutions is given: we still opted to represent the solutions in this way, as the differences between the
errors that occur are too large to employ a uniform scaling. For a better comparison, the Ly-error is
also displayed. Increasing the number of snapshots s or subspaces g gives better results in terms of
maximum error and L-error. Obviously, a reasonable selection of s is of great importance, since less
snapshot data lead to strong artefacts at the interfaces.

5.2. Geothermal Energy Storage Simulation on Real Data

Lastly, we present a comparison concerning a full error computation along the tem-
poral axis using the two-dimensional GES simulation including sources. The evaluation
is based on real data, in particular matching of temperature probes of a test field and
its thermal behaviour given in 3D, cf. Figure 10. In this way, the experiment will also
demonstrate that the proposed linear two-dimensional model is sufficient to reproduce the
heat exchange correctly.

For this experiment, the thermophysical properties of the materials used are assumed
to be constant and are given in Table 4. The other parameters are fixed to . = 0.1, a4 = 10
and § = 10. The two-dimensional rectangular domain is defined via [0,20] x [0, 8] in meters,
whereby the size of the heat tank amounts to 10 x 1.2 m. The installation depth and the
insulation thickness are determined as 70 and 12 cm, respectively. In addition, the thermal
energy

Q = mcAT (49)

with the specific heat capacity c, the mass m of the fluid and temperature change of the inlet
and return temperatures AT is given over a period of r = 21 x 10° s (around 243 days).
The parameters are fixed to ¢ = 1.16 and m = 850 and the source term is simply distributed
over three pipe levels inside the heat tank. Moreover, the mesh size is fixed to h = 0.04
(N = 100,701 grid points), which leads to the upper stability bound Tmax2p ~ 588.23.
The initial heat distribution is generated by the Laplace interpolation (see Appendix D.1).
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B5 B2 B3 B4 Bl B6 B8 B7 B9

Figure 10. Position of the temperature probes B1-B9 of the 3D test field. Left: Plan view of the GES
(rectangular shape) and the installation location of the temperature probes B1-B9 (hexagons). Right:
Cross-section of the 3D-GES and installation height of the temperature probes B1-B9. Each probe
has several measuring points (blue dots on black vertical lines) at different installation heights. In
particular, the measuring points do not always have the same installation height, as indicated by the
magenta horizontal lines.

Table 4. Thermophysical properties of the materials involved for the real-world data scenario from
the present test field.

Laver Conductivity Density Specific Heat Diffusivity

y A (W/(mK)) p (kg/m3) ¢ (J/(kgK)) a (m?2/s)
Lower ground 0.5 1900 750 351 x 1077
Upper ground 1.7 2000 1250 6.8 x 1077
Insulation walls 0.035 40 1500 5.83 x 1077

In order to validate the correct heat exchange behaviour, we initially apply the EE
method to the two-dimensional GES model. The visualisation of the real temperature
probe Bl (measuring point 3rd from the top, see Figure 10) compared to EE is shown
exemplary on the top left in Figure 11. The result clearly demonstrates the appropriate use
of a two-dimensional simulation of a 3D-GES model. Note that one may use any working
probe to come to the same conclusion.
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Real data
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0 | | | | 0 | | | |
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Figure 11. Cont.
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Figure 11. Results of the GES experiment for temperature probe Bl (3rd from the top): visual
comparison (along the temporal axis) between the real temperature from 3D test field and the
approximations of the 2D model computed by the proposed solvers. A special emphasis on this is
that the results generated by FSI, direct CN and KSMOR* cause CPU time of 10 seconds, whereas the
EE scheme produces substantial costs of 69 seconds. The simulation time amounts to around 243 days
and the grid size is fixed to & = 0.04 (N = 100,701 grid points). Left top: EE for T« op = 588.23
(35,839 iterations). Right top: Direct CN for T = 44,854 (470 iterations). Left bottom: KSMOR*
with s = 10 and g = 2 for T = 13,176 (1600 iterations). Right bottom: FSI for M = 220 cycles
(4840 iterations). The EE method applied to the two-dimensional model problem reproduces a
highly accurate approximation with regard to real data given from the three-dimensional test field.
FSI and KSMOR* are extremely efficient and achieve almost the same output as EE. On closer
inspection, the FSI scheme provides the best trade-off as it is less cost-intensive due to matrix-vector
multiplications and additionally produces a better accuracy based on a more frequent update process.
In contrast, the direct CN method cannot maintain the performance of the other two methods.

Building on the validation, the performances of FSI, direct CN and KSMOR* with g = 2
and s = 10 are identified using the temperature probe Bl by two variants. First, a visual
assessment of the approximations compared to real data is illustrated in Figure 11. In the
experiment documented in Figure 11 we give quickly computed approximations (CPU
time of 10 s) in comparison with EE (CPU time of 69 s). Second, the relation between the L;-
error (along the temporal axis) and the corresponding CPU time is evaluated in Figure 12.
Additional data for comparison of the findings described are listed in Appendix D.2. In both
investigations, the FSI scheme is still considered as a superior method, which provides a fast
computation combined with high accuracy. Nevertheless, the KSMOR* method is also very
efficient. As in the previous tests, the direct CN method provides the worst performance.

