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Abstract

Toward Annotation Efficiency in Biased Learning Settings for Natural Language Processing

Thomas Effland

The goal of this thesis is to improve the feasibility of building applied NLP systems for

more diverse and niche real-world use-cases of extracting structured information from text. A

core factor in determining this feasibility is the cost of manually annotating enough unbiased

labeled data to achieve a desired level of system accuracy, and our goal is to reduce this cost. We

focus on reducing this cost by making contributions in two directions:

1. Easing the annotation burden by leveraging high-level expert knowledge in addition to

labeled examples, thus making approaches more annotation-efficient.

2. Mitigating known biases in cheaper, imperfectly labeled real-world datasets so that we may

use them to our advantage.

A central theme of this thesis is that high-level expert knowledge about the data and task can

allow for biased labeling processes that focus experts on only manually labeling aspects of the

data that cannot be easily labeled through cheaper means. This combination allows for more

accurate models with less human effort. We conduct our research on this general topic through

three diverse problems with immediate applications to real-world settings.

First, we study an applied problem in biased text classification. We encounter a rare-event

text classification system that has been deployed for several years. We are tasked with improving

this system’s performance using only the severely biased incidental feedback provided by the



experts over years of system use. We develop a method that combines importance weighting and

an unlabeled data imputation scheme that exploits the selection-bias of the feedback to train an

unbiased classifier without requiring additional labeled data. We experimentally demonstrate that

this method considerably improves the system performance.

Second, we tackle an applied problem in named entity recognition (NER) concerning

learning tagging models from data that have very low recall for annotated entities. To solve this

issue we propose a novel loss, the Expected Entity Ratio (EER), that uses an uncertain estimate of

the proportion of entities in the data to counteract the false-negative bias in the data, encouraging

the model to have the correct ratio of entities in expectation. We justify the principles of our

approach by providing theory that shows it recovers the true tagging distribution under mild

conditions. Additionally we provide extensive empirical results that show it to be practically

useful. Empirically, we find that it meets or exceeds performance of state-of-the-art baselines

across a variety of languages, annotation scenarios, and amounts of labeled data. We also show

that, when combined with our approach, a novel sparse annotation scheme can outperform

exhaustive annotation for modest annotation budgets.

Third, we study the challenging problem of syntactic parsing in low-resource languages.

We approach the problem from a cross-lingual perspective, building on a state-of-the-art

transfer-learning approach that underperforms on “distant” languages that have little to no

representation in the training corpus. Motivated by the field of syntactic typology, we introduce a

general method called Expected Statistic Regularization (ESR) to regularize the parser on distant

languages according to their expected typological syntax statistics. We also contribute general

approaches for estimating the loss supervision parameters from the task formalism or small

amounts of labeled data. We present seven broad classes of descriptive statistic families and

provide extensive experimental evidence showing that using these statistics for regularization is

complementary to deep learning approaches in low-resource transfer settings.

In conclusion, this thesis contributes approaches for reducing the annotation cost of

building applied NLP systems through the use of high-level expert knowledge to impart



additional learning signal on models and cope with cheaper biased data. We publish

implementations of our methods and results, so that they may facilitate future research and

applications. It is our hope that the frameworks proposed in this thesis will help to democratize

access to NLP for producing structured information from text in wider-reaching applications by

making them faster and cheaper to build.
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Chapter 1: Introduction

In recent decades, much of the world’s information has become digitized, amassing unfath-

omable stores of raw text data in the form of natural language. This massive volume of readily

available unstructured text holds within it the promise for vastly expanding human knowledge.

The potential applications are virtually infinite: political analysis (Laver et al., 2003; Grimmer and

Stewart, 2013; Glavas et al., 2019; Nanni et al., 2021), disaster response (Palen et al., 2010; Imran

et al., 2013; Kedzie et al., 2015; Alam et al., 2018), clincal health (Zhou et al., 2014; Pradhan

et al., 2015; Halpern et al., 2016; OliverJ.BearDon’tWalk et al., 2021), public health (Gesualdo

et al., 2013; Harris et al., 2014; Eichstaedt et al., 2018; Karamanolakis et al., 2019c), consumer

opinion/sentiment (Ghani et al., 2006; Putthividhya and Hu, 2011; Petrovski and Bizer, 2017;

Çataltaş et al., 2020; Karamanolakis et al., 2020; Fong et al., 2021), and law (Li et al., 2012; Sim

et al., 2016; Aletras et al., 2016; Chalkidis et al., 2020), just to name a few. Some of the greatest

potential for this information to create value is in areas of specialized knowledge-work where ex-

perts would like to comb through significant amounts of written information to help them do their

jobs.

Yet, grappling with the scale of this data is the main bottleneck to using large text corpora for

producing knowledge (Bush et al., 1945). Individuals and organizations simply do not have enough

time and resources to read and organize all of the required information buried in the relevant

mountains of text. With their incredible speed and ability to scale, computational solutions that

use natural language processing (NLP) to extract structured knowledge from unstructured text are

a promising tool for overcoming this scaling challenge.

The goal of this thesis is to improve the feasibility of building NLP systems for more di-

verse and niche real-world use-cases. A core factor in determining this feasibility is the cost of

manually annotating enough unbiased labeled data to achieve a desired level of system accuracy,
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and our goal is to reduce that cost. Standard approaches using supervised learning can easily

become prohibitively expensive for new applications where practitioners do not have sufficient

resources (Dahlmeier, 2017). In these “low-resource” scenarios, practitioners need solutions that:

1. Have high “annotation-efficiency”, requiring fewer manually annotated data to achieve suf-

ficient levels of accuracy.

2. Allow for usage of imperfectly labeled data for training models. That is, data that are biased

in the sense that they do not come from the same distribution of inputs and labels as the data

that will seen in practice. This is necessary because it is often possible to find valuable but

imperfectly labeled datasets at significantly lower cost than manual annotation. Some exam-

ples include datasets that come from biased feedback sources, are only partially annotated,

or are from other input domains or languages.

If we are ever to democratize access of NLP for applications that meet the needs of everyone and

not just large institutions, we need methods that work in these low-resource situations and alleviate

the large manually labeled annotation requirements of standard supervised learning.

We approach this problem by focusing on improving this core cost/accuracy trade-off, with a

focus on two directions:

1. Easing the annotation burden by leveraging high-level expert knowledge in addition to la-

beled examples, thus making approaches more annotation-efficient.

2. Mitigating known biases in cheaper, imperfectly labeled datasets so that we may use them to

our advantage.

A central theme of the thesis is that high-level expert knowledge about the data and task can play

double-duty — not only can it be used to derive additional supervision signal that improves the

annotation-efficiency of models, making them more accurate with fewer labels, but it can also

be used to counteract biases in the dataset collection process. Further, their combination may be

greater than the sum of the individual parts and used to our advantage: high-level expert knowledge
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can allow for biased labeling processes that are even less costly for the experts while still provid-

ing key strong supervised learning signal that cannot be not easily obtained by cheaper means. For

example, in named entity recognition (Chapter 3) we can allow annotators to quickly skim and

inexhaustively annotate documents to produce a wider variety of examples in a short amount of

time. This process comes at the expense of completeness, though, and introduces a bias in the

data. We can then use expert knowledge about the problem to correct for this bias during training.

Ultimately the combination of this quicker, biased process and corrective high-level expert knowl-

edge can allow for more accurate models to be produced at modest annotation budgets compared

to exhaustive annotation.

1.1 Background

Supervised learning has been the dominant paradigm in applied NLP, in some way or another

underpinning nearly every successful real-world NLP application. Under this paradigm, domain

experts break down their information needs into well-defined ontological categories, hierarchies,

and structures, called “task specifications,” that define the space of possible outputs they desire the

model to predict from text. Given this specification, they must annotate sufficiently large unbiased

samples of individual text examples with the desired outputs of the model. A parameterized model

is then trained on this labeled corpus to reproduce the outputs given the inputs, with the hope

that the learned model will generalize to new inputs from the same domain. In the last decade,

significant progress in deep learning model architectures (Mikolov et al., 2013; Bahdanau et al.,

2014; Vaswani et al., 2017) has propelled supervised learning to higher and higher accuracies while

simultaneously reducing the burden on the applied modeler to design input featurizations of the

text (“feature engineering”) or model architectures (“architecture engineering”).

This supervised learning approach does have significant drawbacks, however, that make it dif-

ficult to apply in many areas. Supervised learning is in general “annotation hungry” (Liang, 2005;

Ratner et al., 2017). Additionally, the more complex the prediction task is, the harder it is to an-

notate for, and this increases the cost of producing a sufficiently large labeled corpus. Further,
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labeling in this paradigm assumes that the task specifications are complete and static which is

rarely the case. In practice, task specifications often need iterated revisions (it is difficult to define

an ontology with no errors from the outset) or could fundamentally be dynamic in nature, such as

situations where new classes of relevant entities emerge over time (Derczynski et al., 2017). In

some situations, practitioners attempt to use ad-hoc heuristics and rules for selecting and/or la-

beling the data in an attempt to alleviate the burden of manually labeling unbiased samples, but

this often introduces other problems. When used with standard supervised learning that assumes

independent and identically distributed (IID) samples, the biases in the ad-hoc data translate to bi-

ased models that underperform in ways that can be hard to measure (Wang et al., 2015; Yin et al.,

2022). 1

On the opposite end of the learning methodology spectrum lie unsupervised approaches, such

as clustering (Brown et al., 1992; Toutanova et al., 2004), autoencoders (Vincent et al., 2010), and

generative models (Kingma and Welling, 2013). These approaches do not use directly labeled

examples, instead attempting to identify inherent patterns in the data. Unfortunately these models

are often not directly applicable to most of the “inference” NLP tasks that we are concerned with,

as the patterns and representations of the data that they identify are general in nature and often do

not directly translate to the specific tasks defined in the task specifications.2

However, the representations they extract often do carry some implicit information relevant

to the target prediction tasks and have been shown to be useful as features (Liang, 2005) and

initializations of supervised models (Devlin et al., 2019). In particular, recent advances in “self-

supervised” language model pretraining of large generic models such as Peters et al. (2018a);

Devlin et al. (2019); Radford et al. (2019) and Lan et al. (2019) have shown that high-capacity

deep learning architectures with a large number of parameters can be “pretrained” on massive raw

text corpora with generic objectives and then utilized downstream on more specific applications

1This bias is often so hard to measure because test data used for measuring performance is typically sampled
from the originally collected dataset, implying that it is also biased with respect to real data generated by the in-use
application and therefore fundamentally flawed as a measuring instrument.

2Once exception to this are recent results in prompting of large autoregressive language models (Radford et al.,
2019). While these results are exciting, the current state of these methods also have disadvantages, which we discuss
below.

4



with impressive benefits.

These self-supervised language model pretraining methods can be grouped into two types, with

different advantages. The first are cloze-like objectives where the model is tasked with predicting

missing words or phrases given the rest of the utterance (Devlin et al., 2019; Lan et al., 2019;

Joshi et al., 2020). These models have been shown to be quite useful as pretrained initializations

of target application architectures that are subsequently “fine-tuned” on supervised task data with

great benefit to the application’s cost/accuracy trade-off (Devlin et al., 2019) — either models

with similar accuracy can be produced with much less labeled data, or can be made significantly

more accurate with larger datasets. The second type are traditional language-model objectives

that aim to predict the next word given the sentence prefix (Radford et al., 2019). These models

tend to underperform as initializers for fine-tuning in inference tasks (Liu et al., 2019a) but, unlike

cloze-style models, they are able to generate continuations of arbitrary length. When taken to

enormous scales of capacity (i.e., billions of parameters), these models have recently demonstrated

the remarkable emergent ability to solve prediction tasks whose specifications and examples are

provided through the input text prefix itself as “prompts”, instead of as learning signal that modifies

the model parameters through optimization (Radford et al., 2019).

In this thesis, we do not eschew these recent advances and instead aim to make contributions

that complement their benefits. In particular we focus on approaches that are compatible with

the former “fine-tuning” methodology as opposed to the latter “prompt” methodology for three

reasons: (1) fine-tuning methods are more amenable with leveraging large and diverse information

sources that can be introduced through learning – prompt methods are not practically tunable;

(2) fine-tuning approaches are compatible with other output structures that are not just sequences

of tokens, and it is generally more clear how to use them in tandem with structured prediction

advances for highly structured tasks such as syntax parsing; and (3) due to their sheer model

size, state-of-the-art prompting models require extensive computational resources and thus are less

accessible as they typically require usage of externally hosted apis.3

3We do not wish however to downplay the likely benefits of prompting-based methods in future work. In particular,
prompt-based fine-tuning methods (e.g., (Shin et al., 2021)) and the use of prompting as a "teacher" for generating
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Using unsupervised data as a preliminary feature-induction/transfer step before training a su-

pervised model is only one of many approaches that fall under the umbrella of semi-supervised

learning (SSL). Another class of approaches in more traditional conceptions of SSL aim to use su-

pervised data and unsupervised data simultaneously. Bootstrapping methods such as self-training

(Yarowsky, 1995; Agichtein and Gravano, 2000), co-training (Blum and Mitchell, 1998; Collins

and Singer, 1999; Wang et al., 2011; Clark et al., 2018), tri-training (Zhou and Li, 2005; Saito

et al., 2017) all use current iterations of a model or a diverse set of models to label unlabeled ex-

amples, growing the training set, and then retrain the models in an iterative cycle that attempts to

automatically improve the model with less data. A main disadvantage of bootstrapping approaches

is that the model’s predictions create labeling noise and feedback loops that can cause them to drift

or fail to converge. Another approach to semi-supervised learning is multi-task learning (Caruana,

2004), where the underlying model parameters are at least partially shared while making predic-

tions for different tasks. This brings the advantage of potentially pooling multiple smaller datasets

together to act as a larger dataset (Wang et al., 2018), but has been shown to be highly dependent

on the relatedness of the multiple tasks, which is itself hard to quantify or predict (Zhang and Yang,

2021).

One particular flavor of SSL worth noting is “weak” supervision. It differs from traditional SSL

in that it attempts to utilize weaker or incomplete sources of signal rather than “strong” signals such

as complete labels from humans or other models. Early examples of this methodology include

“distant supervision” from databases for relation extraction (Mintz et al., 2009) and rule-based

label propagation of Wikipedia hyperlinks for named entity recognition (Nothman et al., 2013).

More recently, several approaches to weak supervision, such as Snorkel (Ratner et al., 2016a, 2017;

Bach et al., 2019) and others (Pal and Balasubramanian, 2018; Kang et al., 2018; Sun et al., 2018;

Karamanolakis et al., 2019b; Awasthi et al., 2020; Karamanolakis et al., 2021), bring back high-

level but incomplete expert knowledge in the form of keywords and rules that were traditionally

engineered as input features but instead use them as weak models to heuristically label datasets

silver-labeled data that can be used to fine-tune a "student" model (He et al., 2022) are exciting directions.
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that are then used to supervise other stronger models, such as pretrained language models. These

approaches are exciting in that they better combine the best of both worlds, utilizing pretrained

language model architectures with strong generalization capabilities in addition to high-level expert

knowledge about the target task, which can often be worth many manually labeled examples.

The current state of weak supervision does still have drawbacks though. One primary drawback

of current weak supervision approaches is their focus on labeling individual text examples. Many

methods are primarily concerned with turning weak signals into concrete estimates of “silver” la-

bels for individual examples that are then used as training data in a standard supervised learning

setup. This conception is restrictive in that it does not provide a means of using many abstract

types of expert knowledge that bear on the output task distribution by itself, such as general expec-

tations about label proportions in the data irrespective of any particular input. A second concern is

that weak labeling rules, though better handled than in ad-hoc setups, may still contain significant

biases that ultimately are reflected in the final model. For example, if experts write rules that sys-

tematically miss or incorrectly label certain groups data, the final models most likely will as well.

A third challenge in weak supervision is using it for structured prediction tasks; most approaches

are concerned with classification problems. This is mainly due to the fact that annotating complex

structures requires specification of many related variables for every text example, and the use of

weak rules typically do not have high enough coverage to successfully specify estimated structures

completely, leading to unusable or biased labelings. While there have been some attempts to work

with these incomplete labelings in the past (Tsuboi et al., 2008; Sassano and Kurohashi, 2010;

Mirroshandel and Nasr, 2011), generally these approaches are concerned with manually generated

partial labelings and their combination with weak supervision is under-explored.

In general we advocate for a combination of learning paradigms that brings to bear the comple-

mentary advantages of unsupervised learning, weakly supervised learning, and traditional super-

vised learning. Unsupervised learning can be used to pretrain and initialize models with effective

generalization capabilities, then weak supervision and traditional (strong) supervised learning can

be used train the model for the end task, with weak supervision providing broad but shallow in-
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struction about the target task while strong supervision provides deep but narrow instruction.

1.2 Three Real-World Problems and Solutions

We conduct our research on this general topic through three diverse problems with immediate

applications to real-world settings.

Rare-Event Text Classification for Public Health In the first part of this thesis, we study an

applied problem in biased text classification. We encounter a rare-event text classification system

that has been deployed for several years, used by epidemiologists at the NYC Deparment of Health

and Mental Hygiene (DOHMH) to identify foodborne illness in online restaurant reviews. The

purpose of the system is to classify all of the Yelp restaurant reviews for NYC and present only

those that are likely to discuss food poisoning for review and potential further investigation by

epidemiologists.

We are tasked with improving this system’s performance using the labeled feedback provided

by the epidemiologists over the years, but these data are heavily biased for two reasons. First, the

original system model was biased because it built in an ad-hoc fashion, where keywords related to

the positive class, such as “food poisoning” or “vomiting”, were used to search an initial corpus

of reviews and then labeled for the target class, breaking IID assumptions of standard supervised

training. Second, and perhaps more importantly, the epidemiologists had only reviewed and labeled

examples already predicted as positive by the system. This resulted in a highly selection-biased

labeled dataset that was unfit for standard supervised training. Further, we cannot ask them to

label a large unbiased sample for training since the classes are extremely imbalanced and the

epidemiologists have little time for annotating – the feedback they have been giving has only been

incidental through their use of the system for their real jobs.

Keeping within these constraints, we develop a method that combines importance weighting

and an unlabeled data imputation scheme that exploits the selection-bias of the previous model to

train an unbiased classifier using the incidental biased feedback data. We demonstrate that this
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method considerably improves the system performance while remaining unbiased. Though our

application setting is specific, our contribution can be applied to any deployed rare-event classifi-

cation system that we want to periodically improve using biased incidental feedback. This work is

published in Effland et al. (2018).

Partially Supervised Named Entity Recognition In the second part of this thesis, we tackle an

applied problem in named entity recognition (NER) concerning learning named entity recognizers

in the presence of missing entity annotations. That is, the labeled data have acceptable precision

for labeled entities, but very low recall. This presents a serious problem in the context of NER,

because of the popular “closed world” annotation scheme that assumes all non-annotated spans of

text must be nonentities, which introduces a significant bias and leads to unusable models in many

realistic cases. This setting is applicable to situations such as distant supervision with gazatteers or

hyperlinks (Nothman et al., 2008), labeling by non-native speakers (Mayhew et al., 2019), and ex-

ploratory expert annotators with time constraints that skim documents and inexhaustively annotate

to gather more diverse contexts for a given time budget.

We approach this setting as sequence tagging with latent variables and propose a novel loss,

the Expected Entity Ratio (EER), to learn models in the presence of systematically missing tags.

In addition to marginal likelihood training (Tsuboi et al., 2008), our loss adds a regularization term

that uses an estimate of the proportion of entities in the data to counteract the data bias, encouraging

the model to have the correct ratio of entities in expectation.

We justify the principles of our approach by providing theory that shows it recovers the true

tagging distribution under mild conditions. Additionally we provide extensive empirical results

that show it to be practically useful. Experimentally, we find that it meets or exceeds performance

of strong and state-of-the-art baselines across a variety of languages, annotation scenarios, and

amounts of labeled data. We also show that, when combined with our approach, a novel sparse

annotation scheme outperforms exhaustive annotation for modest annotation budgets. This work

is published in Effland and Collins (2021).
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Syntactic Parsing in Low-Resource Languages In the third part of this thesis, we study the

challenging problem of syntactic analysis (part of speech (POS) tagging and dependency parsing,

henceforth referred to as just “parsing”) in low-resource languages. This problem is of significant

importance, as expanding the coverage of linguistic analysis to all of the world’s seven thousand

languages is a primary goal toward producing equal representation and access of language tech-

nologies around the world, in addition to its inherent scientific value.

We approach the problem from a cross-lingual perspective, building on a state-of-the-art thread

of research that combines multilingual pretraining with multilingual, multitask fine-tuning (Kon-

dratyuk, 2019) for the Universal Dependencies data (Nivre, 2020). While the parser has impressive

accuracy for many languages, it has still greatly underperforms on “distant” languages that have

little to no representation in the pretraining and fine-tuning corpus.

Motivated by field of syntactic typology, we introduce a method to regularize the parser on dis-

tant languages according to the expected typological statistics of the target language. We call our

method Expected Statistic Regularization (ESR), as it uses expectations of high-level descriptive

statistics about model behavior on target distributions to guide the model toward more sensible

outputs, even in the presence of little to no labeled data. ESR is a significant generalization of

the EER loss in our NER work. The class of descriptive statistics usable by ESR are expressive

and powerful. For example, they may describe cross-task interactions, encouraging the model to

obey structural patterns that are not explicitly tractable in the model factorization. Additionally,

the statistics may be derived from constraints dictated by the task formalism itself (such as ruling

out invalid substructures) or by numerical parameters that are specific to the target dataset distri-

bution (such as relative substructure frequencies). In the latter case, we also contribute a method

for selecting those regularization parameters using small amounts of labeled data, based on the

bootstrap (Efron, 1979).

We present seven broad classes of descriptive statistic families, some of which have been used

in previous parsers as features but have been sidelined in recent years by deep learning approaches.

We provide extensive experimental evidence showing that these statistics are still useful and com-
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plementary to deep learning approaches as regularizers in low-resource transfer settings, most

notably when the target languages are distant with respect to the pretraining data. Additionally, we

provide learning curve experiments that show our method to be quite effective when paired with

small amounts of labeled data in the target language, and ablation studies that justify other key

design choices of our approach. This work is accepted for publication pending minor revisions at

TACL. (The revisions are incorporated in this thesis.)

1.3 Contributions

Our key contributions can be summarized as follows:

1. We propose a novel approach to improving a deployed rare-event classification with biased

incidental feedback (Effland et al., 2018). Specifically we contribute:

(a) A method for improving and debiasing the deployed system using a combination of im-

portance weighting and data imputation that exploits the selection bias of the previous

system iteration without requiring additional labels from domain experts.

(b) A detailed evaluation and error analysis of the method for two applied tasks in rare-

event text classification. Our evaluation shows that our method improves precision and

recall of the resulting model and counteracts the training data bias.

(c) Considerable improvements in performance of a real-world deployed rare-event text

classification system with immediate impact.

2. We propose a novel approach for learning named entity recognition models using biased,

partially labeled data (Effland and Collins, 2021). Specifically we contribute:

(a) A principled method that utilizes a weak and uncertain expert prior about the relative

occurrence rate of entities in the text to train accurate NER models using low-recall

data.
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(b) Theory justifying the statistical consistency of the approach, proving that our approach

recovers the true tagging distribution in the limit of infinite data under mild conditions.

(c) Extensive benchmark comparisons showing that our method equals or outperforms pre-

vious state-of-the-art approaches across 7 corpora, 6 languages, and 2 diverse low-

recall annotation scenarios.

(d) A novel partial annotation scheme that we call “Exploratory Expert” (EE) annotation,

which allows experts to inexhaustively skim and annotate documents, generating more

varied example contexts for a fixed time budget.

(e) A user study, showing that EE is as fast as exhaustive annotation.

(f) Learning curve experiments that show EE annotation can outperform exhaustive anno-

tation for modest annotation budgets.

3. We propose a novel approach for improving cross-lingual syntactic parsing in low-resource

scenarios by using expected typological statistics in the target language as weak supervision.

Specifically we contribute:

(a) A novel and general regularization framework, “Expected Statistic Regularization”

(ESR), that can be used to regularize models on unlabeled target datasets with a broad

class of functions that describe expected model behaviors. These statistics allow for

the incorporation of various forms of high-level expert knowledge as supervision.

(b) A method for estimating target statistic values using small amounts of labeled data.

(c) An application of the method that improves state-of-the-art cross-lingual parsing on

low-resource languages. We contribute seven families of descriptive statistics that bear

on parser behavior and extensively evaluate their impact on transfer, showing most to

be useful.

(d) An extensive benchmark evaluation on transfer to 44 languages showing that ESR leads

to significant improvements over state-of-the-art approaches on many low-resource lan-

guages.
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(e) Learning curve experiments that demonstrate the impact of the approach is largest for

target datasets with 500 or fewer annotated sentences.

(f) Ablation studies justifying key design choices for the proposed loss function.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we focus on our first ap-

plication, debiasing and improving a deployed rare-event text classification system. Chapter 3

focuses on our second application, learning named entity recognizers with partially annotated low-

recall data. Chapter 4 focuses on the third problem of improving cross-lingual syntactic parsing

on low-resource languages using expert knowledge. Finally, in Chapter 5 we discuss conclusions,

limitations, and future work. While each chapter is a contribution towards the larger topic of this

thesis, they also each engage with different applications, and it is our intention that they may be

read separately. To this end, we use self-contained notation and related works within each chapter.
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Chapter 2: Improving a Rare-Event Classification System with Minimal

Wasted Labels

2.1 Introduction

Identifying rare events in large text corpora is an important application area in NLP. There

are many potential applications for mining mountains of text for needle-in-a-haystack instances,

enabling domain experts to declutter noisy or broad information sources by filtering out the irrel-

evant texts. For example, in crisis informatics it may be possible to detect early signs of disaster

impact zones and focus responses through the use of social media (Imran et al., 2013, 2016; Alam

et al., 2018). In consumer protection, rare-event classification could be used to identify posts about

product malfunctions or other complaints (Çataltaş et al., 2020; Fong et al., 2021). In this chap-

ter, we encounter an the application of rare-event classification to epidemiology and public health

by discovering foodborne illness in online restaurant reviews. We are tasked with improving the

deployed system with the epidemiologist feedback accumulated through years of use, but this is

challenging because the data are significantly biased by the filtering process. In the rest of this

section, we first detail the application domain, then we describe the general technical problem we

face when we try to improve the deployed application over time. The contributions in this chapter

are published in Effland et al. (2018).

