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Abstract

Queues, Planes and Games: Algorithms for Scheduling Passengers, and Decision Making in

Stackelberg Games.

Sai Mali Ananthanarayanan

In this dissertation, I present three theoretical results with real-world applications related to

scheduling and distributionally-robust games, important fields in discrete optimization, and com-

puter science.

The first chapter provides simple, technology-free interventions to manage elevator queues in

high-rise buildings when passenger demand far exceeds the capacity of the elevator system. The

problem was motivated by the need to manage passengers safely in light of reduced elevator capac-

ities during the COVID-19 pandemic. We use mathematical modeling, epidemiological expertise,

and simulation to design and evaluate our algorithmic solutions. The key idea is to explicitly or

implicitly group passengers that are going to the same floor into the same elevator as much as possi-

ble, substantiated theoretically using a technique from queuing theory known as stability analysis.

This chapter is joint work with Charles Branas, Adam Elmachtoub, Clifford Stein, and Yeqing

Zhou, directly in collaboration with the New York City Mayor’s Office of the Chief Technology

Officer and the Department of Citywide Administrative Services.

The second chapter proposes new algorithms for recomputing passenger itineraries for airlines

during major disruptions when carefully planned schedules are thrown into disarray. An airline

network is a massive temporal graph, often with tight regulatory and operational constraints. When

disruptions propagate through an airline network, the objective is to recover within a given time

frame from a disruption, meaning we replan schedules affected by the disruption such that the new

schedules have to match the originally planned schedules after the time frame. We aim to solve

the large-scale airline recovery problem with quick, user-independent, consistent, and near-optimal

algorithms. We provide new algorithms to solve the passenger recovery problem, given recovered

flight and crew solutions. We build a preprocessing step and construct an Integer Program as well



as a network-based approach based on solving multiple-label shortest path problems. Experiments

show the tractability of our proposed algorithms on airline data sets with heavy flight disruptions.

This chapter is joint work with Clifford Stein, stemming from an internship and collaboration

with the Machine Learning team (Artificial Intelligence organization) of GE Global Research,

Niskayuna, New York.

The third chapter is about computing distributionally-robust strategies for a popular game the-

ory model called Stackelberg games, where one player, called the leader, is able to commit to a

strategy first, assuming the other player(s), called follower(s) would best respond to the strategy. In

many of the real-world applications of Stackelberg games, parameters such as payoffs of the fol-

lower(s) are not known with certainty. Distributionally-robust optimization allows a distribution

over possible model parameters, where this distribution comes from a set of possible distributions.

The goal for the leader is to maximize their expected utility with respect to the worst-case distri-

bution from the set. We initiate the study of distributionally-robust models for Stackelberg games,

show that a distributionally-robust Stackelberg equilibrium always exists across a wide array of

uncertainty models, and provide tractable algorithms for some general settings with experimental

results. This chapter is joint work with Christian Kroer.
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Introduction

In this dissertation, I present three results with real-world applications related to scheduling

and distributionally-robust games, important fields in discrete optimization, and computer science.

The motivations, background, and a summary of contributions are detailed below.

Broadly, scheduling involves making decisions about allocating goods/resources over time and

optimizing some objective(s). Traditional scheduling problems can be summarized with a job

and machine setting- there are a fixed number of jobs, and all relevant information about them is

available at the beginning. There are resources available to be utilized (e.g., people in a factory,

runways in an airport, computing power in a cluster, etc.), which may be subject to availability

constraints. The tasks/jobs to be scheduled could have features- e.g., priority levels that reflect their

importance, release time (i.e., earliest time a task could be scheduled), deadlines, etc. The goal is

to compute from scratch an optimal schedule that minimizes or maximizes a given objective [1].

The objective could reward or penalize the proposed schedule based on a combination of the job

features. A discussion on multiple types of objectives is presented in Pinedo [1] for two settings:

(i) deterministic, where the features of the jobs and objectives are available in advance, and (ii)

stochastic, where job data may not be known except for their distributions.

In practice, scheduling problems face interesting twists that call for developing new approaches

that are domain-specific [1]. Scheduling algorithms are important in many fields, one among

which is solving complex transportation problems. We are interested in two problems broadly in

scheduling for passengers in real-world transportation, albeit with distinct flavors. The first chapter

1



deals with scheduling in elevator systems, a crucial vertical transportation system for urban and

building planners. The second chapter is about scheduling in airline networks, a complex network

in time and space, with multiple objectives and tight constraints. We discuss in detail the different

challenges posed by the two problems and our contributions below.

1. Scheduling problems in the real-world often have new restrictions that could be machine,

job, or time-dependent. Instead of pre-planned schedules, in some settings, the decision

makers could have crafted rules or algorithms that are followed as and when the jobs arrive

[1]. One example is in the stochastic setting when only distributional information about the

jobs is known (e.g., arrival time, job processing time). The rules are made initially based

on information on the environment and resources. When a new restriction is introduced, the

objective could worsen if we still follow the old rules. Note that because there are no pre-

planned schedules, only rules, we want new algorithms that adapt to the changed environ-

ment when the jobs are dynamic. Theoretical research into general rules applicable to many

different real-world problems with their own idiosyncrasies is scant [1]. We are concerned

with previously unanticipated constraint(s) in the setting where the original scheduling rules

break down, leading to an unacceptable value of the objective. One example of such a restric-

tion could be the handling capacity or the processing speed of the machines, which might

severely affect the machines being available for jobs down the line. Many theoretical models

do not take machine availability constraints into account [1]. New algorithms that take break

traditional norms of the problem (e.g., the processing order of the jobs) could do better in

the new regime.

In Chapter 1, we are interested in scheduling for elevator systems when the passenger de-

mand for the elevators far exceeds the available capacity of the system. There are two set-

tings where our work could be valuable- an appropriate number of elevators could have been

installed and operated based on a prior forecast of passenger traffic in the building, and the

standard social norm of first-come first-serve (FCFS) could have worked well. In the first

setting, there could be an increased passenger demand in the building, or in the second, there

2



could be a new restriction on the capacity of the elevator system. Either setting could lead to

a mismatch between demand and supply, and the default social queuing norm for elevators

(FCFS) may not work effectively. We propose new algorithms that break FCFS in order to

get passengers to their destination at a faster rate in Ananthanarayanan et al. [2].

The work was motivated by the needs of high-rise buildings during the COVID-19 pandemic,

when social distancing reduces the capacity of elevators, cutting the number of passengers

per elevator by as much as 90% of the normal amount [3, 4, 5]. It is imperative to design

interventions for people to stay safe in potentially crowded areas. Reduced elevator capacity

can cause large lobby queues and long wait times, resulting in crowding and reduced so-

cial distancing [3, 6, 7], thereby posing significant safety risks. Thus, an intervention in the

public health problem of safely managing queues for elevator systems amidst a pandemic is

needed. One can broadly consider two major forms of interventions based on (i) changing

passenger behavior and (ii) elevator artificial intelligence. A variety of technological inno-

vations from elevator companies and building management have been considered during the

pandemic [6]. In many elevator systems, especially in older ones, changing the algorithms

and technology of how the elevators navigate through the building is either challenging or

infeasible and would require long-term planning and expensive modifications. Thus, in or-

der to safely manage how passengers use and board elevators, we focus on technology-free

interventions in Ananthanarayanan et al. [2] that are more accessible and practical for an

overwhelming majority of buildings.

In Chapter 1, we develop a general, open-sourced simulation model that captures many of

the practical nuances in designing interventions for elevator systems and allows us to study

the impact of various interventions or queuing behavior. We propose two interventions that

use elevators more efficiently and analytically show their strong performance using a tech-

nique from queuing theory known as stability analysis. The data is calibrated from a real 25

floor New York City high-rise building that was scheduled for re-opening. While our work

was motivated by social distancing rules during a pandemic, it is generalizable to any set-
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ting where the passenger demand exceeds the capacity of the elevator system, necessitating

intervention. For instance, during high traffic time windows such as morning rush hour or

lunch time, building managers could choose to implement the proposed interventions that

get passengers to their destination at a faster aggregate rate (higher throughput).

2. An unexpected disruption affecting underlying resources may require recomputing or modi-

fying pre-planned schedules. Restrictions can come up that introduce new constraints and re-

quire the decision-makers to react by undertaking large modifications to pre-planned sched-

ules. One may check which jobs have not yet started and generate from scratch a new

optimal schedule in the disrupted environment. However, the new schedule may be very dif-

ferent from the original, causing confusion in practice [1]. Thus it may be advantageous to

keep changes in the current schedule at a minimum and only make minor changes to it when

disrupted. Proactive scheduling calls for taking into account robustness during the planning

stage, though anticipating the random events goes against the definition of encountering the

unexpected. Therefore, we focus on reactive scheduling, i.e., replan schedules for jobs still

in the queue during disruptions, with the new objective comprising of two terms- the orig-

inal objective and a measure of closeness between the original and new schedules. We are

interested in recovery algorithms, a reactive approach to cope with irregularities, in the sense

that decisions are made when the original schedules are either unfeasible or carry a high cost

in the new regime [8]. Schedule recovery problems typically use deterministic schedules

and an unexpected random event as input and try to recover the now infeasible, or high-cost

schedules, in order to minimize the difference between the new and original schedules.

In Chapter 2, we study an airline scheduling problem that has originally planned schedules

that are disrupted. Minimizing costs for airline scheduling involves three competing sched-

ules (for flights, crew, and passengers). A global optimal solution is difficult to compute

owing to the complexity of the problem space [9, 10, 11]. Hence, we wish to compute sched-

ules that are close to optimal but can also be solved within reasonable computational time

and thus could be used during disruptions. Airlines make their schedules well in advance
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[11], a well-studied problem in the literature. Our interest is in reacting to the disruption by

replanning for jobs (passenger schedules in an itinerary) that are not complete. Almost half

of all disruptions are reactionary and caused by the primary delay as explained in Papiomytis

[12]. Thus the disruptions have a snowball effect on the airline network.

We focus on reactive scheduling for passengers in airline systems during disruptions. Thus,

passenger schedules are to be recovered, given solutions to flight and/or crew recovery prob-

lems. This problem would fall under the partially integrated recovery model. Holistic re-

covery refers to solving the global optimization problem for flights, crew, and passengers

all at once, and is challenging to solve in practice (see discussion in Filar et al. [10], Ball

et al. [13], and Clausen et al. [14]). Moreover, airlines often separate decision-making on

flights, planes, and crews to different teams, since it is widely believed that the entire holistic

recovery scheduling problem is computationally intractable [8]. Integrated recovery refers

to solving more than one of the three recovery problems (flights, crew, and passengers)

together, combing the objectives and constraints. We are solving the global optimization

problem sequentially- flights and/or crew first, followed by passengers. Passenger recovery

costs are the lowest, and its constraints less complex among the three problems and hence is

solved last. Of course, such a sequential decision-making model can lead to inefficiencies

in solving the global optimization problem. Passenger recovery is an active field of research

and of great interest to airlines at the moment [15]. High passenger delay cost and continu-

ous flight disruptions lead to a potential loss of goodwill and long-term reputation damage

[16]; hence in this chapter, we use the flight recovery solution as input and aim for a quick

and high-quality solution for passenger recovery.

Passenger recovery can be formulated as follows: given recovered flight schedules, and a

set of pre-planned passenger itineraries, the set of itineraries where at least one of its flights

is disrupted in some way (delays, cancellations, reduced cabin capacity, etc) is called dis-

rupted itineraries. We wish to replan all disrupted itineraries by making decisions on whether

passengers can be moved to different flights and/or cabin classes or outright cancel their
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itinerary. For each disrupted itinerary, we use the recovered flights (given seat availability)

necessary to re-accommodate passengers from their starting position at the time of disruption

to their destination while minimizing cost [15, 9].

The passenger recovery costs can include both operating costs and disutility costs. Operating

or regulatory costs are directly incurred (and paid in real money) when a passenger cannot

complete their scheduled itinerary (e.g., compensation for delay and cancellation, providing

refreshments or hotels, as stipulated by government regulations). Disutility costs are the

potential losses of future revenue as a result of passenger inconvenience, possibly causing

the passenger to switch to a different airline in the future. The costs are approximations made

by the airline, can differ per passenger class or frequent flyer status [15, 11], and are meant

to be used for reactive decision-making to disincentivize certain outcomes. For example, the

disutility for canceling a passenger’s itinerary is set to be higher than delaying their itinerary

by the maximum allowed delay. The model would thus rather delay than cancel itineraries

whenever possible.

In Chapter 2, we construct an Integer Program (IP) to solve passenger recovery using pre-

processed graphs pruned for each itinerary. This work was initiated during my internship at

GE Global Research with real airline data sets. The sizes of IP may grow huge with real

airline data (e.g., the number of integer variables alone could scale linearly with the number

of flights, size of passenger itineraries, etc.), and hence there is a need for alternate tech-

niques. Moreover, certain practical constraints are not easy to handle without introducing

non-linearity. There have been efforts to construct network-based algorithms (see Palpant

et al. [15], Bisaillon et al. [11], and Righini and Salani [17]) and we contribute a new algo-

rithm without mathematical programs, based on solving multiple-labels shortest path prob-

lems. Our multiple-labels shortest path algorithm prunes labels regularly, is iterative, and

solves for the passengers who are more high-value (typically decided by decreasing order of

cancellation costs of their itineraries). We show the performance of our algorithms on data

calibrated from a publicly available data set from an OR challenge on integrated operations
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and passenger recovery, modeling light, and heavily disrupted scenarios.

Thus, Chapters 1 and 2 are two flavors of real-world passenger transportation problems requir-

ing new scheduling algorithms. For Chapter 1, dispatching rules and other algorithms on managing

elevator systems are well-studied (see Barney and Al-Sharif [18], Fujino et al. [19], Barney and

Dos Santos [20], Lee et al. [21], and Al-Sharif et al. [22]), but there is not much work on the

impact of reducing capacities while maintaining service quality. To our knowledge, our paper

Ananthanarayanan et al. [2] is the first of its kind, applicable to general building types with ran-

dom arrival and destination patterns. For Chapter 2, airlines have decades of research on planning

schedules well in advance [23], however, the field of recovery is still quite new, with a multitude

of open problems in integrated recovery. Our work on passenger recovery is novel, going beyond

mathematical programs by working directly on the temporal graph with network-based algorithms.