Finally, FSI and KSMOR* are tested on the temperature probe B6 (5th from the top)
and B9 (2nd from the top), see Figure 13. Both schemes achieve the desired reproduction of
heat distribution behaviour compared to the real data; however, the KSMOR* results may
also exhibit oscillations, especially in a local area around the interfaces between different
materials. This illustrates again that the numerical solutions obtained by KSMOR* are
locally representative away from the interfaces if g and s are chosen in a competitive range
in our application, whereas the FSI method correctly reproduces the global behaviour of
the underlying GES model.
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Figure 12. Results of the GES experiment for temperature probe B1 (3rd from the top): comparison of
the Ly-error (along the temporal axis) and the corresponding CPU time between FSI, direct CN and
KSMOR* with g = 2, s = 10. The parameters are fixed to tf = 21 X 106 and k = 0.04 (N = 100, 701
grid points). The reference solution is computed with EE. The FSI scheme is the most efficient solver.
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Figure 13. Results of the GES experiment for temperature probe B6 (5th from the top) and temperature
probe B9 (2nd from the top) on the left and right side, respectively: visual comparison (along the
temporal axis) between the real temperature from 3D field and the approximations of the 2D model
computed by FSI as well as KSMOR*. The CPU time of both computed approximations amount again
to 10 seconds. Top: FSI for M = 220 cycles (4840 iterations). Bottom: KSMOR* with s = 10, g = 2 for
T = 13,176 (1600 iterations). Both methods reproduce the same temperature behaviour compared to
the real data; however, the corresponding temperature of the KSMOR* technique can oscillate highly
sensitive, especially in a local area around the interfaces between different materials.
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6. Summary and Conclusions

In this work, we have demonstrated that a model based on a linear heat equation
equipped with external and internal boundary conditions is suitable to realistically repre-
sent the long-term behaviour of the GES. Moreover, we showed experimentally based on
real-world data from a three-dimensional test field that even a two-dimensional GES simu-
lation is sufficient to tackle the long term simulation task. As a result, the computational
costs can be extremely reduced and a long-term simulation is practicable.

In view of the possible candidates for an efficient numerical simulation, a state-of-the-
art method that appears to be attractive is the KSMOR scheme. In our model problem we
have seen that this scheme is not easy to apply, since the underlying semi-discretised model
is linked with a large input vector in consequence of the modelled boundary conditions.
Independent of the numerical approach, it has also been noticed that the presence of
sources and boundary conditions makes the long-term simulation issue in practice delicate
to handle. With these fundamental difficulties, we have illuminated in detail that it is not
straightforward to device an efficient and accurate enough numerical scheme.

In total, we have demonstrated the practical usability of the FSI scheme and the
KSMOR variant introduced here as KSMOR*, which turn out to be the two most powerful
methods among the schemes in this paper for our GES application. The explicit FSI scheme
borrowed from image processing, is highly efficient due to cost-effective matrix-vector
multiplications and the natural frequent update process of the input vector within the
approach. In addition to this, it is by the construction of the FSI method, which can also use
modern parallel architectures such as GPUs, that we can further increase the efficiency. Let
us also note here that to our best knowledge, our paper provides the first application of FSI
outside of the field of image processing. Our proposed efficient KSMOR* technique uses
an input-matrix reduction via snapshots and generates a small-sized reduced order model,
which can then be resolved easily using the direct solver. We illustrated and analysed the
viability of KSMOR*, which is in this form a new variant of existing schemes. At this point
it, should be stressed that compared to previous works in the area of KSMOR schemes, we
have made our method here explicit in all the details and important parameters, which
is by the computational experience gained in the course of this work highly relevant for
practical application.

Apart from the fact that FSI and KSMOR* are predestined solvers for tackling the long-
term simulation of a GES, we have specifically discussed the local and global behaviour
of their solutions. Summarising our findings, we (absolutely) suggest the use of the FSI
scheme when the global behaviour of solutions is of interest. Let us also mention that
this may be of preference in the context of our application, since this takes into account
general configurations, also away from interfaces, to measure temperatures by probes in
realistic environments. Otherwise, for local areas but away from interfaces, both techniques
perform equally effective.

Overall, we have precisely analysed the features of all applied solvers and simul-
taneously illustrated their properties using different experiments. For these reasons the
comprehensive work given here provides, from our point of view, a reasonable overview
of the state-of-the-art numerical solvers of various scientific areas and may help greatly in
approaching similar problems in many engineering fields.
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Abbreviations

The following abbreviations are used in this manuscript:

BT balanced truncation

CG conjugate gradient

CN Crank-Nicolson

CPU central processing unit

EE explicit Euler

FED fast explicit diffusion

FSI fast semi-iterative

GES geothermal energy storage

GPU graphics processing unit

IC incomplete Cholesky

IE implicit Euler

KSMOR Krylov subspace model order reduction
LU lower-upper

MCR modal coordinate reduction

MIC modified incomplete Cholesky
MICO multi-input-complete-output
MOR model order reduction

ODE ordinary differential equation
PCG preconditioned conjugate gradient
PDE partial differential equation

POD proper orthogonal decomposition
SVD singular value decomposition

Appendix A. Numerical Solvers
Appendix A.1. Fast Explicit Diffusion

The key idea of the technique behind FED is to explore the connection between iterated
box filtering and diffusion filtering. Grewenig et al. showed that a box filter of length 2n + 1
can be obtained by convolving n explicit linear diffusion filters having different time step
sizes T;. These varying time step sizes can be calculated by means

h? 1 .
Ti:?—z“, i=01,...,.n—1 (A1)
2 1
2 cos (nm)
and one FED cycle is given as
W0 — gk
U — ([ TL)Y - TKwF, i=0,1,...,n—1 (A2)
uk+l _ uk+l,n

with T; := ¢ty and ¢ := ﬁ, and where the input vector wk is constant within the full

cycle. At this, the value Anax denotes the largest modulus of eigenvalues. The scaling of 7;
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via c is necessary, since the stability in the Euclidean norm is only guaranteed for Amax < f—z.
In FED up to half of all the time steps sizes may violate their upper bound, and 7 steps can
achieve a stopping time of O (n?) instead of the usual O(n) for a valid constant time step
size. This gain in the stopping time can result in cutting the overall run time by two orders
of magnitude. More precisely, one can show that the diffusion time with n inner steps
corresponds to one super time step of size n21 T, = Tmax’ﬁ% for Tmax := ﬁ Additionally,
increasing the number of cycles, whereby ;z boecomes smaller, improves the accuracy of this
method. The only requirement for one FED cycle (A2) is that the system matrix L has to
be symmetric, negative semi-definite and remains constant within one cycle for nonlinear
problems. Let us stress that FED is often used in conjunction with homogeneous nonlinear
and anisotropic diffusion filtering; however, the scheme can be applied to many parabolic

problems including sources/sinks, cf. [64].