2.1.1 The Application Domain

Foodborne illness remains a major public health concern nationwide. The Centers for Dis-

ease Control and Prevention (CDC) estimates that there are 48 million illnesses and >3000 deaths

caused by the consumption of contaminated food in the United States each year (Scallan et al.,

2011). Of the approximately 1200 foodborne outbreaks reported and investigated nationally, 68%
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are restaurant-related (Gould et al., 2013). Most restaurant associated outbreaks are identified via

health department complaint systems. However, there are potentially valuable data sources emerg-

ing that could be incorporated in outbreak detection. Specifically, the increasing use of social

media has provided a public platform for users to disclose serious real-life incidents, such as food

poisoning, that may not be reported through established complaint systems.

In this application we use data from consumer reviews obtained from the popular website Yelp.

A comparison of food vehicles associated with outbreaks from the CDC Foodborne Outbreak

Online Database and data extracted from Yelp reviews indicating foodborne illness and implicating

a specific food item found that the distribution of food categories was very similar between the 2

sources, supporting the usefulness of these data in public health responses (Nsoesie et al., 2014).

Furthermore, Yelp reviews can be directly linked with individual restaurant locations, allowing for

targeted and timely response.

Since 2012, the Computer Science Department at Columbia University has been collaborating

with the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) to develop

a system that applies data mining and uses text classification to identify restaurant reviews on Yelp

indicating foodborne illness, which are later manually reviewed and classified by DOHMH epi-

demiologists. This system was used in a pilot study from July 1, 2012, to March 31, 2013, and

found 468 Yelp reviews that described a foodborne illness occurrence (Harrison et al., 2014). Of

these 468 reviews, only 3% of the illness incidents had been reported to the DOHMH by call-

ing NYC’s citywide complaint system, 311. Investigations as a result of these reviews led to the

discovery of 3 previously unknown foodborne illness outbreaks, approximately 10% of the total

number of restaurant-associated outbreaks identified during the pilot project’s time period. This

highlighted the need to mine Yelp reviews to improve the identification and investigation of food-

borne illness outbreaks in NYC. Due to the success of the pilot study, DOHMH integrated Yelp

reviews into its foodborne illness complaint surveillance system and continues to mine Yelp re-

views and investigate those pertaining to foodborne illness; this process has been instrumental

in the identification of 10 outbreaks and 8523 reports of foodborne illness associated with NYC
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restaurants between July 2012 and January 2018.

2.1.2 The Technical Problem

During the course of the deployed system use, epidemiologists have reviewed thousands of

Yelp posts that have been marked as positive instances of “descriptions of foodborne illness” by

a prototype classification model, providing additional labeled data for the tasks through incidental

feedback. Our task is to use these data to improve the system classifiers so that they can better

assist epidemiologists at doing their jobs. We want to improve the recall of the system so that it

misses fewer foodborne illness reports and the precision of the system so epidemiologists waste

less time reading false positive reports.

The technical challenge in this situation is two-fold:

1. We want to use the incidental feedback of the epidemiologists to improve the system, but

this labeled data suffers from a severe selection-bias due to its selection from the “positive”

prediction set of the previous classifier. Using this data naively to retrain models will lead to

significant overrepresentation of the positive class and unacceptable model precision. Addi-

tionally, naively using this biased data as a test set would yield biased and overly optimistic

of results.

2. The epidemiologists are busy and should not be labeling data outside of their standard work-

flow. This means that we do not have the budget to ask them to label data outside of this

workflow, as these labels would be “wasted” in the sense that they do not the epidemiolo-

gists do their jobs. We must work with the data we have and cannot simply annotate a new

unbiased dataset so as to minimize wasted labels.

At the technical level, these challenges more generally apply to all deployed rare-event classi-

fication systems with limited annotation budgets. By design, these systems serve up systematically

biased data to help domain experts efficiently comb through large corpora, and the domain experts

can easily give feedback on this data incidentally through use of the system. It is natural then to
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want to use this feedback to improve the system over time, but the previous system’s selection-bias

will prevent its direct use. It is also natural to not want to waste the experts’ time annotating data

that is highly likely to be irrelevant to their jobs.

We address these challenges by combining two separate techniques:

1. We derive importance-weighted training loss and test metric equations that explicitly control

for the selection bias of the previous classifier in generating labeled data.

2. The estimates used in the importance-weighting training and evaluation require that we label

data from the “complement” set of reviews (those filtered out by the deployed system). We

propose a data imputation scheme that exploits the extreme rarity of the positive class in this

set to automatically label data with minimal introduced noise. This significantly increases

the size of the training dataset without the need for manual annotation.

Combined, these methods allow us to train a model that incorporates this biased feedback as the

only manually labeled data while being significantly debiased compared to naive training with this

data.1 The results of our evaluations in Section 2.4 indicate the proposed approach significantly

improves upon naive retraining and can significantly improve efficacy of the deployed system.

In summary, our overall contribution is a a novel approach to improving a deployed rare-event

classification with biased incidental feedback (Effland et al., 2018). Specifically we contribute:

• A method for improving and debiasing the deployed system using a combination of impor-

tance weighting and data imputation that exploits the selection bias of the previous system

iteration without requiring additional labels from domain experts.

• A detailed evaluation and error analysis of the method for two applied problems in rare-event

text classification. Our evaluation shows that our method improves precision and recall of

the resulting model and counteracts the training data bias.

1We note that the proposed approach is not entirely unbiased, since the data imputation scheme can introduce a
small, hopefully neglible bias on the training data.
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• Considerable improvements in performance of a real-world deployed rare-event text classi-

fication system with immediate impact.

2.2 Materials and Methods

We first describe the overall DOHMH system design. We then describe the classification mod-

els used in our evaluation. Finally, we describe the data used in the evaluation and discuss bias-

adjusted training and evaluation objectives

2.2.1 Yelp System Design

The system runs a daily process to pull Yelp reviews of NYC restaurants from a privately avail-

able application programming interface (API) and applies text classification techniques to classify

reviews according to 2 criteria. The first criterion, referred to as the “Sick” task, corresponds to

whether the review mentions the occurrence of a person experiencing foodborne illness from the

restaurant. The second criterion, the “Multiple” task, corresponds to whether there was a foodborne

illness event experienced by more than one person; although they are quite rare, these cases con-

stitute significant evidence of a foodborne illness outbreak and are of special interest to DOHMH

epidemiologists. After automatically classifying all new reviews according to these criteria, all

reviews classified as “Sick” (ie, having a “Sick” probability >0.5) are then presented to DOHMH

epidemiologists in a user interface for manual review. Upon reviewing a document, the epidemi-

ologists record the gold standard label for both criteria. Yelp messages are sent to the authors of

reviews that appear to report true incidents of foodborne illness, and an interview is attempted with

each author to collect information regarding symptoms, other illnesses among the author’s dining

group, and a 3-day food history. All sources of restaurant-associated foodborne illness complaints

are aggregated in a daily report; outbreak investigations are initiated if multiple complaints indi-

cating foodborne illness are received within a short period of time for one establishment, or if a

complaint indicates a large group of individuals experiencing illness after a single event.
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2.2.2 Classification Methods

Prior to classification, the reviews, or documents, are converted into a representation that is

usable by the classification algorithms, known as the featurization of documents. This is done

using a bagof-words (BOW) approach by converting each document into a vector with the counts

for each word in the vocabulary. The classifiers built for the operational system at DOHMH, fur-

ther referred to as “prototype” classifiers, were J4.8 (Quinlan, 2014) decision tree models, chosen

for the interpretability of their decision functions. These models were trained using 500 reviews,

labeled by DOHMH epidemiologists for both criteria. The 500 reviews were selected using a

mix of an unbiased sample of reviews and reviews from keyword searches for terms that are intu-

itively indicative of foodborne illness, such as “sick,” “vomit,” “diarrhea,” and “food poisoning.”

To identify the most effective classifiers for our classification tasks, we experimentally evaluated

several standard document classification techniques in addition to the prototype classifiers. First,

we considered improvements to the document featurization over basic BOW by including n-grams

(n consecutive words) for = ∈ {1, 2, 3}, and term frequency-inverse document frequency (TF-IDF)

weights for the terms (Rajaraman and Ullman, 2011). For both classification tasks, “Sick” and

“Multiple,” we evaluated 3 well-known supervised machinelearning classifiers: logistic regres-

sion (Cox, 1958), random forest (Breiman, 2001), and support vector machine (SVM) (Cortes and

Vapnik, 1995). Logistic regression is a classical statistical regression model where the response

variable is categorical. Random forest is an ensemble of weak decision tree classifiers that vote for

the final classification of the input document. SVM is a nonprobabilistic classifier that classifies

new documents according to their distance from previously seen training documents. By defini-

tion, the positive examples for the “Multiple” task are a subset of the positive “Sick” examples,

since at least one person must have foodborne illness for multiple people to have foodborne ill-

ness. Using this notion, we additionally designed a pipelined set of classifiers, further referred to

as “Sick-Pipelined” classifiers, for the “Multiple” task, which first condition their predictions on

the best “Sick” classifier. If the “Sick” classifier predicts “Yes,” then the “Multiple” classifier is

run. Intuitively, this allows the “Multiple” classifier to focus more on the number of people in-
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volved than on whether there was a singular foodborne illness event at all. We evaluated logistic

regression for this model class.

2.2.3 Enhanced Dataset

Between July 2012 and October 2017, DOHMH epidemiologists labeled 13,526 reviews se-

lected for manual inspection by the prototype “Sick” classifier. These reviews are balanced for

the “Sick” task, with 51% “Yes” and 49% “No” documents, but are imbalanced for the “Multiple”

task, with only 13% “Yes” and 87% “No” documents. For training and evaluation, we split the data

chronologically at January 1, 2017, to mirror future performance when training on historical data.

This results in 11,551 training reviews and 1,975 evaluation reviews. The training and evaluation

sets have equal class distributions: 51%/49% for “Sick” and 13%/87% for “Multiple.” While these

reviews contain useful information, having been selected by the prototype “Sick” classifier before

labeling heavily biases them, and so they are not representative of the full (original) Yelp feed. To

understand and correct for the impact of such bias, we derive a bias-adjusted training objective and

augmented the training and evaluation datasets with a sample of reviews from the complement of

the biased datasets in the full Yelp feed.

2.2.4 Selection Bias Correction for Training and Test Metrics

To account for the selection bias of the prototype “Sick” classifier in the labeled data, we aug-

ment the training data with reviews from the set of Yelp reviews that were labeled “No” by the

prototype “Sick” classifier. Reviews from this set, further referred to as “complement-sampled”

reviews, likely have nothing to do with foodborne illness, but instead serve as easy “No” examples

that the classifiers should predict correctly. Exactly how these 2 datasets are merged, however, re-

quires principled consideration. For classifiers that learn to reduce classification error in training,

we can formally model the joint likelihood of the classifier misclassifying some review and that

review being selected by the prototype “Sick” classifier. Then, by marginalizing this joint distribu-

tion over the indicator that a review is selected by the prototype “Sick” classifier, we arrive at an

20



unbiased estimate of the classification error. The end result is that we weigh classification mistakes

for the biased and complement-sampled reviews by the inverses of their respective probabilities of

being selected at random from the full Yelp dataset.

Next we present these derivations:

Definitions

Let ) (G) be the biased selection process for labelling data at DOHMH. We treat it as a black-

box and model it atomically.

Let* be the set of all Yelp Reviews that have been processed by the system.

Let � ⊂ * s.t. � = {(G, H) |) (G) = 1}. � is the biased Yelp review set, labeled by DOHMH

epidemiologists after selection by the prototype classifier.

Let �2 ⊆ * \ � = {(G, H) |) (G) = 0}. �2 is the complement of the biased set: all reviews which

were never seen by DOHMH epidemiologists because they were filtered out by the prototype

classifier.

Error Rate

Let � ⊆ � be the labeled points from � which are seen in the training data.

Likewise, let �
2 ⊂ �2 be the sample of labeled points from �2 which are seen in the training

data.

We can model the error rate of some classifier 5 as:

?( 5 (G) ≠ H) = ?( 5 (G) ≠ H |) (G) = 1)?() (G) = 1) + ?( 5 (G) ≠ H |) (G) = 0)?() (G) = 0)

and use plugin estimates:

?̂() (G) = 1) = |� ||* |
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?̂() (G) = 0) = 1 − |�||* |

?̂( 5 (G) ≠ H |) (G) = 1) = 1
|� |

∑
(G,H)∈�

� [ 5 (G) ≠ H]

?̂( 5 (G) ≠ H |) (G) = 0) = 1
|�2 |

∑
(G,H)∈�2

� [ 5 (G) ≠ H]

therefore

?̂( 5 (G) ≠ H) = 1
|�|
|� |
|* |

∑
(G,H)∈�

� [ 5 (G) ≠ H] + 1
|�2 |

(
1 − |� ||* |

) ∑
(G,H)∈�2

� [ 5 (G) ≠ H]

Since in practice we will average the errors over the entire training set, we multiply and divide

the quantity by |�̄ | + |�̄2 |, yielding:

IW-Error Rate =
1

|� | + |�2 |

[
F
�

∑
(G,H)∈�

� [ 5 (G) ≠ H] + F
�
2

∑
(G,H)∈�2

� [ 5 (G) ≠ H]
]

where

F
�
=
|� | + |�2 |
|� |

|� |
|* | and F

�
2 =
|� | + |�2 |
|�2 |

(
1 − |� ||* |

)
are the importance weights.

Test Metrics

We will calculate the weights as was done in the above Error Rate calculation, however this

time we must recalculate the weights using the observed test data proportions. So, let � ⊆ � be

the labeled points from � which are seen in the test data. Likewise, let �2 ⊂ �2 be the sample of

labeled points from �2 which are seen in the test data.

Then we have
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F� =
|� | + |�2 |
|� |

|� |
|* | and F�2 =

|� | + |�2 |
|�2 |

(
1 − |� ||* |

)
and precision and recall can be calculated as follows:

Precision

IW-Precision =
1∑

(G8 ,H8)∈�∪�2

: 5 (G8)=1

F8

( ∑
(G8 ,H8)∈�∪�2

: 5 (G8)=1

F8 � [H8 = 1]
)

Recall

IW-Recall =
1∑

(G8 ,H8)∈�∪�2

: H8=1

F8

( ∑
(G8 ,H8)∈�∪�2

: H8=1

F8 � [ 5 (G8) = 1]
)

F1

Using the above plugin estimates to calculate the importance weighted precision and recall, we

can caluclate the bias-adjusted F1-score using:

IW-F1 = 2 ∗ IW-Precision ∗ IW-Recall
IW-Precision + IW-Recall

AUPR

Finally, we can obtain a series of ordered bias-adjusted IW-Precision-Recall points � = {(?, A)8 |A8 ≥

A8′, 8
′ < 8} by varying the classification threshold C ∈ (1, 0] and then using trapezoidal integration

to approximate the Area Under the Recall vs. Precision curve (AUPR).

IW-AUPR =
∑

(?8 ,A8)∈�,8< |� |
.5 ∗ (A8+1 − A8) ∗ (?8 + ?8+1)
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Bootstrap

For the final evaluation, we would like confidence intervals about the IW-F1 and IW-AUPR.

We find these by using the percentile bootstrap (Efron, 1979). We calculate bootstrap confidence

intervals for the IW-Precision, IW-Recall, and IW-AUPR statistics as follows:

First we calculate the statistic Ḡ (for each of IW-Precision, IW-Recall, and IW-AUPR). Then

we resample the test dataset with replacement � times and obtain the bootstrap statisic estimates

for each set. Call these G1, ..., G�. Then we can compute confidence intervals around Ḡ the usual

way by finding the U = .025 boundary quantiles XU, X1−U, such that

%(Ḡ∗ − X1−U ≤ Ḡ ≤ Ḡ∗ − XU) = .95

2.2.5 Training Regimes

Using the above sample weights, we incorporate both the biased label data and the complement-

sampled data to train our classifiers under 3 different regimes. The first, “Biased,” used only the

data from the 11,551 reviews selected by the prototype “Sick” classifier. The second, “Gold,”

used the “Biased” data plus 1,000 reviews sampled from the complement-sampled Yelp feed and

labeled by DOHMH epidemiologists. In this sample of 1,000 reviews, only 4 were labeled “Yes”

for the “Sick” task and 1 was labeled “Yes” for the “Multiple” task. In the third regime, “Silver,”

we randomly sampled 10,000 reviews from the complement-sampled Yelp feed before January

1, 2017, and assumed all were negative examples of both tasks. Intuitively, this regime can be

helpful if it regularizes out statistical quirks of the “Biased” data more than the noise it may intro-

duce through false negatives. Importantly, this regime also does not require any additional wasted

manual annotation effort.
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2.3 Evaluation

The performance of each classifier was evaluated on the 1,975 biased reviews from after Jan-

uary 1, 2017, along with another sample of 1,000 reviews from the complement-sampled Yelp feed

after January 1, 2017. These 1,000 reviews were again labeled by DOHMH epidemiologists for

both tasks. However, there were no positive examples of either task among the 1,000 reviews. We

evaluated the models for both tasks using 4 performance metrics common to class-imbalanced bi-

nary classification problems: precision, recall, F1-score, and area under the precision-recall curve

(AUPR). Precision (often called “positive predictive value”) is the proportion of true positives out

of the total number of positive predictions. Recall (often called “sensitivity”) is the true positive

rate. F1-score is the harmonic mean of precision and recall. Precision, recall, and F1-score were

calculated at a classification threshold of 0.5, meaning that we classified reviews with “Yes” proba-

bilities 0.5 as “Yes.” The AUPR was measured by first graphing precision versus recall by varying

the classification threshold from 0 to 1, then calculating the area under the curve. For all 4 metrics,

0 is the worst possible score and 1 is a perfect score. Since our evaluation data are also biased, we

use the bias-adjusted variants described in Section 2.2.4.

After selecting the best hyperparameter settings for each model variation using best average

bias-adjusted F1-score across the development folds, we retrained the models on their full training

datasets. We compared the resulting model variations to each other and the prototype classifiers

on the 4 evaluation metrics. We calculated 95% confidence intervals for F1-score and AUPR using

the percentile bootstrap method (Efron and Tibshirani, 1994) with 1,000 sampled test datasets.

We then selected the best variation for both tasks based on test bias-adjusted F1-score as our

final classifiers. We report the confusion matrices, perform a detailed error analysis, and identify

insightful top features for the final classifiers on both tasks.
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2.3.1 Hyperparameters

To select the best performing hyperparameters for each model variation, we ran 500 trials

of random search with important hyperparameters sampled from reasonable distributions. We

selected the best settings of each model variant using best average bias-adjusted F1-score over 5-

fold cross validation on the training data, stratified by class label and biased/complement-sampled

label.

For each model class, task, and training regime (21 variations total), we performed hyperparam-

eter tuning experiments using 500 trials of random search from reasonable sampling distributions

using 5-fold cross-validation on the training data, stratified by class label and biased/complement-

sampled label.

Featurization of Documents

Document featurization and text normalization operations were evaluated to determine their

impact on system performance. For all trials, we converted tokens to lowercase and filtered stop

words (i.e., articles or function words such as “the,” “an,” “at,” etc.). For each trial, we sampled a

hyperparameter value at random for the following settings:

• Max document frequency (removing words that occur in more than a threshold percent of

documents), sampled uniformly in [.75, 1.0].

• N-gram range (using contiguous word phrases as features with phrases up to length n), sam-

pled uniform categorically from = ∈ {1, 2, 3}.

• TF-IDF normalization (how to normalize the TF-IDF vectors), sampled uniform categori-

cally from {!1, !2, #>=4}.

• Whether to use IDF reweighting or not, sampled uniform categorically from {.4B, #>}.
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Classifiers

• Logistic Regression

– Regularization strength,sampled log-uniformly from _ ∈ [10−3, ..., 104].

– Regularization norm type, sampled uniform categorically from {!1, !2}.

• Random Forest

– Number of trees in forest, sampled uniform integer in [10, ..., 200].

– Max number of features per tree as a function of the total number of features, D, sam-

pled uniform categorically from {
√
�, ;>62�}.

• SVC

– Regularization strength, sampled log-uniformly from !1, !2, #>=4.

– Kernel function always set to linear.

2.4 Results

We found that the best classifiers achieved bias-adjusted F1-scores of 87% and 66% on the

“Sick” and “Multiple” classification tasks, respectively.

2.4.1 Classification Evaluation

The performance of the classifier variations for the “Sick” and “Multiple” tasks is presented

in Tables 2.1 and 2.2, respectively. All models were evaluated on the test data from after Jan-

uary 1, 2017. For the “Sick” task, we found that the logistic regression model trained using the

“Silver” regime achieved the highest F1-score, 87%. With the addition of 10 000 silver-labeled

complement-sampled reviews, this model gained 77% in bias-adjusted F1-score over its “Biased”

counterpart, a significant increase. The low bias-adjusted F1-score of 10% for the “Biased” “Sick”
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Model Regime Precision Recall F1-Score (95% CI) AUPR (95% CI)

J4.8 Prototype 0.48 0.99 0.65 (0.63-0.67) 0.83 (0.81-0.85)

Logistic Regression Biased 0.05 0.94 0.10 (0.09-0.11) 0.63 (0.55-0.76)
Logistic Regression Gold 0.83 0.88 0.85 (0.83-0.87) 0.90 (0.88-0.92)
Logistic Regression Silver 0.85 0.88 0.87 (0.85-0.88) 0.91 (0.90-0.93)

Random Forest Biased 0.04 0.91 0.07 (0.06-0.09) 0.59 (0.54-0.70)
Random Forest Gold 0.36 0.89 0.51 (0.38-0.68) 0.81 (0.78-0.84)
Random Forest Silver 0.70 0.88 0.78 (0.66-0.85) 0.87 (0.85-0.89)

SVM Biased 0.09 0.95 0.16 (0.13-0.20) 0.82 (0.79-0.87)
SVM Gold 0.33 0.93 0.49 (0.37-0.67) 0.88 (0.85-0.91)
SVM Silver 0.96 0.74 0.83 (0.81-0.85) 0.93 (0.92-0.95)

Table 2.1: Model Performance on “Sick” Task. The bold value represents the final selected model
from among the variants. This is the model we further analyze in the error analysis. Because the
bootstrap distribution of some test statistics exhibited non-normal behavior, their corresponding
confidence intervals are wider.

logistic regression is due to the misrepresentation of the full Yelp dataset by the “Biased” train-

ing, which causes the model to highly over-predict “Yes” on the complement-sampled test data.

This behavior is heavily penalized by the bias-adjustment because each false positive in the small

complement-sampled test data is representative of many more false positives in the full Yelp

dataset. For the “Multiple” task, we found that the “Sick-Pipelined” logistic regression model

trained using the “Silver” regime achieved the highest F1-score, 66%. The use of pipelined train-

ing and prediction caused a gain of 5% for the “Silver” “Sick-Pipelined” logistic regression over

its single-step counterpart.

2.4.2 Precision-Recall Tradeoff

Given the rarity of reviews discussing foodborne illness, it is desirable to explore settings of

the “Sick” classifiers that favor recall over precision, since DOHMH epidemiologists are willing

to accept some extra false positives to reduce the risk of missing an important positive “Sick”

review. We analyzed this trade-off by examining the precision-recall curves of the “Sick” logistic

regression classifiers, presented in Figure 2.1. From the plot, we can see that “Gold” and “Silver”

models begin to experience an approximately equal trade-off of precision for recall in the region of

28



Model Regime Precision Recall F1-Score (95% CI) AUPR (95% CI)

J4.8 Prototype < 0.01 0.69 0.01 (0.01, 0.01) 0.01 (0.01, 0.01)

Logistic Regression Biased 0.08 0.56 0.15 (0.09-0.26) 0.25 (0.19-0.40)
Logistic Regression Gold 0.42 0.58 0.48 (0.30-0.67) 0.56 (0.49-0.67)
Logistic Regression Silver 0.64 0.58 0.61 (0.56-0.66) 0.58 (0.52-0.65)

Sick-Pipelined LR Biased 0.07 0.61 0.13 (0.09-0.23) 0.18 (0.13, 0.43)
Sick-Pipelined LR Gold 0.77 0.56 0.65 (0.60-0.70) 0.65 (0.59-0.70)
Sick-Pipelined LR Silver 0.75 0.59 0.66 (0.61-0.70) 0.71 (0.65-0.76)

Random Forest Biased 0.04 0.37 0.07 (0.05-0.12) 0.03 (0.02-0.18)
Random Forest Gold 0.75 0.24 0.36 (0.29-0.42) 0.31 (0.23-0.45)
Random Forest Silver 0.74 0.25 0.37 (0.31-0.43) 0.40 (0.31-0.43)

SVM Biased 0.07 0.65 0.12 (0.08-0.20) 0.18 (0.12-0.48)
SVM Gold 0.35 0.34 0.35 (0.21-0.54) 0.29 (0.21-0.57)
SVM Silver 0.20 0.30 0.24 (0.13-0.47) 0.39 (0.30-0.64)

Table 2.2: Model Performance on “Multiple” Task. The bold value represents the final selected
model from among the variants. This is the model we further analyze in the error analysis.

Predicted Class
Actual Class No Yes

No 1882 (true negatives) 93% 144 (false positives) 7%
Yes 112 (false negatives) 12% 837 (true positives) 88%

Table 2.3: “Sick” Task Confusion Matrix.

Predicted Class
Actual Class No Yes

No 2643 (true negatives) 98% 55 (false positives) 2%
Yes 114 (false negatives) 42% 163 (true positives) 58%

Table 2.4: “Multiple” Task Confusion Matrix.
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Figure 2.1: Precision-Recall Tradeoffs. Precision-recall curves of “Sick” logistic regression mod-
els in the high-recall region. While the “Biased” logistic regression performance lags below, the
“Gold” and “Silver” models show relatively mild losses in precision per point of recall gained until
the 90-100% recall region. After 92% recall the “Gold” model begins to experience a steep drop
in precision while the “Silver” model does not experience a steep drop in precision until a recall of
98%.