In Chapter 3, we introduce new algorithms for computing optimal distributionally-robust strate-

gies in a game theory setting with real-world significance called Stackelberg games. In multiagent

systems, self-interested (as is the case in most economic settings) agents or players have their pay-

offs linked to the actions of the other players. Many systems assume that the players choose their

strategies simultaneously [24]. However, such a model is not always realistic. In many settings

referred to as leadership, commitment, or Stackelberg models, one player commits to a strategy

before the other player, and we assume the second player would best respond to whatever strategy

the first player picks. Real-world examples include airport security [25], defense against poaching

and illegal fishing [26] etc. where the leader (or defender) strategy refers to making patrolling

schedules or placing checkpoints, and the followers can surveil the leader strategy over time and

plan a best-response in order to attack the locations.

The feature in the Stackelberg game model is that the players are asymmetric, and they act

in turns: the leader first plays, then the follower sees the leader’s action and then adapts to it

[27]. Symmetric solution concepts like Nash equilibrium introduced in Nash [28] do not apply to

this setting. Optimal strategies in Stackelberg models are significantly different from the model
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with simultaneous play [24]. A more natural solution concept for these games is the Stackelberg

equilibrium: the leader commits to an optimal strategy, assuming the followers play their best

response to the leader. Note that in standard Stackelberg games, the leader’s optimal commitment

is not necessarily a best response to the follower’s response [29]. The Stackelberg model has found

widespread application, particularly in security problems [30]. In the security setting, the goal is

for the leader to compute an optimal strategy to commit to, in order to protect some asset.

In many of the real-world applications, the opponent follower payoffs are not known with

certainty. Such uncertainty in parameters could occur due to limited scope in observable data,

noise or prediction errors (see Pita et al. [25], Tsai et al. [31], and Fang et al. [26]). In Bayesian

Stackelberg games, we assume publicly-known distribution over utility functions, and computing

an optimal strategy for the leader even with a finite set of follower types is NP-hard [24]. A robust

optimization approach is computing an optimal leader strategy given that the worst-case follower

utility will be selected from an uncertainty set, and then the follower best responds based on this

utility function [32]. However, robust optimization can often lead to overly conservative solutions,

due to considering the worst-case nature over a potentially large uncertainty set.

Distributionally-robust optimization (DRO) addresses this issue by allowing a distribution over

possible model parameters, where this distribution comes from a set of possible distributions. The

goal is to maximize the expected utility with respect to the worst-case distribution. We initiate

the study of distributionally-robust models for computing the optimal strategy to commit to. We

consider normal-form games with uncertainty about the follower utility model. Our main theo-

retical result is to show that a distributionally-robust Stackelberg equilibrium always exists across

a wide array of uncertainty models. In Stackelberg models, a follower could have multiple best

responses for a given leader strategy. We use a tie-breaking rule that breaks the tie in favor of the

leader, referred to as strong Stackelberg equilibrium in literature [33]. For the case of a finite set of

possible follower utility functions we present two algorithms to compute a distributionally-robust

strong Stackelberg equilibrium (DRSSE) using mathematical programs. Next, in the general case

where there is an infinite number of possible follower utility functions and the uncertainty is repre-
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sented by a Wasserstein ball around a finitely-supported nominal distribution, we give an incremen-

tal mixed-integer-programming-based algorithm for computing the optimal distributionally-robust

strategy. Experiments substantiate the tractability of our algorithm on a classical Stackelberg game

called Inspection game, showing that our approach scales to medium-sized games. We also discuss

the special case of finite follower utility functions in the Wasserstein setting, with a mixed integer

program and experiments on classical Stackelberg games as well as synthetic data.
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Chapter 1: Queuing Efficiently in Elevator Systems

In this chapter, we present our work on passenger scheduling algorithms for elevator systems

when passenger demand far exceeds the capacity of the system. This work is based on the arti-

cle Ananthanarayanan et al. [2] written in collaboration with Charles Branas, Adam Elmachtoub,

Clifford Stein and Yeqing Zhou, published in the Production and Operations Management journal

in 2022.

1.1 Background and Motivation

We are interested in scheduling for elevator systems when the passenger demand for the ele-

vators far exceed the available capacity of the system. For building and urban planners, vertical

transportation solutions are a crucial problem to consider when designing high rise buildings [18].

In the planning stage, the characteristics of an elevator system such as number of elevators, speed,

capacity of each elevator etc. are chosen operated based on a prior forecast of passenger traffic in

the building. Thus, elevators installed and operated after careful planning, and many systems only

expect passengers to follow the standard social norm of first-come first-serve (FCFS) [34, 20, 18].

In practice, the elevator systems can face new challenges that disrupt the ability to carry pas-

sengers to their destinations effectively. Firstly, there could be an increased passenger demand in

the building, or secondly, there could be a new restriction on the capacity of the elevator system.

Both settings lead to a mismatch between passenger demand and capacity of the system, and make

wait times and queue lengths longer for the passengers using the elevators of the building. Below

we explain the genesis of our work, motivated by the second scenario where a sudden restriction

on elevator capacities are imposed.

The COVID-19 pandemic has made it imperative to design interventions for people to stay
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safe in potentially crowded areas. For high-rise buildings, social distancing reduces the capacity of

elevators, cutting the number of passengers per elevator by two-thirds or as much as over 90% the

normal amount [3, 4, 5]. Reduced elevator capacity can cause large lobby queues and long wait

times, resulting in crowding and reduced social distancing [3, 6, 7, 35]. With no interventions and

reduced capacity on elevators, the increased waiting times and queue lengths in the lobby could

pose significant safety risks. Thus, an intervention to the public health problem of safely managing

queues for elevator systems amidst a pandemic is needed (our team is composed of operations

researchers and an epidemiologist). In fact, this project was directly in collaboration with the NYC

Mayor’s Office of the Chief Technology Officer and the Department of Citywide Administrative

Services. These offices had continuous input into our work throughout the process and allowed

us to conduct several on-site visits with building managers, where we talked to frontline staff and

gathered input. We also presented our findings multiple times to a variety of agency staff, developed

an instructional video 1, and provided open source code that can be tailored to the needs of different

types of buildings2.

One can broadly consider two major forms of interventions based on (i) changing passenger

behavior and (ii) elevator artificial intelligence. A variety of technological innovations from eleva-

tor companies and building management have been considered during the pandemic [6]. In many

elevator systems, especially in older ones, changing the algorithms and technology of how the

elevators navigate through the building is challenging or infeasible, and would require long-term

planning and expensive modifications. Thus, in order to safely manage how passengers use and

board elevators, we focus on technology-free interventions which should be more accessible and

practical for an overwhelming majority of buildings with elevators [2]. We specifically provide a

detailed simulation study in addition to theoretical results of queuing systems to model and assess

the efficacy of our various interventions.

Currently, many elevator systems take a hands-off approach to managing the flow of people to

elevators, resulting in something that resembles first-come first-serve [19]. Our simulations, using

1https://youtu.be/5KvX7_WNGFw
2https://github.com/saimali/elevators
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data calibrated from a large New York City government building, show that such a hands-off ap-

proach will lead to large and unsafe queues if building occupancy returns to pre-pandemic levels

while elevator capacities are still reduced due to social distancing. Thus, it is imperative that we

design interventions that use the elevators more efficiently – getting passengers to their destination

at a faster aggregate rate (higher throughput) – by more carefully managing who uses which ele-

vator when. For instance, we shall consider interventions where we try to get passengers going to

the same or nearby floor to ride an elevator together as well as interventions where passengers are

encouraged to walk up or down a floor after riding the elevator.

1.1.1 Contributions

Using mathematical modeling, epidemiological expertise, and simulation, we design and eval-

uate simple interventions to load passengers in elevators that can drastically reduce the length of

lobby queues. The proposed interventions increase efficiency of the elevator system, and are effec-

tive beyond the constraints imposed by a pandemic, making them useful even after the pandemic to

manage lobby queues. Our interventions could be applied to any building where passenger demand

and available elevator capacity have a mismatch. The interventions do not require programming

the elevators, and rely on using only signage and/or a queue manager (QM) to guide passengers.

They are effective in reducing both the number of stops per trip and the travel distance per trip.

Next, we outline our contributions in detail.

1. We develop a general, open-sourced simulation model that captures many of the details of

elevator systems and allows us to study the impact of various interventions and queuing

behavior. Our simulation model allows us to specify the number of elevators, capacity,

elevator speed, and boarding times, and to measure and visualize the queue length and wait

time of elevator systems for the various interventions we consider. We primarily focus on a

case study calibrated by data from a large government building in New York City that is in

need of managing elevator traffic amidst the COVID-19 pandemic.

2. We propose an intervention we call Cohorting, in which we attempt to find any and all pas-
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sengers going to the same floor as the first person in the queue. Simulations show Cohorting

reduces waiting time for passengers and the number of people in the lobby (queue length)

significantly. In limited lobby spaces, we recommend the Cohorting with Pairing interven-

tion, where we pair passengers going to the same floors. Pairing is practically easier to

implement as it only requires matching two people at a time (rather than four, for instance).

We also explore the impact of some passengers’ willingness to walk up or down one floor

from their destination. The queue length can be further reduced if just a small fraction of

passengers are willing to walk.

3. We also propose the Queue Splitting intervention where we create a different queue for dif-

ferent groups of floors and load the elevators from queues in a round-robin fashion. The

travel time of elevators is naturally reduced since passengers are likely to be going to the

same or nearby floors. Queue Splitting requires less management efforts comparing to Co-

horting, and splitting into just two groups achieves comparable performance to Cohorting in

our case study.

4. We analytically investigate the reason behind the strong performance of Cohorting and

Queue Splitting using a technique from queuing theory known as stability analysis. Specif-

ically, we characterize the system parameters required for each intervention to ensure that

the queues do not increase in length over time, i.e., the queues are stable. Our theoretical

analysis reveals that these interventions can effectively reduce the average distance traveled

and the number of stops per elevator trip.

1.1.2 Related Literature

Although researchers have studied algorithms for managing elevator systems [20, 18, 21, 19,

36, 22], to the best of our knowledge, there is not much literature on designing elevator systems

with pandemic safety considerations.

Our simulation model is based on queuing theory. A discrete event simulation [37] models
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the operation of a system as a sequence of events in time, thus we utilize a detailed simulation

to estimate mean wait times and queue lengths. Previous works that utilize queuing theory in

elevator systems [38, 18, 39], and papers that use simulation for elevator traffic studies [40, 41] do

not consider the impact of reducing capacities while maintaining service quality. A recent work

Swinarski [4] in the context of the COVID-19 pandemic models and predicts elevator traffic in

an university classroom building when passengers mainly travel in the pre-determined short time

periods between two classes, with known class schedules and traffic patterns. The authors discuss

an intervention which directs passengers to sort themselves into pairs of passengers with a shared

destination floor which can improve the performance, but is not as effective as moving classes to

lower floors or staggering course start times. In this work, we consider general building types

with random arrival and destination patterns. In Mulvany and Randhawa [42], the authors consider

breaking FCFS rules in exchange for fairness considerations, whereas we break FCFS in exchange

for safety reasons and improved performance.

The stability analysis in this work is built upon literature in queuing and stochastic process-

ing networks [43, 44]. The interventions in the work are designed specifically for an elevator

system, while they share similarity to some well-studied dispatch policies in multiclass queuing

networks. The Cohorting intervention resembles the first-in-first-out dispatch policy [45] if we

consider passengers going to the same floor as a class and an empty server always picks a class

whose head-of-line job arrived first. The Queue Splitting intervention is essentially a Round Robin

dispatch policy in the multiclass queuing literature, which is related to fair queuing policies widely

studied in the computer network literature (see, for example Demers et al. [46] or Parekh and

Gallager [47]).

1.1.3 Organization

We introduce the simulation model of the elevator system in Section 1.2 and present the sim-

ulation results in Section 1.3. Results for the Allocation intervention are in Section 1.4. Section

1.5 analyzes the stability condition for each intervention we propose and compares the results to
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FCFS. In Section 1.6, we discuss some practical issues and solutions for the Cohorting interven-

tion. Finally, we conclude and discuss ideas for future work in Section 1.7.

1.2 Simulation Model

In this section, we describe our modeling framework. In particular, the model considers moving

passengers upwards through a building from a lobby, which presents the biggest challenge for so-

cial distancing in a high-rise building. We study low-tech solutions (requiring no programming of

elevators and no knowledge of internal elevator algorithms) and describe interventions to manage

the queue of passengers in the lobby. We focus on analyzing solutions that work for high volume

periods, e.g. morning rush hour, lunchtime, etc. where social distancing is a challenge. These busy

periods are referred to as uppeak [20] and typically an elevator system working efficiently during

the morning uppeak can handle interfloor traffic and downpeaks without any issues [18]. Below

we describe the model we use in the simulation. We will simplify some of the assumptions when

deriving the analytical results in Section 1.5.

We model a building as having a lobby on floor 1, m destination floors denoted 2 . . . ,m + 1,

and N elevators denoted 1, . . . , N . We assume passengers wanting to go to floor j at time t arrive

at the lobby according to a non-stationary Poisson process with arrival rate λj(t). The Poisson

assumption for individual arrivals is considered a good approximation to the arrival process [18,

38]. Each of the N elevators has a capacity of C, the number of people that the elevator can safely

transport while ensuring social distancing.

Remark 1 (Safe Capacities). The capacity C of the elevators should be set based on the physical

dimensions of each elevator. Social distancing needs to be taken into account to put floor markers

for passengers to stand inside an elevator, e.g., opposite corners of a diagonal for loading two

people or all corners for loading four people. In general, there is a fundamental trade-off between

setting a lower elevator capacity and increased queues in the lobby.