Appendix A.2. Krylov Subspace Solvers

A particular class of iterative solvers designed for use with large sparse linear systems
is the class of Krylov subspace solvers; for a detailed exposition see [2]. The main idea behind
the Krylov approach is to search for an approximative solution of (35) in a suitable low-
dimensional subspace R’ of RN that is constructed iteratively with I being the number of
iterates. The aim in the construction is thereby to have a good representation of the solution
after a few iterates.

Conjugate Gradient Method

The CG method [39] is probably the most famous Krylov subspace method and a
widely used iterative solver for problems with large, sparse symmetric and positive definite
matrices. In its construction it combines the gradient descent method with the method of
conjugate directions. It is based on the fact that for such a matrix the solution of Ax = b is
exactly the minimum of the function

—_

F(x) = 5(x, Ax)2 — (b, x) (A3)
since
VF(x)=0 & Ax=0b (A4)

Thereby, (-, -)» means the Euclidean scalar product. Let us now denote the I-th Krylov
subspace by K;. Then, K; := K;(A, ry) is a subspace of RN defined as

K := span (ro, Ary, A1y, . .., Al_lro) (A5)

This means K; is generated from an initial residual vector ry = b — Axg by successive
multiplications with the system matrix A. The nature of an iterative Krylov subspace
method is that the computed approximate solution x; belongs to xo + IC;(A, 7p), i.e., it is
determined by the [-th Krylov subspace. Thereby, the index [ is also the /-th iteration of the
iterative scheme.

For the CG method, one can show that the approximate solutions x; (in the I-th
iteration) are optimal in the sense that they minimise the so-called energy norm of the
error vector. More precisely, if x* is a solution of the system Ax = b, then x; minimises

|lx* — x;|| 4 for the A-norm ||y||4 := \/y " Ay. More precisely, the CG method gives in the

I-th iteration the best solution available in the generated subspace. Since the dimension of
the Krylov subspace is increased in each iteration, theoretical convergence is achieved at
latest after the n-th step of the method if the sought solution is in RN. In practice, numerical
rounding errors occur and very large systems may suffer from severe convergence problems.
Fortunately, this problem can be overcome by proper so-called preconditioning, which is a
way to induce rapid convergence.
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Appendix A.3. Preconditioned Conjugate Gradient Method

Preconditioning is a very complex topic with decades of research, for an excellent
survey we refer the reader to [42]. When dealing with symmetric matrices, the incomplete
Cholesky factorisation is mainly used to build a common and very efficient preconditioner
for the CG method. Let us briefly describe the approach.

Incomplete Cholesky Factorisation

The complete decomposition of A will be given by A = CC" + F. If the lower
triangular matrix C is allowed to have non-zero entries anywhere in the lower matrix,
then F is the zero matrix and the decomposition is the standard Cholesky decomposition;
however, if only the structure of entries in A is used to define C, then the factorisation will
be incomplete. In other words, the lower triangular matrix C keeps the same non-zero
pattern as that of the lower triangular part of A. The general form of the preconditioning
then amounts to the transformation from Ax = b to APx? = b” with

AP =C'AC™T,x» =C"x and b’ =C'b (A6)

The mentioned approach of using the same sparsity pattern of A for C is often called
no-fill IC factorisation or IC(0). If one extends the sparsity pattern of C by additional
non-zero elements then the closeness between the product CC" and A is potentially im-
proved. This proceeding is often denoted as numerical fill-in strategy IC(y), where the
parameter v > 0 (called drop tolerance) describes a dropping criterion, cf. [2]. The approach
can be described as follows: new fill-ins are only accepted if the absolute value of the
elements is greater than the (local) drop tolerance . Adding fill-ins may obviously lead
to a better preconditioner and a potentially better convergence rate. On the other hand, it
becomes more computationally intensive to solve the underlying triangular systems and
the preconditioner itself; therefore, a good selection of <y in the preconditioning method
is essential.

Modified Incomplete Cholesky

When dealing with parabolic PDEs, the MIC factorisation can lead to an even better
preconditioner, for an overview on MIC see [40,42,65]. The idea behind the modification is
to force the preconditioner to have the same row sums as the original matrix A. This can
be accomplished by adding the discarded fill-ins to the diagonal. The latter approach is
known as MIC(0) and can be combined with the abovementioned drop tolerance strategy to
MIC(7). An essential requirement for the safe use of this technique is that A is a diagonally
dominant M-matrix, which is the case here.

Overall, using PCG method leads to a potentially better convergence rate and speeds
up the CG method dramatically, but a good choice of v is crucial. In practice, cf. [41,42],
good results are obtained for values of v € [107%,1072] but the optimal value naturally
depends on the model problem; therefore, it will require a thorough study to identify the
most useful parameter when using PCG for the GES application.