80%–90% recall, illustrated by the slope of the curves being close to 1 point of precision lost per

point of recall gained. In the 90%–100% recall region, the “Gold” model begins to experience a

steep drop in precision at a recall of 92% while the “Silver” model does not experience a steep drop

in precision until a recall of 98%. At this point, the precision of the “Silver” logistic regression

is still 69%, 21% higher than the prototype classifier which has 48% precision at 99% recall.

This indicates that even in a high-recall setting the “Silver” “Sick” classifier should provide better

performance over the “Sick” prototype.
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2.4.3 Error analysis of best “Sick” classifier

Of the 2,975 reviews in the test dataset, there are 949 positive examples and 2,026 negative ex-

amples for the “Sick” task. The best “Sick” classifier, “Silver” trained logistic regression, achieved

an F1-score of 87%, a statistically significant 22% absolute increase over the prototype classifier,

with an F1-score score of 65%. On this test dataset, the best “Sick” classifier correctly classi-

fied many reviews containing major sources of false positives for the prototype classifier. These

gains are not surprising, given that this model uses 40 times more data and better document rep-

resentations (TF-IDF and trigrams rather than vanilla BOW). This large performance increase will

qualitatively change the efficacy of the system for DOHMH epidemiologists. Examination of the

144 false positives identified various causes. Many of these false positives cannot be identified by

a classifier only using n-grams with = ∈ {1, 2, 3}. For example, one reviewer wrote, “I didn’t get

food poisoning,” which would require 4-grams for the classifier to capture the negation. This ex-

ample illustrates a major shortcoming of n-gram models: important dependencies or relationships

between words often span large distances across a sentence. Another major source of false posi-

tives are reviews that do talk about food poisoning but are not current enough to meet the DOHMH

criteria for follow-up, and thus are labeled “No.” A third type of false positive occurs when a

review talks about food poisoning in a hypothetical or future sense. For example, one reviewer

reported that the food “had a weird chunky consistency...hopefully we won’t get sick tonight.”

Multiple causes of the 112 false negatives were also identified. One notable cause is misspellings

of key words related to food poisoning in the review, such as “diherrea.” Another major cause

is grave references to food poisoning but the classifier predicts “No” because of a prevalence of

negatively weighted n-grams, such as “almost threw up.” A final source of false negatives is hu-

man error in the labeling of reviews for the test data. For example, one review’s only reference

to illness was “she began to feel sick” while at the restaurant, yet the review was labeled positive.

Many of the reviews contained negation, which the best “Sick” classifier can detect due to the use

of n-grams. N-grams also allow the classifier to identify that the pattern “sick of,” as in “sick of the

pizza,” does not typically refer to actual food poisoning, compared to “got sick,” which typically
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does. Finally, we examined the highest-weighted n-grams of the best “Sick” classifier. The most

highly positive-weighted features were phrases indicative of foodborne illness, such as “diarrhea,”

“food poisoning,” and “got sick,” while the most highly negative features were either very positive

phrases or indicative of false positives, such as “amazing” and “sick of.” These top features are

encouraging, as they show the model has identified features that epidemiologists would also deem

important.

2.4.4 Error analysis of best “Multiple” classifier

Of the 2,975 reviews in the test dataset, there are 277 positive examples and 2,698 negative

examples for the “Multiple” task. The best “Multiple” classifier, “Silver” trained “Sick-Pipelined”

logistic regression, achieved an F1-score of 66%. We examined the reason behind the 114 false

negative reviews. Many false negatives were due to incorrect predictions made by the pipelined

“Sick” classifier. Most other false negatives were caused by the inability of trigram models to

capture longer phrases. Phrases indicating multiple illnesses, such as “we both got really sick,”

typically span more than 3 contiguous words, leaving no way for a classifier using trigrams to

detect them directly. Of the 277 true positives, 163 were correctly classified. Reviews containing

phrases clearly indicating multiple illnesses in a bigram or trigram, such as “both got sick,” scored

highest; however, such concise n-grams are rare. The classifier’s highly weighted features are n-

grams that simply refer to multiple people without referring to food poisoning. The classifier can

capture references to multiple people in a trigram, but these references are often devoid of context,

making it hard to determine if multiple people simply did something together or multiple people

became ill. Analysis of the true positive test reviews with respect to these feature weights sug-

gests that the classifier tends to select reviews that contain an abundance of ngrams about multiple

people. Examination of these features shows that the n-gram model class is not sufficient for the

“Multiple” task, indicated by its low performance relative to the “Sick” task and the need for de-

tection of long phrases, which it cannot do. While it is tempting to simply extend the n-gram range

to longer sequences, this approach fails due to a well-known statistical issue called “sparsity”:
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specific longer phrases become extremely rare in the data and are not seen in enough quantity for

models to learn from them.

2.5 Related Work

We describe related work in three areas: usage of social media as data for public health in-

formatics, and machine learning approaches in the context of rare-event classification and biased

sampling settings.

2.5.1 Public Health Informatics using Social Media

As a result of the increasing interest and potential value of social media data, research institu-

tions are partnering with public health agencies to develop methods and applications to use data

from social media to monitor outbreaks of infectious diseases. Textual data from Internet search

engines and social media have been used to monitor outbreaks of various infectious diseases, such

as influenza (Santillana et al., 2015). An evaluation comparing the use of informal and uncon-

ventional outbreak detection methods against traditional methods found that the informal source

was the first to report in 70% of outbreaks, supporting the usefulness of such systems (Bahk et al.,

2015). The incorporation of social media data into public health surveillance systems is becom-

ing more common. Multiple projects focus on identifying incidents of foodborne illness using

data from Twitter. Harvard Medical School developed and maintains a machine learning platform,

HealthMap Foodborne Dashboard, to identify complaints and occurrences of foodborne illness

and send a survey link where Twitter users can provide more information; this platform is freely

available for research (Freifeld et al., 2008). The Chicago Department of Public Health partnered

with the Smart Chicago Collaborative to develop Foodborne Chicago, which also uses machine

learning to identify tweets indicating foodborne illness and also sends a survey link where Twitter

users can provide more information (Harris et al., 2014). The Southern Nevada Health District de-

veloped nEmesis, an application that associates a user’s previous locations with subsequent tweets

indicating foodborne illness (Sadilek et al., 2016).
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2.5.2 Rare-Event Classification

Rare-event classification in our context is an instance of binary classification under extreme

class-imbalance, where the minority class (the rare event) is the positive category. The problem of

binary classification with high negative-class skew has received extensive attention in the literature

in the context of a wide variety of application domains (Kubat et al., 1998; Ezawa et al., 1996;

Fawcett and Provost, 1996; Domingos, 1999, inter alia).2

There are two main types of methodological challenges to machine learning under class imbal-

ance: training classifiers with high performance, and properly measuring that performance.

The challenge with training models under extreme class imbalance is that for complex (non-

linearly separable) tasks, model optimization tends to overly favor detection of the majority class

(Anand et al., 1993), which in turn leads to unacceptable performance since the minority class is

the one of interest (Japkowicz and Stephen, 2002). In the literature, several types of approaches

have been proposed to counter this issue by “rebalancing” the learning setting (Japkowicz and

Stephen, 2002; Johnson and Khoshgoftaar, 2019):

1. Data-level approaches that attempt to rebalance data, such as under-sampling of the majority

class (Kubat et al., 1998) or over-sampling of the minority class (Japkowicz and Stephen,

2002). These approaches can run into issues in that under-sampling can reduce the overall

information about the target variable that the dataset carries, while over-sampling of small

minority-class samples can cause overfitting to specific idiosyncrasies of sample that do not

generalize to the class more broadly (Japkowicz and Stephen, 2002), however, the Synthetic

Minority Over-sampling Technique (SMOTE) method (Chawla et al., 2002) and its vari-

ants (e.g., Han et al., 2005; He et al., 2008) interpolate examples in the feature space and can

help reduce this issue. Over- and under-sampling can of course be combined to additional

benefit (Ling and Li, 1998).

2. Algorithm-level approaches that modify the learning algorithm with unequal costs for major-
2Work in this area began in the mid 90’s. The rest of this review focuses primarily on seminal work from this

period (with notable exceptions), since the litany of subsequent work is generally more narrowly focused and applied.
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ity and minority classes during parameter optimization (Ming Ting and Zheng, 1998; Provost

and Fawcett, 1998; Domingos, 1999, inter alia). A main concern with these approaches is

that they can still suffer from overfitting if there are too few minority class examples. An-

other issue is that the choice of misclassification costs are not always known apriori and must

then be treated as hyperparameters.

3. Hybrid approaches which combine the data- and algorithm-level rebalancing (Akbani et al.,

2004; Tang et al., 2009; Ahumada et al., 2008, inter alia). Our approach can be regarded as

an instance of this hybrid class of techniques.

The main challenge with measuring performance in class-imbalanced settings, is that accuracy

can obscure performance of the classifier on the minority class of interest, purely by nature of the

majority class error rate dominating the total error rate. Provost and Fawcett (1998) are the first to

identify this failing and suggest the use of Area under the Receiver Operating Characteristic Curve

(AUC) to mitigate this effect by varying all possible classification thresholds. However, as Davis

and Goadrich (2006) observe, this too can yield overly optimistic results in the face of extreme

class-imbalance, and suggest the Area under the Precision-Recall Curve (AUPR) to better focus

the metric on the minority class of interest.3

2.5.3 Accounting for Sampling Bias

Although the general problem of detecting foodborne illness in online restuarant review is an

instance of classification of with rare positive classes, this is not the only challenge at play in our

situation. In addition to this class skew in the true data distribution, we also must contend with

significant selection bias in our training and test samples due to the feedback mechanism of the

in-use system.

This problem has also been studied significantly in the classical statistics literature. It is an

3This overly optimistic aspect of AUC is due to the fact that it compares true positive to false positive rates. When
the number of negative instances significantly outweighs the number of positives, even signficant differences in the
number of predicted positives can have little effect on the false positive rate. Precision does not have this issue, since
it does not include negatives in the denominator.
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example of parameter estimation with systematically missing observations, and our solution is to

use stratified samples (two strata based on the prediction of the deployed classifier) with estimated

prior strata occurrence rates. To adjust for this selection bias, the bias-adjusted error rate that

we’ve derived ultimately boils down to the use of inverse propensity weighting (IPW), a form of

importance weights (IW) , which has been used in statistical inference approaches, such as the sem-

inal Horovitz-Thompson estimator (Horvitz and Thompson, 1952) and estimation of the condition

mean with missing observations due to Robins et al. (1994). IPW has also been used in count-

less experimental designs that employ unequal sample sizes in stratified sampling for increased

sampling efficiency and reduced cost (Kish, 1965).

2.6 Discussion

In this study, we have presented an automated text-classification system for the surveillance

and detection of foodborne illness in online NYC restaurant reviews from Yelp. Using this sys-

tem, NYC DOHMH epidemiologists are able to monitor millions of reviews, a previously impos-

sible task, to aid in the identification and investigation of foodborne illness outbreaks in NYC.

As of May 21, 2017, this system has been instrumental in the identification of 10 outbreaks and

8523 reports of foodborne illness associated with NYC restaurants since July 2012. Aided by

simple prototype classifiers, DOHMH epidemiologists have evaluated and labeled 13 526 Yelp

reviews for 2 key indicators of foodborne illness since July 2012. Although these data are bi-

ased by the prototype classifier’s selection criterion, we showed how these biased data and ad-

ditional complement-sampled data could be combined in a bias-adjusted training regime to build

significantly higher-performing classifiers, an issue that commonly plagues deployed needle-in-

a-haystack systems. We evaluated the performance of our prototype classifiers and several other

well-known classification models on 2 tasks, namely “Sick” and “Multiple.” We found that lo-

gistic regression trained with the “Silver” regime performed best for the “Sick” task and that the

“Silver” “Sick-Pipelined” logistic regression performed best on the “Multiple” task, with bias-

adjusted F1-scores of 87% and 66%, respectively. Although the raw Yelp data are not publicly
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available, all code used to reproduce the final experiments in this manuscript can be found at

https://github.com/teffland/FoodborneNYC/tree/master/jamia_2017/.

2.7 Conclusion

The importance of effective information extraction regarding foodborne illness from social me-

dia sites is increasing with the rising popularity of online restaurant review sites and the decreasing

likelihood that younger people will report food poisoning via official government channels. In

this chapter, we described details of the DOHMH system for foodborne illness surveillance in on-

line restaurant reviews from Yelp. Our system has been instrumental in the identification of 10

outbreaks and 8,523 reports of foodborne illness associated with NYC restaurants between July

2012 and January 2018. Our evaluation has identified strong classifiers for both tasks, whose

deployment will allow DOHMH epidemiologists to more effectively monitor Yelp for improved

foodborne illness investigations.

In solving this applied problem, we have contributed a more general approach for improving

deployed rare-event text classification systems without additional wasted labels. The approach,

which combines principled importance weighting in addition to a data imputation scheme, has

high annotation-efficiency because it does not require additional labeling procedures outside of

the incidental feedback gathered from day-to-day system use. It also successfully harnesses the

known systematic bias of the system to our advantage by admitting a data-imputation scheme that

generates significantly more data with little noise.
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Chapter 3: Partially Supervised Named Entity Recognition via the Expected

Entity Ratio

In Chapter 2, we developed an approach for improving a deployed rare-event text classification

system using only the incidental annotations provided through its use by experts. In this chapter,

we again encounter a setting where the training data suffers from a systematic and severe selection

bias due to its annotation scheme, and we again do not wish to ask annotators to go back and

manually correct the bias. However, we move from the simpler text classification problem to the

more complex multi-class structured prediction task of named entity recognition (NER) with a

tagging model. This transition to predicting structures complicates the problem, as we may no

longer apply a simple weighting scheme to the loss on individual examples as before, and we no

longer can make hard assumptions about labels for the missing data. Instead we must use a soft

and uncertain prior assumption about the overall label proportions in the data to drive the model

toward correct label proportions in expectation.

The rest of this chapter is organized as follows. In Section 3.1 we discuss the problem back-

ground and motivation. In Section 3.2 we describe the proposed approach and provide theoretical

justification for its principle. In Sections 3.3 and 3.4 we extensively evaluate the proposed ap-

proach against state-of-the-art baselines across a variety of languages, annotation scenarios, and

annotation-availability settings. Finally, we discuss related work and conclusions in Sections 3.5

and 3.6, respectively. The contributions described in this chapter are published in Effland and

Collins (2021).
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3.1 Background and Motivation

Named entity recognition (NER) is a critical subtask of many domain-specific natural language

understanding tasks in NLP, such as information extraction, entity linking, semantic parsing, and

question answering. For large, exhaustively annotated benchmark datasets, this problem has been

largely solved by fine-tuning of high-capacity pretrained sentence encoders from massive-scale

language modeling tasks (Peters et al., 2018b; Devlin et al., 2019; Liu et al., 2019c). However,

fully annotated datasets themselves are expensive to obtain at scale, creating a barrier to rapid

development of models in low-resource situations.

Partial annotations, instead, may be much cheaper to obtain. For example, when building a

dataset for a new entity extraction task, a domain expert may be able to annotate entity spans with

high precision at a lower recall by scanning through documents inexhaustively, creating a higher

diversity of contexts and surface forms by limiting the amount of time spent on repetitive individual

documents. One way inexhaustive settings like this happen is when annotations are being created

"when it is convenient," while the domain expert is performing another information-seeking task.

In another scenario studied by Mayhew et al. (2019), non-speaker annotators for low-resource

languages may only be able to recognize some of the more common entities in the target language,

but will miss many less common ones. In both of these situations, we wish to leverage partially

annotated training data with high precision but low recall for entity spans. Because of the low

recall, unannotated tokens are ambiguous and it is not reasonable to assume they are non-entities

(the O tag). We give an example of this in Figure 3.1.

We address the problem of training NER taggers with partially labeled, low-recall data by

treating unannotated tags as latent variables for a discriminative tagging model. We propose to

combine marginal tag likelihood training (Tsuboi et al., 2008) with a novel discriminative criterion,

the Expected Entity Ratio (EER), to control the relative proportion of entity tags in the sentence.

The proposed loss is (1) flexibly able to incorporate prior knowledge about expected entity rates

under uncertainty; (2) theoretically recovers the true tagging distribution under mild conditions;

39



  O             O       O       O    O   O   U-ORG

Tim     Cook   is   the CEO of   Apple

B-PER    L-PER   O       O       O   O   U-ORG

  -      -     -       -       -   -   U-ORG

Gold
Raw

Latent
False Negative

Figure 3.1: An example low-recall sentence with two entities (one is missing) and its NER tags.
The Gold row shows the true tags, the Raw row shows a false negative induced by the standard
“tokens without entity annotations are non-entities” assumption, and the Latent row reflects our
view of unannotated tags as latent variables.

and (3) easy to implement, fast to compute, and amenable to standard gradient-based optimization.

We evaluate our method across 7 corpora in 6 languages along two diverse low-recall annotation

scenarios, one of which we introduce. We show that our method performs as well or better than

the previous state-of-the-art methods from Mayhew et al. (2019) and the recent work of Li et al.

(2021) across the studied languages, scenarios, and amounts of labeled entities. Further, we show

that our novel partial annotation scheme, when combined with our method, outperforms exhaustive

annotation for modest annotation budgets.

In summary, we make the following contributions:

• A principled method that utilizes a weak expert prior about the relative occurrence rate of

entities in the text to train accurate NER models using low-recall data.

• Theory justifying the statistical consistency of the approach, proving that our approach re-

covers the true tagging distribution in the limit of infinite data under mild conditions.

• Extensive benchmark comparisons showing that our method equals or outperforms previous

state-of-the-art approaches across 7 corpora, 6 languages, and 2 diverse low-recall annotation

scenarios.

• A novel partial annotation scheme that we call “Exploratory Expert” (EE) annotation, which
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allows experts to inexhaustively skim and annotate documents, generating more varied ex-

ample contexts for a fixed time budget.

• A user study, showing that EE is as fast as exhaustive annotation.

• Learning curve experiments that show EE annotation can outperform exhaustive annotation

for modest annotation budgets.

3.2 Methods

In this section, we describe the proposed approach. We begin with a description of the problem

and notation in Section 3.2.1, followed by the NER tagging model in Section 3.2.2. We then

describe the supervised marginal tag loss and our proposed auxiliary loss, used for learning on

positive-only annotations, in Section 3.2.3 and Section 3.2.4, respectively. Finally, in Section 3.2.5

we describe the full objective and give theory showing that our approach recovers the true tagging

distribution in the large-sample limit.

3.2.1 Problem Setup and Notation

We formulate NER as a tagging problem, as is extremely common (McCallum and Li, 2003;

Lample et al., 2016; Devlin et al., 2019; Mayhew et al., 2019, inter alia). In fully supervised

tagging for NER, we are given an input sentence G1:= = G1 . . . G=, G8 ∈ X of length = tokens paired

with a sequence H1:=, H8 ∈ Y of tags that encode the typed entity spans in the sentence. Following

previous work, we use the BILUO scheme (Ratinov and Roth, 2009). Under this formulation, a

NER dataset of fully annotated sentences is a set of pairs of token and tag sequences:

D<
B = {(G:1:=: , H

:
1:=: )}

<
:=1

41



Partial Annotations

Normally, fully annotated tag sequences are derived from exhaustive annotation schemes,

where annotators mark all positive entity spans in the text and then the filler O tag can be per-

fectly inferred at all unannotated tokens. Training a model on such fully annotated data is easy

enough with traditional maximum likelihood estimation (McCallum and Li, 2003; Lample et al.,

2016).

In many cases, however, it is desirable to be able to learn on incomplete, partially annotated

training data that has high precision for entity spans, but low recall (Section3.3.2 discusses two

such scenarios). Because of the low recall, unannotated tokens are ambiguous and it is not reason-

able to assume they are non-entities (the O tag). Even in this low-recall situation, prior works (Jie

et al., 2019; Mayhew et al., 2019) assume that unannotated tokens are given this non-entity tag.

Their approaches then try to estimate which of these tags are “incorrect” through self-training-like

schemes, iteratively down-weighing the contribution of these noisy tags to the loss with a meta

training loop.

In contrast to prior work, we make no direct assumptions about unannotated tokens and treat

all such positions as latent tags. In this view, a partially annotated sentence is a token sequence

G1:= paired with a set of observed (tag,position) pairs. Given a sentence G1:=, we define

HO ⊂ {(H, 8) | H ∈ Y, 1 ≤ 8 ≤ =}

as the set of observed tags H at positions 8. For example, in Figure 3.1 we would have HO =

{(U-ORG, 7)}. Under this formulation, we will be given a partially observed dataset:

D< = {(G:1:=: , H
:
O:
)}<:=1

We use data of this form for the rest of the work.
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3.2.2 Tagging Model

We use a simple, relatively off-the-shelf tagging model for ?(H1:= |G1:=; \). Our model, BERT-

CRF, first encodes the token sequence using a contextual Transformer-based (Vaswani et al., 2017)

encoder, initialized from a pretrained language-model objective (Devlin et al., 2019; Liu et al.,

2019c). Given the output representations from the last layer of the encoder, we then score each

tag individually with a linear layer, as in Devlin et al. (2019). Finally, we model the distribution

?(H1:= |G1:=) with a linear-chain CRF (Lafferty et al., 2001), using the individual tag scores and

learned transition parameters ) as potentials. Mathematically, our tagging model is given by:

ℎ1:= = BERT(G1:=; \BERT)

q(8, H) = E>H ℎ8

q(8, H, H′) = q(8, H) + )H,H′

?(H |G) =
exp{∑=−1

8=1 q(8, H8, H8+1) + q(=, H=)}
/ (q)

/ (q) =
∑
H′1:=
∈Y=

exp{
=−1∑
8=1

q(8, H′8, H′8+1) + q(=, H
′
=)}

where q ∈ R=×|Y|×|Y| is the tensor of individual potentials and \ = {\BERT, )} ∪ {EH}H∈Y are the

full set of model parameters.

A few important things to note:

1. While we call the encoder “BERT”, in practice we utilize various BERT-like pretrained trans-

former language models from the HuggingFace Transformers (Inc., 2019) library.

2. We apply grammaticality constraints to the transition parameters ) that cause the model to

put zero mass on invalid transitions.

3. We do not use special start and end states, as pretrained transformers already bookend the
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sentence with SOS and EOS tokens that can be assumed to always be O tags. This combined

with the transition constraints guarantees that the tagger outputs valid sequences.

We choose this model architecture because it closely reflects recent standard practice in applied

NER (Devlin et al., 2019; Inc., 2019), where a pretrained transformer is fine-tuned to the tagging

dataset. However, we improve this practice by using a CRF layer on top instead of predicting all

tags independently. We stress that the additional CRF layer has multiple benefits – the transition

parameters and global normalization improve model capacity and, importantly, prevent invalid

predictions. In preliminary experiments, we found that invalid predictions were common in some

of the few-annotation scenarios we study here.

3.2.3 Supervised Marginal Tag Loss

We train our tagger on partially annotated data by maximizing the marginal likelihood (Tsuboi

et al., 2008) of the observed tags under the model:

!? (\;D<) = 1
<

∑
(G:1:=:

,H:O:
)∈D<

− log ?(H:O:
|G:1:=: ; \) (3.1)

with

log ?(HO |G1:=) = log
∑

H1:= |=HO

?(H1:= |G1:=) (3.2)

where H1:= |= HO means all taggings satisfying the observations HO .

While it is possible to optimize only this loss for the given partially annotated data, doing so

alone has deleterious effects in our scenario – the resulting model will not learn to meaningfully

predict the O tag, by far the most common tag (Jie et al., 2019) and thus fail to have acceptable per-

formance, with high recall at nearly zero precision. We need another term in the loss to encourage

the model to predict O tags, which we introduce next.

A Note on Implementation: For linear CRFs (and tree-shaped CRFs more generally), this loss

is tractable and has an interesting decomposition that makes it simple to implement without ad-
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ditional custom dynamic programming. If we substitute the full expression for ?(H1:= |G1:=) into

Equation 3.2, the loss can be re-expressed as the difference between log-partition functions for two

CRFs, the first with potentials constrained by the observations and the second with the original

unconstrained potentials. The deriviation is as follows:

log ?(HO |G1:=) = log
∑

H1:= |=HO

?(H1:= |G1:=)

= log
∑

H1:= |=HO

exp{
=−1∑
8=1

q(8, H8, H8+1) + q(=, H=)}

− log
∑

H1:=∈Y=

exp{
=−1∑
8=1

q(8, H8, H8+1) + q(=, H=)}

= log
∑

H1:=∈Y=

1{H1:= |= HO} exp{
=−1∑
8=1

q(8, H8, H8+1) + q(=, H=)} − log / (q)

= log
∑

H1:=∈Y=

exp{
=−1∑
8=1

log1{H8 |= HO} + q(8, H8, H8+1) + log1{H= |= HO} + q(=, H=)} − log / (q)

⇒ log ?(HO |G1:=) = log / (qHO ) − log / (q)

where qHO (8, H, H′) =


−∞ if 8 ∈ O ∧ (H, 8) ∉ HO

q(8, H, H′) else

This property allows for convenient implementation; we only need to call an implementation

for computing partition function (which is well known) with two different sets of potentials.

3.2.4 Expected Entity Ratio Loss

As has been observed in prior work (Augenstein et al., 2017; Peng et al., 2019; Mayhew et al.,

2019), the number of named entity tags (versus O tags) over the entire distribution of sentences

occur at relatively stable rates for different named entity datasets with the same task specification.