In many high-rise buildings, elevators are constrained to certain floors so we let S(n) denote

the set of destination floors that elevator n can serve. If there is no restriction on the service range
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of the elevator n, then S(n) = {2, . . . ,m + 1}. We assume the elevator travel time per floor ν is

constant and the (de)boarding times of the elevator are a function of the number of people k that

are (de)boarding, denoted by BoardingT ime(k). The (de)boarding time BoardingT ime(k) is a

constant time ω to open and close the elevator door, and additional time depending on the number

of passengers k entering (exiting). For our theoretical results in Section 1.5, we assume that the

service time only depends on ν and ω. But for the purpose of creating a realistic simulation tool

we describe the elevator dynamics in greater detail.

The travel time to start at floor j1 and stop at floor j2 is T (j1; j2) = ν(j2 − j1). If k (at most

C) passengers with destinations d1 ≤ d2 . . . ≤ dk board an elevator n at the lobby, we can create

a count F⃗ = {F2, . . . , Fm+1} of the number of passengers deboarding at each floor. Note that∑m+1
j=2 Fj = k, the number of passengers boarding at the lobby. The floor H := dk is typically

referred to as the highest reversal floor in the literature [21] and is useful in calculating the round

trip time. We also need to approximate inter-floor traffic (including down traffic), which we do

by using an estimated multiplier β (e.g., β = 1.3 which means it takes 30% longer down) from

the time the elevator takes to drop off the last passenger. Then the ascent time AscentT ime(F⃗ )

without accounting for stops, is given by AscentT ime(F⃗ ) = T (1; dk), the time spent making

stops is StopT ime(F⃗ ) =
∑m+1

j=2 BoardingT ime(Fj), and the descent time from when the last

passenger has deboarded is DescentT ime(F⃗ ) = β × AscentT ime(F⃗ ) = βT (1; dk). The time to

board at the lobby is BoardingT ime(F⃗ ) = BoardingT ime(
∑m+1

j=2 Fj). Thus the total round trip

RoundTripT ime(F⃗ ) time of an elevator is

RoundTripT ime(F⃗ ) = BoardingT ime(F⃗ )+AscentT ime(F⃗ )+StopT ime(F⃗ )+DescentT ime(F⃗ ).

(1.1)

To measure the performance of different interventions in the simulation, we consider the fol-

lowing metrics: average waiting time of a passenger at the lobby (measured at every time unit),

average number of passengers at the lobby (queue length, measured at every time unit), and the

average round trip time of elevators. We also explore qualitative considerations like human and
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material resources needed, ease of understanding for managers and passengers, and perceived in-

equity [34, 48] (e.g., when an intervention lets some passengers skip ahead of others).

We want to mathematically characterize the performance of the system. Let Wi denote the

wait time for passenger i. Let N(t) denote the number of people waiting in the lobby at time t.

In a classic service system, the traditional goal is to minimize the total (average) expected wait

time, i.e., E[
∑

i Wi]. However, the primary objective in the context of a pandemic is to maximize

safety, which corresponds to minimizing the number of people in the lobby that are waiting for

an elevator. Metrics of interest are the expected number of passengers in the lobby over a time

horizon of T periods, 1
T

∫ T

0
E[N(t)]dt, and the maximum queue length, maxt N(t).

Finally, we describe our system dynamics in the simulation. Passengers arrive at the (1st floor)

lobby according to the Poisson process λj(t) defined above and queue in a line or multiple lines,

depending on the intervention being implemented. When an elevator is available at the lobby

(either there is a free elevator already or passengers wait for an elevator to arrive), it is loaded

according to the rules of the intervention, up to the capacity limit C of the elevator. The logic of

each intervention can be found in Subsection 1.2.1. At constant intervals (∆t seconds), we update

the system by loading available elevators in the lobby with passengers already in line(s) using the

rules of the intervention. Once loaded, the elevators make stops corresponding to destinations of

the passengers, and finally come back to the lobby to be loaded again.

We shall refer to an instance as the sequence of random passenger arrival times and destinations

generated during one simulated rush hour morning. We record all quantitative metrics listed above.

We simulate 100 independent random instances for every set of parameters and report the average

performance for each metric. The code for the simulations is publicly available online.

1.2.1 Interventions

The standard way most elevator systems operate is akin to first-come first-serve (FCFS). How-

ever, moving towards safe interventions requires moving away from FCFS, which means that some

people may be allowed to “cut in line” in order to decrease queue lengths and waiting times, while
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serving as many passengers as possible. Our interventions may rely on a queue manager (QM) for

implementation, where the QM can be thought of as a personnel or a device with a screen.

First, we discuss the status quo - FCFS - where the passengers who arrive at the lobby first

will enter an elevator first. FCFS for elevator loading follows the standard social norm of queuing.

There are obvious advantages for using the status quo, as it ensures fairness and requires no man-

agement of the queue. However, even pre-COVID – especially during rush hours such as morning

and lunchtime – the lobby may be crowded with passengers, elevators are fully loaded and they

may make many stops during a trip. With a social distancing rule during a pandemic such as

COVID-19, the dramatically reduced elevator capacity could cause a severe increase in congestion

in the lobby and thus increase the risk of disease spread.

Next, we propose the intervention which we call Cohorting, which seeks to group together

passengers going to the same floor. In this intervention, passengers line up in a queue in order

of arrival. When an elevator arrives, the first passenger boards. Then, the QM asks if anyone in

the queue is going to the same floor as the first passenger and then they board as well (according

to their arrival order). This creates a cohort going to the same floor (such passengers are allowed

to “cut in line”). If there is still capacity in the elevator, then the passenger at the front of the

queue enters and the QM again allows passengers going to the same floor to board the elevator.

This process is repeated until the elevator is full or the queue is empty. See Algorithm 1 in Section

1.2.2 for detailed simulation pseudocode. Cohorting is the best-performing intervention to improve

efficiency (as seen in Section 1.5), but requires a QM to interact effectively with the queue to learn

where passengers are going. It may be difficult for the QM to know the destinations of passengers

that are far back in the queue. Thus, in Section 1.6 we consider easier to implement variants where

we can only communicate with the first few people in the queue and where we only try to cohort

in pairs.

The next intervention we propose is Queue Splitting, where we form a separate queue for

disjoint groups of floors. In Queue Splitting, floors are assigned to different groups, where each

group consists of consecutive floors, e.g., 2 − 8 and 9 − 16. We create a queue corresponding
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to each floor group. Arriving passengers join a queue corresponding to their floor group, and

elevators are boarded from the queues in a round robin fashion (possibly with the help of a QM).

For instance, there can be 4 queues, each corresponding to 6 floors. When any elevator arrives,

one of the queues sends the first C passengers in line to it. If there are less than C in the queue,

then the next queue sends passengers and so on. The queues are chosen in a round-robin fashion

(or in a way to dynamically balance the length of each queue). See Algorithm 2 in Section 1.2.2

for detailed simulation pseudocode. By creating queues for every floor group, the travel time of

elevators is naturally reduced since passengers are likely to be going to the same or nearby floors,

which achieves an effect similar to Cohorting. The number of stops is also reduced compared

to FCFS by grouping passengers in a limited floor range. This intervention does not require any

programming of the elevator system, only requiring organizing the lobby space. A schematic

showing the implementation of Cohorting and Queue Splitting is shown in Figure 1.1.

Figure 1.1: Illustrating the Cohorting and Queue Splitting interventions.

(a) Cohorting (b) Queue Splitting

Note. Passengers enter from the left and are guided by the Queue Manager to the elevators. Those exiting the elevator
leave the building on the right, to ensure social distancing from entering passengers. In this example, the QM is
loading an elevator in the lobby. We indicate the passengers who will board the next elevator using dark green circles.
Under the Cohorting intervention in (a), the first elevator will stop at two floors, which are the destinations of the first
and second passenger. Under the Queue Splitting intervention in (b), the QM is first loading from the queue for floor
2-5, and thus the elevator will stop at 3 floors.

Finally, we discuss the Allocation intervention, where each elevator is assigned to only go to

predetermined floors. This intervention can be accomplished by changing the elevator control
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system, or simply by adding signs on each elevator door. We propose several floor allocation

interventions, including partitioning into ranges of floors, or splitting into odd and even floors. For

instance, one building in our case study has 14 elevators and 24 destination floors to serve. We can

split the 14 elevators into 2 groups of 7, where each group goes to 12 floors. Another possibility

is to split into odd and even floors which may encourage people to use one level of stairs to reach

their final destination. The key intuition behind the allocation intervention is that each elevator,

or each set of elevators is only serving a small range of floors. By doing so, the chances of two

people in the same group going to the same or nearby floor increases, compared to FCFS. Thus

Allocation has an effect that resembles Cohorting and Queue Splitting, leading to a reduction in

travel and deboarding time. It is also perhaps the easiest intervention to implement. In fact, many

buildings are using Allocation to create a separation of high floors and low floors in practice, where

some of the elevators only serve high floors and the others serve low floors. In this case, Cohorting

and Queue Splitting can also be applied in addition to the Allocation intervention (we provide

simulation results in Section 1.4.2). We also note that Queue Splitting and Allocation are less

likely to be perceived as unfair, as no one visibly cuts the line although it is possible that passengers

do not board in FCFS order. In this work, we focus on the performance of Cohorting and Queue

Splitting because Allocation does not perform well compared to the other two interventions. We

discuss later the performance of the Allocation intervention in Section 1.4.

1.2.2 Algorithms for the proposed interventions

In this subsection, we describe the algorithms to evaluate the proposed interventions. For all

algorithms, we simulate a passenger arrival sequence over a time horizon T as an input file, and

update the evolution of the system every ∆t seconds. Denote P (t) as the list of passengers that

arrive before time t. In the Queue Split intervention, we have k queues, and a queue index I

indicates from which queue we should load in a round-robin fashion. I → I + 1 denotes the

transition to the next queue, and specifically, the (k + 1)-th queue is equivalent to the first queue.

The set of destinations of the I-th queue is denoted as DI .
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Algorithm 1: Cohorting
1 t = 0 // current time
2 Q = ∅ // current queue

3 F⃗ = 0⃗ // number of passengers of an elevator deboarding at each
floor

4 E = ∅ // set of empty elevators in the lobby
5 while t < T do
6 t = t+∆t
7 Update the current queue Q = Q ∪ P (t)\P (t−∆t) := {p1, p2, . . . , pl}, where l is the length

of current queue and p1 is the first passenger in the queue
8 Record queue length N(t) = l
9 Update the elevators in lobby E = E ∪ {e : ReturnT ime(e) ∈ [t−∆t, t)}

10 while there exist elevators in lobby and there are passengers waiting in the lobby do
11 e is the first elevator in E
12 while there exist capacity in e and there are passengers waiting in the lobby do
13 Update the current queue, l is the length of current queue and p1 is the first passenger

in the queue
14 leader = p1
15 Remove p1 from Q and record wait time W1

16 Update F according to p1’s destination
17 i = 2
18 while there exists remaining capacity in the elevator and i ≤ l do
19 if destination of pi is the same as leader then
20 pi enter the current elevator and record wait time Wi

21 Remove pi from Q

22 Update F⃗ according to pi’s destination
23 else
24 i→ i+ 1
25 end
26 end
27 end
28 Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )
29 Remove elevator e from E

30 Update F⃗ = 0⃗

31 end
32 end
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Algorithm 2: Queue Splitting (k queues)
1 t = 0 // current time
2 Qi = ∅ for i = 1, . . . , k

3 F⃗ = 0⃗ // number of passengers of an elevator deboarding at each
floor

4 E = ∅ // set of empty elevators in the lobby
5 I = 1 // start from the first queue
6 while t < T do
7 t = t+∆t
8 Update the current queues Qi = Qi ∪ {p : p ∈ P (t)\P (t−∆t), p’s destination ∈ Di} for

i = 1, . . . , k
9 Record the total queue length N(t);

10 Update the elevators in lobby E = E ∪ {e : ReturnT ime(e) ∈ [t−∆t, t)}
11 while there exist elevators in lobby and there are passengers waiting in the lobby do
12 e is the first elevator in E
13 RemainCap = C
14 if there are at least C passengers in queue QI then
15 Load the elevator with the first C passengers in QI , remove from QI , record wait

time, and update F⃗
16 I → I + 1

17 else
18 Load the elevator with all passengers in QI , remove from QI , record wait time, and

update F⃗
19 RemainCap = C − |QI |
20 I → I + 1 // try to load the current elevator from the next

queue
21 while there exists remaining capacity in elevator e and there are passengers in queue

QI do
22 Load the elevator with up to RemainCap passengers in QI , remove from QI ,

record wait time, and update F⃗
23 RemainCap = RemainCap− |QI |
24 I → I + 1

25 end
26 end
27 Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )
28 Remove elevator e from E

29 Update F⃗ = 0⃗

30 end
31 end
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1.3 Simulation Results

In this section, we describe our findings via simulation from three examples corresponding

to a small, medium, and large building. The discussions in this section are primarily centered

around the large building, and the small and medium buildings are discussed in Section 1.3.3.

The large building is calibrated using data from a large government building in New York City

that is planning for re-opening and urgently needs to manage elevator traffic amidst the COVID-

19 pandemic. It is a historical building with a legacy elevator system, so only technology-free

solutions can be implemented. Moreover, this building is heavily used and had more than 5500

people (staff and visitors) accessing it on a pre-pandemic day during the rush hour. The building

has 25 floors and the 28 elevators are split into two elevator banks (North and South). Without

loss of generality, we consider the South bank, where 14 elevators serve about 2750 visitors during

the morning rush hour from 8 AM to 10 AM (N = 14,m = 24). In the two-hour period, we

assume the arrival process is a stationary Poisson process with an arrival rate 2750
7200

passengers per

second. Arriving passengers are equally likely to go to any of floors 2 through 25. Based on the

physical dimensions of the elevators, the capacity is C = 4. Every elevator n serves all floors,

i.e., S(n) = {2, . . . , 25}. It take 15 seconds for one passenger to (de)board, and an additional 2

seconds per extra passenger. Thus BoardingT ime(k) = 15 + 2(k − 1) seconds for k passengers

in an elevator. The elevators have a constant travel time per floor of 1.4 seconds/floor, hence the

time to travel from floor j1 to floor j2 is T (j1; j2) = 1.4(j2 − j1) seconds. The speed multiplier β

to account for inter-floor traffic is β = 1.3.