Appendix A.4. Model Order Reduction

MOR methods (also known as reduced order model methods) can be used to approxi-
mate the original high-dimensional linear and time-invariant first order ODE system (28),
where the time invariance refers to the fact that the corresponding matrix is constant in time,
by a very low-dimensional system, while preserving the main characteristics of the original
system. Usually, MOR methods are defined by a projected model which rely on efficient
numerical linear algebra techniques for problems involving large sparse dynamical systems.
The underlying concept of projection methods is to approximate the high-dimensional state
space vector u(t) € RN by a reduced basis

u(t) = Vu,(t) (A7)
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with reduced vector u,(t) € R’, projection matrix V € RN*" and r < N. Applying this
concept can be comprehended as projecting the original MICO dynamical system

{:8 - iu(t) + Kw(t) (A8)

(1), u(0) =u’

with the output variable y(t) € RN and the initial condition #° € RY into a reduced
order model

{WTVﬂr(t) =W LVu,(t) + W Kw(t) (A9)

y(t) = Vauy(t), u,(0) = u™®

by applying (A7) and left multiplication with the projection matrix W' € R”*N. By mul-
tiplication from left with (W' V)~1, and assuming the inverse exists, the system (A9)
leads to
() = (WIV) TWTLVu, (t) + (WTV)'W T Ka(t) (AL0)
v, (t) = Vu(t), u,(0) = u™”

In order to avoid numerical problems the projection matrices are generally chosen as
biorthonormal matrices W'V = I so that the reduced system of order r has the following form

{u,(t) = Lo (t) + Kw(t) (A11)

y,(t) = Vu,(t), u,(0) = u™®

with L, = WLV € R™, K, = WK € R™*?, y,(t) € RN and #'? € R. It should be
noted that, within the formulation (A11), only the number of the state variables is reduced,
whereas the number of inputs and outputs remains the same.

Frequently used techniques for constructing the projection matrices V and W are
MCR, BT, POD and KSMOR. Attractive advantages of MCR and BT are that the reduced
model inherits stability properties of the original system, moreover also (a priori) global
error bounds may be guaranteed. In contrast, the POD concept based on data reduction
makes this technique highly flexible, so it is often applied to nonlinear dynamical sys-
tems; however, the main drawback of MCR, BT and POD is the underlying approach
for computing the projecting matrices, which is based on solving an eigenvalue problem,
a Lyapunov equation or performing a SVD (sometimes in combination); therefore, the use
of the three methods does not appear to be a practical for the underlying GES application.
In contrast, the KSMOR approach is based on a series expansion of the system’s transfer
function and is nowadays the most frequently used MOR method for linear and large-scale
dynamical systems.

Appendix A.5. Krylov Subspace Model Order Reduction

The main advantage of KSMOR is the fact that the projection method is based on
Krylov subspaces, which yields high computational efficiency, and moreover often requires
only a small dimension of the resulting reduced order model; however, in general, there
is no guarantee for stability preserving during the reduction process, even if the original
system is stable. Fortunately, the stability of the reduced order model can be guaranteed if
a one-sided projection method, i.e., W = V, coupled with a negative semi-definite system
matrix L is applied (see [66]), which is the case here.

The basic idea of KSMOR is the local approximation of the transfer function H(s)
around a frequency o of interest. In doing so, the transfer function is expanded into an
infinite Taylor series in which the coefficients are defined as the moments. Based on this
representation, the reduced order model is constructed so that some of the first moments of
the original and reduced system are matched, which reflects why the approach is called
moment matching.
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In order to introduce the transfer function H(s), the Laplace transformation is applied
to the full system (39), which results in

sU(s) — #(0) = LU(s) + KW(s)

~ _ 0 (A12)
Y(s) =U(s) + %
Assuming that the inverse (sI — L) ! exists, the latter corresponds to
U(s) = (sI — L) "'KW(s)
P — 0 = 0 (A13)

Y(s) = U(s) + % = [(s1 = L) 'R W(s) + £ = H(s)W(s) + &
where the transfer function H(s) = (sI — L)~ 'K is expressed by the input W(s) and the
output Y(s) in the frequency domain.

The aim of KSMOR is to construct a reduced dynamical system with transfer function
H(s), whose moments match the first ¢ moments of the original transfer function H(s)
as expressed in (41). Solving moment matching can be performed explicitly or implicitly.
Explicit moment matching such as by Padé-type approximations are known to be numeri-
cally unstable, especially as the dimension of the reduced order model r grows; therefore,
in practice, implicit moment matching based on Krylov subspaces is usually performed,
which is a numerically stable method for calculating the moments. Proposed approaches
to compute the Krylov subspaces are variations of the Arnoldi and the Lanczos process,
see [5,6,67].

Block Arnoldi

For the construction of the Krylov subspace (42) the included inverse (L — oI) ! leads
anew to the task of solving large sparse systems of linear equations. This requires the
application of sparse direct or sparse iterative solvers as introduced before. In this work, we
focus on the MOR technique itself, therefore we apply the sparse direct solver as this gives
the most accurate representation. Apart from that, for iterative solvers (only approximate
solutions are generated), the moment matching property cannot hold in general, since the
constructed subspace no longer matches the projection subspace, i.e.,

range(V) # K, ((L —ol)"(L— al)‘lk) (A14)

We want to avoid this here as well.

The underlying construction of V has to deal with orthogonalisation processes. Typi-
cally, there can be a significant loss of orthogonality due to round-off errors as an orthogo-
nalisation algorithm progresses. To resolve this problem and achieve a stable procedure
that keeps the moment matching accuracy high, a reorthogonalisation of a new computed
block with respect to all previous blocks is performed.

Remarks on the Reduced Solution

Based on the interior matching conditions and their associated calculations of fictitious
values at the interfaces, the reduced solution #, within (43) must be re-enlarged in each
time step into the original dimension by means of

i ~ Vil (A15)

Since the projection matrix V is not sparse the matrix-vector multiplication (A15)
increases the computational costs significantly in each iteration. For this reason, we strive
to avoid large-dimensional projection matrices for the GES application.
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Appendix A.6. KSMOR*: Test Example

We now describe the modified KSMOR* method at hand of a selected numerical
experiment. In particular, we demonstrate the general viability of our approach, which
makes it a candidate for efficiently solving large-scale dynamical systems with a large-
dimensional input vector.