For any specific dataset, we call this proportion the “expected entity ratio” (EER), which is simply
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the marginal distribution of some tag H being part of an entity span, ?(H ≠ O). Given an estimate

of this EER, d = ?(H ≠ O), for the dataset in question, we propose to impose a second loss that

directly encourages the tag marginals under the model to match the given EER, up to a margin of

uncertainty W. This loss is given by:

!D (\;D<, d, W) = max{0, |d − d̂\ | − W} (3.3)

where

d̂\ =

∑
(G:1:=:

,H:O:
)

∈D<

E?(H:1:=:
|G:1:=:

;\) [
=:∑
8=1

1{H:
8
≠ O}]

∑
(G:1:=:

,H:O:
)∈D<

=:
(3.4)

is the model’s expected rate of entity tags.

For linear-chain CRFs, the inner expected count

E?(H1:= |G) [
=∑
8=1

1{H8 ≠ O}] =
=∑
8=1

∑
H∈Y\{O}

?(H8 |G) (3.5)

can be computed exactly, because it factors over the model potentials and reduces to a simple sum

over the tag marginals under the model. This follows from linearity of expectations:

EH1:= [
∑
8

5 (H8)] =
∑
8

EH1:= [ 5 (H8)] =
∑
8

EH8 [ 5 (H8)]

The outer expectation in Equation 3.4 is not feasible for large datasets on modern hardware,

so we approximate it with Monte-Carlo estimates from mini-batches and optimize using stochastic

gradient descent (Robbins and Monro, 1951).

We also note that the loss in Equation 3.3 takes the same form as the n-insenstive hinge loss

for support vector regression machines (Vapnik, 1995; Drucker et al., 1996), though our use-case

is quite different. Additionally, this loss function is differentiable everywhere except at the d ± W

points.
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3.2.5 Combined Objective and Consistency

The final loss, presented in Equation 3.6, combines Equations 3.1 and 3.3 with a balancing

coefficient _D.

! (\;D, _D, d, W) = !? (\;D) + _D!D (\;D, d, W) (3.6)

This loss has an intuitive explanation. The supervised loss !? optimizes the entity recall of the

model. The addition of the EER loss !D further controls the precision of the model. Together, they

form a principled objective whose optimum recovers the true distribution under mild conditions.

We now present a theorem that gives insight into why the loss in Equation 3.6 is justified. First,

we introduce the following set of assumptions:1

Assumption 1. Assume there are finite vocabularies of words X and tags Y, and that Y contains

a special tag O. We have some model ?(H1:= |G1:=; \) with parameter space Θ. Assume some dis-

tribution ?-,. (G1:=, H1:=) over sequence pairs G1:= ∈ X+, H1:= ∈ Y+, and define S = {G1:= ∈ X+ :

?- (G1:=) > 0}. Assume in addition the following:

(a) ?. |- is deterministic: that is, for any G1:= ∈ S, there exists some H1:= ∈ Y+ such that

?. |- (H1:= |G1:=) = 1.

(b) There is some parameter setting \ ∈ Θ such that ?(H1:= |G1:=; \) = ?. |- (H1:= |G1:=) for all

(G1:=, H1:=) ∈ S × Y+.

(c) We have a set of training examples D< = {(G:1:=: , H
:
1:=: )}

<
:=1 drawn from the distribution

?- (G1:=) × ?̃. |- (H1:= |G1:=) where ?̃. |- has the following properties:

(c1) No false positives: for all G1:= ∈ S, for all 8 ∈ {1 . . . =}, if ?. |- (H8 = O|G1:=) = 1, then

?̃(H8 = O|G1:=) = 1.

1We make use of the following definition: For any finite set A, define A+ to be the set of finite length sequences
of symbols drawn from A. That is, A+ = {01:= : = > 0, ∀8, 08 ∈ A}.
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(c2) Positive entity support: for all G1:= ∈ S, for all 8 ∈ {1 . . . =}, if there is some H ∈ Y

such that H ≠ O and ?. |- (H8 = H |G1:=) = 1, then ?̃(H8 = H |G1:=) > 0, and ?̃(H8 = O|G1:=) =

1 − ?̃(H8 = H |G1:=). That is, only H and O are possible under ?̃, and the tag H has probability

strictly greater than zero.

Given these assumptions, define !∞ to be the expected loss under the distribution ?̃:

!∞(\;_D, d, W) = ED<∼?̃ [! (\;D<, _D, d, W)]

We can then state the following theorem.

Theorem 2. Assume that all conditions in assumption 1 hold. Define d = d∗ where d∗ is the known

marginal entity tag distribution, W = 0, and _D > 0.

Then for any \ ∈ arg min !∞(\;_D, d, W), the following holds:

∀(G1:=, H1:=) ∈ S × Y+,

?(H1:= |G1:=; \) = ?. |- (H1:= |G1:=)

The proof of the theorem is given below.

Intuitively, this result is important because it shows that in the limit of infinite data, parameter

estimates optimizing the loss function will recover the correct underlying distribution ?. |- . More

formally, this theorem is the first critical step in proving consistency of an estimation method based

on optimization of the loss function. In particular (see for example Section 4 of Ma and Collins

(2018)) it should be relatively straightforward to derive a result of the form

%

(
lim
<→∞

3 ( ?̂<
. |- , ?. |-) = 0

)
= 1

under some appropriate definition of distance between distributions 3, where ?̂<
. |- is the distribu-

tion under parameters \< derived from a random sample D< of size <. However, we leave this to

48



future work.2

Proof of Theorem 2

We have

!∞(\;_D, d, W) = 6(\) + ℎ(\)

where 6(\) = E[!? (\;D<)] and ℎ(\) = E[_D!D (\;D<, d, W)].

Note that

6(\) =
∑

G1:=,H1:=

?̃(G1:=, H1:=)6′(G1:=, H1:=, \) (3.7)

where ?̃(G1:=, H1:=) = ?- (G1:=) × ?̃(H1:= |G1:=) and

6′(G1:=, H1:=, \) = − log
∑

H′1:= |=H1:=

?(H′1:= |G1:=; \) (3.8)

Define \∗ to be such that ∀G1:= ∈ X, ∀H1:=, ?(H1:= |G1:=; \∗) = ?. |- (H1:= |G1:=) (by assumption 1(b)

such a parameter setting must exist).

The following properties are easily verified to hold:

1. ∀\, 6(\) ≥ 0, ℎ(\) ≥ 0

2. 6(\∗) = ℎ(\∗) = 0. Hence \∗ is a minimizer of 6(\) + ℎ(\).

We now show that any minimizer \′ of 6(\) + ℎ(\) must satisfy the property that ∀G1:= ∈

X,∀H1:=, ?(H1:= |G1:=; \
′) = ?. |- (H1:= |G1:=).

For \′ to be a minimizer of 6(\) + ℎ(\) it must be the case that 6(\′) = ℎ(\′) = 0. We then

note the following steps:

1. By Lemma 3, if 6(\′) = 0 it must hold that ∀G1:= ∈ X,∀8 ∈ {1 . . . =} such that ?. |- (H8 =

H |G1:=) = 1 and H ≠ o, ?(H8 = H |G1:=; \′) = 1.
2One additional remark: Assumption 1 conditions (a) and (b) do not strictly speaking include log-linear models,

as probabilities in these models cannot be strictly equal to 1 or 0. However, probabilities under these models can
approach arbitrarily close to 1 or 0; for simplicity we present this version of the theorem here, but a more complete
analysis could use techniques similar to those in Della Pietra et al. (1997) that make use of the closure of the set of
distributions of the model, which include points on the boundary.
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2. It remains to be shown that ∀G1:= ∈ X,∀8 ∈ {1 . . . =} such that ?. |- (H8 = H |G1:=) = 1 and

H = o, ?(H8 = H |G1:=; \′) = 1.

3. Property (ii) follows from (i) through proof by contradiction. If ∃ G1:= ∈ X together with

8 ∈ {1 . . . =} such that ?. |- (H8 = H |G1:=) = 1 and H = o, and ?(H8 = H |G1:=; \) < 1 it must be

the case that ℎ(\′) > 0, because the expected number of o tags under \′ is strictly less than

the expected number of o tags under ?. |- .

�

Lemma 3. Define 6(\) and 6′(G1:=, H1:=, \) as in Eqs. 3.7 and 3.8 above.

6(\) =
∑

G1:=,H1:=

?̃(G1:=, H1:=)6′(G1:=, H1:=, \)

where ?̃(G1:=, H1:=) = ?- (G1:=) × ?̃(H1:= |G1:=) and

6′(G1:=, H1:=, \) = − log
∑

H′1:= |=H1:=

?(H′1:= |G1:=; \)

Then, for any value of \ such that 6(\) = 0, ∀G1:= ∈ X, ∀8 ∈ {1 . . . =} such that ?. |- (H8 = H |G1:=) =

1 and H ≠ o, ?(H8 = H |G1:=; \) = 1.

Proof: If 6(\) = 0, then for all G1:=, H1:= such that ?̃(G1:=, H1:=) > 0, it must be the case that

− log
∑
H′1:= |=H1:= ?(H′1:= |G1:=; \) = 0 and hence

∑
H′1:= |=H1:= ?(H′1:= |G1:=; \) = 1. The proof is then by

contradiction: if there exists some G1:= ∈ X, 8 ∈ {1 . . . =} such that ?. |- (H8 = H |G1:=) = 1 and H ≠ o

and ?(H8 = H |G1:=; \) < 1, it must be the case that there exists some H1:= such that ?̃(G1:=, H1:=) > 0,

H8 = H, and
∑
H′1:= |=H1:= ?(H′1:= |G1:=; \) < 1.

�
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Dataset |Y| |Train| |Dev| |Test| |Gold| d∗ |NNS| dNNS |EE| dEE

eng-c 17 203.6K 51.4K 46.4K 34.0K 16.7% 19.3K 3.6% 1.4K 0.7%
deu 17 206.1K 51.3K 51.4K 16.7K 8.1% 9.3K 4.6% 1.4K 0.7%
esp 17 264.4K 52.7K 51.3K 32.8K 12.4% 12.7K 6.7% 1.8K 0.7%
ned 17 201.2K 37.2K 68.6K 19.1K 9.5% 10.8K 5.4% 1.4K 0.7%

eng-o 73 1,644.2K 251.0K 172.1K 239.8K 14.6% 131.4K 8.0% 1.9K 0.1%
chi 73 782.7K 113K 93.0K 91.7K 11.7% 52.8K 6.8% 1.4K 0.2%
ara 73 242.0K 28.3K 28.3K 40.6K 16.8% 22.8K 9.4% 1.9K 0.8%

Table 3.1: Dataset Statistics. Each row is organized by dataset with CoNLL03 in the top group
and Ontonotes5 below. The first column shows the number of entity tags |Y|. The next three
columns give the total number of tokens in the train, dev, and test splits for each dataset. The final
six columns give the total number of annotated entity tokens in the training split for the gold and
simulated low-recall datasets from Section 3.3.2, along with their observed EERs as percentages.

3.3 Benchmark Experiments

We evaluate our approach on 7 datasets in 6 languages for two diverse annotation scenarios (14

datasets in total) and compare to strong and state-of-the-art baselines.

3.3.1 Corpora

Our original datasets come from two benchmark NER corpora in 6 languages. We use the

English (eng-c), Spanish (esp), German (deu) and Dutch (ned) languages from the CoNLL 2003

shared tasks (Tjong Kim Sang and De Meulder, 2003). We also use the NER annotations for

English (eng-o), Mandarin Chinese (chi), and Arabic (ara) from the Ontonotes5 corpus (Hovy

et al., 2006).

By studying across this wide array of corpora, we test the approaches in a variety of language

settings, as well as dataset and task sizes. The CoNLL corpus specifies 4 entity classes while

the Ontonotes corpus has 18 different classes and they span 7.4K to 82K training sentences. Full

details are in Table 3.1.

We use standard train/dev/test document splits. For each corpus, we generate two partially

annotated datasets according to the scenarios from Section 3.3.2.
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3.3.2 Simulated Annotation Scenarios

We simulate two partial annotation scenarios that model diverse real-world situations. The first

is the “Non-Native Speaker” (NNS) scenario from Mayhew et al. (2019) and the second, “Ex-

ploratory Expert” (EE), is a novel scenario inspired by industry. We choose these two samplers to

make our results more applicable to practitioners. The simpler alternative – dropping entity anno-

tations uniformly at random (as in Jie et al. (2019); Li et al. (2021)) – is not realistic, leaving an

overly diverse set of surface mentions with none of the biases incurred by real-world partial label-

ing. While there are other partial annotation scenarios compatible with our method that we could

have considered here as well, such as using Wikipedia or gazatteers for silver-labeled supervision,

we chose to work with simulated scenarios that allow us to study a large array of datasets without

introducing the confounding effects of choices for outside resources.

Scenario 1: Non-Native Speaker (NNS)

Our first low-recall scenario is the one proposed by Mayhew et al. (2019), wherein they study

NER datasets that simulate non-native speaker annotators. To simulate data for this scenario, May-

hew et al. (2019) downsample annotations grouped by mention until a recall of 50%. For example,

if “New York” is sampled, then all annotations with “New York” as their mention in the text are

dropped. After the recall is dropped to 50%, the precision is lowered to 90% by adding short

randomly typed false-positive spans. The reasoning for this slightly more complicated scheme

is that it better reflects the biases incurred via non-native speaker annotation. When non-native

speakers exhaustively annotate for NER, they often systematically miss unrecognized entities and

occasionally incorrectly annotate false-positive spans. This happens because some entities are for-

eign words that are easy to recognize compared to their neighboring words (Mayhew et al., 2019).

It is worth noting that the NNS scenario is also quite close to a silver-labeled scenario using a seed

dictionary with 50% recall, only it has some additional false positive noise.

The original sampling code used in Mayhew et al. (2019) is not available and we have intro-

duced datasets that were not in their study, so we reimplemented their sampler and used our version
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across all of our corpora for consistency. We do, however, run their model code on our datasets, so

our results with respect to their approach still hold.3

Scenario 2: Exploratory Expert (EE)

In addition to Mayhew et al. (2019)’s non-native speaker scenario, we introduce a significantly

different scenario that reflects another common real-world low-recall NER situation. Though it has

not been studied before in the literature, it is inspired by accounts of partially annotated datasets

encountered in industry.

In the “Exploratory Expert” (EE) scenario, we suppose a new NER task to be annotated by a

domain expert with limited time. Here, in the initial “exploratory” phase of annotation, the expert

may wish to cover more ground by inexhaustively scanning through documents in the corpus,

annotating the first few entities they see in a document before moving on, stopping once they

have added " total entity spans. The advantage of this approach is that, by being inexhaustive,

the resulting set of mentions will occur in a larger diversity of contexts than by using exhaustive

annotation when the number of annotations is small. This is because there tends to be a larger

diversity of language across documents than within them.x Compared to exhaustive annotation,

the disadvantage is annotators may miss entities and the annotations are biased toward the top of

documents.

We simulate this scenario by first removing all annotations from the dataset, then adding back

entity spans with the following process. First, we select a document at random without replace-

ment, then scan this document left to right, adding back entity spans with probability 0.8, until 10

entities have been added, then moving on to the next random document. The process halts when

" = 1, 000 total entity spans have been added back to the dataset. We note that this assumes

that the expert annotators are skimming, sometimes missing entities (20% of the time), but also

assumes that the expert does not make flagrant mistakes and so do not insert random false-positive

spans.

3The authors of Mayhew et al. (2019) graciously provided us with their experiment code.
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An important aspect of this scenario in our experiments is the scale of the number of kept

annotations. In previous works (Jie et al., 2019; Mayhew et al., 2019; Li et al., 2021), the number

of kept annotations is not dropped below 50% of the complete dataset. By keeping only 1K entities,

this scenario is significantly more impoverished than those previously studied (1K entities leaves

less than 10% of annotations for all datasets, ranging from 0.8% to 8.5%, depending on the corpus).

3.3.3 Approaches

We compare several modeling approaches on the benchmark corpora, detailed below.

Gold

For comparison, we report our tagging model trained with supervised sequence likelihood on

the original gold datasets. This provides an upperbound on tagging performance and puts any

performance degradation from partially-supervised datasets into perspective. We do not expect

any of the other methods to outperform this.

Raw

In the Raw-BERT baseline, we make the naive assumption that all unobserved tags in the

low-recall datasets are the O tag, reflecting the second row of Figure 3.1, and train with supervised

likelihood. This is a weak baseline that we expect to have low recall.

Cost-aware Decoding (Raw+CD)

This stronger baseline explores a simple modification to the Raw baseline at test time: we

increase the cost of predicting an O tag during inference in an attempt to artificially increase the

recall. That is, we introduce an additional hyperparameter 1O ≥ 0 that is subtracted from the O tag

54



potentials, biasing the model away from predicting O tags:

q(8, H) =


E>H ℎ8 − 1O H = O

E>H ℎ8 else

Intuitively, this approach will work well if the tag potentials consistently rank false negative

entity tokens higher than true O tokens. To select 1O, we perform a model-based hyperparameter

search (Head et al., 2020) using a Gaussian process with 30 evaluations on the validation set F1

score for each dataset’s trained Raw-BERT model.

Constrained Binary Learning (CBL)

The CBL baseline is a state-of-the-art approach to partially supervised NER from Mayhew

et al. (2019). The main idea of the approach is to estimate which O tags are false negatives, and

remove them from training.

Constrained Binary Learning (CBL) approaches this through a constrained, self-training-like

meta-algorithm, based on Constraint-Driven Learning (Chang et al., 2007a). The algorithm starts

off with a binarized version of the problem (O tag vs not) and initializes instance weights of 1

for all O tags. It then estimates their final weights by iteratively training a model, predicting tags

for the training data, then down-weighing some tags based on the confidence of these predictions

according to a linear-programming constraint on the total number of allowed O tags. At each

iteration, the number of allowed O tags is decreased slightly, and this loop is repeated until the final

target entity ratio (our d) is satisfied by the weights. A final tagger is then trained on the original

tag set using a weighted modification of the supervised tagging likelihood.

For this method, we used the code exactly as was provided, with the following exception.

For all non-english languages, we were not able to obtain the original embeddings used in their

experiments, and so we have used language-specific pretrained embeddings from the FastText

library (Grave et al., 2018). The base tagging model from Mayhew et al. (2019) utilizes the

BiLSTM-CRF approach from Ma and Hovy (2016). The CBL meta-algorithm, however, is ag-
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nostic to the underlying scoring architecture of the CRF, and so we test the CBL algorithm both

with their BiLSTM scoring architecture and with our BERT-based scoring architecture, which we

call CBL-LSTM and CBL-BERT respectively. By testing the CBL meta-algorithm with our tag-

ging model, we control for the different modeling choices and get a clear view of how their CBL

approach compares to ours.

Span-based Negative Sampling (SNS)

The SNS-BERT baseline is a recent state-of-the-art approach to partially supervised NER from

Li et al. (2021). It uses the same BERT-based encoding architecture, but has a different modeling

layer on top. Instead of tagging each token, they instead use a span-based scheme, treating each

possible pair of tokens as potential entity and classifying all of the spans independently, using

an ad-hoc decoding step based on confidence to eliminate overlapping spans. To deal with the

resulting class imbalance (O spans are overwhelmingly common) and low-recall entity annotations,

they propose to sample spans from the set of unlabeled spans as negatives. While it is possible that

they incorrectly sample false negative entities, they argue that this has very low probability. For

this method, we used the code as provided but controlled for the same encoding pretrained weights

as our other models.

Expected Entity Ratio (EER)

The EER-BERT model implements our proposed approach, using the proposed tagger (Sec-

tion 3.2.2) and loss function described in Equation 3.6.

3.3.4 Preprocessing

All datasets came in documents, pre-tokenized into words, with gold sentence boundaries.

Recent work (Akbik et al., 2019; Luoma and Pyysalo, 2020) has demonstrated that larger inter-

sentential document context is useful for maximizing performance, so we work with full docu-
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ments instead of individual sentences.4 For approaches that used a pretrained transformer, some

documents did not fit into the 512 token maximum length. In these cases, we split documents into

maximal contiguous chunks at sentence boundaries. Also, for pretrained transformer approaches

we expand the tag sequences to match the subword tokenizations.

Because the low-recall data in the EE scenario concentrates annotations at the top of only a few

documents, it is possible to identify and omit large unannotated portions of text from the training

data. We hypothesize that this will significantly improve model outcomes for the baselines because

it significantly cuts down on the number of false negative annotations. Therefore, we explore three

preprocessing variants for all EE models: (1) all uses the full dataset as given; (2) short drops

all documents with no annotations; and (3) shortest drops all sentences after the last annotation

in a document (subsuming short). Model names are suffixed with their preprocessing variants.

We note that these approaches do not apply to the NNS scenario, as it has many more annotations

spread more evenly throughout the data.

3.3.5 Hyperparameters

All hyperparameters were given reasonable defaults, using recommendations from previous

work. For pretrained transformer models, we used the Huggingface (Inc., 2019) implementations

of roberta-base (Liu et al., 2019c) on English datasets and bert-base-multilingual

-cased (Devlin et al., 2019) for the other languages. The vector representations used by these

models are 768-dimensional and we used matching dimensions for other vector sizes throughout

the model. We used a learning rate of 2 × 10−5 with slanted triangular schedule peaking at 10% of

the iterations (Devlin et al., 2019). For batch size, we use the maximum batch size that will allow

us to train in memory on a Tesla V100 GPU (14 for CoNLL data, 2 for Ontonote5 data). We found

that training for more epochs than originally recommended (Devlin et al., 2019) was necessary for

convergence and used 20 epochs for the all variants and 50 epochs for the significantly smaller

4With the exception of the SNS (Li et al., 2021) baseline where we had to restrict to sentences because it is O(=2)
span-based model and could not handle long text sequences, running into memory issues.
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short and shortest variants.5

The only hyperparameter we adjusted (from a preliminary experiment measuring dev set per-

formance) was setting _D = 10. We originally tried a weight of _D = 1, but then found that the

scale of the !? loss massively overpowered !D, so we increased it to _D = 10, which yielded good

performance. We did not try other values after that.

In important contrast to benchmark experiments from prior work (Jie et al., 2019; Mayhew

et al., 2019), we do not assume we know the gold entity tag ratio for each dataset when setting

d. Instead, to make the evaluation more realistic, we use a reasonable guess of d = 0.15 with a

margin of uncertainty W = 0.05 for all approaches and datasets. We choose this range because it

covers most of the gold ratios observed in the datasets.6

3.3.6 Results

The results of our evaluation are presented in Table 3.2. The first row shows the result of

training our tagger with the original gold data. These results are competitive with previously pub-

lished results from similar pretrained transformers (Devlin et al., 2019) that do not use ensembles

or NER-specific pretraining (Luoma and Pyysalo, 2020; Baevski et al., 2019; Yamada et al., 2020).

Interestingly, we also found that our tagging CRF outperformed the span-based independent dis-

tribution of Li et al. (2021) on all gold datasets.

NNS Performance. The second set of rows shows test F1 scores of models from Section 3.3.3

for the NNS sampled datasets. We first note that the CBL-LSTM approach from Mayhew et al.

(2019) significantly underperformed for all non-english languages (and are much lower than the

results from their paper with similar data). We used their code as is, only changing the pretrained

word vectors, and so suspect that this is due to lower quality word vectors obtained from FastText

instead of their custom-fit vectors. This is confirmed by the results of using their CBL meta-

algorithm with our proposed tagging architecture, which is competitive with EER-BERT in this

5For the CBL-LSTM approach, we use the hyperparameters from Mayhew et al. (2019): these are more epochs
(45), and a higher learning rate of 10−3.

6In early experiments we found that the CBL code from Mayhew et al. (2019) used the gold ratio plus 0.05. This
additional 0.05 turned out to be critical to getting competitive performance, so in practice we use a d = 0.2 for CBL.
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Approach / Language eng-c deu esp ned eng-o chi ara avg

Gold-BERT-all 92.7 83.9 88.3 91.1 90.7 79.4 72.9 85.6
Gold-SNS-BERT-all 91.1 82.3 87.9 89.5 89.7 77.1 62.1 82.8

Non-Native Speaker Scenario (NNS): Recall=50%, Precision=90%

Raw-BERT-all 81.9 69.1 71.2 70.1 68.0 61.9 52.8 67.9
Raw+CD-BERT-all 86.3 78.4 79.9 77.2 80.9 64.9 60.1 75.4
CBL-LSTM-all 79.2 38.4 54.6 48.2 67.9 53.5 39.4 54.5
CBL-BERT-all 84.8 77.5 78.7 75.3 76.3 68.9 61.9 74.8
SNS-BERT-all 86.0 77.0 80.8 77.9 81.5 66.4 56.0 75.1
EER-BERT-all 88.0 77.3 80.9 76.9 84.5 66.6 56.6 75.8

Exploratory Expert Scenario (EE): 1, 000 Annotations

Raw-BERT-all 0.4 02.6 00.7 0.0 0.4 2.4 5.3 1.7
Raw-BERT-short 44.1 37.2 44.4 0.0 28.4 32.4 15.4 28.8
Raw-BERT-shortest 80.7 65.4 73.0 69.1 67.5 57.1 42.0 65.0
Raw+CD-BERT-shortest 82.4 67.9 76.6 70.0 68.9 58.3 43.9 66.9
CBL-LSTM-all 60.2 27.5 41.2 33.3 23.1 29.9 15.3 32.9
CBL-LSTM-shortest 67.8 20.1 36.2 26.7 42.0 24.6 9.7 32.4
CBL-BERT-all 36.4 52.8 40.9 52.5 22.4 29.3 20.8 36.4
CBL-BERT-short 43.7 64.7 56.4 60.8 16.0 31.2 30.2 43.3
CBL-BERT-shortest 80.6 65.1 74.7 71.2 28.4 53.6 39.2 59.0
SNS-BERT-all 59.5 63.8 70.8 70.3 14.0 28.8 0.0 43.9
SNS-BERT-short 64.4 62.6 70.8 64.1 40.7 46.4 0.0 49.9
SNS-BERT-shortest 83.9 70.1 76.8 77.1 75.6 63.3 40.7 69.6
EER-BERT-all 86.3 73.2 80.2 80.2 61.2 56.2 42.9 68.6
EER-BERT-short 89.0† 72.2 76.5 80.3† 75.9 61.4 46.8† 71.7†
EER-BERT-shortest 87.3† 73.6† 76.5 74.2 74.0 64.3 42.1 70.3

Table 3.2: Benchmark test set F1 scores across different languages and annotation scenarios. Best
models in bold.
† indicates that for EE the test F1 score is statistically significantly better than SNS-BERT-shortest
(? < 0.01) (details in footnote 7). Other pairs between SNS-BERT-shortest and EER-BERT-
short/shortest were not significant.

setting. Otherwise, we found that all strong baselines and our method performed quite similarly.