We summarize in Table 1.1 the parameters used in our simulations throughout the paper. The

parameters can be easily customized to any building in our simulation. The code for the simulation

is publicly available online3.

3https://github.com/saimali/elevators
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Algorithm 3: Cohorting with Pairing
1 t = 0
2 Q = ∅
3 F⃗ = 0⃗ // number of passengers of an elevator deboarding at each

floor
4 E = ∅ // set of empty elevators in the lobby
5 while t < T do
6 t = t+∆t
7 Update the current queue Q = Q ∪ P (t)\P (t−∆t) := {p1, p2, . . . , pl}, where l is the length

of current queue and p1 is the first passenger in the queue
8 Record queue length N(t) = l
9 Update the elevators in lobby E = E ∪ {e : ReturnT ime(e) ∈ [t−∆t, t)}

10 while there exist elevators in lobby and there are passengers waiting in the lobby do
11 e is the first elevator in E
12 while there exist capacity in e and there are passengers waiting in the lobby do
13 Update the current queue, l is the length of current queue and p1 is the first passenger

in the queue
14 leader = p1
15 Remove p1 from Q and record wait time W1

16 Update F⃗ according to p1’s destination
17 i = 2

// Start finding a passenger that goes to the same
destination of p1

18 if there exists remaining capacity in the elevator then
19 while destination of pi is not the same as leader and i ≤ l do
20 i→ i+ 1
21 end
22 if i ≤ l then // if i = l + 1, there is no passenger to be

paired with the leader
23 pi is paired with the leader and enters the elevator
24 Record wait time Wi of passenger pi
25 Remove pi from Q

26 Update F⃗ according to pi’s destination
27 end
28 end
29 end
30 Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )
31 Remove elevator e from E

32 Update F⃗ = 0⃗

33 end
34 end
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Parameter
Large government building

in NYC
An example medium

sized building
An example

small building
Building Configuration

Number of destination floors (m) 24 16 6
Number of elevators (N ) 14 6 2
Capacity of elevators (C) 4 4 2

Elevator configuration
Travel time per floor of elevators ν 1.4 sec/floor
Speed multiplier β (coming down) 1.3, extra 30% to approximate down traffic

Loading time BoardingT ime(.) ω = 15 sec to board, additional 2 sec per passenger
Unloading time StopT ime(.) ω = 15 sec to deboard, additional 2 sec per passenger

Dedication on elevators None
System update interval ∆t 1 second

Passenger Profile
Number of passengers 2750 1500 400

Arrival pattern to the lobby Poisson process between 8 AM to 10 AM (rush hour)

Destination
Uniformly at random

in 2 to 25
Uniformly at random

in 2 to 16
Uniformly at random

in 2 to 7
Willingness-To-Walk (WtW) 0%

Table 1.1: Input Parameters for the simulation models

Note that the queues will all eventually diminish after the end of rush hour because the passen-

ger traffic goes down, but we do not simulate this. In the figures below, we simulate only until the

end of rush hour (peak) and hence the queue decline after this time is not shown.

Figure 1.2: Comparison of interventions for our large building case study.
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Note. We run 100 independent random instances and report the average performance. A) Plot of percentage of
passengers experiencing different waiting times in the lobby across interventions. B) Plot of percentage of time
different queue lengths in the lobby occur (measured every 1 second) across interventions. C) Plot of queue length in
the lobby from beginning to end of the busy period across interventions.

The results for FCFS, Cohorting, and Queue Splitting (2 queues with floor ranges 2 − 13 and
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14 − 25) on the large building are presented in Figure 1.2. One can observe that for FCFS, the

number of people in the lobby grows linearly during the rush hour period we simulate. In fact,

by the end of the rush hour, there can be up to 100 people in the queue and wait times can reach

almost five minutes. Thus, an intervention is absolutely necessary to avoid this unsafe buildup of

passengers. We see that Cohorting has a much lower range of queue lengths and waiting times

compared to FCFS. Cohorting has a maximum queue length of around 12, which is over a factor of

eight times smaller than the maximum queue length of FCFS. In other words, a passenger arriving

at any point in the rush hour is likely to experience a queue of at most 12 people with the Cohorting

intervention.

In the Queue Splitting intervention, we do not allocate any elevators but rather form a queue for

every group of floors. In Figure 1.2, we see that Queue Splitting (into 2 queues) has a much lower

range of queue lengths and waiting times compared to FCFS. Similar to Cohorting, the maximum

queue length is around 15. In other words, a passenger arriving at any point in the rush hour is

likely to experience a queue of less than 15 people in the 2 Queue Split intervention, which is over

a factor of five times smaller than the maximum queue length of FCFS. One can see in Figure

1.2 that the maximum wait times and total queue length are relatively stable over time for this

intervention, and with average reductions of over 80% compared to the default FCFS. Thus a 2

Queue Split achieves comparable performance to Cohorting, the best intervention.

We also consider the effect of the number of queues used in Queue Splitting, with the results

displayed in Figure 1.3 for the large building. The floor ranges for each queue are split evenly:

{(2 − 13), (14 − 25)} in the 2 Queue Split, {(2 − 9), (10 − 17), (18 − 25)} in the 3 Queue Split,

and {(2 − 7), (8 − 13), (14 − 19), (20 − 25)} in the 4 Queue Split. In this building, 4 queue

split works better than 2 and 3 queue splits (higher number of queue splits achieves an effect

similar to Cohorting). There is a marked improvement (Figure 1.3) from 2 to 3 queue split and

only a marginal return on 4 queue split (which has almost the same queue length performance as

Cohorting) instead of 3 queue split. In fact, the more queues we create, the more efficient the

system becomes. However, the tradeoff is that more queues requires a more complex operation
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Figure 1.3: Impact of Cohorting and Queue Splitting intervention into 2, 3 and 4 queues for our large building case
study.
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Note. We plot the queue length in the lobby (measured every 1 second) throughout rush hour. We run 100 independent
random instances and report the average performance.

and more space in the lobby, especially for horizontal separation between the queues. We find

that simply splitting into 2-4 queues already recovers most of the benefit in comparison to the

Cohorting intervention.

1.3.1 Difference in Round Trip Time

The round trip time of an elevator trip (service time) determines the efficiency of the elevator

system. The shorter the round trip time is, the faster the elevator can come back and serve more

people. We record the service time profile for FCFS, Cohorting, and 2 Queue Split in the simulation

in Figure 1.4.

In Figure 1.4, Cohorting and Queue Splitting have a lower average round trip time (131s and

134s respectively) than FCFS (148s). In terms of number of trips they can complete in the given

time period, Cohorting and 2 Queue Split are much better than FCFS, indicating that our pro-

posed interventions indeed make the elevator trips more efficient. Our main indicator of system

performance, queue length, is typically inversely related to average service time in classic queuing

models [49]), and a seemingly small improvement in the round trip time as in Figure 1.4 has a big

impact on system performance.

In Figure 1.4.B, we also report the average number of passengers per elevator trip across in-
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Figure 1.4: Comparison of interventions using round trip for our large building case study
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Note. We run 100 independent random instances and report the average performance. A) Plot of percentage of elevator
trips with different round trip times (service times) across interventions B) Reporting average service time and average
number of passengers per elevator trip for all interventions.

terventions. With capacity 4, elevators under FCFS carry 3.87 passengers per trip on average, so

most trips are at full capacity. Elevators under Cohorting carry only 3.54 passengers per trip on

average and similarly under the 2 Queue Split intervention, elevators carry 3.62 passengers per

trip on average. Our proposed interventions make the elevators more efficient compared to FCFS,

using less of the elevator capacity on average per trip.

The round trip time of an elevator, as seen in (1.1) and discussed in detail in Section 1.5 is

primarily determined by the number of stops S made and the highest reversal floor H of the trip.

Therefore, we analyze the performance of different interventions by comparing the quantities S

and H in Figure 1.5.

In Figure 1.5.A, we plot the distribution of S, i.e., the percentage of elevator trips with different

number of stops made (or equivalently the number of buttons pressed in each trip by the passengers)

across interventions. In FCFS, about 75% of the trips make 4 stops. In Cohorting only about 25%

of the trips make 4 stops and about 70% elevator trips make only 2 or 3 stops, which leads to

shorter round trip times. 2 Queue Splitting does not perform as well as Cohorting, although it is

better than FCFS, with more than 50% of the trips making 4 stops and 40% rides making only 2 or

3 stops.
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In Figure 1.5.B, we plot the distribution of H , i.e., the percentage of elevator trips with different

highest reversal floors across interventions. In the distribution of H for FCFS, more percentage

of elevator trips reverse at the topmost floors than other interventions. For instance, about 50% of

FCFS trips reverse in the last four floors (H ≥ 23), while only 40% of trips under Cohorting do

so, suggesting that elevators come back to the lobby faster in Cohorting. 2 Queue Split has similar

distributions of H among the destination ranges of the two mini-queues and hence, 40% of the

trips have H at most 13, which is much better than Cohorting (less than 20% of trips) and FCFS

(less than 10% of trips) for the same range.

In Figure 1.5, we report the average of the number of stops and highest reversal floors for all

interventions, to supplement the distribution plots. In 1.5.D, we also report the standard deviation

of the estimated mean of S and H over 100 instances (i.e, we estimate the mean value of S and

H for each instance, and show the standard deviation over 100 independent random instances).

Elevators under FCFS makes an average of 3.64±0.05 stops, whereas under Cohorting, they make

on average only 2.78 ± 0.04 stops, a key driver of lower round trip time. 2 Queue Split does not

perform as well as Cohorting, making an average 3.27± 0.07 trips which is comparable to FCFS.

Similarly, FCFS has the highest average H of 20.3 ± 0.17, whereas Cohorting has an average H

of 18.7± 0.19, 2 Queue Split has the lowest H at 17.6± 0.17, due to the two similar distributions

among the mini-queues.

Though 2 Queue Split makes a comparable average number of stops to FCFS, having the lowest

highest reversal floor among all interventions explains why it performs closer to Cohorting in

service time in Figure 1.4. Ultimately, the impact of S is higher than that of H in service time due

to simulation parameters (each stop adds 15s to service time, but each additional floor only adds

1.4s one way).

1.3.2 Sensitivity Analysis

In this subsection, we study how the performance of the interventions may change when pa-

rameters change. We investigate the sensitivity of average queue lengths to the two parameters that
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Figure 1.5: Comparison of interventions using number of stops and highest reversal floor of elevator trips for our
large building case study
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Note. We run 100 independent random instances and report the average performance. A) The percentage of elevator
trips with different number of stops made (or equivalently the number of buttons pressed in each trip by the passengers)
across interventions. B) The percentage of elevator trips with different highest reversal floor H across interventions
C) Reporting average over 100 instances of the number of stops and highest reversal floor for all interventions. D)
Reporting standard deviation of the estimated mean (over 100 instances) of number of stops S and highest reversal
floor H for all interventions.

determine round trip time - travel time per floor ν and (de)boarding time ω.

In Figure 1.6.A, we vary travel time per floor ν with a scaling in the interval [0.7, 1.3] of the

baseline ν0 = 1.4s/floor and observe the average queue lengths for FCFS and our interventions.

The average queue length in FCFS is very sensitive to the parameter ν, since FCFS has the largest

average highest reversal floor. 2 Queue Split performs comparably to Cohorting until the baseline,

with an average queue length of less than 20 but rises to 50 when ν becomes 30% more than the

baseline. Cohorting is the least sensitive, maintaining an average queue length of less than 20

throughout.

In Figure 1.6.B, we vary (de)boarding time ω with a scaling in the interval [0.7, 1.3] of the

baseline ω0 = 15s and observe the average queue lengths for FCFS and our interventions. The

average queue length in FCFS is very sensitive to the parameter ω, since FCFS has the largest

number of stops. 2 Queue Split performs comparably to Cohorting until the baseline, with an

average queue length of less than 20 but rises to 100 when ν becomes 30% more than the baseline.

The parameter ω has a bigger sensitivity impact on 2 Queue Split than ν, showing the importance

of number of stops to the round trip time. Cohorting is the least sensitive to ω, maintaining an

average queue length of less than 20 throughout.
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Figure 1.6: Sensitivity of average queue lengths to ν and ω for our large building case study.
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Note. We run 100 independent random instances and report the average performance. Between 8 to 10 AM, 2750
passengers with destinations ranging from floors 2 to 25 are served by 14 elevators (each with capacity 4). (A,B) Plots
of average queue length from beginning to end of the busy period across interventions. In A) We change the travel
time per floor parameter ν. In B)We change the (de)boarding time parameter ω.

Other parameters also affect the performance of Cohorting and Queue Splitting. When the

elevator capacity C becomes larger, the round trip time will become longer for all the interventions.

Queue Splitting can keep the average highest reversal floor at a relatively low level because it

separates the trips for high floors from low floors. However, it may be difficult to keep the number

of stops low. On the other hand, Cohorting can still keep the number of stops S at a relatively low

value. However, it becomes harder to keep the highest reversal floor H low, because we do not

have the separation of high floors to low floors, and it is more likely to mix high floor trips with

low floor trips when the capacity becomes larger. Also when capacity increases, it takes more time

and effort to find a cohort of people going to the same floor. This practical issue may cause the

Cohorting intervention to be less attractive, while the management effort for Queue Splitting does

not scale up when capacity increases.

To summarize, we showed via simulation that Cohorting and Queue Splitting reduce the round

trip time for the elevator trips and serve more passengers in a given time period. These numerical

results provide motivation to understand why these two interventions perform similarly well while

managing the queue completely differently. We offer theoretical support for our proposed inter-
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ventions and focus on the distribution of the number of stops and highest reversal floor in Section

1.5.

1.3.3 Results for other building types

We primarily report the results of interventions in the large building setting in the above section.

For understanding a more general performance, we also model another two examples- (1) a 7-

story small building with 6 destination floors being served by 2 elevators with capacity 2 for 400

passengers arriving during rush hour; (2) a 17-story medium sized building with 16 destination

floors being served by 6 elevators with capacity 4 for 1500 passengers arriving during rush hour.

Figure 1.7 shows the performance in interventions in these two other examples.