For the sake of completeness and to shed light on the technical differences between
both methods, we analyse the quality of the solutions obtained through CN, KSMOR and
KSMOR* according to the Ly-error (48) recorded at a specific time tr. To this end, we
consider a two-dimensional linear heat equation on a rectangular domain Q) = [0, %] X
[0,2] equipped with time- and space-dependent boundary conditions. The diffusion
problem reads as

O (x,y, t) = adxxu(x,y,t) + bdyyu(x,y,t) + f(x,y), te [0t (A16)
where the fluxes and the source term are given by

1

= —F, b = —F,
= 182 272

f(x,y) = 2cos (3v2mx) cos (V2ry) (A17)

The corresponding external boundary conditions are fixed to

(A18)

with the initial condition specified as
u(x,y,0) = sin (37tx) cos (7y) + cos (3v/27x) cos (v27ty) (A19)
The resulting semi-discrete ODE system can be expressed via
i(t) = Lu(t) + g1+ Kepga(t) + Ky (1) + Kigha(0) + £, u(0) =0 (A20)
and its transformed system with zero initial conditions has the form
i(t) = Lu(t) + Kw(t), #(0)=0 (A21)

with
K = [81,Kg,, Ky, Kiy, £, L], (t) = (1,82(8), 1y (£), o (£),1,1) 1 (A22)

Furthermore, we set h = 0.02, T = 0.001 and tf = 5. In this case, the number of
grid points amounts to N = 7676 and the individual input dimensions result in g»(¢) €
R and hy(t), ha(t) € R76 with K, € R7676%101 and K, , K, € R7676%76, respectively.
In total, the input and the corresponding input matrix are of size @(t) € R?® and K €
R7676x25 regpectively.

To compare the performances of KSMOR and KSMOR?*, the result of the CN method
is used as a reference solution. Let us specify that the computational costs (expressed
in CPU time) of CN using sparse direct solver for the fixed parameters amount to 5.97
seconds. Obviously, the number of subspaces used within both KSMOR methods is still
a free parameter and influences the approximation quality as well as the efficiency of the
numerical schemes, see Figure Al. As expected, KSMOR leads to a reduction in the Ly-error
as the number of subspaces is increased, but the computational costs are significantly higher
compared to CN. Even if the subspace order g = 1 is used, the costs are almost twice as
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high. Thus, this experiment clarifies the inefficiency of KSMOR for problems with a large
number of inputs.

Conversely, the proposed KSMOR* method can be applied to tackle this problem.
For applying this approach, snapshot data are required for g, h; and hy, while the other
inputs are constant and can be ignored. To construct the snapshot-based input matrix
K € R7676x(3543) and the corresponding projection matrix V, the model is simulated using
the CN method for T = %F and the input data are stored as

Wi = [g2(t),....8(t)], Wa=[h(t),....l(ts)], Wi = [ha(t1),..., ha(ts)] (A23)
with Wy € R101%5 and W,, W5 € R76%S. The snapshot-based matrix is then determined via
K = [gl/ ng Wll Kh1 WZ/ Khz W3/ f/ Luo] (A24)

After the construction of V with ¢ = 0, the dimension reduction is applied to the
original system (A21). For the sake of convenience, the latter snapshot dependence on s
is abbreviated to KSMOR;. The results for KSMOR7, KSMORZ and KSMOR,, shown in
Figure A1l clearly demonstrate a much higher efficiency compared to CN and KSMOR.
For instance, using KSMOR;Z with g = 10 results in an excellent trade-off between quality
and efficacy and can save approximately 95% and 80% of the computational time in relation
to KSMOR and CN, respectively.

10°

3
g

. 1074 § 10!

= E

;i :

RIS :
& 10°
O

10712 b I I I
2 4 6 8 10
Ky
‘ CN -=aKSMOR —-KSMORj5 ——KSMOR} KSMORf,

Figure Al. Results for the test example (A16)—(A19) at a fixed time tr = 5. Comparison of the
Ly-error (left) and the CPU time (right) between KSMOR and KSMOR* for a different number of
Krylov subspaces KC;. The reference solution is computed with the direct CN method. In experiments,
we study different numbers of snapshots s = {2,5,10} used for the KSMOR* method, which is
abbreviated as KSMOR;. Obviously, the KSMOR* technique is much more efficient compared to the
original KSMOR method as well as the CN method.

Appendix A.7. Summary of Numerical Solvers

Classic explicit methods are based on extremely simple evaluations as their compu-
tational costs corresponds to sparse matrix-vector multiplications. They are very easy to
implement and due to their explicit nature well-suited for parallel computing such as GPUs.
Unfortunately, semi-discretised ODE systems such as (28) are known to be stiff with respect
to parabolic problems, meaning that explicit schemes suffer from severe time step size
restrictions on T to satisfy numerical stability; therefore, using a very small T generally
makes explicit methods unusable in practice.

In contrast, implicit methods may have no time step size restriction, but they require
the inversion of large sparse matrices. This means that a very large, sparse system of
equations must be solved at each time level, which can be computationally intensive
and more difficult to parallelise. Fortunately, the underlying system considered here
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is linear and can be efficiently solved by a factorisation or preconditioning technique
that is precomputed once only. In particular, they are relatively simple to implement or
rely on existing sophisticated software packages and have moderate computational and
memory complexity. Consequently, implicit schemes are usually the best choice when
considering linear parabolic problems; however, for applications with source terms and
internal /external boundary conditions, it has to be kept in mind that the contributions of
the sources must be updated at relatively small time intervals in order to obtain an accurate
simulation. Thus, implicit methods have to solve many large sparse systems of linear
equations, which leads to a high computational effort.