This suggests that performance in the NNS regime with relatively high recall (50%) and little

label noise per positively labeled mention is not bottlenecked by approaches to resolving missing

mentions. Further improvements in this regime will likely come from other sources, such as better

pretraining or supplemental corpora. Because of this we recommend that future evaluations for
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partially supervised NER focus on more impoverished annotation counts, such as the EE scenario

we study next.

EE Performance. In the third group of rows, we show test F1 scores for each model using

the more challenging EE scenario with only 1, 000 kept annotations. In this setting, using the

dataset as is for supervised training (Raw-BERT-all), fails to converge, but smarter preprocessing

largely alleviates this problem, with Raw-BERT-shortest obtaining an average F1 of 65.0. Adding

cost-aware decoding (Raw+CD-BERT-shortest) further improves upon the standard baseline (F1

66.9).

Even with only 1, 000 biased and incomplete annotations – less than 10% of the original an-

notations for all datasets – we find that our approach (EER-BERT-short) still achieves an F1 score

of 71.7 on average. This outperforms the best strong baselines: Raw+CD, CBL, and SNS, by

4.8, 12.7, and 2.3 F1 score, respectively. The closest baseline, SNS-BERT-shortest from Li et al.

(2021), is competitive with EER-BERT-short on four of the datasets, but performs significantly

worse on the other three as well as overall,7 leading us to conclude that our method has a per-

formance edge in this regime. Further, EER-BERT-short performs only 4.1 average F1 worse on

EE data than EER-BERT-all on NNS data. We also note that EER-BERT-shortest significantly

outperformed SNS-BERT-shortest on two datasets, but failed to reject the null hypothesis overall.

Another important finding is that EER-BERT is much more robust to preprocessing choices

than the baselines. The baselines all view missing entities as O tags/spans (at least to start) and

these relatively common false negatives severely throw off convergence. By removing most of

the unannotated text with preprocessing, we effectively create a much smaller corpus that has

nearly 80% recall (for shortest). In contrast, EER-BERT’s view of the data makes no assertions

about the class of individual unobserved tokens and so is less sensitive to the relative proportion of

false negative annotations. This is useful in practice, as our approach should better handle partial

7We assessed significance between model pairs using a percentile bootstrap of F1 score differences, resampling
test set documents with replacement 100K times (Efron and Tibshirani, 1994) and measuring the paired F1 scores
differences of EER-BERT-short/shortest and SNS-BERT-shortest. Significance was assessed by whether the two-
sided 99% confidence interval contained 0.0. To assess overall significance, we concatenated the test datasets before
bootstrapping.
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annotation scenarios with wider varieties of false negative proportions that may not be so easily

addressed with simple preprocessing.

Speed. A pragmatic appeal of our approach compared to CBL (Mayhew et al., 2019) is training

time. On NNS data, EER-BERT-all is on average 7.6 times faster than CBL-BERT-all and on EE

data EER-BERT-short is 2.2 times faster than CBL-BERT-shortest, even though it uses more data.

This is because EER does not require a costly outer self-training loop. 8

Conclusion. These results illustrate that our approach outperforms the previous strong and

state-of-the-art baselines in the challenging low-recall EE setting with only 1K annotations while

also being more robust to the relative proportions of false negatives in the training corpus.9

3.3.7 Analysis of EER hyperparameters

Recall that the definition of our EER loss in Equation 3.3 defines an acceptable region d̂\ ∈

[d − W, d + W] of learned models and that in our this experiment, we used d = 0.15 and W = 0.05

for all datasets, regardless of the true entity ratios d∗. Two interesting questions then are:

1. How sensitive is the procedure to choices of d and W?

2. How closely do the final learned models reflect the true entity ratios for the data?

We address these next.

Robustness to choices of d and W

To study robustness we varied choices of d and W for EER-BERT-short on the CoNLL English

EE dataset with three randomly sampled datasets. Table 3.3.7 shows test F1 scores across seeds for

various settings of d±W. We first show three point estimates with W = 0.0, the first at d = d∗ = 0.23,

then shifted around d∗ left and right to d = 0.15 and d = 0.30, respectively. We then widen the

8We unfortunately cannot comment on relative speed of SNS because runtimes cannot be inferred from the SNS
code output, though we do not expect a fundamental speed advantage of one over the other, as neither use self-training.

9We also note that the EE scenario averages for all models are significantly affected by the poor performance on
the Arabic Ontonotes5 (ara) dataset. After further inspection of the training curves, we found that all models exhibited
very slow convergence on this dataset and/or failed to converge in the allotted number of epochs.
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range with W = 0.05 and show the benchmark result d = 0.15, followed by shifts of d±0.1. Finally

we show a very wide range of d = 0.15, W = 0.15.

Varying EER HPs Test F1 Scores

[d − W, d + W] RS0 RS1 RS2 Avg.

[0.23, 0.23]∗ 86.8 87.4 87.0 87.1

[0.15, 0.15] 89.3 87.1 87.8 88.1

[0.30, 0.30] 79.1 79.4 79.7 79.4

[0.10, 0.20]† 87.6 88.2 87.8 87.9

[0.20, 0.30] 83.9 83.8 84.1 83.9

[0.00, 0.10] 89.2 87.1 87.8 88.0

[0.00, 0.30] 83.9 83.8 84.0 83.9

Table 3.3: CoNLL English EE EER-short test set F1 across three randomly sampled datasets. ∗:

d = d∗. †: benchmark experiment setting.

From the table we can glean two interesting points. The first is that in settings where the high

end of range of acceptable EER’s is greater then d∗ (when d+W = 0.30) there is a substantial drop in

performance (mean = 82.3). The second is that the complement group of settings, where d+W ≤ d∗

are all high-performing with little variance (mean = 87.8, std = 0.4). Together they suggest that

the true sensitivity of the proposed EER approach to the high end of the interval and that it is best

to conservatively estimate that value, whereas the low end of the range is unimportant. This result

agrees well with the intuitions provided in Section 3.2.5: since !? is encouraging models with

high recall without regard for precision (d̂\ → 1), it is best to set d + W such that !D introduces a

tension in the combined loss by encouraging d̂\ ≤ d∗. This is not the whole story, however, as we

discuss next.
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Convergence towards d∗

The results from the previous experiment suggests that !D simply serves to drive d̂\ → d + W.

Since we used d + W = 0.2 for all datasets in the benchmark, we would then expect to see a result

that d̂\ ≈ 0.2 for all models.

We tested this hypothesis by calculating the entity ratio d̂\ of final trained EER-BERT-short

models for the EE datasets (leaving out ara, since it failed to converge) and calculated the average

difference of each d̂\ with respect to the corresponding true d∗, resulting in mean absolute error

of only 0.018. This is much closer on average than if the models just converged to 0.2 (the mean

absolute error then would be 0.048), indicating that our approach tends to converge more closely to

the true entity ratio d∗ than the estimate given by d+W. In particular, we found that all final models

had d̂\ < 0.2 except CoNLL English, where d̂\ = 0.23, quite close to the gold d∗ even though

it was outside of the target range. This result is encouraging in that it suggests the EER loss, in

balance with the supervised marginal tag loss, does more to recover d∗ than just drive d̂\ → d + W.

3.4 EE vs. Exhaustive Experiments

In situations where we only have partially annotated data without the option for exhaustive

annotations, the utility of being able to train with the data as provided is self-evident. However,

given the potential upsides of partial annotation relative to exhaustive annotation – mentally less

taxing and increased contextual diversity for a fixed annotation budget – it is natural to ask whether

it is actually better to go with a sparse annotation scheme.

3.4.1 Annotation Speed User Study

We begin with a user study of annotation speed, comparing EE to the standard exhaustive an-

notation scheme. Following methodology from Li et al. (2020), we recorded 8 annotation sessions

from 4 NLP researchers familiar with NER. Using the Ontonotes5 English corpus, we asked each

annotator to annotate for two 20 minute sessions using the BRAT (Stenetorp et al., 2012) annota-
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tion tool, one exhaustively and the other following the EE scheme. We split documents into two

randomized groups and systematically varied which group was annotated with each scheme and

in what order to control for document and ordering variation effects. Then, for each annotator, we

measured the number of annotated entities per minute for both schemes and report the ratio of EE

annotations per minute to exhaustive annotations per minute (i.e., the relative speed of EE to ex-

haustive). We found that, although speed varied greatly between annotators (ranging from roughly

4 annotations/min to 9 annotations/min across sessions), EE annotation and exhaustive annotation

were essentially the same speed, with EE being 3% faster on average. Thus we may fairly compare

exhaustive and EE schemes using model performance at the same number of annotations, which

we do next.10

3.4.2 Performance Learning Curves

In this experiment, we compare the best traditional supervised training from the benchmark

(Raw-BERT-shortest) with our proposed approach (EER-BERT-short) on EE-annotated and ex-

haustively annotated documents from CoNLL’03 English (eng-c) at several annotation budgets,

" ∈ {100 (0.4%), 500 (2.1%), 1 (4.3%), 5 (21.3%), 10 (42.6%)}. For each annotation

budget, we sampled three datasets with different random seeds for both annotation schemes and

trained both modeling approaches. This allows us to study how all four combinations of annota-

tion style and training methods perform at varying magnitudes of annotation counts. In addition to

low-recall annotations, we compared our EER approach to supervised training on the gold data.

In Figure 3.2, we show learning curves for the average test performance of all four annota-

tion/training variants. From the plot, we can infer several points. First, on EE-annotated data,

using our EER loss substantially outperforms traditional likelihood training at all amounts of par-

tial annotation, but the opposite is true on exhaustively annotated data. This indicates that the

training method should be tailored to the annotation scheme.

The comparison between EE data with EER training versus exhaustive data with likelihood

10The exact number of annotated entities among the four annotation sessions for EE were 91, 90, 109, and 179. For
Exhaustive the matching annotation counts were 83, 85, 117, and 170.
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training is more nuanced. At only 100 annotations, exhaustive annotation worked best on average

in our sample, but all methods exhibit high variance due to the large variation in which entities were

annotated. Interestingly, at modest sizes of only 500 and 1K annotations, EE annotated data with

our proposed EER-short approach outperformed exhaustive annotation with traditional supervised

training, with gains of +1.8 and +1.5 average F1 for 500 and 1K annotations, respectively. These

results, however, reverse as the annotation counts grow: at 5K annotations, the two approaches

perform the same (90.8) and, at even larger annotation counts, exhaustive annotation with tradi-

tional training outperforms our approach by +0.5 at 10K annotations and +0.8 on the gold dataset.

This indicates that EE annotation, paired with our EER loss, is competitive and potentially ad-

vantageous to exhaustive annotation and traditional training at modest annotation counts, but that
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Figure 3.2: Test performance as a function of the number of observed training annotations for the
Exhaustive vs. EE annotation on CoNLL English. Lines are averages and shaded regions are ±1
standard error.
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exhaustive annotation with traditional training is better at large annotation counts. This suggests

that a hybrid annotation approach where we sparsely annotate data at first, but eventually switch to

exhaustive annotations as the process progresses, is a promising direction of future work. We note

that our EER loss can easily incorporate observed O tags from exhaustively annotated documents

in HO and so would work in this setup without modification.

3.5 Related Work

A common paradigm for low-recall NER is automatically creating silver-labeled data using

outside resources. Bellare and McCallum (2007) approach the problem by distantly supervising

spans using a database with marginal tag training. Carlson et al. (2009) similarly use a gazetteer

and adapt the structured perceptron (Collins, 2002) to handle partially labeled sequences, while

Nothman et al. (2008) use Wikipedia and label-propagation heuristics. Peng et al. (2019) also

use distant supervision to silver-labeled entities, but use PU-learning with specified class priors

to estimate individual classifiers with ad-hoc decoding. Yang et al. (2018); Nooralahzadeh et al.

(2019) optimize the marginal likelihood (Tsuboi et al., 2008) of the distantly annotated tags but

require gazatteers and some fully labeled data to handle proper prediction of the O tag. Greenberg

et al. (2018a) use a marginal likelihood objective to pool overlapping NER tasks and datasets, but

must exploit cross-dataset constraints. Snorkel (Ratner et al., 2017) uses many sources of weak

supervision, but relies on high-recall and overlap to work. In contrast to these works, we do not

use outside resources.

Our problem setting has connections to PU-learning, which is classically an approach to classi-

fication (Liu et al., 2002, 2003; Elkan and Noto, 2008; Grave, 2014), but here we work with tagging

structures. Our approach is also related to constraint-satisfaction methods for shaping the model

distribution such as CoDL (Chang et al., 2007a), used by Mayhew et al. (2019), and is also related

to Posterior Regularization (Ganchev et al., 2010a), with main differences being that we do not

use the KL-divergence and use gradient-based updates to a nonlinear model instead of closed-form

updates to a log-linear model.
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The problem setup from Jie et al. (2019); Mayhew et al. (2019) is the same as ours, but Jie

et al. (2019) use a cross-validated self-training approach and Mayhew et al. (2019) use an iterative

constraint-driven self-training approach to down-weigh possible false-negative O tags, which they

show to outperform Jie et al. (2019). Mayhew et al. (2019) is the current state of the art on the

CoNLL 2003 NER datasets (Tjong Kim Sang and De Meulder, 2003) and we compare to their

work in the experiments. Recently, Li et al. (2021) have published a span-based method that

uses negative sampling of non-entity spans, but they do not provide any supporting theoretical

guarantees. We also compare to them in the experiments.

3.6 Conclusions

We study learning NER taggers in the presence of partially labeled data and propose a simple,

fast, and theoretically principled approach, the Expected Entity Ratio loss, to deal with low-recall

annotations. We show empirically that it outperforms the previous state of the art across a variety of

languages, annotation scenarios, and amounts of labeled data. Additionally, we give evidence that

sparse annotations, when paired with our approach, are a viable alternative to exhaustive annotation

for modest annotation budgets.

Though we study two simulated annotation scenarios to provide controlled experiments, our

proposed EER approach is compatible with a variety of other incomplete annotation scenarios,

such as incidental annotations (e.g., from web links on Wikipedia), initialized by seed annota-

tions from incomplete distant supervision/gazatteers, or embedded as a learning procedure in an

active/iterative learning framework, which we intend to explore in future work.

The method developed in this chapter pushes the boundaries of annotation-efficiency in NER.

As we have seen, the proposed approach allows us to trade off completeness of the annotated

data for biased low-recall annotation processes that can generate a higher variety of labeled input

texts on fixed annotation budgets and draw on other sparse and incomplete data sources without

incurring the same drawbacks as previous works in the literature. Further our approach allows us

to build usable models on datasets that are significantly more sparsely annotated than the previous
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state-of-the-art methods, going as low as only observing only 0.6% of the true entities, while

maintaining 84.7% of the fully supervised F1 score. It is our hope that this method can expand the

accessibility of NER to more diverse and niche applications by reducing the annotation burden on

would-be NER practitioners.
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Chapter 4: Improving Low-Resource Cross-lingual Parsing with Expected

Statistic Regularization

In Chapter 3, we developed an approach for learning NER taggers on partially annotated data

with very low recall and systematically missing tags. The proposed approach for addressing the

partially supervised NER problem was to penalize the marginal entity tag distribution of the model

if it deviated outside a range of acceptable values. This computation of the marginal entity tag dis-

tribution can be thought of as a “descriptive statistic” for the model – a function that quantitatively

describes a property of the model distribution given a sample of the data. Further the EER loss

can be thought of as regularizing the model by encouraging the marginal entity tag statistic to fall

within a reasonable range of prior expected values.

In this chapter, we propose to take this abstract idea behind EER and generalize it far beyond

a single statistic function. We propose a novel and general regularization technique “Expected

Statistic Regularization” (ESR), that uses a wide class of statistic functions and their expected

values to keep various aspects of model behavior from diverging outside of our expectations on

unsupervised data. Interestingly, these statistic functions and their expectations can be formulated

using expert knowledge about the task, so that we can impart high level information about the

target task on the model without directly labeling examples, allowing us to increase the annotation-

efficiency of learning. Further, as we saw in Chapter 3, these statistics can be used to counter biases

in the model that are induced by biases in the training data, allowing us to train in biased settings.

Though we propose a general method here, we study it empirically in the context of an im-

portant structured prediction problem in NLP: syntactic part-of-speech tagging and dependency

parsing in low-resource languages. This problem is a perfect application area for studying ESR

because its rich structure allows for the analysis of many interesting types of statistics, based on
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the theory of syntactic typology, that bear on different aspects of model behavior. Further, because

this problem has already seen great progress in recent years from applications of multi-lingual

deep learning and cross-lingual transfer approaches, we have an opportunity to see if the use of

high-level expert knowledge about the problem, in the form of ESR, can be complimentary to this

strong baseline. As we will see in the experiments, ESR helps to improve cross-lingual transfer in

precisely the areas where multi-lingual pretraining and fine-tuning fail by discouraging the model

from making erratic and unsensible predictions in regions of the input space that are “distant” or

poorly represented in the training data.

The rest of this chapter is organized as follows. In Section 4.1 we discuss the problem back-

ground and motivation. In Sections 4.2 and 4.3 we describe the general proposed framework of

ESR and a general approach for estimating supervision targets from small labeled samples, respec-

tively. Then, in Section 4.4 we describe its proposed application to state-of-the-art cross-lingual

syntactic analysis. In Section 4.5 we present oracle unsupervised experiments that analyze the

effectiveness of the proposed statistics along with other controlled ablations. In Section 4.6 we

conduct extensive experiments in realistic low-resource transfer scenarios across a wide range of

languages and amounts of labeled data. Finally, in Section 4.7 we discuss related work and in

Section 4.8 we discuss concluding thoughts.

4.1 Background and Motivation

In recent years, great strides have been made on linguistic analysis for low-resource languages.

These gains are largely attributable to transfer approaches from:

1. Massive pretrained multilingual language model (PLM) encoders (Devlin et al., 2019; Liu

et al., 2019c)

2. Multi-task training across related syntactic analysis tasks (Kondratyuk, 2019)

3. Multi-lingual training on diverse high-resource languages (Wu and Dredze, 2019; Ahmad

et al., 2019; Kondratyuk, 2019)
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Combined, these approaches yield a methodology that has been shown to be particularly effective

for cross-lingual syntactic analysis, as exemplified by UDify (Kondratyuk, 2019).

However, even with the improvements brought about by these techniques, transferred models

still make syntactically implausible predictions on low-resource languages, and these error rates

increase dramatically as the target languages become more distant from the source languages (He

et al., 2019; Meng et al., 2019). In particular, the transferred models fail to match many low-order

statistics concerning the typology of the task structures. We hypothesize that enforcing regularity

with respect to estimates of these structural statistics — effectively using them as weak supervision

— is complementary to current transfer approaches for low-resource cross-lingual parsing.

To this end, we introduce Expected Statistic Regularization (ESR), a novel differentiable loss

that regularizes models on unlabeled target datasets by minimizing deviation of descriptive statis-

tics of model behavior from target values. The class of descriptive statistics usable by ESR are

expressive and powerful. For example, they may describe cross-task interactions, encouraging

the model to obey structural patterns that are not explicitly tractable in the model factorization.

Additionally, the statistics may be derived from constraints dictated by the task formalism itself

(such as ruling out invalid substructures) or by numerical parameters that are specific to the target

dataset distribution (such as relative substructure frequencies). In the latter case, we also con-

tribute a method for selecting those parameters using small amounts of labeled data, based on the

bootstrap (Efron, 1979).

Although ESR is applicable to a variety of problems, we study it using modern cross-lingual

syntactic analysis on the Universal Dependencies data, building off of the strong model-transfer

framework of UDify (Kondratyuk, 2019). We show that ESR is complementary to transfer-based

approaches for building parsers on low-resource languages and that they can be used together. We

present several interesting classes of statistics for the tasks and perform extensive experiments in

both oracle unsupervised and realistic semi-supervised cross-lingual multi-task parsing scenarios,

with particularly encouraging results that significantly outperform state-of-the-art approaches for

semi-supervised scenarios. We also present ablations that justify key design choices.
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Specifically, we make the following contributions:

• A novel and general regularization framework, “Expected Statistic Regularization” (ESR),

that can be used to regularize models on unlabeled target datasets with a broad class of

functions that describe expected model behavior. These statistics allow for the incorporation

of various forms of high-level expert knowledge as supervision.

• A method for estimating target statistic values using small amounts of labeled data.

• An application of the method to that improves state-of-the-art cross-lingual parsing on low-

resource languages. We contribute seven families of descriptive statistics that bear on parser

behavior and extensively evaluate their impact on transfer, showing most to be useful.

• An extensive benchmark evaluation on transfer to 44 languages showing that ESR leads to

significant improvements over state-of-the-art approaches on many low-resource languages.

• Learning curve experiments that demonstrate the impact of the approach is largest for target

datasets with 500 or fewer annotated sentences.

• Ablation studies justifying key design choices for the proposed loss function.

4.2 Expected Statistic Regularization

We consider structured prediction in an abstract setting where we have inputs G ∈ X, output

structures H ∈ Y, and a conditional model ?\ (H |G) ∈ P with parameters \ ∈ Θ, where P is the

distribution space and Θ is the parameter space. In this section we assume that the setting is

semi-supervised, with a small labeled dataset D! and a large unlabeled dataset D* ; let D! =

{(G8, H8)}<8=1 be the labeled dataset of size < and similarly define D* = {G8}<+=8=<+1 as the unlabeled

dataset.

Our approach centers around a vectorized statistic function 5 that maps unlabeled samples and
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models to real vectors of dimension 3 5 :

5 : D × P→ R3 5 (4.1)

where D is the set of unlabeled datasets of any size, (i.e., D* ∈ D). The purpose of 5 is to

summarize various properties of the model using the sample. For example, if the task is part-of-

speech tagging, one possible component of 5 could be the expected proportion of NOUN tags in

the unlabeled data D* . In addition to 5 , we assume that we are given vectors of target statistics

C ∈ R3 and margins of uncertainty f ∈ R3 as its supervision signal. We will discuss the details of

5 , C, and f shortly but first describe the overall objective.

4.2.1 Semi-Supervised Objective

Given labeled and unlabeled data D! and D* , we propose the following semi-supervised ob-

jective $, which breaks down into a sum of supervised and unsupervised terms ! and �:

\̂ = arg min
\∈Θ

$ (\;D! ,D*) (4.2)

$ (\;D! ,D*) = ! (\;D!) + U� (\;D*) (4.3)

where U > 0 is a balancing coefficient. The supervised objective ! can be any suitable supervised

loss; here we will use the negative log-likelihood of the data under the model. Our contribution is

the unsupervised objective �.

For �, we propose to minimize some distance function ℓ between the target statistics C and the

value of the statistics 5 calculated using unlabeled data and the model ?\ . (ℓ will also take into

account the uncertainty margins f.) A simple objective would be:

� (\;D*) = ℓ(C, f, 5 (D* , ?\))

This is a dataset-level loss penalizing divergences from the target level statistics. The problem with
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this approach is that this is not amenable to modern hardware constraints requiring SGD. Instead,

we propose to optimize this loss in expectation over unlabeled mini-batch samples D:
*

, where :

is the mini-batch size and D:
*

is sampled uniformly with replacement from D* . Then, � is given

by:

� (\;D*) = ED:
*
[ℓ(C, f, 5 (D:

* , ?\))] (4.4)

This objective penalizes the model if the statistic 5 , when applied to samples of unlabeled data

D:
*

, deviates from the targets C and thus pushes the model toward satisfying these target statistics.

Importantly, the objective in Equation 4.4 is more general than typical objectives in that the

outer loss function ℓ does not necessarily break down into a sum over individual input examples

— the aggregation over examples is done inside 5 :

ℓ(C, f, 5 (D* , ?\)) ≠
∑
G∈D*

ℓ(C, f, 5 (G, ?\)) (4.5)

This generality is useful because components of 5 may describe statistics that aggregate over

inputs, estimating expected quantities concerning sample-level regularities of the structures. In

contrast, the right-hand side of Equation 4.5 is more stringent, imposing that the statistic be the

same for all instances of G. In practice, this loss reduces noise compared to a per-sentence loss, as

is shown in Section 4.5.3.

4.2.2 The Statistic Function 5

In principle the vectorized statistic function 5 could be almost any function of the unlabeled

data and model, provided it is possible to obtain its gradients w.r.t. the model parameters \, how-

ever, in this work we will assume 5 has the following three-layer structure.

First, let 6 be another vectorized function of "sub-statistics" that may have a different dimen-

sionality than 5 and takes individual G, H pairs as input:

6 : X ×Y → R36 (4.6)
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Then let 6̄ be the expected value of 6 under the model ?\ summed over the sample D* :

6̄ =
∑
G∈D*

E?\ (H |G) [6(G, H)] (4.7)

Given 6̄, let the 5 ’s 9’th component be the result of an aggregating function ℎ 9 : R36 → R on 6̄:

5 9 (D* , ?\) = ℎ 9 (6̄) (4.8)

The individual components 68 will mostly be counting functions that tally various substructures

in the data. The 6̄8’s then are expected substructure counts in the sample, and the ℎ 9 ’s aggregate

small subsets of these intermediate counts in different ways to compute various marginal probabil-

ities. Again, in general 5 does not need to follow this structure and any suitable statistic function

can be incorporated into the regularization term proposed in Equation 4.4.

In some cases—when the structure of 6 does not follow the model factorization either addi-

tively or multipicatively—computation of the model expectation E?\ (H |G) [6(G, H)] in Equation 4.7

is intractable. In these situations, standard Monte Carlo approximation breaks differentiability of

the objective w.r.t. the model parameters \ and cannot be used. To remedy this, we propose to

use the “Stochastic Softmax” differentiable sampling approximation from Paulus et al. (2020) to

allow optimization of these functions. We propose several such statistics in the application (see

Section 4.4.3 for the statistics and Section 4.4.5 for a description of this approximation).