Figure 1.7 A shows that for the small building, the queue length in FCFS builds up reaching a

peak of more than 50 people at the end of rush hour, whereas Cohorting has a queue length of no

more than 10, which is over a 75% improvement. Queue Splitting is better than FCFS but not as

beneficial as Cohorting. Queue lengths in 2 Queue Split build up to 40 people and up to 30 people

in 3 Queue Split. Cohorting would be the best overall solution in this example.

Figure 1.7 B shows that for the medium sized building, the queue length in FCFS builds up

reaching a peak of up to 175 people at the end of rush hour, whereas Cohorting has a queue length

of around 15, which is a huge improvement. Queue Splitting is better than FCFS and the number

of queues impact the performance. The queue length in 2 Queue Split steadily builds up to 60

people, whereas 3 and 4 Queue Split are better and perform similarly with only around 25 people.

Thus, Cohorting or a 3 Queue Split would be good solutions in this example.

1.4 Performance of Allocation

In this section, we study the performance of the Allocation intervention. We considered several

distinct ways to allocate elevators to floors, although not all of them worked properly. For example,

we initially tested the performance of allocating half of the elevators to the odd levels and the rest to

the even levels. The main motivation for this allocation is to encourage people to walk up or down
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Figure 1.7: Comparison of interventions in examples of small and medium sized buildings.
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Note. In Queue splitting, we always split the floor ranges (nearly) equally among all queues. A) Plot of queue length
in the lobby from beginning to end of the busy period across interventions for an example small building on a typical
Monday morning rush hour. Between 8 to 10 AM, 400 passengers with destinations ranging from floors 2 to 7 are
served by 2 elevators (each with capacity 2). B) Plot of queue length in the lobby from beginning to end of the busy
period across interventions for an example medium building on a typical Monday morning rush hour. Between 8 to 10
AM, 1500 passengers with destinations ranging from floors 2 to 16 are served by 6 elevators (each with capacity 4).

one level because it is always feasible for a passenger who is willing to walk to take the elevator

in the other group of elevators. However, the improvement is rather negligible in comparison to

FCFS even with people willing to walk. This is because the distribution of the highest reversal

floor is barely changed, and it is almost as likely as FCFS that the elevator trips will end up in very

high floors. Due to the poor performance, we do not describe the odd-and-even intervention in

detail and do not recommend such strategies that cannot reduce the average highest reversal floors.

Next, we consider the Allocation intervention that dedicates each elevator to a predetermined

floor range. It is a common practice in high rise buildings that a dedicated group of elevators serves

the higher floors, and other elevators serve low floors. By implementing this allocation interven-

tion, the chances of two random passengers in the same group going to the same floor becomes

relatively high, and trips to high floors are grouped together. This results in a natural cohorting

phenomenon and travel time reduction. Note that Queue Splitting is theoretically better than the

Allocation intervention with the same division of floor ranges, as there is an extra constraint in the

usage of elevators in the Allocation intervention. We observe the drastic difference in Figure 1.8.
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Figure 1.8: Comparison of interventions, including Allocation intervention for our large building case study.
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Note. Between 8 to 10 AM, 2750 passengers with destinations ranging from floors 2 to 25 are served by 14 elevators
(each with capacity 4). We run 100 independent random instances and report the average performance. A) Plot of
percentage of passengers experiencing different waiting times in the lobby across interventions. B) Plot of percentage
of time different queue lengths in the lobby occur (measured every 1 second) across interventions. C) Plot of queue
length in the lobby from beginning to end of the busy period across interventions.

In the case study of the 25-floor high rise building, we numerically evaluate the performance of

the Allocation 4 intervention, where we divide the 14 elevators into groups of 3, 3, 4, 4, with each

group serving 6 floors. The two groups with 4 elevators serve the relatively higher floor ranges. We

also try the Allocation 2 intervention in which we divide the elevators into 2 groups of 7 elevators

and each group serves 12 floors.

The results are shown in Figure 1.8. The Allocation 2 intervention can delay the build-up

of queues slightly comparing with FCFS, but generally still have a large queue length. Using the

Allocation 4 intervention, the queue length and waiting time can be reduced quite significantly, and

the queue does not keep building up in the lobby. Therefore, with proper allocation of elevators,

the safety concerns in elevator management can be controlled. However, in comparison with the

performance of Cohorting and 2 Queue Split, the Allocation 4 intervention results in much longer

queue length. The key reason why Allocation is not as effective as Queue Splitting is that when

one of the elevator groups has stabilized its queue, it cannot help another group which has unstable

queue. This reasoning can be seen in the theoretical stability analysis in Section 1.4.1. In addition

to the worse performance, there are higher complexity to implement the Allocation intervention
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as the elevators require extra programming and control with the relevant floor ranges. Generally

speaking, using the Allocation intervention can significantly reduce the queue length, though not

as much as the Cohorting and Queue Splitting intervention.

Figure 1.9: The impact of WtW in the Allocation 4 Intervention.
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Note. Plot showing the average queue lengths in the lobby of both Cohorting and Allocation 4 interventions with
the WtW parameter varying between 0% to 100%. As the WtW increases, there is negligible impact on Cohorting
whereas the performance of Allocation 4 improves markedly.

Next, we consider the impact of willingness-to-walk to the performance of the Allocation in-

tervention. Suppose a passenger is willing to walk up or down one level to the destination floor x,

he or she will first check all the queues that can reach either the destination floor x, x− 1, or x+1,

and choose the queue with shortest length to join when arriving to the system. Therefore, when the

elevators are assigned to small ranges of floors, only the passengers whose destinations are at the

boundary of the floor ranges can make the choice of which queue to join. In Figure 1.9, we show

the impact of WtW under the Allocation 4 intervention. Unlike the impact of WtW on Cohorting

and Queue Splitting intervention where the improvement is relatively small, the improvement with

respect to the increased WtW is much more dramatic for Allocation. This is due to the fact that

the service resources in Allocation are not shared between groups, so that the passengers who shift

from a long queue to a short queue help the system achieve a better match between its service

capacity and demand. Therefore, in a building where the Allocation intervention is physically im-
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plemented, the management team may try to ask passengers switching to another queue by walking

up/down one level to better utilize the elevator capacities. This is an alternative way to reduce the

queue length.

1.4.1 Stability Condition for Allocation

In the Allocation intervention where m floors and N elevators are divided into l groups, the

queueing system is essentially l independent queue with FCFS service rule. The standard stability

condition (1.2) for Allocation is

λ

Cl
E[τ(H,S)|group i] <

N

l
for all i = 1, . . . , l.

Equivalently, the queuing system is stable if and only if the arrival rate λ is lower than

ηAllocation := min
i=1,...,l

{
NC

E[τ(H,S)|group i]

}
= min

i=1,...,l

{
NC

2ν(E[H|group i]− 1) + ωE[S|group i]
.

}

Comparing with the stability condition of Queue Splitting, we can see that the stability threshold

for Allocation is lower then Queue Splitting (assuming the floors are split the same way). Indeed,

whether the queuing system is stable or not is determined by the highest floor group (when there is

an even split) since the round trip time for the highest floor group has the largest value among all

floor groups. One can also consider allocating the floors unevenly to minimize the stability thresh-

old ηAllocation, but this requires solving a difficult optimization problem that is hard to calibrate.

In Figure 1.10, we report the histogram of number of stops, highest reversal floor, and ele-

vator load for 2 Queue Split and Allocation 2. Because we use the same floor groups for both

interventions, we can observe a similar behavior in the distribution shape of highest reversal floor.

Due to the fact that passengers in different floor groups can be mixed together in Queue Splitting

intervention when a queue does not have enough people to fill up the elevator capacity, we observe

that Allocation 2 leads to a smaller average highest reversal floor H overall. However, the queue

is not stable because the high floor group has a much higher average H value of 22.94. Indeed,
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Figure 1.10: Comparing Queue Splitting and Allocation using number of stops and highest reversal floor of elevator
trips.
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Note. We run 100 independent random instances and report the average performance. A) The percentage of elevator
trips with different number of stops made. B) The percentage of elevator trips with different highest reversal floor H
across interventions. C) The percentage of elevator trips with different load. D) Reporting average number of stops
and average highest reversal floor.

the queue for the low floor group is mostly empty because the elevator load is full only for 40%

of the trips. About 50% of the elevator trips only utilize half or less than half of the capacity. It

indicates an extremely imbalanced situation in the Allocation 2 intervention: there are too many

elevators for the low floors, but not enough for the high floors. When Allocation is implemented

in a building, the elevators are programmed to only serve a certain floor range. Therefore, empty

elevators for the low floor group cannot help the long queue for the high floor group, which is a

dramatic drawback of restricting service resources to a dedicated job type.

Of course, the performance for Allocation can be improved if the number of elevators for each

floor group is optimized. We can also make the floor range for high floors smaller. However, when

facing demand fluctuation and imbalanced arrival patterns, the Allocation intervention lacks the

flexibility to fully utilize the service capacity. Therefore, we recommend choosing Queue Splitting

over Allocation.

1.4.2 Hard Constraints on Elevators

In reality, many buildings (including the large NYC building we studied) have banks of eleva-

tors with pre-determined allocation of floor ranges for different elevators. Consider the allocation
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where half the elevators (7 elevators) serve half the floors 2 − 13 and the other half (7 elevators)

serve the floors 13 − 25. These hard constraints on elevator systems are essentially the Alloca-

tion intervention we just discussed, and we can further apply the Cohorting or Queue Splitting

intervention to the system with hard constraints.

In this case, the Cohorting and Queue Splitting interventions still perform much better than

FCFS, as expected. Irrespective of interventions, passengers whose destinations are in higher

floors make a big impact on performance since the round trip time of these elevators are bigger. At

the very least, careful management of higher floor passengers should be considered, e.g., in queue

splitting intervention, one can shorten the ranges for higher floor passengers to encourage more

intrinsic cohorting.

In Figure 1.11, we show the simulation results under the large building setting with 7 elevators

dedicated to floor 2 − 13 and the other 7 elevators serving floor 14 − 25. We consider the perfor-

mance of the 4 queue split intervention by plotting the length of each of the 4 queues in the lobby

over the entire busy period.

Figure 1.11: Impact of Queue Splitting (4 queues) intervention for our large building case study.
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Note. Between 8 to 10 AM, 2750 passengers with destinations ranging from floors 2 to 25 are served by 14 elevators
(each with capacity 4). In this setting, not all elevators serve all floors. Instead, 7 elevators serve floors 2 to 13 and 7
serve floors 14 to 25. (A,B) Plots of queue length in the lobby from beginning to end of the busy period. In A) we
evenly split the floors in the ranges (2 - 13) and (14 - 25) and each queue gets exactly 6 floors. In B) we evenly split
the floors in the two queues serving (2 - 13) but unevenly split the two queues serving (14 - 25) into one serving (14 -
21) and the other serving (22 - 25).
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In Figure 1.11 A, we split the floor ranges 2 − 25 equally among all the queues so that each

queue gets exactly 6 floors. While the three lower queues have good performance (less than 5

people on average), the queue for the highest floors 20 − 25 builds up over time to more than 40

people at the end of rush hour. This imbalance arises because floors 13 − 25 are only served by

7 elevators, hence the passengers going to the highest floors wait longer for the busy elevators to

come back to the lobby.

In Figure 1.11 B, we split the floor ranges 2− 13 equally as before, whereas in the floor range

14 − 25, we assign one queue to serve eight floors 14 − 21 and assign only four floors 22 − 25

for the last queue. The low floor queues for 2 to 13 have good performance as before, but both the

high floor queues, i.e., the ones serving floors 14− 21 and 22− 25 absorb the imbalance and their

lengths build up over time to at most 25 people at the end of rush hour for floors 22 − 25 and at

most 10 people for floors 14−21. The queue serving 22−25 will also have fewer number of stops

since there are only four floors in this range, and the elevators taking these passengers are more

likely to come back faster to the lobby. Thus tuning the floor ranges for the queues serving the

higher floors leads to better performance compared to Figure 1.11 A where all queues have their

destination ranges split equally. Allocation therefore may be a hard constraint, and when applying

an intervention like queue splitting, a careful design of floor ranges is necessary for buildings with

pre-determined floor allocations for elevators.

1.5 Stability Analysis

In this section, we investigate the theory behind the good performance of the proposed Co-

horting and Queue Splitting interventions. As observed in Figure 1.2, the queue length does not

grow over time under the Cohorting and Queue Splitting intervention, while under FCFS it keeps

increasing. In other words, by using the Cohorting and Queue Splitting intervention, we manage

to transfer an unstable queuing system into a stable one under the simulation setting in Section

1.3. In this section, we aim to establish stability conditions for each intervention and explain why

the proposed interventions work. We find that our proposed interventions can be stable under
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higher arrival rates than FCFS for two reasons. First, the interventions reduce the number of stops

in comparison to FCFS, and second, the interventions reduce the average total distance traveled

by the elevators. In particular, the second reason is supported by a stochastic dominance result

for the highest reversal floor distribution of the different policies. In Section 1.5.1 we provide a

background on queuing stability and in Section 1.5.2 we explain assumptions needed to prove our

results. In Section 1.5.3 we calculate the stability condition for a special case with two floors and

one elevator and in Section 1.5.4 we extend our analysis to general settings.

1.5.1 Stability Condition for a Queuing Network

In this section, we describe results in the literature on stability of multiclass queuing networks

with different operations rules. The model we focus on has I buffers (or arrival classes) and K

types of resources to serve the arrivals. Each arrival class is served by a specific resource type.

The arrival process for each buffer i is a Poisson process with rate λi, and the service for type

i requires a random time with mean ti. Each resource k is a pool of bk identical servers, where

b⃗ := (b1, . . . , bK). Each arrival class is processed by servers from a single specified pool, and each

such service is accomplished by a single server from the pool. The set of buffers that resource k

can serve is defined as I(k). The load vector ρ⃗ := (ρ1, . . . , ρK) is defined as ρk =
∑

i∈I(k) λiti.