The accelerated explicit schemes FED and FSI are based on the decomposition of a
box filter that can be factorised into a cycle of explicit linear diffusion steps. In doing so,
the FED method uses stable and unstable time step sizes that violate the upper stability
bound of the EE scheme significantly. To overcome some of the drawbacks of the basic FED
method, the advanced version FSI can be used, which is based on a recurrence relation of
the box filters. In this way, the FSI method ensures internal stability and is therefore of
high practical use. In particular, both schemes are of explicit nature, well-suited for parallel
computing and highly efficient with low memory demand, which makes them ideal for
solving parabolic PDEs efficiently. They can easily be applied, assuming the underlying
model problem has negative real eigenvalues. More precisely, stability and convergence
are only theoretically guaranteed for symmetric negative semi-definite matrices, which is
the case for the GES application; however, the proposed fast explicit schemes are not very
suitable for extremely stiff parabolic problems, since extremely large eigenvalues require a
very large number of inner cycle lengths n to achieve stability. Overall, FED and FSI are
powerful solvers to efficiently solve parabolic problems with moderate stiffness, where the
latter property usually holds when using a uniform and not too fine spatial discretization
(as considered here).

MOR techniques are a popular tool for reducing computational complexity by approx-
imating the large-scale dynamical system with a reduced, low-dimensional dynamical sys-
tem while preserving the main characteristics of the original one. Nowadays, the KSMOR
technique is the most widely used MOR method for solving large-scale semi-discrete ODE
systems. Although moment matching methods are generally not stability preserving during
the reduction process, the stability of the reduced order model can be guaranteed if a one-
sided projection method, i.e., V = W, coupled with a negative semi-definite system matrix
is applied (which is the case here). Furthermore, this technique, which is implicitly based
on Krylov subspaces, often requires only a small dimension of the resulting reduced order
model. Consequently, the numerically stable KSMOR method requires a relatively low
computational effort and memory storage, which favours this technique for the reduction
in large-scale dynamical systems. Although KSMOR is indeed a simple, powerful tool and
has been extensively analysed over the past decades, there are still challenges within the
reduction process, especially when solving model problems with a high number of inputs.
To overcome this problem, we propose an adapted KSMOR* method that can solve systems
with many inputs in a highly efficient way. The practicability is also described and tested
using a test example.

Appendix B. A Synthetic Setup

In this experiment, we analyse the quality of the solutions obtained through the con-
sidered methods. To this end, we focus on the error measures at a fixed moment in time. We
do not consider a full error computation along the temporal axis because our methods yield
completely different sampling rates, potentially leading to unfair comparisons. In addition,
we also specify the Le-error defined as

Loo = i — Uj A25
.r?a>,<N|ul i | (A25)

i=1,...

to analyse the performances of the methods.
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We consider a simple linear heat equation on a two-dimensional square domain given by
Q = [0,1] x [0,1] equipped with mixed homogeneous Dirichlet boundary conditions on left
and right sides and homogeneous Neumann boundary conditions on top and bottom sides:

o (x,y, 1) = k (Quxut(x, Y, t) + 0yyu(x,y,t)), (x,y,t) € Qx [0, tf]
u(0,y,t) =u(l,y,t) =0, 9yu(x,0,t) =d,u(x,1,t) =0 (A26)
u(x,y,0) =x(1—x)y
The problem (A26) can be solved analytically using the method of separation of
variables and its solution is given by

A=(=D)") —xr®n’t

u(x/]// t) - 2 P e Sin(?lﬂx)

e

—_
(o)}

393 (D" =D((=1)" 1) k7 (n?+m? )t sin(nrx) cos(mmy)  (A27)
n=1m=1

5 n3m?

3

Considering these boundary conditions results in K = 0, i.e., no input vector w(t)
exists, and therefore the corresponding semi-discrete problem reads as

{ﬂ(t) Lu(t)
(A28)
y(t) = u(t), u(0) =u’

This implies that the original KSMOR method can be used here. Moreover, the Lapla-
cian matrix L is negative definite. The still free model parameters are fixed totp =1, x =1
and & = 0.01 (N = 10201 grid points). Let us note that for comparison with the ground
truth we took great care to evaluate the analytical solution in power series form as accu-
rately as possible. To this end, we truncated the summation at n = m = 10. The results of
the numerical evaluation for varying cycle numbers M and time step sizes T are presented
in Table A1.

Results on EE: For the numerical solution of the artificial model problem via the
EE method, the knowledge of the upper bound Tnmay is necessary. According to Gersh-
gorin’s circle theorem the time step size restriction is given by Tmax = 2.5 x 107> seconds.
Consequently, the application of EE requires performing 40,000 iterations and leads to a
simulation time of around 3.6 seconds. A reduction in Tmax does not give better results;
compare Table Al.

Results on FED and FSI: The evaluation of the explicit schemes FED and FSI clearly
demonstrate their numerical properties and performances, mentioned in Section 4.1.1. Both
methods achieve exactly the same output; however, the FSI method is more efficient.

Table Al. Evaluation of the accuracy of the suggested methods at tr = 1 on the artificial setup from
(A26). The analytical solution (A27) is evaluated with ¥ = 1 and the summation over n and m is
truncated at n = m = 10. The grid size is fixed at i = 0.01. The stopping criterion of the CG method is
based on the Euclidean norm of the relative residual with ¢ = 10~%. Moreover, KSMOR is performed
for K4 and ¢ = 0, whereby g = 4 is sufficient to achieve the same results than the direct CN method.

Method TorM Loo L, CPU(s)
EE Tmax 3.02 x 107 222 x 1074 3.58
Tmax/ 10 3.03 x 107 223 x 1074 41.53
M=10 6.18 x 10~ 439 x 1074 0.19
M =100 1.38 x 1076 1.04 x 1074 0.59
FED > .
M = 1000 2.85 % 10 210 x 10 1.87

M = 5000 299 x 10 220 x 1074 422
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Table Al. Cont.