4.2.3 The Distance Function ℓ

For the distance function ℓ, we propose to use a smoothed hinge loss (Girshick, 2015) that

adapts with the margins f. Letting 5̄ = 5 (D:
*
, ?\), the 8’th component of ℓ is given by:

ℓ8 =


( 5̄8−C8)2

2f8 if | 5̄8 − C8 | < f8

| 5̄8 − C8 | − f8 else
(4.9)
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The total loss ℓ is then the sum of its components:

ℓ(C, f, 5 (D:
* , ?\)) =

∑
8

ℓ8 (C8, f8, 5̄8) (4.10)

We choose this function because it is robust to outliers, adapts its width to the margin parameter

f8, and expresses a preference for 58 = C8 (as opposed to max-margin losses). We give an ablation

study in Section 4.5.3 justifying its use.

4.3 Choosing the Targets and Margins

There are several possible approaches to choosing the targets C and margins f, and in general

they can differ based on the individual statistics. For some statistics it may be possible to specify

the targets and margins using prior knowledge or formal constraints from the task. In other cases,

estimating the targets and margins may be more difficult. Depending on the problem context, one

may be able to estimate them from related tasks or domains (such as neighboring languages for

cross-lingual parsing). Here, we propose a general method that estimates the statistics using labeled

data, and is applicable to semi-supervised scenarios where at least a small amount of labeled data

is available.

The ideal targets are the expected statistics under the “true” model ?∗ are: C∗ = ED:
*
[ 5 (D:

*
, ?∗)],

where : is the batch size. We can estimate this expectation using labeled data D! and bootstrap

sampling (Efron, 1979). Utilizing D! as a set of point estimates for ?∗, we sample � total mini-

batches of : labeled examples uniformly with replacement from D! and calculate the statistic 5

for each of these minibatch datasets. We then compute the target statistic as the sample mean:

C =
1
�

�∑
8=1

5 (D (8)
!
) , |D (8)

!
| = :, ∀8 (4.11)

where we have slightly abused notation by writing 5 (D!) to mean 5 computed using the inputs

{G : (G, H) ∈ D!} and the point estimates ?∗(H |G) = 1, ∀(G, H) ∈ D! .

In addition to estimating the target statistics for small batch sizes, the bootstrap gives us a way
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Figure 4.1: Adaptive Loss Function Visualization. Example statistic sampling distributions (sample
size = 8) and their induced loss functions. The histograms show the sampling distribution of
statistics for POS tag frequency for three POS tags: PROPN, DET, and CCONJ. The solid orange
lines show the loss functions induced by these distributions. The samples have decreasing variance
from left to right, and the respective losses adaptively become narrower in response. The vertical
dotted lines show the C: ± f: boundaries where the ℓ: switches from a scaled L2 to an unscaled
L1.

to estimate the natural variation of the statistics for small sample sizes. To this end, we propose to

utilize the standard deviations from the bootstrap samples as our margins of uncertainty f:

f =

√√√
1

� − 1

�∑
8=1
( 5 (D (8)

!
) − C)2 (4.12)

This allows our loss function ℓ to adapt to more or less certain statistics. If some statistics are natu-

rally too variable to serve as effective supervision, they will automatically have weak contribution

to ℓ and little impact on the model training. The adaptivity of the loss function with respect to the

sampling distribution is visualized in Figure 4.1.

4.4 Application to Cross-Lingual Parsing

Now that we have described our general approach, in this section we lay out a proposal for

applying it to cross-lingual joint POS tagging and dependency parsing. We choose to apply our

method to this problem because it is an ideal testbed for controlled experiments in semi-supervised

structured prediction. By their nature, the parsing tasks admit many types of interesting statistics
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that capture cross-task, universal, and language-specific facts about the target test distributions.

Also, because the data is highly multilingual, we can study our method under domain adaptation

conditions in addition to the more typical “from scratch” scenario.

We will evaluate in two different transfer settings: oracle unsupervised and realistic semi-

supervised. In the oracle unsupervised settings, there is no supervised training data available for

the target languages (and the ! term is dropped from Equation 4.3), but we use target values

and margins calculated from the held-out supervised data. This setting allows us to understand

the impact of our regularizer in isolation without the confounding effects of direct supervision or

inaccuracte targets. In the semi-supervised experiments, we vary the amounts of supervised data,

and calculate the targets from the small supervised data samples. This is a realistic application of

our approach that may be applied to low-resource learning scenarios.

4.4.1 Problem Setup and Data

We use the Universal Dependencies (Nivre, 2020) v2.8 (UD) corpus as data. In UD, syntactic

annotation is formulated as a labeled bilexical dependency tree, connecting words in a sentence,

with additional part-of-speech (POS) tags annotated for each word. The labeled tree can be broken

down into two parts: the arcs that connect the head words to child words, forming a tree, and the

dependency labels assigned to each of those arcs. Due to the definition of UD syntax, each word

is the child of exactly one arc, and so both the attachments and labels can be written as sequences

that align with the words in the sentence.

More formally then, for each labeled sentence G1:= of length =, the full structure H is given by

the three sequences H = (C1:=, 41:=, A1:=), where C1:=, C8 ∈ T are the POS tags, 41:=, 48 ∈ {1, . . . , =}

are the head attachments, and A1:=, A8 ∈ R are the dependency labels.

4.4.2 The Model and Training

We now turn to the parsing model that is used as the basis for our approach. Though the general

ideas of our approach are adaptable to other models, we choose to use the UDify architecture
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because it is one of the state-of-the-art multilingual parsers for UD.

The UDify Model

The UDify model is based on trends in state-of-the-art parsing, combining a multilingual pre-

trained transformer language model encoder (mBERT) with a deep biaffine arc-factored parsing

decoder, following Dozat and Manning (2017). These encodings are additionally used to predict

POS tags with a separate decoder. The full details are given in Kondratyuk (2019), but here it

suffices to characterize the parser by its top-level probabilistic factorization:

?(C1:=, 41:=, A1:= |G1:=)

= ?(41:= |G1:=)?(C1:= |G1:=)?(A1:= |41:=, G1:=) (4.13)

= ?(41:= |G1:=)
=∏
8=1

?(C8 |G1:=)?(A8 |48, G1:=) (4.14)

This model is scant on explicit joint factors, following recent trends in structured prediction that

forgo higher-arity factors, instead opting for shared underlying contextual representations produced

by a mBERT that implicitly contain information about the sentence and structure as a whole. This

factorization will prove useful in Section 4.4.3 where it will allow us to compute many of the

supervision statistics under the model exactly.

Training

The UDify approach to training is simple: it begins with a multilingual PLM, mBERT, then

fine-tunes the parsing architecture on the concatenation of the source languages. With vanilla

UDify, transfer to target languages is zero-shot.

Our approach begins with these two training steps from UDify, then adds a third: adapting

to the target language using the target statistics and possibly small amounts of supervised data

(Equation 4.3).
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4.4.3 Typological Statistics as Supervision

We now discuss a series of statistics that we will use as weak supervision. Most of the proposed

statistics describe various marginal probabilities for different (but related) grammatical substruc-

tures and can ultimately be broken down into ratios of “count” functions (sums of indicators),

which tally various types of events in the data. We propose statistics that cover surface level

(POS-only), single-arc, two-arc, and single-head substructures, as well as conditional variants. In

preliminary experiments, we try 32 different specific instances of these more general families. The

exact list of statistics is given in Table 4.2.

Surface Level

One simple set of descriptive statistics are the unigram and bigram distributions over POS tags.

POS unigrams can capture some basic relative frequencies, such as our expectation that nouns

and verbs are common to all languages. POS bigrams will allow us to capture simple word-order

preferences.

Single-Arc

This next set of statistical families all capture information about various choices in single-arc

substructures. A single arc substructure carries up to 5 pieces of information: the arc’s direction,

label, and distance, as well as the tags for the head and child words. Various subsets of these

capture differing forms of regularity, such as “the probability of seeing tag Cℎ head an arc with

label A in direction 3.

Universally Impossible Arcs

In addition to many single-arc variants, we also consider the specific subset of (head tag, label,

child tag) single-arc triples that are never seen in any UD data. These combinations, correspond to

the impossible arrangements that do not “type-check” within the UD formalism and are interesting

in that they could in principle be specified by a linguist without any labeled data whatsoever. As
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such, they represent a particularly attractive use-case of our approach, where a domain expert could

rule out all invalid substructures dictated from the task formalism without the model having to learn

it implicitly from the training data. With complex structures, this can be a large proportion of the

possibilities: in UD we can rule out 93.2% (9,966/10,693) of the combinations.

Two-Arc

We also consider substructures spanning two connected arcs in the tree. They may be useful

because they cover many important typological phenomena, such as subject-object-verb ordering.

They also have been known to be strong features in higher-order parsing models, such as the parser

of Carreras (2007), but are also known to be intractable in non-projective parsers (McDonald and

Pereira, 2006).

Following McDonald and Pereira (2006), we distinguish between two different patterns of

neighboring arcs: siblings and grandchildren. Sibling arc pairs consist of two arcs which share a

single head word, while grandchild arc pairs share an intermediate word that is the child of one arc

and the head of another.

Head-Valency

One interesting statistic that does not fall into the other categories is the valency of a particular

head tag. This corresponds to the count of outgoing arcs headed by some tag. We convert this

into a probability by using a binning function that allows us to quantify the “probability that some

tag heads between 0 and 1 children”. Like the two-arc statistics, expected valency statistics are

intractable under the model and we must approximate their computation.

Conditional Variants

Further, each of these statistics can be described in conditional terms, as opposed to their full

joint realizations. To do this, we simply divide the joint counts by the counts of the conditioned-

upon sub-events. Conditional variants may be useful because they do not express preferences for
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probabilities of the sub-events on the right side of the conditioning bar, which may be hard to

estimate.

A Note on Implementing Marginal Statistics Efficiently

Efficiently computing the above statistics for all of their possible arguments for full-sized sen-

tences in a modern deep learning setup requires careful implementation. To do so we express

computation of the count-based statistics as multi-tensor contractions and use optimized einsum

orderings to improve performance. Additionally, we found it necessary to cache common inter-

mediate counts to minimize memory usage. By optimizing the implementation, we are able to

simultaneously compute hundreds of thousands of statistics without memory issues and in reason-

able time (under 1 second for all statistics in Table 4.2 at once on a batch size of 8 sentences on a

Tesla T4 GPU with 16GB memory).

Average Entropy

In addition to the above proposed relative frequency statistics, we also include average per-

token, per-edge, and MST tree entropies as additional regularization statistics that are always used.

Though we do not show it here, each of these functions may be formulated as a statistic within our

approach. The inclusion of these statistics amounts to a form of Entropy Regularization (Grand-

valet and Bengio, 2004a) that keep the models from optimizing the other ESR constraints with

degenerate constant predictions (Mann and McCallum, 2010). In the next section, we go into

detail as to why we include these statistics as regularizers.

4.4.4 The Need for Entropy Regularization

Optimizing the marginal statistic functions alone can be problematic because they admit a

degenerate optimum wherein the model learns to satisfy the expected quantity by predicting it

constantly, regardless of input. For example, if we set the expected proportion of NOUN POS tags

to be 0.25, the model could satisfy this by predicting ?(#$*# |G) = 0.25 for every token in the
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batch.

Mann and McCallum (2010) encounter the same issue and propose to remedy it by forcing

the model to have lower entropy using a temperature parameter g > 0: ?\ (H |G) ∝ exp{ 1
g
q(H, G)}.

This approach does not necessarily address the issue, however, since it is possible for the model to

simply rescale the potentials q by a factor of g to achieve the same constant value.

Instead, as a more robust alternative, we propose to regularize the per-position entropy of the

model to be below the entropy induced by the constant target values. This additional constraint

is a data-driven instance of Entropy Regularization (ER) (Williams and Peng, 1991; Grandvalet

and Bengio, 2004b). For the entropy constraints, we use a hard max-margin loss instead of the

smoothed variant in Equation 4.9, because we only wish to keep it below the margin without

pushing it all the way to zero.1

4.4.5 The SST Relaxation for Optimizing Intractable Expected Statistics

To use SGD for optimizing Eq. 4.4, we require an approach to calculating the gradients of the

loss� w.r.t. the model parameters \, ∇\�. Generally we will seek “pathwise” gradients (Mohamed

et al., 2020) that utilize backpropagation to compute ∇\�. 2

This requires two things:

1. That ℓ and the ℎ: ’s are all differentiable w.r.t. their inputs, which will be the case by design.

2. That ∇\E?\ (H |G) [6(G, H)] can be computed exactly in practice.3

Assuming ?\ is an exponential family model, condition (2) will hold exactly in the cases where

the structure of 6 obeys the structure of the model ?\ , either additively or multiplicatively (Zmigrod

1In preliminary experiments, we found that the more forgiving max-margin loss reduced the numerical instabilities
caused by the smooth-l1 driving the entropy to zero while still preventing constant predictions.

2This is in opposition to “score-function” gradient estimators that treat 5 as a blackbox and often exhibit high
variance with single samples. Further, since our statistic functions are differentiable, we would like to use this extra
information as opposed to treating them as blackboxes.

3Computing ∇\E?\ (H |G) [6(G, H)] relies on computing E?\ (H |G) [6(G, H)] exactly. The most obvious approximation,
standard Monte Carlo sampling, breaks differentiability w.r.t \ when H is discrete and cannot be applied directly.
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et al., 2021).4 However, many interesting functions do not factor in this way. For example, the two-

arc and head-valency statistics considered in the experiments are intractable to compute exactly in

the edge-factored graph model we use. In these cases, condition (2) is not satisfied.

For cases where E?\ (H |G) [6(G, H)] is intractable, we propose to apply the differentiable, relaxed

Monte-Carlo (MC) approximation from Paulus et al. (2020). Called a “Stochastic Softmax Trick”

(SST), we approximate E?\ (H |G) [6(G, H)] with a single relaxed sample H̃g,W and relaxed function 6̃g:

E?\ (H |G) [6(G, H)] ≈ 6̃g (G, H̃g,W) (4.15)

where H̃g,W is computed the same way as the distribution ?\ but with potentials perturbed by ad-

ditive Gumbel noise W and modulated by a relaxation temperature g > 0. That is, if ?\ (H |G) ∝

exp{∑8 q8 (\, G)}, where q8 are its potential functions, then a relaxed sample H̃g,W is given by:

H̃g,W ∝ exp{1
g

∑
8

q8 (\, G) + W8}, W8 ∼ G (4.16)

where G is the standard Gumbel distribution (Gumbel, 1954).5 In this way H̃g,W is a relaxation of

discrete samples H ∈ Y, which lie on the vertices of the marginal polytope of Y,M(Y), to soft

samples from the interior ofM(Y). The temperature g controls the “softness” of the relaxation,

converging to discrete binary samples from the vertices ofM(Y) as g → 0.

Likewise, 6̃g is a relaxation of 6 that is modified to accept inputs from the marginal polytope

M(Y) instead of Y. In many cases this modification is simple.6 In some cases, however, if 6̃g is

still not be differentiable w.r.t. its input H̃g,W, it must be further relaxed using the temperature g.

When g > 0, both m6̃g/mH̃g,W and mH̃g,W/m\ are well-defined and we can compute pathwise

gradients for ∇\� using backpropagation and optimize with SGD.

4For multiplicative 6, log 6 can be additively absorbed into the potentials. For additive 6, the property follows from
the linearity and independence of expectations: EH [

∑
8 68 (H8)] =

∑
8 EH [68 (H8)] =

∑
8 EH8 [68 (H8)].

5This is an extension of the Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017) for categorical distri-
butions to combinatorial distributions. However, a further approximation is introduced by using a polynomial number
of W8’s (one per potential) instead of exponentially many (one per structure).

6Often the modification is converting a discrete index into a sum over a one-hot indicator vector. The indicator
representation may then be relaxed to a soft probability vector.
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4.5 Oracle Unsupervised Experiments

We begin with oracle unsupervised transfer experiments that evaluate the potential of many

types of statistics and some ablations. In this setting, we do not assume any labeled data in the

target language, but do assume accurate target statistics and margins, calculated from held-out

training data using the method of Section 4.3. This allows us to study the potential of our proposed

ESR regularization term � on its own and without the confounds of supervised data or inaccurate

targets.

4.5.1 Experimental Setup

Next we describe setup details for the experiments. These settings additionally apply to the rest

of the experiments unless otherwise stated.

Datasets

In all experiments, the models are first initialized from mBERT, then trained using the UDify

code (Kondratyuk, 2019) on 13 diverse treebanks, following Kulmizev et al. (2019); Ustun et al.

(2020). This model, further referred to as UDPRE, is used as the foundation for all approaches.

As discussed in Kulmizev et al. (2019), these 13 training treebanks were selected to give a

diverse sample of languages, taking into account factors such as language families, scripts, mor-

phological complexity, and annotation quality.

We evaluate all proposed methods on 5 held-out languages, similarly selected for a diversity

in language typologies, but with the additional factor of tranfser performance of the UDPRE base-

line.7

A summary table of these training and evaluation treebanks is given in Table 4.1.

7While we would like to evaluate on as many UD treebanks as possible, budgetary constraints required that we
restrict the number of test languages when experimenting with settings that combinatorially vary in other dimensions.
We do however experiment with more languages in Section 4.6.2.
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Language Code Treebank Family Train Sents

Arabic ar PADT Semitic 6.1k
Basque eu BDT Basque 5.4k
Chinese zh GSD Sino-Tibetan 4.0k
English en EWT IE, Germanic 12.5k
Finnish fi TDT Uralic 12.2k
Hebrew he HTB Semitic 5.2k
Hindi hi HDTB IE, Indic 13.3k
Italian it ISDT IE, Romance 13.1k

Japanese ja GSD Japanese 7.1k
Korean ko GSD Korean 4.4k
Russian ru SynTagRus IE, Slavic 15.0k∗

Swedish sv Talbanken IE, Germanic 4.3k
Turkish tr IMST Turkic 3.7k

German de HDT IE, Germanic 153.0k
Indonesian id GSD Austronesian 4.5k

Maltese mt MUDT Semitic 1.1k
Persian fa PerDT IE, Iranian 26.2k

Vietnamese vi VTB Austro-Asiatic 1.4k

Table 4.1: Treebanks details for train (top) and test (bottom) sets in UD-13.
∗: the original Russian-SynTagRus dataset has 48.8k sentences, which we downsample to the same
15k sentences as Ustun et al. (2020) to reduce training time and balance the data.

Approaches

We compare our approach to two strong baselines in all experiments, based on recent advances

in the literature for cross-lingual parsing. These baselines are implemented in our code so that we

may fairly compare them in all of our experiments.

• UDPRE: The first baseline is the UDify (Kondratyuk, 2019) model-transfer approach. Mul-

tilingual model-transfer alone is currently one of the state-of-the-art approaches to cross-

lingual parsing and is a strong baseline in its own right.

• UDPRE-PPT: We also apply the Parsimonious Parser Transfer (PPT) approach from Kur-

niawan et al. (2021). PPT is a nuanced self-training approach, extending Täckström et al.

(2013), that encourages the model to concentrate its mass on its most likely predicted parses

for the target treebank. We use their loss implementation, but apply it to our UDPRE base
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model (instead of their weaker base model) for a fair comparison, so this approach combines

UDify with PPT.

• UDPRE-ESR: Our proposed approach, Expected Statistic Regularization (ESR), applied to

UDPRE as an unsupervised-only objective. In individual experiments we will specify the

statistics used for regularization.

Training and Evaluation Details

For metrics, we report accuracy for POS tagging, coarse-grained labeled attachment score

(LAS) for dependency trees, and their average as a single summary score. The metrics are com-

puted using the official CoNLL-18 evaluation script.8 For all scenarios, we use early-stopping for

model selection, measuring the POS-LAS average on the specified development sets.

We tune learning rates and U for each proposed loss variant at the beginning of the first ex-

periment with a low-budget grid search, using the settings that achieve best validation metric on

average across the 5 language validation sets for all remaining experiments with that variant. We

find generally that a base learning rate of 2× 10−5 and U = 0.01 worked well for all variants of our

method. We train all models using AdamW (Loshchilov and Hutter, 2019) on a slanted triangular

learning rate schedule (Devlin et al., 2019) with 500 warmup steps. Also, since the datasets vary

in size, we normalize the training schedule to 25 epochs at 1000 steps per epoch. We use a batch

size of 8 sentences for training and estimating statistic targets. When bootstrapping estimates for C

and f we use � = 1000 samples.

4.5.2 Assessing the Proposed Statistics

In this experiment we evaluate 32 types of statistics from Section 4.4.3 for transfer of the

UDPRE model (pretrained on 13 languages) to the target languages. The purpose of this experiment

is to get a sense of the effectiveness of each statistic for improving model-based cross-lingual

8https://universaldependencies.org/conll18/evaluation.html
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POS LAS

Statistic de id fa vi mt de id fa vi mt avg

UDPRE 89.3 80.3 83.0 64.7 41.4 82.7 50.4 57.0 48.1 20.9 61.8
UDPRE-PPT +0.4 +5.6 -1.5 -0.1 +3.1 +0.2 +8.1 -5.5 -0.3 +4.6 +1.5

Child, Label +3.3 +5.7 +8.0 +4.0 +14.0 +3.5 +10.1 +18.4 +0.5 +10.2 +7.8
∗Child, Label, Grand-label +1.5 +2.8 +5.3 +5.9 +15.7 +2.5 +9.2 +16.2 +3.2 +12.5 +7.5
Head, Child, Label +2.5 +4.9 +7.2 +4.1 +14.2 +2.8 +9.9 +17.2 +1.3 +10.2 +7.4
Head, Label +1.7 +3.2 +5.2 +6.3 +14.2 +2.7 +9.0 +16.4 +3.8 +11.0 +7.3
Head, Label | Child +3.0 +5.2 +5.8 +5.7 +10.9 +2.8 +9.7 +15.3 +2.1 +5.6 +6.6
Label -0.2 +4.4 +5.1 +0.0 +11.3 +2.9 +8.4 +17.1 +4.0 +9.5 +6.2
Label, Distance -0.2 +3.7 +3.9 -0.1 +11.7 +2.8 +8.9 +16.3 +4.1 +9.4 +6.0
∗Head, Sibling Child Tags +2.2 +5.1 +5.6 +7.8 +14.0 +1.6 +2.7 +11.3 -3.0 +11.1 +5.8
Head, Child +2.3 +5.3 +5.9 +3.7 +14.0 +1.9 +3.3 +12.2 -0.7 +10.1 +5.8
Label | Child +1.2 +4.3 +4.8 -0.5 +10.0 +3.3 +9.5 +16.6 +2.0 +5.6 +5.7
∗Head, Sibling Arc Labels +1.3 +1.8 +4.8 +0.0 +13.0 +1.0 +7.6 +14.5 +3.1 +8.8 +5.6
†Tag | Previous Tag +2.4 +4.8 +6.3 +3.2 +14.6 +0.8 +1.2 +13.5 -2.2 +10.9 +5.5
Child | Label +2.4 +3.7 +6.8 +7.7 +10.1 +2.7 +3.4 +14.2 -1.9 +4.5 +5.4
Head, Child | Label +1.8 +3.3 +7.5 +7.6 +10.3 +2.6 +3.6 +15.0 -1.9 +3.8 +5.4
∗Head, Child, Grandchild +1.8 +4.6 +5.5 +4.0 +14.4 +1.8 +2.1 +10.5 -0.7 +9.3 +5.3
†Tag, Previous Tag +2.5 +4.8 +6.0 +3.7 +14.9 +0.4 +1.4 +10.8 -2.5 +10.5 +5.3
Child +2.5 +4.9 +5.8 +3.6 +13.0 +0.4 +2.0 +10.6 -0.7 +8.7 +5.1
Head | Child +1.3 +5.3 +4.4 +3.6 +11.8 +0.8 +3.9 +11.7 -0.1 +6.6 +4.9
∗†Head Valency +2.2 +4.3 +5.7 +3.4 +13.0 +0.1 +1.9 +11.6 -0.9 +7.8 +4.9
Head +1.6 +3.1 +4.6 +4.1 +11.4 -0.2 +2.8 +13.5 -1.4 +6.1 +4.6
Distance | Label -0.4 -0.1 +4.7 +0.6 +9.2 +1.7 +4.7 +14.8 +0.9 +6.8 +4.3
Head | Label +1.0 +1.6 +4.3 +2.5 +9.9 +0.9 +4.9 +14.0 -0.4 +4.1 +4.3
†Tag +2.4 +3.8 +4.9 +3.5 +12.0 +0.1 +2.0 +7.5 -1.7 +6.9 +4.1
∗Head, Grandchild | Child +0.8 +1.4 +1.2 +4.1 +12.1 +0.8 +1.7 +6.1 -0.8 +8.5 +3.6
†Universal Arc +2.4 +4.7 +1.4 +1.4 +8.7 +2.1 +8.1 +4.0 -3.1 +3.9 +3.4
Child, Label | Head +0.2 +5.2 +0.1 +1.2 +13.2 +0.1 +5.1 +2.1 -1.7 +8.5 +3.4
Child | Head +0.1 +3.6 +2.6 +3.1 +12.2 +0.2 +2.9 +1.5 -1.7 +7.7 +3.2
∗Sibling Labels | Head +0.4 +0.4 +3.3 -0.2 +9.1 +0.3 +1.3 +8.6 +0.5 +3.3 +2.7
∗Label, Grand-label | Child +0.5 -0.8 -3.2 +1.1 +8.8 -0.1 +2.6 +7.2 +0.7 +7.2 +2.4
Label | Head -0.1 -0.4 -1.6 -1.0 +9.9 +0.4 +4.3 +2.8 +1.0 +7.8 +2.3
∗Sibling Children | Head +0.0 +1.6 +0.2 -0.9 +10.2 +0.0 +1.6 +1.2 -0.5 +6.7 +2.0
∗†Valency | Head +1.1 +0.8 -2.4 +5.6 +10.3 -0.7 +1.1 -0.2 -2.2 +5.6 +1.9

Table 4.2: Unsupervised Constraint Variant Results. (Top): Baseline methods that do not use
ESR. (Bottom): Various statistics used by ESR as unsupervised loss on top of UDPRE. Scores are
measured on target treebank development (not test) sets. Bold rows mark statistics used in later
experiments. (∗): All statistics with ∗ are intractable and utilize the SST relaxation of Paulus et al.
(2020). (†): All statistics except those with † also include left/right directional information – those
with a † do not have directional information.

transfer.9 To prevent overfitting to the test sets for later experiments, all metrics for this experiment

are calculated on the development sets.