In Lemma 1 below, we see that the stability condition, also known as the standard load condi-

tion,

ρ⃗ < b⃗ (1.2)

is a sufficient and necessary condition for the stability of the queuing network we study in this

work. For some queuing systems, such as M/M/1 queue, it is well-known that the system is sta-

ble if and only if the load vector ρ is less than 1. However, it is not always true that Eq. (1.2)

is a sufficient condition for a general queuing network [45]. In Lemma 1 below, we establish the

stability condition for a feedforward queuing network under a non-idling control policy. Fortu-

nately, the queuing models corresponding to the elevator interventions all fall within the category

of a feedforward queuing network, which is defined as a queuing network in which the resources
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can be numbered in such a way that the arrival jobs never move from higher numbered servers to

lower numbered ones (all passengers/jobs see one elevator/server). Also, the interventions we pro-

pose are non-idling dynamic control policies, which is defined as a control policy where no server

remains idle while there is a job waiting in any of the buffers that are processed by the server.

Lemma 1. Under any non-idling policy, a feedforward queuing network is stable if and only if the

stability condition ρ⃗ < b⃗ holds.

Proof. Proof. The proof is supported by multiple results from [43], which we list in Lemma 2 and

3 below.

Lemma 2 (Proposition 5.1 and Theorem 5.2 in [43]). If a unitary network is stable, then it satisfies

the standard load condition ρ < b.

Lemma 3 (Theorem 8.14 in [43]). In a feedforward queuing network, if the standard load condi-

tion ρ⃗ < b⃗ holds, then the queuing network is stable under any non-idling policy.

A unitary network is a general type of stochastic processing network. In simple words, it requires

a one-to-one relationship between the service activity and the buffers, and there is only one way to

process jobs of any given class. We note that the feedforward queuing network, which is how our

interventions can be described, is a special case of a unitary network. Thus, by Lemma 2 we can

conclude that if a feedforward queuing network is stable, then the standard load condition ρ⃗ < b⃗

must hold. Finally, combining with Lemma 3, we can conclude that the condition ρ⃗ < b⃗ is indeed

a sufficient and necessary condition for the queuing network we are interested in.

In the following subsections, we will specify the structure of the queuing network for each

intervention, and derive the stability condition by using Lemma 1.

1.5.2 Assumptions and Justification

We first simplify the simulation model from Section 1.2 for the sake of analysis. We formulate

the elevator system as a queuing network, in which the N elevators are the servers and the round
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trip time of an elevator trip is the service time. As discussed in Section 1.2, the round trip time

is composed of the boarding time, stop time, ascent time, and descent time. We simplify the

calculation of round trip time by omitting the boarding time at the lobby, which is the same for all

interventions. We let ν be the time it takes an elevator to travel one floor and we simplify the stop

time of an elevator for one stop to be ω. We also simplify the ascent time and descent time to be

identical. We assume the destination of passengers is uniformly at random across all the floors,

and the aggregate arrival rate is λ. Recall that F⃗ is the number of passengers going to each floor

in a particular elevator trip. We let S be the random variable denoting the number of stops in an

elevator trip, i.e., S :=
∑m+1

j=2 1{Fj > 0}. We let H be the random variable denoting the highest

reversal floor in an elevator trip, i.e., H := maxj j1{Fj > 0}.

We use τ(H,S) to denote the round trip time for an elevator trip, which is a random variable

with finite support, and its mean value depends on the random variables H and S. The conditional

expected round trip time is defined as

E[τ(H,S)|H,S] := 2ν(H − 1) + ωS, (1.3)

where 2ν(H − 1) is the ascent and descent time, and ωS is the stop time. The distributions of H

and S are determined by the random arrival process and the intervention, and are used to determine

the expected round trip time. We do not make any further assumption on the distribution of the

round trip time.

For the Queue Splitting intervention, we assume that the m floors are divided into l groups,

where each group is a separate buffer and consists of k consecutive floors, i.e., m = lk and l, k ≥ 2

are integers. The j-th floor in the i-th group can be written as x := (i−1)k+j+1, for i = 1, . . . , l;

j = 1, . . . , k. For example, floor 2 is the first floor in the first group.

Next, we describe the queuing networks that represent our elevator system under different

interventions. Our goal is to derive the stability conditions, under which the queue does not grow

over time under, for each intervention. Thus, we only consider such a condition in a system with
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extremely long (infinite) queues. We assume that from now on, we treat a set of C passengers as

one arrival job to the system, which is without loss of generality in this regime. The assumption of

treating C passengers as one job allows us to utilize tools from the literature and have a sufficient

and necessary condition for stability (Lemma 1). We note that [44] provide stability analysis for

batch service systems, and ρ⃗ < b⃗ is a sufficient condition for stability for the queue under the

operation rule corresponding to the Cohorting and Queue Splitting intervention.

We now connect the interventions to the setup described in Section 1.5.1. In FCFS, there is

only one buffer and an arrival job will be C random passengers with independent and uniformly

distributed destinations among all floors. In the Queue Splitting intervention, each floor group

corresponds to one buffer. An arrival job will be C random passengers who are going to the same

group of floors. In Cohorting, each destination floor corresponds to one buffer, and an arrival job is

C passengers who are going to the same floor. Note that for FCFS, Cohorting, and Queue Splitting,

there is only one resource type, i.e., all elevators can serve all floors. In the Allocation intervention

where elevators are assigned to floor groups, the elevators are divided into groups, which represents

different types of resources. Each floor group forms a separate FCFS queue that can only be served

by one resource type. This distinction makes the Allocation less effective than the other proposed

interventions, as we show in Section 1.4. In the following subsections, we focus on the analysis of

the stability condition (1.2) for FCFS, Cohorting, and Queue Splitting. The stability analysis for

Allocation is provided in Section 1.4.1.

1.5.3 1 Elevator and 2 Destination Floors

We first focus on the simplest setting where the building only has two destination floors 2 and 3

and one elevator with capacity C = 2. The passengers arrive at the building according to a Poisson

process with rate λ, and go to floor 2 or 3 with equal probability. Equivalently, the arrival process

for passengers who go to floor 2 (similarly for floor 3) is a Poisson process with rate λ
2
.

The elevator system under FCFS is an M/G/1 queue, where the new jobs arrive according

to a Poisson process with rate λ/2, and the elevator is the server with the round trip time being
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the service time. In an M/G/1 queue, the stability condition Eq. (1.2) is well-known and can be

found in the literature and the textbooks (e.g. [49] Example 4.3(a)). It can also be derived from

Lemma 1 since an M/G/1 queue is a special case of a feedforward queuing network, and FCFS is

a non-idling policy.

For the Cohorting and 2 Queue Splitting intervention, we can think of the following multi-

class queuing network with two queuing buffers and one server. The passengers who go to floor

2 form a queue in buffer 1, and the passengers who go to floor 3 form a separate queue in buffer

2. The passengers are also assigned into pairs, and a pair of passengers is considered as a job that

is waiting to be served. This network with two buffers and one server satisfies the condition of a

feedforward queuing network. In the Queue Splitting intervention, the server will choose a buffer

to serve in a round-robin fashion once it finishes the previous job. In the Cohorting intervention, the

elevator serves the first passenger in the queue and we let the second passenger whose destination

is the same as the first passenger board the same elevator. We can represent the dynamic as a

multi-class queue where each floor destination forms a buffer, and the server decides which job to

take by choosing the buffer whose head of queue arrives the earliest to the system. In the literature,

this is called a FCFS control policy [50] since the way a server choosing between buffers is in the

first-come first-serve fashion. Both the Queue Splitting and Cohorting intervention are non-idling

policies. Therefore, we can again use Lemma 1 to derive the stability condition.

Proposition 1. (a) The elevator system is stable under FCFS if and only if the arrival rate

λ <
4

7ν + 3ω
:= ηFCFS.

(b) The elevator system is stable under the Cohorting and 2 Queue Splitting if and only if

λ <
4

6ν + 2ω
:= ηCohort = ηQS.

Proof. Proof. (a) The queuing system corresponding to FCFS consists of only 1 buffer with λ/2

being the arrival rate of each pair of passengers. The service time distribution is a mixture of 3
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distributions. With probability 0.25, the highest reversal floor H is 2 and the number of floors and

the total number of stops S is 1. Similarly, with probability 0.25, the elevator only stops once and

H is 2. With probability 0.5, H is 3 and S is 2. Therefore, the expected service time is

E[τ(2, 1)] + 2E[τ(3, 2)] + E[τ(3, 1)]
4

=
2ν(2− 1) + ω + 2(2ν(3− 1) + 2ω) + 2ν(3− 1) + ω

4
=

7ν + 3ω

2
.

By Lemma 1, the system is stable if and only if λ
2
· 7ν+3ω

2
< 1 , which is equivalent to λ < 4

7ν+3ω
.

(b) The queuing system for Queue Splitting and Cohorting intervention has 2 buffers, each with

arrival rate λ
4

for a pair of passengers. For buffer 1, all passengers are going to floor 2, so the

expected service time is E[τ(2, 1)] = 2ν(2 − 1) + ω. Similarly, for buffer 2, all passengers are

going to floor 3, so the expected service time is E[τ(3, 1)] = 2ν(3−1)+ω. By Lemma 1, the system

is stable if and only if λ
4
· E[τ(2, 1)] + λ

4
· E[τ(3, 1)] < 1, which is equivalent to λ < 4

6ν+2ω
.

Since the stability thresholds above provides an upper bound on the total arrival rate of pas-

sengers, then the higher the threshold is, the better the system can deal with rush hour traffic. In

the following proposition, we establish by how much the proposed interventions can improve the

stability threshold.

Proposition 2. Consider a building with 1 elevator, two destination floors, and elevator capacity

of two. The Cohorting and Queue Splitting intervention can increase the stability threshold by at

least 16.67%, and at most 50%.

Proof. Proof. In this proof, we want to bound the ratio ηQS

ηFCFS
. Plugging in the threshold we get

from Proposition 1, we have ηQS

ηFCFS
= 7ν+3ω

6ν+2ω
. Since ν and ω are positive real numbers, 7

6
< 7ν+3ω

6ν+2ω
<

3
2
, which yields the final result.

Proposition 2 provides a clean explanation to the phenomenon we observe from the simulation:

when facing the same passenger arrival pattern, the stability condition for FCFS is violated while

the arrival rate is still below the threshold for Queue Splitting and Cohorting. Thus the key driver
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for the good performance of the proposed interventions is that the expected service time is much

shorter, thanks to the fact that both the highest reversal floor and the number of stops have smaller

values. When we use the FCFS intervention, H = 3 with probability 0.75, despite the fact that

only half of the passengers go to floor 3. Using Cohorting and Queue Splitting intervention, we

can make sure that only 50% of the time the elevator will go to the higher floor. For the number

of stops per elevator trip, using Cohorting and Queue Splitting intervention, we can ensure that the

elevator only makes one stop in each elevator trip, while in FCFS, 50% of the time the elevator

will make 2 stops. Our proposed interventions can simultaneously reduce the stop time and the

travel time of the elevator, and make the elevator trips more efficient. The analysis for the two-

destination system can be extended to multiple floors. In the 2 Queue Split intervention, we have

two destination ranges, the high floors and the low floors. When using FCFS, 75% of the trips will

end up in the high floor range, while using 2 Queue Split, we can reduce the fraction of trips going

to the high floors to 50%. In the next subsection, we provide detailed analysis to a building with

multiple elevators and floors.

1.5.4 General Case

In this subsection, we focus on a general building with m destination floors 2, . . . ,m+1 and N

identical elevators that can serve all the floors. Though the expected service time is complicated to

compute exactly in the general setting, we can focus on the distribution of H and S and show that

the stability threshold for Queue Splitting and Cohorting is much higher than the one for FCFS. In

this subsection, we again assume that we group C passengers together and let them enter the lobby

as a new job to the queuing system. Lemma 3 below shows that the stability threshold η for each

intervention is a simple function of the E[H] and E[S].

Proposition 3. For intervention π ∈ {FCFS,Cohorting,QS}, the queue is stable if and only if

the arrival rate λ < ηπ := NC
2ν(E[Hπ ]−1)+ωE[Sπ ]

.

46



Proof. Proof. We start with FCFS. By Eq. (1.2), the stability condition is λ
C
E[τ(HFCFS, SFCFS)] <

N , which is equivalent to

λ

C
(2ν(E[HFCFS]− 1) + ωE[SFCFS]) < N. (1.4)

Under the Cohorting intervention, the queuing network consists of m independent buffers for

m floors, and an idle server will choose to serve the buffer with the earliest arrival time. By

Eq. (1.2), we need to specify the average round trip time for each buffer. The highest reversal

floor for buffer i is simply i, and every trip only has one stop so E[SCohort] = 1. Therefore, the

stability condition (1.2) becomes
∑m

i=1 λiE[τ(H, 1)|H = i] < N , where λi =
λ

Cm
. Note that the

highest reversal floor HCohort follows a uniform distribution, we can rewrite the left hand side of

the stability condition into

m∑
i=1

λiE[τ(H, 1)|H = i] =
λ

C

m∑
i=1

1

m
E[τ(H, 1)|H = i] =

λ

C
(2ν(E[HCohort]− 1) + ω) . (1.5)

Under the Queue Splitting intervention, recall that we assume that the m floors are divided into

l groups, where each group is a separate buffer and consists of k consecutive floors. m = lk and

l, k ≥ 2 are integers. The stability condition becomes
∑l

i=1 λiE[τ(H,S)|H ∈ group i] < N ,

where λi =
λ
Cl

in this case. Since the jobs are processed in a round robin fashion, the probability

for a new job to be in group i is 1
l
. Then we can rewrite the left hand side of the stability condition

as

l∑
i=1

λiE[τ(H,S)|H ∈ group i] =
λ

Cl

l∑
i=1

(2ν(E[HQS|H ∈ group i]− 1) + ωE[SQS|H ∈ group i])

=
λ

C
(2ν(E[HQS]− 1) + ωE[SQS]) . (1.6)

Therefore, following the result in Lemma 1, for FCFS, Cohorting, and Queue Splitting interven-

tion, the queue is stable if and only if λ < NC
2ν(E[Hπ ]−1)+ωE[Sπ ]

.

47



From Lemma 3, we know that the key to compare the stability conditions for different interven-

tions is to compare the expectation of the highest reversal floor and number of stops. The analysis

for FCFS can be found in the literature of elevator analytics [18], whereas the Cohorting and Queue

Splitting intervention require new analysis. Next, we compute the distribution and expectation of

the highest reversal floor (Lemma 4) and number of stops (Lemma 5) and provide a comparison.