Method TorM Lo L, CPU(s)
M=10 6.18 x 10 439 x 1074 0.13
FSI M =100 1.38 x 10~° 1.04 x 1074 0.42
M = 1000 2.85x%x 107 2.10 x 1074 1.32
M = 5000 2.99 x 10~ 220 x 10~4 2.95
T=25x10"2 3.70 x 1073 331 x 1072 0.08
Direct CN T=25x10"3 3.03 x 10~° 222 x 1074 0.61
T=25x10"* 3.03 x 10~ 223 x 1074 5.91
T=25x10"2 3.70 x 1073 3.31 x 1072 0.61
Iterative CN T=25x10"3 3.03 x 10~ 222 x 1074 1.18
T=25x10"* 3.01 x 10 221 x 1074 3.57
T=25x10"2 3.70 x 1073 3.31 x 1072 0.03
KSMOR T=25x10"3 3.03 x 10~ 222 x 1074 0.04
T=25x10"* 3.03 x 10 223 x 1074 0.06

Results on Direct and Iterative CN: As expected, the CN method substantially outper-
forms the EE method. Using T = 2.5 x 103 produces results with same accuracy, but in
significantly less CPU time. Furthermore, it is obvious that the direct solver outperforms
the iterative solver for ¢ = 10~%. The iterative CN is only more efficient when using small
time increments, which is a consequence of a faster convergence rate due to the small
condition number. Note that due to the small size of the linear system, preconditioning
is not conducive and the iterative CN method is performed employing the CG scheme.
In addition, Table A2 shows a comparison for different values of e. Using ¢ = {107,107}
as stopping criterion generates the same accuracy results as the direct solver.

Results on KSMOR: As mentioned in Section 4.3.1, the system (A28) is firstly trans-
formed into a system with zero initial conditions. Based on the matrix definiteness, the
expansion point is fixed with ¢ = 0 and the projection subspace V = K, (L~!, L~1Lu?) is
generated using the Arnoldi method. In this experiment we observe that matching the first
g = 4 moments works optimally. In this case, the KSMOR method computes extremely fast
approximations and generates exactly the same results as the original full CN method.

Outcome: Obviously, the EE scheme is the most accurate method, whereby the ap-
proximations of all other methods converge towards the EE result. In total, the KSMOR
technique is incredibly computationally fast with the same accuracy compared to the direct
CN scheme, thus demonstrating its superior performance.

Table A2. Comparison of the iterative CN scheme linked to the CG method in terms of the termination
of the algorithm using the relative residual for different values of &. We evaluate the accuracy of the
artificial setup (A26) at tp = 1 for the grid size h = 0.01. The analytical solution (A27) is evaluated
for k = 1 and truncated at n = m = 10.

Iterative CN € Loo L, CG-iter CPU(s)

95 1 T0,4 g=10"° 3.03x10°° 223 x107* 14342 435
e=10"° 3.03 x 107° 223 x 1074 12470 411
e=10"* 3.01 x 10~ 221 x 1074 10653 3.51
e=10"3 213 x107° 1.56 x 1074 9224 3.25
=102 1.82 x 1076 1.33 x 1074 9274 3.31

e=10"1 6.46 x 1076 459 x 10~4 9262 3.30
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Appendix C. Geothermal Energy Storage Simulation without Source

Appendix C.1. Results on Direct CN

We examine the performance using the sparse direct solver applied to IE and CN. The
results illustrated in Figure A2 demonstrate the expected superiority of the CN scheme due
to its second-order accuracy in time. For this reason, the IE method is not considered in

this work for the GES application.

600

400

Lo-Error

200

CPU time in seconds

-------- Direct IE~ —— Direct CN

Figure A2. Results of the two-dimensional GES experiment without source: comparison of the L,-
error and corresponding CPU time between direct IE and direct CN at tr = 2.609 x 10° for h = 0.04.
The reference solution is computed using EE. The CN scheme clearly outperforms the IE method.

Appendix C.2. Results on KSMOR

The performance of the original KSMOR technique for g = {2,3,5} is shown in
Figure A3. The reduction technique provides very reasonable results, but is also linked to
extremely high computational costs. This is hardly surprising as a common weakness of
KSMOR is the handling of large-scale input vectors.

600

400 |- y

Lo-Error

200 -

0 400 800 1,200

CPU time in seconds

[y Ky —Ks

Figure A3. Results of the two-dimensional GES experiment without source: comparison of the L;-
error and the corresponding CPU time using KSMOR at tr = 2.609 x 10° for = 0.04. KSMOR is used
by constructing subspaces with @(t) € R1%, K € RN*110 for g — {2 3,5}, The reference solution is
computed using EE. The results are accurate, but also linked to extremely high computational costs.
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10%

Lo-error

CPU time in seconds

10!

Cycles M Cycles M

\ FSI - FED-updated —— FSL-updated \

Figure A4. Results of the two-dimensional GES experiment without source: comparison of the
computed Ly-error (left) and the corresponding CPU time (right) between FSI, FED-updated and
FSI-updated for a different number of cycles M at tr = 2.609 x 10° for i = 0.04. The reference
solution is computed with the EE method. To ensure numerical stability within the FED method
we apply a Leja-ordering with x = 7, for more details see [17]. Inner updates significantly improve
the performance of both schemes; however, FED-updated may lead to highly unstable intermediate
solutions and therefore also affects the final numerical solution, especially if a small number of cycles
M is used. Contrary, FSI-updated is absolutely stable and causes lower computational costs than
FED-updated.

Appendix C.3. Results on FED and FSI

We experimentally confirm the considerations mentioned in Section 4.1.1. For the
realisation, the differences between the basic scheme and the adapted versions using inner
updates of w"* are examined in Figure A4. In case of the basic scheme, we only consider
the FSI technique, since both methods yield equally numerical solutions. Let us first note
that FED and FSI using inner updates cannot provide the same output any more because
the schemes are built on different integration points. For convenience only we denote
the adapted versions here as FED-updated and FSI-updated. As expected, FED-updated
is highly unstable, especially for a small number of cycles M. The latter fact is due to
unstable intermediate solutions as a consequence of a rearrangement, where we used the
Leja-ordering with ¥ = 7 as suggested in [17]. This implies the use of a relatively large
cycle Number M, nevertheless, a stable solution is not guaranteed. In contrast, FSI-updated
provides stable solutions and is additionally much more efficient.