9While it would also be possible to try out different combinations of the various statistics, due to cost considerations
we leave these experiments to future work.
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Results: The results of the experiment are presented in Table 4.2, ranked from best to worst. Gen-

erally we find that all of the 32 proposed statistics improve upon the UDPRE and UDPRE-PPT

models on average, with many exhibiting large boosts. The best performing statistic concerns

(Child Tag, Label, Direction) substructures, yielding an average improvement of +7.0 POS and

+8.5 LAS, an average relative error rate reduction of 23.5%. Many other statistics are not far be-

hind, and overall statistics that bear on the child tag and dependency label had the highest impact.

This indicates that, with accurate target estimates, the proposed statistics are highly complemen-

tary to multilingual parser pretraining (UDPRE) and substantially improve transfer quality in the

unsupervised setting. By comparison, the PPT approach provides marginal gains to UDPRE of

only +1.4 average POS and +1.5 average LAS.

Another interesting result is that several of the intractable two-arc statistics were among the

best statistics overall, indicating that the use of the differentiable SST approximation does not

preclude the applicability of intractable statistics. For example the directed grandchild statistic of

cooccurrences of incoming and outgoing edges for certain tags was the second highest performing,

with an average improvement of +7.0 POS accuracy and +8.5 LAS (21.3% average error rate

reduction).

Results for the conditional variants were less positive. Generally, conditional variants were

worse than their full joint counterparts (e.g., "Child | Label" and "Label | Child" are worse than

"Child, Label"), performing worse in 15/16 cases. This makes sense, as we are using accurate

statistics and full joints are strictly more expressive.

This experiment gives a broad but shallow view into the effectiveness of the various proposed

statistics. In the rest of the experiments, we evaluate the following two variants in more depth:

1. ESR-CLD, which supervises target proportions for (Child Tag, Label, Direction) triples.

This is the “Child, Label” row in Table 4.2.

2. ESR-UNIARC, which supervises the 9,966 universally impossible (Head Tag, Child Tag,

Label) arcs that do not require labeled data to estimate. All of these combinations have

targets values of C = 0 and margins f = 0. This is the “Universal Arc” row in Table 4.2.
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We choose these two because ESR-CLD is the best performing statistic overall and ESR-UNIARC

is unique in that it does not require labeled data to estimate; we do not evaluate others because of

cost considerations.

4.5.3 Ablation Studies

Next, we perform two ablation experiments to evaluate key design choices of the proposed

approach. First, we evaluate the use of batch-level aggregation in the statistics before the loss,

versus the more standard approach of loss-per-sentence. In the second, we evaluate the proposed

form of ℓ.

We compare the two aggregation variants using the CLD (Child Tag, Label, Direction) statistic

(ESR-CLD). We report test set results averaged over all 5 languages. We use the same hyperpa-

rameters selected in Section 4.5.2.

Batch-level Loss Ablation

In this ablation, we evaluate a key feature of our proposal—the aggregation of the statistic over

the batch before loss computation Equation 4.5 versus the more standard approach, which is to

apply the loss per-sentence. The former, “Loss per batch”, has the form: ℓ(C, f, 5 (D* , ?\)) while

the latter, “Loss per sentence”, has the form:
∑

G∈D*

ℓ(C, f, 5 (G, ?\)).

The significance of this difference is that “Loss per batch” allows for the variation in individual

sentences to somewhat average out and hence is less noisy, while “Loss per sentence” requires that

each sentence individually satisfy the targets.

Results: The results are presented in Table 4.3. From the table we can see that “Loss per batch” has

an average POS of 79.9 and average LAS of 60.4, compared to “Loss per sentence” with average

POS of 77.1 and LAS of 58.5, which amount to +2.8 POS and +1.9 LAS improvements. This

indicates that applying the loss at the batch level confers an advantage over applying per sentence.
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Aggregation Variant POS avg LAS avg avg

Loss per sentence 77.1 58.5 67.8
Loss per batch (ESR) 79.9 60.4 70.1

Table 4.3: Loss Aggregation Ablation Results. Loss per batch outperforms loss per sentence for
both POS and LAS on average.

ℓ Variant POS avg LAS avg avg

L2 (f = 0) 78.0 58.2 68.1
L1 (f = 0) 78.5 60.3 69.5
Hard L1 (max-margin) 78.4 59.9 69.2
Smooth L1 (ESR) 79.9 60.4 70.1

Table 4.4: Loss Function Ablation Results. The Smooth L1 loss outperforms the other simpler loss
variants for both POS and LAS, averaged over 5 languages.

Smooth Hinge-Loss Ablation

Next, we evaluate the efficacy of the proposed smoothed hinge-loss distance function ℓ. We

compare to using just L1 or L2 uninterpolated and with no margin parameters (f = 0). We also

compare to the “Hard L1”, which is the max-margin hinge ℓ(C, f, G) = max{0, |C − G | − f}. We

use the same experimental setup as the previous ablation.

Results: The results are presented in Table 4.4. From the table we can see that the Smooth L1 loss

outperforms the other variants.

4.6 Realistic Semi-Supervised Experiments

The previous experiments considered an unsupervised transfer scenario without labeled data.

In these next experiments we turn to a realistic semi-supervised application of our approach where

we have access to limited labeled data for the target treebank.

4.6.1 Learning Curves

In this experiment we present learning curves for the approaches, varying the amount of labeled

data |Dtrain
!
| ∈ {50, 100, 500, 1000}. To make experiments realistic, we calculate the target statis-

tics C and margins f from the small subsampled labeled training datasets using Equations 4.11 and
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4.12.

We study two distinct settings. First, we study the multi-source domain-adaptation transfer

setting, UDPRE. Second, we study our approach in a more standard semi-supervised scenario

where we cannot utilize intermediate on-task pretraining and domain-adaption, instead learning on

the target dataset starting “from scratch” with the pretrained PLM (MBERT).

We use the same baselines as before, but augment each with a supervised fine-tuning loss on

the supervised data in addition to any unsupervised losses. We refer to these models as UDPRE-

FT, UDPRE-FT-PPT, and UDPRE-FT-ESR. That is, models with FT in the name have some

supervised fine-tuning in the target language.

In these experiments, we subsample labeled training data 3 times for each setting. We report

averages over all 5 languages, 3 supervised subsample runs each, for a total of 15 runs per method

and dataset size. We also use subsampled development sets so that model selection is more realis-

tic.10 For development sets we subsample the data to a size of |Ddev
!
| = min(100, |Dtrain

!
|), which

reflects a 50/50 train/dev split until |D! | ≥ 200, at which point we maximize training data and

only hold out 100 sentences for validation.

We use the same hyperparameters as before, except we use 40 epochs with 200 steps per epoch

as the training schedule, mixing supervised and unsupervised data at a rate of 1:4.

UDPRE Transfer

In this experiment, we evaluate in the multlingual transfer scenario by initializing from UDPRE.

In addition to the two chosen realistic ESR variants, we also experiment with an “oracle” version

of ESR-CLD, called ESR-CLD∗, that uses target statistics estimated from the full training data.

This allows us to see if small-sample estimates cause a degradation in performance compared to

accurate large-sample estimates.

Results: Learning curves for the different approaches, averaged over all 3 runs for all 5 languages

(15 total), are given in Figure 4.2. Detailed results are given in Table B.1 in the Appendix. From

10As is argued by Oliver et al. (2018), using a realistically-sized development set is overlooked in much of the
semi-supervised literature, leading to inappropriately strong model selection and overly optimistic results.
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the figure we can discern several encouraging results.
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Figure 4.2: Multi-Source UDPRE Transfer Learning Curves. Baseline approaches are dotted, while
ESR variants are solid. All curves show the average of 15 runs across 5 different languages with
3 randomly sampled labeled datasets per language. The plots indicate a significant advantage of
ESR over the baselines in low-data regions.
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ESR-CLD and ESR-UNIARC add significant benefit to fine-tuning for small data. Both

variants significantly outperform the baselines at 50 and 100 labeled examples. For example,

relative to UDPRE-FT, the ESR-CLD model yielded gains of +2 POS, +3.6 LAS at 50 examples

and +1.8 POS, +3.2 LAS at 100 labeled examples. At 500 and 1000 examples, however, we begin

to see diminishing benefits to ESR on top of fine-tuning.

ESR-UNIARC is much more effective in conjunction with fine-tuning. Compared to the

unsupervised experiment in Section 4.5.2 where it ranked 25/32, the ESR-UNIARC statistic is

much more competitive with the more detailed ESR-CLD statistics. One potential explanation is

that without labeled data (as in Section 4.5.2) the ESR-UNIARC statistic is under-specified (the

727 allowed arcs are all free to take any value), whereas the inclusion of some labeled data in

this experiment fills this gap by implicitly indicating target proportions for the allowed arcs. This

suggests that an approach which combines UniArc constraints with elements of self-training (like

PPT) that supervise the “free” non-zero combinations could potentially be a useful approach to

zero-shot transfer. However, we leave this to future work.

Small-data estimates for ESR-CLD are as good as accurate estimates. Comparing ESR-

CLD to the unrealistic ESR-CLD∗, we find no significant difference between the two, indicating

that, at least for the CLD statistic, using target estimates from small samples is as good as large-

sample estimates. This may be due in part to the margin estimates f, which are wider for the small

samples and somewhat mitigate their inaccuracies.

PPT adds little benefit to fine-tuning. Relative to UDPRE-FT, the UDPRE-FT-PPT baseline

does not yield much gain, with a maximum average improvement of +0.3 POS and +0.7 LAS over

all dataset sizes. This indicates that fine-tuning and PPT-style self-training may be redundant.

MBERT Transfer

In this experiment, we consider a counterfactual setting: what if the UD data was not a mas-

sively multilingual dataset where we can utilize multilingual model-transfer, and instead was an

isolated dataset with no related data to transfer from? This situation reflects the more standard
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semi-supervised learning setting, where we are given a new task, some labeled and unlabeled data,

and must build a model “from scratch” on that data.

For this experiment, we repeat the learning curve setting from Section 4.6.1, but initialize our

model directly with MBERT, skipping the intermediate UDPRE training.

Results: Learning curves for the different approaches, averaged over all 3 runs for all 5 languages

(15 total), are given in Figure 4.3 with detailed results in Table B.2 in the Appendix. From the

figure we can discern several encouraging results.

ESR has even greater benefits when fine-tuning directly from MBERT. Similar to Sec-

tion 4.6.1, we find that both ESR approaches significantly outperform the baselines on average.

Moreover, without UDPRE transfer, the effect is more pronounced and is evident at all amounts of

labeled data. In particular, relative to the standard baseline of MBERT-FT, the MBERT-FT-ESR-

CLD model achieved the following average improvements: +3.3 POS, +8.7 LAS at 50 examples;

+3 POS, +7.7 LAS at 100 examples; +1.2 POS, +3.2 LAS at 500 examples; and +0.4 POS, +1.1

LAS at 1000 examples. This result lends evidence that our general proposed approach from Sec-

tion 4.2 may be applicable to more standard semi-supervised structured prediction problems.

PPT hurts fine-tuning from MBERT. When fine-tuning from MBERT, we find that the self-

training PPT approach is detrimental at all amounts of labeled data.
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Figure 4.3: “From Scratch” MBERT Transfer Learning Curves. Baseline approaches are dotted,
while ESR variants are solid. All curves show the average of 15 runs across 5 different languages
with 3 randomly sampled labeled datasets per language. The plots indicate a significant advantage
of ESR over the baselines in low-data regions.
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4.6.2 Low-Resource Transfer

In previous experiments, we limited the number of evaluation treebanks to 5 to allow for vari-

ation in other dimensions (i.e., constraint types, loss types, differing amounts of labeled data).

In this experiment, we expand the number of treebanks and evaluate transfer performance in a

low-resource setting with only |Dtrain
!
| = 50 labeled sentences in the target treebank, comparing

UDPRE, UDPRE-FT, and UDPRE-FT-ESR-CLD. As before, we subsample 3 small datasets per

treebank and calculate the target statistics C and margins f from these to make transfer results real-

istic. We select evaluation treebanks according to the following criteria. For each unique language

in UD v2.8 that is not one of the 13 training languages, we select the largest treebank, and keep it

if has at least 250 train sentences and a development set, so that we can get reasonable variability

in the subsamples. This process yields 44 diverse evaluation treebanks.

Results: The results of this experiment are given in Table 4.5. From the table we can see the our ap-

proach ESR (UDPRE-FT-ESR-CLD) outperformed supervised fine-tuning (UDPRE-FT) in many

cases, often by a large margin. On average, UDPRE-FT-ESR-CLD outperformed UDPRE-FT by

+2.6 POS and +2.3 LAS across the 44 languages. Further, UDPRE-FT-ESR-CLD outperformed

zero shot transfer, UDPRE, by +10.0 POS and +14.7 LAS on average.

Interestingly, we found that there were several cases of large performance gains while there

were no cases of large performance declines. For example, ESR improved LAS scores by +17.3

for Wolof, +16.8 for Maltese, and +12.5 for Scottish Gaelic, and 9/44 languages saw LAS im-

provements ≥ +5.0, while the largest decline was only −2.5. Additionally, ESR improved POS

scores by +20.9 for Naija, +11.2 for Welsh, and 9/44 languages saw POS improvements ≥ +5.0.

The cases of performance decline for LAS merit further analysis. Of the 20 languages with

negative Δ LAS, 18 of these are modern languages spoken in continental Europe (mostly Slavic and

Romance), while only 5 of the 24 languages with positive Δ LAS meet this criteria. We hypothesize

that this tendency is be due to the training data used for pretraining MBERT, which was heavily

skewed towards this category (Devlin et al., 2019). This suggests that ESR is particularly helpful

in cases of transfer to domains that are underrepresented in pretraining.
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POS LAS

Treebank Family UDPRE FT ESR Δ UDPRE FT ESR Δ

Wolof-WTB Northern Atlantic 40.6 79.5 85.4 +5.9 12.7 55.9 73.3 +17.3
Maltese-MUDT Semitic 35.1 82.6 91.8 +9.2 16.0 57.5 74.2 +16.8
Scottish_Gaelic-ARCOSG Celtic 45.7 66.0 75.9 +9.9 24.4 56.4 68.9 +12.5
Faroese-FarPaHC Germanic 74.7 86.2 87.2 +1.1 43.0 71.4 80.7 +9.3
Gothic-PROIEL Germanic 30.1 67.6 71.7 +4.1 12.6 45.8 54.6 +8.8
Welsh-CCG Celtic 71.9 74.7 85.8 +11.2 54.8 69.4 77.6 +8.1
Western_Armenian-ArmTDP Armenian 80.6 84.9 87.1 +2.2 60.4 67.0 72.7 +5.7
Telugu-MTG Dravidian 82.0 81.6 81.6 0.0 70.9 74.6 80.1 +5.5
Vietnamese-VTB Viet-Muong 67.0 85.6 88.5 +2.9 46.3 55.3 60.8 +5.5
Turkish_German-SAGT Code Switch 76.8 84.4 85.8 +1.4 48.0 58.0 62.1 +4.1
Afrikaans-AfriBooms Germanic 90.7 88.0 91.3 +3.3 62.0 79.4 83.4 +3.9
Hungarian-Szeged Ugric 87.9 79.9 89.7 +9.7 74.0 77.8 81.7 +3.9
Galician-CTG Romance 91.8 89.0 91.2 +2.2 60.5 74.3 77.8 +3.6
Marathi-UFAL Marathi 71.4 81.1 82.3 +1.1 44.9 59.5 62.5 +3.0
Naija-NSC Creole 46.5 68.0 88.9 +20.9 27.9 71.1 73.4 +2.3
Greek-GDT Greek 87.1 92.8 92.5 -0.3 78.7 86.3 88.0 +1.8
Tamil-TTB Dravidian 72.3 72.4 79.6 +7.2 46.7 64.9 66.4 +1.5
Indonesian-GSD Austronesian 82.3 89.8 90.2 +0.5 58.3 72.9 74.3 +1.4
Uyghur-UDT Turkic 23.7 59.8 65.5 +5.6 14.0 38.0 39.2 +1.3
Old_French-SRCMF Romance 65.3 74.2 76.2 +2.0 44.0 56.7 57.8 +1.2
Old_Church_Slavonic-PROIEL Slavic 37.3 54.7 61.0 +6.3 19.2 39.0 40.1 +1.1
Portuguese-GSD Romance 92.1 89.6 92.8 +3.3 74.4 84.1 84.5 +0.4
Danish-DDT Germanic 92.0 92.7 92.1 -0.6 71.0 75.5 75.7 +0.2
Armenian-ArmTDP Armenian 84.7 88.1 88.0 -0.1 64.1 69.0 69.2 +0.1
Spanish-AnCora Romance 94.5 95.2 95.4 +0.2 77.8 83.0 82.9 -0.1
Catalan-AnCora Romance 92.9 94.4 94.6 +0.3 75.8 82.5 82.4 -0.1
Serbian-SET Slavic 91.2 90.7 93.1 +2.4 81.6 86.5 86.4 -0.1
Slovak-SNK Slavic 91.5 91.5 92.0 +0.5 81.6 84.0 83.9 -0.1
Romanian-Nonstandard Romance 79.2 83.3 85.0 +1.7 54.5 63.6 63.4 -0.2
Polish-PDB Slavic 89.7 90.4 90.9 +0.5 76.0 79.7 79.4 -0.3
German-HDT Germanic 89.6 94.4 94.2 -0.2 83.0 88.2 87.7 -0.5
Lithuanian-ALKSNIS Baltic 87.0 87.4 87.4 0.0 65.4 69.2 68.6 -0.6
Latin-ITTB Italic 73.8 80.9 81.7 +0.8 51.7 64.3 63.7 -0.6
Bulgarian-BTB Slavic 91.9 94.7 94.6 -0.1 78.0 84.4 83.7 -0.7
Czech-PDT Slavic 90.6 92.1 92.7 +0.6 78.1 81.9 81.1 -0.8
Persian-PerDT Iranian 79.1 91.0 90.8 -0.2 48.4 74.6 73.7 -0.9
Slovenian-SSJ Slavic 89.2 90.9 91.2 +0.3 79.6 84.5 83.5 -0.9
Croatian-SET Slavic 91.4 91.7 92.1 +0.4 80.0 84.1 83.1 -1.0
Urdu-UDTB Indic 86.9 90.0 88.2 -1.8 68.7 75.7 74.4 -1.3
Ukrainian-IU Slavic 91.5 92.0 92.4 +0.3 79.6 81.2 80.0 -1.3
Dutch-Alpino Germanic 90.0 90.6 90.6 0.0 78.9 81.6 80.3 -1.3
Norwegian-Bokmaal Germanic 91.7 91.8 92.1 +0.3 80.8 82.5 81.0 -1.5
Belarusian-HSE Slavic 91.5 91.6 91.9 +0.3 78.9 79.8 78.1 -1.8
Estonian-EDT Finnic 89.1 89.6 89.2 -0.4 70.4 71.4 68.9 -2.5

Average 77.3 84.7 87.3 +2.6 59.0 71.4 73.7 +2.3

Table 4.5: Low-Resource Semi-Supervised Transfer Results. “FT” refers to the UDPRE-FT fine-
tuning baseline, “ESR” refers to our UDPRE-ESR-CLD approach, and Δ refers to the absolute
difference of ESR minus FT. Best performing methods are in bold.
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4.7 Related Work

Related work generally falls into two categories: weak supervision and cross-lingual transfer.

4.7.1 Weak Supervision

Supervising models with signals weaker than fully labeled data has and continues to be a pop-

ular topic of interest. Current trends in weak supervision focus on generating instance-level su-

pervision, using weak information such as: relations between multiple tasks (Greenberg et al.,

2018b; Ratner et al., 2018; Noach and Goldberg, 2019); labeled features (Druck et al., 2008; Rat-

ner et al., 2016b; Karamanolakis et al., 2019a); coarse-grained labels (Angelidis and Lapata, 2018;

Karamanolakis et al., 2019b); dictionaries and distant supervision (Bellare and McCallum, 2007;

Carlson et al., 2009; Liu et al., 2019b; Ustun et al., 2020); or some combination of thereof (Ratner

et al., 2016b; Karamanolakis et al., 2019a).

In contrast, our work is more closely related to older work on population-level supervision.

These techniques include Constraint-Driven Learning (CODL) (Chang et al., 2007b), posterior

regularization (PR) (Ganchev et al., 2010b), the measurements framework of Liang et al. (2009),

and the generalized expectation criteria (GEC) (Mann and McCallum, 2007; Druck et al., 2008,

2009; Mann and McCallum, 2010).

Our work can be seen as an extension of GEC to more expressive combinations of expectations

and to modern mini-batch SGD training. There are a couple of more recent works that utilize these

ideas, but both have significant downsides compared to our approach. Meng et al. (2019) use a PR

approach inspired by Ganchev and Das (2013) for cross-lingual parsing, but must use very simple

constraints and require a slow inference procedure at test time – the model parameters cannot be

trained with this loss. Noach and Goldberg (2019) utilize GEC with minibatch training, but focus

on using related tasks for computing simple constraints and do not adapt their targets to small batch

sizes in a principled way.
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4.7.2 Cross-Lingual Transfer

Earlier trends in cross-lingual transfer for parsing were based on dexicalized parsers (Zeman

and Resnik, 2008; McDonald et al., 2011; Täckström et al., 2013) and then aligned multilingual

word vector-based approaches (Guo et al., 2015; Ammar et al., 2016; Rasooli and Collins, 2017;

Ahmad et al., 2019). With the rapid rise of transformers and language-model pretraining (Peters

et al., 2018a; Devlin et al., 2019; Liu et al., 2019c), recent research in cross-lingual parsing has

focused on multilingual pretraining and multitask fine-tuning to achieve generalization in transfer.

Wu and Dredze (2019) demonstrated that a multilingual pretrained language model (PLM) af-

forded surprisingly effective cross-lingual transfer using only English as the fine-tuning language.

Kondratyuk (2019) extended this approach by fine-tuning a PLM on the concatenation of all tree-

banks. Tran and Bisazza (2019), however, demonstrate that transfer to languages that are distant

or poorly-represented in either pretraining or fine-tuning benefit less.

Other recent successes have been found by using linguistic side-information (Meng et al., 2019;

Ustun et al., 2020), careful methodology for source-treebank selection (Tiedemann and Agic, 2016;

Tran and Bisazza, 2019; Lin et al., 2019; Glavas and Vulic, 2021), self-training (Kurniawan et al.,

2021), and paired bilingual text for annotation projection (Rasooli and Tetreault, 2015; Rasooli

and Collins, 2019; Liu et al., 2020; Shi et al., 2021). Our approach can most closely be associated

with Meng et al. (2019) in that we use structural side information, but also is significantly different

in that we estimate this information ourselves at a fine-grained level and our approach is flexibly

handles many more cross-task constraints and incorporates these during training instead of test

time.

4.8 Conclusion

We have presented Expected Statistic Regularization, a general approach to weak supervision

for structured prediction, and studied it in the context of modern cross-lingual multi-task syntactic

parsing. We evaluated a wide range of expressive cross-task statistics in idealized and realistic
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transfer scenarios and have shown that the proposed approach is effective and complementary to

the state-of-the-art model-transfer approaches.

We have also given a principled method for estimating loss targets using small amounts of

labeled data and shown that realistic semi-supervised transfer with our method massively improves

over zero-shot parsing even with only 50 labeled sentences, indicating the proposed approach is

highly applicable to building parsers in low-resource languages with at least some labeled data.

The holy grail for most of the cross-lingual parsing community, however, is zero-shot transfer

and we have shown in idealized experiments that our approach also leads to significant gains in

this regime, if we have good estimates of the target statistics for the target language. Future work

then will focus on methods for accurately inferring these statistic targets without labeled data

in the target language. There are several potential paths: hierarchical bayesian approaches that

incorporate prior knowledge about UD in general and in nearby language families; labeled data in

related languages; estimating the statistics directly from PLMs or outside knowledge source such

as WALS (Dingemanse, 2008) or URIEL (Littell et al., 2017); and most likely some combination

of these information sources.

In the broader context of this thesis, ESR is an exciting development toward expanding the

family of possible approaches that can be used to increase annotation-efficiency in biased settings.

Because ESR allows for the expression of statistics that bear on marginal model over a whole sam-

ple of texts, it can allow us to use weak supervision functions that do not depend on the input,

as opposed to most prior work on weak supervision. Further, it does not require that the target

statistic value be known apriori by the expert, as we can estimate it from small amounts of labeled

data. Finally, it can be used to counteract known biases in the model (or those in the dataset that

will be reflected in the induced model), simply by regularizing away from these specific behav-

iors. Together, we believe that ESR can be applicable to many more NLP problems that require

annotation-efficiency and/or have biased data.
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Chapter 5: Conclusions

In this thesis, we have contributed approaches for improving annotation-efficiency in biased

learning settings for NLP. Our motivation to work on this problem stems from the desire to improve

the accessibility of using NLP for a wider variety of applications, so that experts can use NLP in

more diverse and niche use-cases with lower financial and time costs to obtain suitable accuracy.

We believe that continued work in this direction is critical, as it has the potential to democratize

access to NLP for generating knowledge from unstructured text and expand human knowledge

overall.

A central theme of this thesis has been that intervention at the loss-function level is a promising

path forward toward injecting domain and problem expertise as inductive bias into modern machine

learning models. This is because it is compatible with recent advances in deep learning that pre-

scribe complex mathematical architectures with uninterpretable dense vector representations. In

contrast, it is less clear how to inject expert knowledge at the input or model level.