Lemma 4. (a) For x = 2, . . . ,m+1, the cumulative density function of the highest reversal floors

is

P[HFCFS ≤ x] =

(
x− 1

m

)C

,

P[HQS ≤ x] =

⌊
x−1
k

⌋
l

+
1

l

(
x− 1− k

⌊
x−1
k

⌋
k

)C

,

P[HCohort ≤ x] =
x− 1

m
.

(b) The expectation of the highest reversal floors is

E[HFCFS] = m+ 1− 1

mC

m−1∑
x=1

xC ,

E[HQS] =
k(l + 1)

2
+ 1−

k−1∑
j=1

(
j

k

)C

,

E[HCohort] =
m+ 1

2
+ 1.

(c) HFCFS stochastically dominates HQS , and HQS stochastically dominates HCohort, i.e.,

HFCFS ⪰ HQS ⪰ HCohort. Therefore, E[HFCFS] ≥ E[HQS] ≥ E[HCohorting].

Proof. Proof. (a) In the FCFS intervention, the random event that the highest reversal floor to be

no larger than x is equivalent to the event that the destination of each passenger is randomly chosen

from 2 to x, which directly gives us the result.

For the Queue Splitting intervention, we can rewrite floor x as (i− 1)k + j + 1, so that floor x

is the j-th floor in the i-th group. Therefore, i−1 =
⌊
x−1
k

⌋
, and j = x−1−(i−1)k. Conditioning
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on the fact that the current service group is the i-th group, the probability of the highest reversal

floor is no larger than x = (i− 1)k + j + 1 is equal to
(
j
k

)C
, following the same argument for the

FCFS intervention. Note that if x is in floor group i, all the trips in group 1, . . . , i − 1 satisfy the

condition HQS ≤ x.

P[HQS ≤ x] =
i−1∑
y=1

P[HQS in group y] + P[HQS ≤ (i− 1)k + j + 1|HQS in group i] =
i− 1

l
+

1

l

(
j

k

)C

.

The distribution of the highest reversal floor for Cohorting directly follows from the definition

of a uniform distribution on value 2, . . . ,m+ 1.

(b) A straightforward calculation shows E[HCohort] =
m+1
2

+ 1. We next use the tail formula

to derive the expectation for FCFS and Queue Splitting intervention.

E[HFCFS] =
∞∑
x=1

P[HFCFS ≥ x] = 1 +
m+1∑
x=2

(1− P[HFCFS ≤ x− 1]) = m+ 1−
m+1∑
i=2

(
x− 2

m

)C

= m+ 1− 1

mC

m−1∑
x=1

xC .

E[HQS] =
∞∑
x=1

P[HQS ≥ x] = 1 +
m+1∑
x=2

P[HQS ≥ x] = m+ 1−
m+1∑
x=2

P[HQS ≤ x− 1]

= m+ 1−
m∑

x=2

P[HQS ≤ x] = m+ 1−

(
l∑

i=1

k∑
j=1

P[HQS ≤ (i− 1)k + j + 1]− 1

)

= m+ 1−

(
l∑

i=1

i− 1

l
k +

k∑
j=1

(
j

k

)C

− 1

)
=

k(l + 1)

2
+ 1−

k−1∑
j=1

(
j

k

)C

.

(c) We first prove the that the random variables preserve stochastic dominance, i.e., HCohort ⪯

HQS ⪯ HFCFS . By definition, we only need to verify that P[HCohort ≤ x] ≥ P[HQS ≤ x] ≥

P[HFCFS ≤ x] is true for all x. The first inequality is easy to verify since

P[HCohort ≤ x] =
(i− 1)k + j

kl
=

i− 1

l
+

1

l

j

k
≥ i− 1

l
+

1

l

(
j

k

)C

= P[HQS ≤ x].
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Next we verify the second inequality.

P[HFCFS ≤ x] =

(
(i− 1)k + j

m

)C

=

(
i− 1

l
+

1

l

j

k

)C

=

(
(l − 1)

l

i− 1

(l − 1)
+

1

l

j

k

)C

≤ (l − 1)

l

(
i− 1

l − 1

)C

+
1

l

(
j

k

)C

=
i− 1

l

(
i− 1

l − 1

)C−1

+
1

l

(
j

k

)C

≤ i− 1

l
+

1

l

(
j

k

)C

= P[HQS ≤ x].

The first inequality follows from Jensen’s inequality, and the second inequality follows from the

fact that i− 1 ≤ l − 1. Following the stochastic dominance result, we obtain the desired ordering

in expectation.

Since our simulation results in Section 1.3 are for a 25-story building, the highest reversal floor

plays an essential role in the performance of the elevator system. Lemma 4 strongly supports the

good performance of Cohorting and Queue Splitting in the simulation, as the distribution of the

highest reversal floor preserves stochastic dominance across the three interventions we study. Note

that the expected ascent time and descent time is equal to 2ν(E[H]− 1). With the formula of E[H]

from Lemma 4, in Propostion 4 we provide guarantees on the potential improvement by deriving

the ratio of the expected ascent time and descent time between interventions.

Proposition 4. (a) The ratio of the expected ascent time and descent time between FCFS and

Cohorting is at least 2Cm
(C+1)(m+1)

.

(b) For the special case of C = 2 and m ≥ 3, the ratio of the expected ascent time and descent

time between FCFS and Cohorting is equal to 4m−1
3m

, which at least 11
9

. The ratio reaches the lower

bound when there are only 3 floors and reaches the upper bound when the number of floors grows

to infinity.

(c) For the special case of C = 2, the ratio of the expected ascent time and descent time

between FCFS and Queue Splitting is equal to 4m2+3m−1
3m2+3m+mk−l

> 1.
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Proof. Proof. We first bound E[HFCFS]−1 and E[HQS]−1 by replacing summation with integral.

E[HFCFS]− 1 = m− 1

mC

m−1∑
i=1

iC ≥ m−
∫ m

x=0

xCdx = m− m

C + 1
,

E[HQS]− 1 =
k(l + 1)

2
−

k−1∑
j=1

(
j

k

)C

≤ k(l + 1)

2
−
∫ k−1

x=0

(x
k

)C
dx =

k(l + 1)

2
− (k − 1)C+1

(C + 1)kC
.

(a) We compare the expected ascent time and descent time between FCFS and Cohorting by

considering the ratio

2ν(E[HFCFS]− 1)

2ν(E[HCohort]− 1)
≥ m−m/(C + 1)

(m+ 1)/2
=

2Cm

(C + 1)(m+ 1)
.

(b) When C = 2, we can compute E[HFCFS] explicitly. Therefore, the ratio becomes

2ν(E[HFCFS]− 1)

2ν(E[HCohort]− 1)
=

m− 1
m2

∑m−1
i=1 i2

(m+ 1)/2
=

m− 1
m2

(m−1)(m−1+1)(2(m−1)+1)
6

(m+ 1)/2
=

4m− 1

3m
. (1.7)

Note that since Eq. (1.7) is increasing in m, we can plug in m = 3 and yield the lower bound on

the ratio and send m to infinity to get the upper bound.

(c) In the special case of C = 2, we can also explicitly compute the expectation of HQS . Note

that since m = kl, we can simplify the ratio and get

2ν(E[HFCFS]− 1)

2ν(E[HQS]− 1)
=

m− 1
m2

(m−1)(m−1+1)(2(m−1)+1)
6

k(l+1)
2
− (k−1)(2k−1)

6k

=
4m2 + 3m− 1

3m2 + 3m+mk − l
.

Note that 4m2+3m−1
3m2+3m+mk−l

is always greater than 1 since l < m.

From Proposition 4, we can observe that the value of the ascent and descent time can be shifted

to lower values through the Cohorting and Queue Splitting interventions. The more groups it splits

into, the greater the reduction can be. Next, we consider the distribution of the number of stops.

The distribution and expected value of the number of stops can be found in the book [18]. We

summarize the results in the Lemma 5 below.
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Lemma 5. (a) For each intervention, the distribution of the number of stops is as follows

SCohort = 1 with probability 1,

P[SFCFS = x] =
x!

mC

(
m

x

){
C

x

}
, x = 1, . . . ,min{C,m},

P[SQS = x] =
x!

kC

(
k

x

){
C

x

}
, x = 1, . . . ,min{C, k},

where
{
C
x

}
is the Stirling number of the second kind, the number of ways to partition a set of C

objects into x non-empty subsets.

(b) The expected number of stops for FCFS and Queue Splitting is

E[SFCFS] = m

[
1−

(
m− 1

m

)C
]
, E[SQS] = k

[
1−

(
k − 1

k

)C
]
.

Figure 1.12: Expected highest reversal floor and number of stops in Lemma 4 and 5
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With the distribution of H and S being derived in in Lemma 4 and 5, we plot the expected

values in Figure 1.12 for various parameter settings. When the number of destination floors m

becomes large, the expected number of stops will approach the capacity C in both FCFS and
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Queue Splitting intervention. However, Queue Splitting is increasing much slower, and the more

groups we split into, the lower the value is. Similar behavior can be observed in the expected

highest reversal floor graphs.

When the elevator capacity C increases, the reduction in the expected values of S and H

becomes more significant for both the Queue Splitting and Cohorting intervention when compared

with FCFS. Using a building with 32 floors as an example, 2 Queue Split can reduce the average

number of stops by 4.6% when C = 4, but only by 1.6% when C = 2. For the average highest

reversal floor, 2 Queue Split reduces it by 17.8% when C = 4, but only by 11.8% when C = 2. In

general, the higher the capacity C is, and the larger the number of floors m is, the more difference

we can observe from Figure 1.12. Therefore, it is indeed more critical for higher buildings with

larger elevators to apply the proposed interventions to reduce the round trip time and make the

queuing system more efficient.

1.6 Practical Issues in Cohorting

Cohorting as discussed in Section 1.5 is focused on the situation where there is a large queue

and we can create a cohort of passengers perfectly. Under this setup, we proved Cohorting is

always the best in terms of highest reversal floor and number of stops (Lemma 4 and 5). Of course,

in our simulations it may not be always possible to cohort perfectly if the queue length is under

control, and we see in the numerical results that Cohorting has inferior performance in highest

reversal floor compared to 2 Queue Split in Figure 1.5. Cohorting has a slightly higher average H

value (18.8) than 2 Queue Splitting (17.6). However the number of stops in Cohorting (2.78) is

lower than 2 Queue Split (3.27). Therefore the overall round trip time, impacted by both number

of stops and highest reversal floor is lower in Cohorting in the simulations, since each stop takes

15 seconds whereas travelling one floor takes only 1.4 seconds.

In the remainder of this section, we discuss three practice-related issues about our interventions

that may improve or hurt their performance. For concreteness, we focus on Cohorting, but similar

modifications can be made to other interventions.
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1.6.1 The Impact of Willingness-to-Walk

First, when the queue length is not large, we may not find enough people who go to the same

floor. One way to increase the chance of people going to the same floor is by asking them to take

the stairs. We model this behavior using the Willingness-to-Walk (WtW ) parameter indicating the

probability that a given passenger would walk one floor up or down from their intended destination

instead of preferring to only go to their destination floor. For example, if WtW = 20%, then 20%

of all passengers whose intended destination is floor d would consider the option of taking an

elevator to any of the floors d− 1, d or d+ 1. Our consideration of WtW is inspired by literature

showing that leveraging demand-side flexibility can be effective in managing operations [51, 52].

When some passengers have the willingness of walking one floor up or down to their intended

destination, the system may benefit from the potential reduction in the number of stops each ele-

vator trip needs to make. Using simulation, we can see how much value it provides for different

levels of WtW on the Cohorting and Queue Splitting interventions. In the Cohorting intervention,

passengers line up in a single queue and the Queue Manager asks along the line whether the pas-

sengers are going to the target floor, which is the first passenger’s destination. If a passenger is

going to an adjacent floor of the target floor and is willing to walk, then they would say yes and join

the cohort with the first passenger. In the Queue Splitting intervention, we assume that a passenger

who is willing to walk will choose the shortest queue to join upon arrival, which can either go

to the final destination directly, or stop at one floor lower or higher. Note that this option is only

available to passengers whose destination floor is at the boundary of a floor group. We summarize

the results in Figure 1.13.

In Figure 1.13, we report the boxplot of the average queue length for 3 interventions with

WtW level from 0% to 100%. When WtW = 0.25, then Cohorting can be improved an additional

10 − 20%, while if WtW = 100% (which is idealistic), Cohorting can be improved by up to

30 − 40%. There is barely no change in the queue length when increasing WtW from 0% to

100% for Queue Splitting, though the performance varies slightly due to randomness in the 100

simulated instances, because the distribution of the highest reversal floor and the number of stops
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Figure 1.13: Plot of average queue length in the lobby v.s. Willingness-to-Walk.
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Note. We run 100 independent random instances and report the average performance. Between 8 to 10 AM, 2750
passengers with destinations ranging from floors 2 to 25 are served by 14 elevators (each with capacity 4). In the 4
queue split intervention, we divide the floor ranges equally among all the queues. The queue length under the Default
FCFS intervention is on average 62 passengers across the 100 random instances.

do not change much when we allow passengers whose destination is at the boundary of the queue

ranges to switch to another queue. Overall, the willingness of passengers to walk one flight can

improve the performance if Cohorting is implemented, but the benefit is marginal (comparing to

the queue length decrease one can observe by solely using Cohorting, which is approximately 62

in FCFS to 9 in Cohorting). Furthermore, the effect may be overestimated since passengers may

not comply with their willingness to walk a flight of stairs once they board, since they can easily

push the floor button they desire, and it may take extra time for communication when walking is

included in the operations.

1.6.2 Limited Space and Communication Time

The second practical issue relates to the number of passengers the QM can reach. In a particular

building, the QM may not be able to communicate with everyone in the line. The Queue Manager

cannot reach out to people beyond a point, perhaps due to a turn in the hallway or the small size

of the lobby. We reevaluate the Cohorting intervention with an extra constraint, which is that the
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Queue Manager can only consider a certain number of passengers from the front of the queue. In

Figure 1.14, we study Cohorting with a limited number of people within reach of the QM for the

large building case study.