Using the basic FSI scheme is less computationally intensive than using FSI-updated,
at the cost of a significant loss of performance. The lack of efficiency between the two FSI
versions is also presented in Figure A5.

600 s

400

Lo-Error

200

5 10 15

CPU time in seconds

[ FSI — FSlupdated |

Figure A5. Results of the two-dimensional GES experiment without source: comparison of the
Ly-error and the corresponding CPU time between FSI and FSI-updated at tfr = 2.609 x 106 for
h = 0.04. The reference solution is computed with the EE method. The scheme FSI-updated clearly
outperforms their counterpart without inner updates.
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Appendix C.4. Results on a Finer Grid

The performances of the proposed methods should also be taken into consideration on
a finer grid. Especially in case of explicit methods, where the involving stability requirement
depends quadratically on the spatial grid size. Moreover, the computational costs of solving
linear equations belonging to very large systems are also of interest.

Therefore, we rerun the experiment for z = 0.01, which corresponds to N = 1,502,501
grid points. The upper bound is given by Tmax = 26.09 and applying EE requires 100,000
iterations, which leads to a simulation time of around 2800 s. The final outcome, illustrated

in Figure A6, gives exactly the same rating as before, again, the FSI method achieves
significantly higher efficiency.

800 (r—
= : :" "\
=400 L sy .
[l ' L
»q \‘ . B

200\ =~

O | l
0 500 1,000 1,500
CPU time in seconds
- MIC(1072) e Direct CN --- KSMOR*  —— FSI

Figure A6. Results of the two-dimensional GES experiment without source: comparison of the
Lp-error and the corresponding CPU time between MIC(10~2), direct CN, KSMOR* and FSI at
tr = 2.609 x 10° for h = 0.01 (N = 1,502,501 grid points). KSMOR* is performed with ¢ = 3 and
s = 20. The reference solution is computed with the EE method. The FSI method clearly outperforms
all other methods even for finer grids.

Appendix D. Geothermal Energy Storage Simulation on Real Data
Appendix D.1. Initial Heat Distribution
The initial heat distribution shown in Figure A7 builds upon given temperature probes

and is generated by Laplace interpolation as described in Section 2.4. For a more precise

start initialisation via (10), the model problem (11) is equipped with suitable boundary con-
ditions.

11

10
4

9
6
8 8
0 10 20

Figure A7. The initial heat distribution computed via Laplace interpolation using the initial tempera-
ture given by temperature probes at time = 0, see Section 2.4. The interpolation task is performed

N

with suitable boundary conditions.
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Appendix D.2. Results for Temperature Probe B1

In addition to the results previously shown in Figures 11 and 12, we give in Table A3 a
further evaluation with respect to temperature probe B1 (cf. middle column) for varying
cycle numbers M and time step sizes T, which is useful to better classify the accuracy of
the different methods with the findings described in this work. In this context, the Leo-
and Ly-errors regarding the entire simulation domain (cf. right column) at the stopping
time tr are also compared. A deeper analysis of Table A3 clearly shows that FSI is the
most efficient method, whereas direct CN provides the worst performance. The KSMOR*
method also provides fast and accurate local solutions (away from interfaces), as indicated
by the Le- and Ly-errors along the temporal axis shown in the middle column. Conversely,
as already mentioned, accurate global solutions are provided only for a reasonably high
number of snapshots and Krylov subspaces. The latter aspect is observable from the
error measurements for the entire simulation domain in the right column, more precisely,
the values for the Lo- and Ly-errors do not converge toward the reference solution when
KSMOR* with g = 2, s = 10 is used.

Table A3. Results of the GES experiment with real data: evaluation of the accuracy and the corre-
sponding CPU time between FSI, direct CN and KSMOR* with g = 2, s = 10. The parameters are
fixed to tp = 21 x 10° and i = 0.04 (N = 100,701 grid points). Special care should be taken because
the errors presented with respect to L and L; are evaluated in two ways: errors evaluated along the
temporal axis (middle) and at the stopping time tr (right) for temperature probe Bl (3rd from the
top) and the entire simulation domain, respectively. The reference solution is computed with EE.

Method TorM CPU(s) Lo Ly Lo L,
M =10 2.17 5.16 963.39 7.23 279.33
FSI M =50 4.57 1.42 219.99 1.78 85.98
M =100 6.53 1.03 99.51 0.41 23.18
M =400 12.73 0.33 35.95 0.27 8,97
M = 1000 19.89 0.09 8.01 0.16 4.47
M = 4000 40.81 0.02 1.48 0.03 0.75
T=
0.53 13.75 4141.33 6.51 538.29
6
Direct CN 2'10?{22 10
42163 x 105 1.33 7.96 2463.05 4.22 311.91
T=
1.0541 x 10° 4.34 4.16 1165.35 1.05 100.59
T = 35136 12.39 1.69 465.06 0.44 52.09
T = 21082 20.29 1.06 270.81 0.34 26.88
7 = 10800 40.61 0.56 147.87 0.18 18.28
T =
2.16 13.74 4138.84 6.51 542.28
6
KSMOR* 2.108Tz:x 10
1.0541 x 10° 294 4.16 1154.36 1.51 100.81
T = 21082 6.22 1.09 256.36 0.91 38.07
T = 6912 14.48 0.39 82.49 0.97 33.01
T = 3904 22.58 0.24 47.57 0.98 32.50
T = 2196 4295 0.17 34.71 0.99 32.65
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