Beyond this, we would like to stress our advocacy for a utilizing a combination of learning

paradigms to produce applications. Unsupervised learning, weakly supervised learning, and tra-

ditional supervised learning can all be mutually beneficial to each other in resource-constrained

scenarios. This is because they each make a different trade-off of data acquisition cost versus

information they carry about the target task. Unsupervised data is plentiful and can be used to pre-

train and initialize models with effective generalization capabilities, but they do not yield directly

usable models. Then both weak supervision and traditional supervised learning can be used to

train the model for the end task, with weak supervision providing broad and cheap but incomplete

signal about the target task while strong supervision provides complete but costly signal.

Another core idea in this thesis is that expert knowledge can be used to counteract dataset biases

in addition to improving annotation-efficiency, and that these two uses can be mutually beneficial:
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high-level expert knowledge can allow for biased labeling processes that are even less costly for

the experts while still providing key strong supervised learning signal that cannot be not easily

abstracted into weak supervision signals such as rules. We have shown this in Chapter 2, where

we were able to improve the model without requiring additional manual annotations by using the

fact that the unreviewed predictions of the previous model would have overwhelming bias towards

the negative class. In Chapter 3 we showed this by proposing an annotation scheme that trades

off labeling bias for increased context coverage given a fixed annotation budget, allowing us to

train better models with modest budgets compared to exhaustive annotation. Lastly, in Chapter 4,

we used our knowledge that pretrained multilingual parsers are trained with data that is biased

toward certain high-resource languages and that this would cause erratic but simple grammatical

divergences on “distant” low-resource target languages to derive cheap and simple but effective

statistic functions that explicitly discourage this behavior.

We have explored these themes through empirical studies across three core NLP tasks: text

classification, named entity recognition, and syntactic parsing. By working on different problem

types, we have hopefully demonstrated that these themes are more generally applicable across a

range of NLP problems. Further, we have addressed variants of the problem settings that are more

constrained than traditional supervised settings, and demonstrated the real-world applicability of

these settings.

All of the data, code, and journal papers that make up the chapters of this thesis can be found

at https://github.com/teffland. Questions about this thesis or any of the related materials should be

directed to the author.

Next, in Section 5.1 we again summarize our key contributions. Finally, we discuss limitations

of our approaches and implications for future work in Section 5.2.

5.1 Contributions

Our key contributions can be summarized as follows:

1. We propose a novel approach to improving a deployed rare-event classification with biased
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incidental feedback (Effland et al., 2018). Specifically we contribute:

(a) A method for improving and debiasing the deployed system using a combination of im-

portance weighting and data imputation that exploits the selection bias of the previous

system iteration without requiring additional labels from domain experts.

(b) A detailed evaluation and error analysis of the method for two applied problems in rare-

event text classification. Our evaluation shows that our method improves precision and

recall of the resulting model and counteracts the training data bias.

(c) Considerable improvements in performance of a real-world deployed rare-event text

classification system with immediate impact.

2. We propose a novel approach for learning named entity recognition models using biased,

partially labeled data (Effland and Collins, 2021). Specifically we contribute:

(a) A principled method that utilizes a weak expert prior about the relative occurrence rate

of entities in the text to train accurate NER models using low-recall data.

(b) Theory justifying the statistical consistency of the approach, proving that our approach

recovers the true tagging distribution in the limit of infinite data under mild conditions.

(c) Extensive benchmark comparisons showing that our method equals or outperforms pre-

vious state-of-the-art approaches across 7 corpora, 6 languages, and 2 diverse low-

recall annotation scenarios.

(d) A novel partial annotation scheme that we call “Exploratory Expert” (EE) annotation,

which allows experts to inexhaustively skim and annotate documents, generating more

varied example contexts for a fixed time budget.

(e) A user study, showing that EE is as fast as exhaustive annotation.

(f) Learning curve experiments that show EE annotation can outperform exhaustive anno-

tation for modest annotation budgets.
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3. We propose a novel approach for improving cross-lingual syntactic parsing in low-resource

scenarios by using expected typological statistics in the target language as weak supervision.

Specifically we contribute:

(a) A novel and general regularization framework, “Expected Statistic Regularization”

(ESR), that can be used to regularize models on unlabeled target datasets with a broad

class of functions that describe expected model behavior. These statistics allow for the

incorporation of various forms of high-level expert knowledge as supervision.

(b) A method for estimating target statistic values using small amounts of labeled data.

(c) An application of the method that improves state-of-the-art cross-lingual parsing on

low-resource languages. We contribute seven families of descriptive statistics that bear

on parser behavior and extensively evaluate their impact on transfer, showing most to

be useful.

(d) An extensive benchmark evaluation on transfer to 44 languages showing that ESR leads

to significant improvements over state-of-the-art approaches on many low-resource lan-

guages.

(e) Learning curve experiments that demonstrate the impact of the approach is largest for

target datasets with 500 or fewer annotated sentences.

(f) Ablation studies justifying key design choices for the proposed loss function.

5.2 Limitations and Future Work

In this thesis we have only begun to scratch the surface of possible ways to create annotation-

efficiency and turn dataset bias to our advantage in low-resource settings, both in terms of technical

directions and application areas. Here we focus on current limitations and future iterations of ESR,

as it is our most recent and general work and as such we view it as the most promising direction.

One limitation of our work to date with ESR is the class of explored statistic functions. So far

we have primarily explored a families of statistics that calculate various entropies and marginal
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substructure probabilities under the parsing model. Some of these, specifically the conditional

substructure marginals, were not as beneficial as we had hoped. One can easily imagine working

with other types of statistics. Some possibilities for these are:

• Input-conditional statistics. Statistics that depend on the input data itself, as in:

58 (G, ?\) = 1{G has some feature}ℎ8 (?\ (H |G))

where ℎ8 is intentionally abstract. Akin to “labeling functions” in popular weak-supervision (Rat-

ner et al., 2016a; Karamanolakis et al., 2019b) functions that activate when looking at things

like particular pairs of words within certain distances could be used to create higher precision

weak supervision at lower recall. An interesting advantage of ESR over labeling functions

in this case is that we could still optimize the expected values of these over batches of data

instead of using them for labeling particular instances, and we would not need to rely on an

additional model to denoise the labels.

• “Deconfusion” statistics based on error-analysis. The idea behind these statistics would

be that we can use labeled training sets to identify particular categories of confusion and

directly correct for these cases. For example, when transferring the UDify model to Per-

sian, we found that it often confused VERB-compound->NOUN edges, which are partic-

ularly common in Persian, for VERB-object->NOUN edges that are much more typical

across the training languages. It could potentially be quite useful to specifically supervise

the model with the signal that says “often when the initial model predicted a dependency to

be VERB-object->NOUN, it is more likely a VERB-compound->NOUN.” We could do

this by first checking the model on labeled training data for these error types, then locate

these positions in the unlabeled training data where its likely the model will make this type

of mistake, and apply the statistic just at these locations instead of in expectation over all

positions in the batch. Further, one can imagine statistic functions that are adaptive, chang-

ing over the course of training based on the evolution of error types. Mathematically these
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statistics could look something like:

58 (G, ?\C ) = 1{arg max ?\C−1 (H |G) contains a known error type at position :}ℎC8 (?\C (H |G))

where C is the training epoch and ℎC
8

selects the marginals at position : and penalizes them

for not matching the most likely error correction for ?\C−1 calculated using validation data

after the last iteration.

• Learned/parameterized statistic functions. In our current work, we employed only statis-

tic functions that were apriori known and hypothesized to be useful, much like in the feature

engineering era of machine learning before deep learning came to dominate. One of the

most appealing aspects of deep learning is that it automatically learns the features (repre-

sentations) of the data in the lower layers and does a better job at this than human intuition.

So it is indeed natural to ask if we can similarly learn the statistic functions that we use as

auxiliary supervision for our models. One obvious case of this is generative modeling. If

we view the statistic function 5 as the conditional likelihood of a sample of text given the

annotations, and the inference model ? as a parameterized posterior, i.e.,

5 (D, ?\) = @q (D|H), H ∼ ?\ (H |G), G ∈ D

then we have something similar to a variational autoencoder (Kingma et al., 2014), and could

potentially learn the statistic parameters q using unlabeled data that way.1

Another clear direction of future work is expansion into different NLP tasks and application

areas. In particular, we believe there is tremendous opportunity for usage of ESR in information

extraction (IE) and knowledge base construction problems because the semantics of their label do-

1For this direction it is worth noting, however, that using generative models to do semi-supervised learning of the
structured inference model is difficult in practice. We attempted this in a previous project for semi-supervised NER, but
found the results to be suboptimal compared to the discriminative supervision of the EER loss. It is entirely possible
though that the previous suboptimal performance of this approach was due to technical optimization complications,
and not the idea itself.
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mains typically imply many useful constraints. For one, the ontologies and database schemas that

define the entities and relations in the target domains of these applications present an opportunity

to automatically derive constraints and expectations for “type checking” of IE or slot filling mod-

els, similar to type-checking constraints in NELL (Carlson et al., 2010). This would be analogous

to how we use the universal dependencies formalism to find grammatically invalid substructures

of POS and dependency arc labels. Further, there are opportunities to use domain expertise or

the current state of the knowledge bases to estimate priors over numerical semantic substructure

likelihoods and use these as statistic targets, similarly to how we estimated substructure target dis-

tributions from small amounts of training data in ESR. Finally, and perhaps more loftily, we could

potentially pair the current state of knowledge in the database with other more complex “valida-

tion” statistic functions, such as theorem provers (Rocktäschel and Riedel, 2017), to regularize

models away from extractions that semantically contradict our current hypotheses about relevant

global domain state.

Continued developments in these directions could be powerful for building domain-specific

knowledge base construction systems more quickly and easily, and would continue to push the

boundaries of the feasibility of using NLP for generating knowledge in diverse and niche domains,

the primary goal of this thesis.
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Appendix A: Partially Supervised Named Entity Recognition via the

Expected Entity Ratio

In this appendix, we present detailed results for our benchmark experiments in both non-native

speaker and exploratory expert annotation scenarios.

A.1 Full Benchmark Results

A.1.1 Non-Native Speaker

CoNLL English, Non-native Speaker
Precision Recall F1

Gold-BERT 92.1 93.2 92.7
Raw-BERT 92.1 73.7 81.9
CBL-LSTM 78.6 79.8 79.2
CBL-BERT 86.6 83.1 84.8
EER-BERT 83.7 92.8 88.0

Table A.1: CoNLL English, Non-native Speaker

CoNLL German, Non-native Speaker
Precision Recall F1

Gold-BERT 84.7 83.0 83.9
Raw-BERT 88.1 56.8 69.1
CBL-LSTM 37.3 39.7 38.4
CBL-BERT 76.9 78.2 77.5
EER-BERT 71.4 84.2 77.3

Table A.2: CoNLL German, Non-native Speaker
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CoNLL Spanish, Non-native Speaker
Precision Recall F1

Gold-BERT 87.9 88.7 88.3
Raw-BERT 90.8 59.5 71.2
CBL-LSTM 57.5 51.9 54.6
CBL-BERT 81.1 76.4 78.7
EER-BERT 75.5 87.1 80.9

Table A.3: CoNLL Spanish, Non-native Speaker

CoNLL Dutch, Non-native Speaker
Precision Recall F1

Gold-BERT 90.9 91.3 91.1
Raw-BERT 91.0 57.0 70.1
CBL-LSTM 49.1 47.2 48.2
CBL-BERT 71.9 79.1 75.3
EER-BERT 69.3 86.4 76.9

Table A.4: CoNLL Dutch, Non-native Speaker

Ontonotes English, Non-native Speaker
Precision Recall F1

Gold-BERT 90.3 91.1 90.7
Raw-BERT 93.1 53.5 68.0
CBL-LSTM 69.7 66.2 67.9
CBL-BERT 80.5 72.6 76.3
EER-BERT 81.2 88.2 84.5

Table A.5: Ontonotes English, Non-native Speaker

Ontonotes Chinese, Non-native Speaker
Precision Recall F1

Gold-BERT 77.4 81.5 79.4
Raw-BERT 79.5 50.7 61.9
CBL-LSTM 52.8 54.3 53.5
CBL-BERT 71.8 66.3 68.9
EER-BERT 62.8 70.8 66.6

Table A.6: Ontonotes Chinese, Non-native Speaker
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Ontonotes Arabic, Non-native Speaker
Precision Recall F1

Gold-BERT 70.7 75.4 72.9
Raw-BERT 77.1 40.2 52.8
CBL-LSTM 43.5 36.3 39.4
CBL-BERT 62.6 61.2 61.9
EER-BERT 49.4 66.4 56.6

Table A.7: Ontonotes Arabic, Non-native Speaker
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A.1.2 Exploratory Expert

CoNLL English, Exploratory Expert
Precision Recall F1

Gold-BERT 92.1 93.2 92.7
Raw-BERT-all 93.3 0.2 0.4
Raw-BERT-short 78.3 30.7 44.1
Raw-BERT-shortest 86.3 75.8 80.7
CBL-LSTM-all 72.4 51.6 60.2
CBL-LSTM-shortest 69.6 66.1 67.8
CBL-BERT-all 39.8 19.7 36.4
CBL-BERT-short 52.4 37.5 43.7
CBL-BERT-shortest 82.0 79.2 80.6
EER-BERT-all 85.6 87.1 86.3
EER-BERT-short 88.1 89.9 89.0
EER-BERT-shortest 85.0 89.8 87.3

Table A.8: CoNLL English, Exploratory Expert

CoNLL German, Exploratory Expert
Precision Recall F1

Gold-BERT 84.7 83.0 83.9
Raw-BERT-all 78.7 01.3 02.6
Raw-BERT-short 74.4 24.8 37.2
Raw-BERT-shortest 74.1 58.5 65.4
CBL-LSTM-all 24.3 31.7 27.5
CBL-LSTM-shortest 16.7 25.4 20.1
CBL-BERT-all 62.6 45.7 52.8
CBL-BERT-short 63.2 66.3 64.7
CBL-BERT-shortest 64.4 65.9 65.1
EER-BERT-all 67.7 79.6 73.2
EER-BERT-short 65.1 81.0 72.2
EER-BERT-shortest 68.5 79.6 73.6

Table A.9: CoNLL German, Exploratory Expert
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CoNLL Spanish, Exploratory Expert
Precision Recall F1

Gold-BERT 87.9 88.7 88.3
Raw-BERT-all 92.3 00.3 00.7

Raw-BERT-short 80.6 30.6 44.4
Raw-BERT-shortest 80.2 67.0 73.0

CBL-LSTM-all 51.2 34.5 41.2
CBL-LSTM-shortest 45.6 30.1 36.2

CBL-BERT-all 50.9 34.1 40.9
CBL-BERT-short 59.4 53.8 56.4

CBL-BERT-shortest 74.2 75.3 74.7
EER-BERT-all 78.7 82.0 80.3

EER-BERT-short 71.7 81.9 76.5
EER-BERT-shortest 71.2 82.6 76.5

Table A.10: CoNLL Spanish, Exploratory Expert

CoNLL Dutch, Exploratory Expert
Precision Recall F1

Gold-BERT 90.9 91.3 91.1
Raw-BERT-all 0.0 0.0 0.0

Raw-BERT-short 0.0 0.0 0.0
Raw-BERT-shortest 76.8 62.7 69.1

CBL-LSTM-all 35.2 31.6 33.3
CBL-LSTM-shortest 20.9 37.3 26.7

CBL-BERT-all 56.1 49.3 52.5
CBL-BERT-short 64.5 57.4 60.8

CBL-BERT-shortest 69.5 73.0 71.2
EER-BERT-all 75.8 85.3 80.2

EER-BERT-short 75.6 85.6 80.3
EER-BERT-shortest 64.5 87.3 74.2

Table A.11: CoNLL Dutch, Exploratory Expert
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Ontonotes English, Exploratory Expert
Precision Recall F1

Gold-BERT 90.3 91.1 90.7
Raw-BERT-all 79.4 0.4 0.4

Raw-BERT-short 73.8 17.6 28.4
Raw-BERT-shortest 77.0 60.1 67.5

CBL-LSTM 57.4 14.5 23.1
CBL-LSTM-shortest 45.4 39.1 42.0

CBL-BERT 40.6 15.4 22.4
CBL-BERT-short 24.6 11.8 16.0

CBL-BERT-shortest 34.9 24.0 28.4
EER-BERT 63.3 59.2 61.2

EER-BERT-short 74.9 76.9 75.9
EER-BERT-shortest 68.7 80.3 74.0

Table A.12: Ontonotes English, Exploratory Expert

Ontonotes Chinese, Exploratory Expert
Precision Recall F1

Gold-BERT 77.4 81.5 79.4
Raw-BERT-all 89.5 1.2 2.4

Raw-BERT-short 66.3 21.5 32.4
Raw-BERT-shortest 64.9 51.0 57.1

CBL-LSTM 39.1 24.2 29.9
CBL-LSTM-shortest 29.4 21.2 24.6

CBL-BERT 47.6 21.1 29.3
CBL-BERT-short 37.7 27.7 31.2

CBL-BERT-shortest 54.1 53.0 53.6
EER-BERT 57.4 55.0 56.2

EER-BERT-short 55.1 69.3 61.4
EER-BERT-shortest 59.7 69.7 64.3

Table A.13: Ontonotes Chinese, Exploratory Expert
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Ontonotes Arabic, Exploratory Expert
Precision Recall F1

Gold-BERT 70.7 75.4 72.9
Raw-BERT-all 75.0 02.7 05.3

Raw-BERT-short 55.6 9.0 15.4
Raw-BERT-shortest 52.9 34.8 42.0

CBL-LSTM 19.0 12.7 15.3
CBL-LSTM-shortest 14.0 07.4 09.7

CBL-BERT 48.5 13.2 20.8
CBL-BERT-short 43.8 23.1 30.2

CBL-BERT-shortest 43.5 35.6 39.2
EER-BERT 52.3 36.2 42.9

EER-BERT-short 53.1 41.9 46.8
EER-BERT-shortest 36.5 49.6 42.0

Table A.14: Ontonotes Arabic, Exploratory Expert
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Appendix B: Improving Low-Resource Cross-lingual Parsing with Expected

Statistic Regularization

B.1 Detailed Learning Curve Results

In this appendix we present detailed numerical learning curve results corresponding to Fig-

ures 4.2 and 4.3 for completeness.
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POS LAS

Method |Dtrain
!
| 50 100 500 1000 50 100 500 1000

German (de)
UDPRE 89.6 89.6 89.6 89.6 83.0 83.0 83.0 83.0
UDPRE-FT 94.4 95.8 96.9 97.2 87.9 89.3 91.6 92.3
UDPRE-FT-PPT 94.1 95.4 96.7 97.1 88.3 89.4 91.4 92.3
UDPRE-FT-ESR-UNIARC 94.2 95.6 96.9 97.2 87.4 89.0 91.3 92.3
UDPRE-FT-ESR-CLD 94.1 95.0 96.7 97.2 87.4 88.9 91.1 92.2
UDPRE-FT-ESR-CLD∗ 94.2 95.2 96.7 97.2 87.5 88.8 91.1 92.1

Indonesian (id)
UDPRE 82.3 82.3 82.3 82.3 58.3 58.3 58.3 58.3
UDPRE-FT 89.7 90.0 92.0 92.2 71.8 74.4 77.5 78.5
UDPRE-FT-PPT 89.9 90.2 92.3 92.6 72.4 74.7 78.0 79.1
UDPRE-FT-ESR-UNIARC 91.3 91.9 92.9 93.1 75.4 76.4 79.3 80.0
UDPRE-FT-ESR-CLD 90.7 91.6 92.8 93.1 74.6 76.5 79.1 80.0
UDPRE-FT-ESR-CLD∗ 90.6 91.8 93.0 93.0 73.8 76.8 79.1 79.9

Persian (fa)
UDPRE 79.1 79.1 79.1 79.1 48.4 48.4 48.4 48.4
UDPRE-FT 90.9 91.7 93.7 94.2 74.9 77.0 80.9 83.0
UDPRE-FT-PPT 90.5 91.8 93.9 94.2 74.7 76.9 81.0 82.7
UDPRE-FT-ESR-UNIARC 90.9 91.1 93.5 94.5 73.0 75.6 80.6 83.1
UDPRE-FT-ESR-CLD 90.5 91.3 93.5 94.3 72.9 75.3 80.8 82.5
UDPRE-FT-ESR-CLD∗ 91.1 91.1 93.5 94.5 74.3 75.9 80.8 83.2

Vietnamese (vi)
UDPRE 67.0 67.0 67.0 67.0 46.3 46.3 46.3 46.3
UDPRE-FT 86.3 87.1 90.0 91.5 55.8 56.9 63.7 65.9
UDPRE-FT-PPT 86.3 87.3 90.2 91.6 57.1 57.7 64.0 66.5
UDPRE-FT-ESR-UNIARC 87.9 88.7 91.3 91.4 58.8 60.6 65.4 65.7
UDPRE-FT-ESR-CLD 87.0 88.7 91.4 91.5 58.3 60.4 65.3 65.8
UDPRE-FT-ESR-CLD∗ 87.0 90.5 91.4 91.4 58.5 64.5 65.3 65.6

Maltese (mt)
UDPRE 35.1 35.1 35.1 35.1 16.0 16.0 16.0 16.0
UDPRE-FT 82.9 86.4 92.9 94.3 57.9 64.5 75.7 79.4
UDPRE-FT-PPT 83.8 87.6 93.2 94.3 59.3 65.6 76.1 80.0
UDPRE-FT-ESR-UNIARC 92.2 91.7 93.7 94.5 75.1 73.3 78.0 79.9
UDPRE-FT-ESR-CLD 91.4 93.2 93.4 94.5 73.4 76.6 78.1 80.0
UDPRE-FT-ESR-CLD∗ 89.7 91.7 93.5 94.4 69.7 74.3 78.2 79.8

All (avg)
UDPRE 70.6 70.6 70.6 70.6 50.4 50.4 50.4 50.4
UDPRE-FT 88.8 90.2 93.1 93.9 69.7 72.4 77.9 79.8
UDPRE-FT-PPT 88.9 90.5 93.3 94.0 70.4 72.9 78.1 80.1
UDPRE-FT-ESR-UNIARC 91.3 91.8 93.7 94.1 73.9 75.0 78.9 80.2
UDPRE-FT-ESR-CLD 90.8 92.0 93.6 94.1 73.3 75.6 78.9 80.1
UDPRE-FT-ESR-CLD∗ 90.5 92.1 93.6 94.1 72.8 76.0 78.9 80.1

Table B.1: UDPRE Semi-Supervised Learning Curves.
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POS LAS

Method |Dtrain
!
| 50 100 500 1000 50 100 500 1000

German (de)
UDPRE 89.6 89.6 89.6 89.6 83.0 83.0 83.0 83.0
MBERT-FT 87.9 90.9 95.1 96.2 59.7 66.7 81.5 86.3
MBERT-FT-PPT 86.3 89.6 94.7 96.0 58.0 65.3 80.9 85.8
MBERT-FT-ESR-UNIARC 88.1 90.6 95.2 96.1 60.6 66.4 82.6 85.6
MBERT-FT-ESR-CLD 88.9 90.9 95.2 95.8 62.4 67.1 82.9 85.0

Indonesian (id)
UDPRE 82.3 82.3 82.3 82.3 58.3 58.3 58.3 58.3
MBERT-FT 86.5 88.3 90.8 92.1 52.1 60.6 71.8 75.2
MBERT-FT-PPT 86.6 87.9 90.9 91.8 51.7 59.5 71.7 75.2
MBERT-FT-ESR-UNIARC 88.4 89.4 92.2 93.0 59.3 66.2 76.2 77.7
MBERT-FT-ESR-CLD 88.3 89.9 92.2 92.9 61.0 67.9 75.7 77.4

Persian (fa)
UDPRE 79.1 79.1 79.1 79.1 48.4 48.4 48.4 48.4
MBERT-FT 81.1 83.7 89.6 91.6 44.1 52.7 68.7 74.3
MBERT-FT-PPT 78.6 83.0 89.5 91.5 35.6 50.7 68.5 73.6
MBERT-FT-ESR-UNIARC 82.4 85.0 90.6 91.9 45.2 57.4 71.6 74.7
MBERT-FT-ESR-CLD 82.8 85.8 90.7 92.1 50.3 59.5 71.8 75.0

Vietnamese (vi)
UDPRE 67.0 67.0 67.0 67.0 46.3 46.3 46.3 46.3
MBERT-FT 79.7 81.7 86.8 88.4 31.6 39.9 53.9 57.2
MBERT-FT-PPT 78.3 81.6 86.9 88.6 31.1 39.1 54.2 57.0
MBERT-FT-ESR-UNIARC 83.1 85.7 88.1 88.8 44.3 50.3 56.4 57.9
MBERT-FT-ESR-CLD 83.6 85.6 88.0 88.7 44.7 50.8 56.6 57.9

Maltese (mt)
UDPRE 35.1 35.1 35.1 35.1 16.0 16.0 16.0 16.0
MBERT-FT 74.3 78.8 88.2 90.5 35.0 41.5 59.0 64.0
MBERT-FT-PPT 74.3 78.9 88.1 90.6 35.4 41.7 58.7 63.7
MBERT-FT-ESR-UNIARC 82.2 86.4 90.3 91.5 47.0 54.4 64.2 67.3
MBERT-FT-ESR-CLD 82.3 86.2 90.3 91.5 47.5 54.7 64.3 67.2

All (avg)
UDPRE 70.6 70.6 70.6 70.6 50.4 50.4 50.4 50.4
MBERT-FT 81.9 84.7 90.1 91.8 44.5 52.3 67.0 71.4
MBERT-FT-PPT 80.8 84.2 90.0 91.7 42.4 51.3 66.8 71.0
MBERT-FT-ESR-UNIARC 84.8 87.4 91.3 92.3 51.3 58.9 70.2 72.6
MBERT-FT-ESR-CLD 85.2 87.7 91.3 92.2 53.2 60.0 70.2 72.5

Table B.2: MBERT Semi-Supervised Learning Curves.
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