Figure 1.14: Performance of the Cohorting intervention with practical considerations.
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Note. We run 100 independent random instances and report the average performance. Between 8 to 10 AM, 2750
passengers with destinations ranging from floors 2 to 25 are served by 14 elevators (each with capacity 4). We
consider two practical issues: (1) limited number of passengers within reach of the QM, and (2) only finding another
passenger to be paired with the first passenger. The black, red and pink dot in the graph are performance benchmarks
without the limit on the number of passengers the QM can talk to.

The final practical issue is the extra time Cohorting may take due to the communication time it

takes for the QM to learn about the passengers’ destination. To simplify the Cohorting implementa-

tion in this simulation, we propose the Cohorting with Pairing intervention, which only requires the

Queue Manager to find one other passenger with the same destination as the first person and create

a “pair” to board the same elevator. In the original Cohorting intervention, the QM tries to match

up to C − 1 people with the first person in line. Loading an elevator of capacity 4 with one pair

leads to at most 3 stops, and two pairs leads to 2 stops being made by the elevator. A pseudocode

implementation of the Cohorting with Pairing intervention is available in Section 1.2.2.

Figure 1.14 shows the performance of Cohorting and Cohorting with Pairing interventions

when the number of people within reach of the QM is limited. As comparison benchmarks, we

also plot the performance of the FCFS, Cohorting, and Cohorting with Pairing intervention without

the constraint on the number of passengers that can be considered by the QM. The first observation
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is that Cohorting with Pairing is an effective and easy-to-implement intervention, as it performs

almost as good as the Cohorting intervention when the QM can reach the same number of passen-

gers. Moreover, as the QM can approach passengers further in the queue, the average queue length

shrinks rapidly. When the Queue Manager can reach out to about 10 people, the queue length is al-

ready less than 20 and being able to reach more than 10 passengers adds marginal value. Therefore,

it is critical to design a safe queuing plan with physical distancing such that 10 people can hear the

QM which is practical and reasonable target. Moreover, the QM can simply implement the Co-

horting with Pairing intervention in the limited lobby space. The figures may vary across different

buildings and our code implementation can easily be changed to analyze different settings.

1.7 Conclusions and Future Work

This project was done with the guidance of New York City Mayor’s Office of the Chief Tech-

nology Officer and the Department of Citywide Administrative Services, which had continuous

input into our work throughout the process. Through this work, we combine mathematical mod-

eling and epidemiological expertise to design interventions for safely managing elevator systems

amidst a pandemic. The social distancing requirement during a pandemic may lead to large buildup

of queues in the lobby during busy periods when using FCFS. We propose various interventions

with a Queue Manager to help load passengers in the lobby. The fundamental idea behind these

interventions is to try to reduce queue buildup by maximizing the number of people in an elevator

trip going to the same floor (or nearby floors), which in turn reduces boarding/deboarding times as

well as travel times. The interventions we study apply to generic buildings, and we have provided

open-source code so other building settings can be studied. The intervention chosen by a building

may depend on its particular simulation results, physical layout, personnel, and epidemiological

considerations. For example, in the large NYC building case study, the maximum queue length

in Cohorting and 2 Queue Split are respectively over a factor of eight and five times smaller than

that of FCFS. Cohorting is even effective when the QM can only talk to the first few people in the

queue, or when we cohort in pairs only. We also provide customizable open source code and an
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instructional video explaining our interventions.

A comparison of the two proposed interventions is provided in Table 1.2. Our simulations

show that the Cohorting intervention leads to lower waiting time for passengers in the lobby and

reduces the number of people in the lobby (queue length) significantly. If the QM cannot talk

to many people in the line, we suggest the Cohorting with Pairing intervention in limited space

which is easier to implement and provides similar benefits as Cohorting, as long as the QM’s

announcement can reach a suitable number of people in the line. We also propose the Queue

Splitting intervention which implicitly groups similar passengers together to improve efficiency

while needing less communication from the QM. Queue Splitting with even a small number of

queues achieves comparable performance to Cohorting. The proposed interventions are effective

beyond the constraints imposed by a pandemic, and thus are still useful after the pandemic to

manage lobby queues.

Table 1.2: Cohorting vs. Queue Splitting

Cohorting Queue Splitting

Pros
• Shortest service time in theory • Less communication needed, QM not necessary

• Shorter queue length across buildings • Ease of understanding for users and managers

Cons
• Need a QM for good implementation • Worse than Cohorting under heavy traffic

• Communication may be difficult • Need space for horizontal separation of queues

In this work, we have only considered the problem of moving people upwards in a building

from the lobby. Without any elevator AI, it is near-impossible to do any interventions for downward

and inter-floor movement. Using sensors, it would be possible to know how many people are

in each elevator, where they are going, which floors have a request, and how many people are

waiting on each floor. We could then intervene, allowing us to design algorithms that balance

efficiency of the system with fair waiting times, while maintaining the safety standards necessary

[36]. For instance, due to the reduced elevator capacities, a passenger on a middle floor may have
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difficulty leaving the building during lunchtime. Every time an elevator arrives, it may be filled

with passengers from higher floors. In future work, one can design algorithms that mitigate such a

situation, which is likely (and known) to occur.

There are many other considerations to be investigated. Due to perceived inequity in interven-

tions like Cohorting which let passengers jump the queue maybe for the greater good, there could

be individual frustrations [34, 48]. One can also only implement an intervention when the queue

length exceeds a threshold and otherwise rely on FCFS, which reduces the overall need of a QM.

In our study, the passenger arrival patterns and destinations were generally stationary and uniform,

and different effects may occur otherwise. However, we note that if some floors are more popular

than others, then it may actually be easier to implement Cohorting. Finally, given more data and

knowledge of the internal elevator algorithms, our models could simulate inter-floor traffic more

accurately.
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Chapter 2: Recovering Passenger Schedules in Airline Disruptions

In this chapter, we present our work on passenger scheduling algorithms for the airline recovery

problem. This work is in collaboration with Clifford Stein, and based on my internship experience

at GE Global Research in 2019 with Dr. Paul Ardis (Research Platform Leader) and Dr. Srinivas

Bollapragada (Chief Scientist).

The organization of this chapter is as follows- we provide the background behind airline dis-

ruptions and recovery in Section 2.1 and summarize the prior work in the field in Section 2.2. We

outline our contributions in 2.3. In Section 2.4, we introduce the basic concepts of the problem

space. Section 2.5 details our proposed algorithms for airline recovery, with experiments based

on a real-world data set in Section 2.6. Finally, we conclude and discuss ideas for future work in

Section 2.7.

2.1 Background on airline disruptions

In many transportation problems (e.g., airline scheduling, container transshipment, traffic con-

trol, vehicle routing etc.), operations research tools are needed and used to help the decision makers

to prepare schedules [53, 8]. The planned schedules suffer in practice when availability conditions

on resources change unexpectedly, and thus the initial plan is cannot be fulfilled as planned. There

are two main approaches in literature to handle the uncertainty: (i) to anticipate uncertainty explic-

itly when constructing the schedules, called proactive or robust scheduling (see detailed discussion

in Albers [54] and Grötschel et al. [55]); (ii) to modify decisions when data is revealed, called re-

active scheduling [56, 57].

Robust scheduling makes sense when irreversible structural decisions are made over a long

planning horizon, or when uncertainties can be quantified in some way (see discussion in Kall
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et al. [56]). Of course, one can think of constructing robust schedules at the planning stage that

can adapt to disruptions. However, in the setting of airline scheduling, disruptions are complex,

propagate through the network, and are unpredictable [53, 8, 15]. Robust planning is a difficult task

particularly due to the unpredictability of airline disruptions and resource constraints. There have

been efforts to set up a theoretical framework to evaluate and quantify robustness (see a summary

in Clausen et al. [14]). In this work, we focus on reactive scheduling to manage disruptions by re-

planning schedules within a given computational requirement. We wish to keep the new schedules

close to the original pre-planned schedules during the disruption, with the mandate of strictly

getting back to the initial schedule after the end of a recovery window [11].

The top challenges for airlines in 2018 were network disruptions, unplanned maintenance,

and fuel overspend [12]. Airline disruptions occur due to a resource needed to operate a flight

unavailable before departure and may affect the departure of one or more flights [58]. Disruptions

occur at short notice and cause flight delays and cancellations, ferried flights (i.e., almost empty

flights being flown from a different airport just to be used at the destination), crew and passenger

misconnects, and have a domino effect on the whole network. According to industry statistics, in

2018, 5.6 million departing flights were delayed for an average of 57 minutes, 436, 000 flights were

canceled, and the travel plans of over 655 million passengers were disrupted [12]. Irrespective of

any gradual improvements, such statistics reflect poor performance. Moreover, disruptions are

now commonplace [12], affecting airline branding, airline costs, and passenger loyalty. Delays

cost airlines approximately $97 per minute and cancellations an average of $68, 000 per flight,

with an overall cost of $33.4 billion in 2018 [12].

Figure 2.1 from Papiomytis [12] shows the breakdown of disruption costs to airlines. The major

costs are passenger welfare (reimbursing cancelled itineraries, providing hotels or refreshments,

passenger dissatisfaction due to delays, etc.), followed by the costs of changing aircraft and crew

schedules which are often tightly regulated.

Figure 2.2 from Papiomytis [12] highlights the reason for airline delays and disruptions. There

is a myriad of reasons shown for network disruptions, for example, infrastructure constraints such
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Figure 2.1: Breakdown of costs due to disruptions. Passenger welfare is the leading cost when there are airline
disruptions, highlighting the need for airlines to reschedule passengers efficiently and quickly. From Papiomytis [12].

as airport and airspace (congestion). The reality is that two-thirds of all delays and cancellations

are within an airline’s control. Indeed, almost half of all delays (43%) are reactionary in nature

and caused by the primary delay (e.g., bad weather or airport congestion). Thus, the significance

of reacting well to the uncertainty of a primary disruption by re-planning schedules is illustrated in

Figure 2.2.

Airlines make their schedules well in advance [11, 59]. Figure 2.3 from Kasirzadeh et al. [59]

shows how airlines think about their decision-making in scheduling. A flight schedule is created

using demand predictions and resource constraints six to twelve months in advance [8], followed

by a fleet assignment that allocates aircraft types while maximizing revenue. Next, one to six

months in advance, aircraft routing determines which aircraft (tails) fly which routes, while taking

maintenance into account [8]. A month in advance, crew pairings (sequence of flights and duties)

are assigned, often solved with a crew bidding algorithm [59]. Passengers book flight tickets sub-

ject to the capacity of each flight and cabin class and expect airlines to stick to the posted schedule.
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Figure 2.2: Reasons for disruption. Reactionary delays are responsible for 43% of disruptions. From Papiomytis [12].

Thus, a carefully pre-planned schedule for flights, crew, and passengers are all affected by random

events that cause disruption, and a domino effect of the primary disruptions propagates throughout

the network. Figure 2.3 shows the problem of replanning in the face of disruptions, called airline

recovery procedure for flights, crew members, and passengers. A host of decisions can be made-

adjusting flight plans, aircraft assignments, crew assignments, and passenger itineraries within the

period of time called the recovery period [58, 9], which by definition also means that at the end

of the time window, the schedules are required to match the original schedules. The length of

the recovery period depends on the airline and disruption [60]. Airlines expect to make quick,

user-independent, consistent, and near-optimal recovery decisions [12, 15].

There are three major recovery problems- replanning flight schedules (operations recovery),

crew schedules/pairings (crew recovery), and passenger schedules (passenger recovery). As ex-

plained in Clausen et al. [14], recovering schedules is a complex task, since many resources (crew,

aircraft, passengers, slots, catering, cargo, etc.) have to be re-planned. Large airlines focus on the

ground problems first, necessitating a sequential process of solving flight infeasibilities, followed
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Figure 2.3: Airline decision making. From Kasirzadeh et al. [59].

by crew problems. Finally, the impact on passengers is evaluated [10, 14]. The objective func-

tion can be composed of several conflicting and sometimes non-quantifiable goals [14]. In most

airlines, controllers performing the recovery have only limited decision support to help them con-

struct recovery options or evaluate the quality of the recovery action they are about to implement.

Often, controllers are content with only producing one viable recovery plan since there is no time

to consider alternatives [14].

Thus, the recovery problems are traditionally solved sequentially: operations, then crew, fol-

lowed by passenger recovery [9, 15, 61]. Instead of a global optimization approach, decision-

making at one level can affect other problems, leading to huge inefficiencies [15]. Integrating

different levels of recovery (called holistic recovery) is a significant goal to achieve.

Sequential optimization in the presence of stochastic external disturbances presents many chal-

lenges. In disruption of networks, an operations recovery solution may be very unfriendly to crew

recovery feasibility. The bigger picture here is that we have planned schedules and resource alloca-

tions but there could be major drivers of anamoly- unusual events and key performance indicators

(e.g. on-time performance). Right now, there is no reliable way to score solutions in the solution

space of these problems, giving us no strong measure of the quality of a solution [9]. Therefore,
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instead of designing robust schedules, we prefer to obtain fast (in order of minutes) recovery solu-

tions. In the next section, we present prior work on airline disruptions, and the different solution

approaches proposed in literature.

2.2 Prior Work and Approaches

Airlines have been using OR models to solve complex planning and operational problems

[62]for decades, but the expanding size of airlines and their networks have led to increased com-

plexity. Since 2001, there has been a focus on suboptimal and fast solutions that fare well under

uncertainty [63, 64, 65, 66] rather than expecting optimal solutions. With advances in processing

and clusters, solving large linear or mixed integer programs is becoming easier. Recent work has

been focused on the challenge of holistic or integrated recovery [15, 9] with not just mathematical

programs, but heuristics like neighborhood search [58], as well as graph-based algorithms [11].

We state the definition of integrated recovery- solving for at least two schedules among flight,

crew, and passenger recovery together. We list the approach to airline recovery into categories

based on prior works (see surveys in Filar et al. [10], Bratu and Barnhart [67], Ball et al. [13],

Clausen et al. [14], and Castro et al. [16]):

• Non-integrated recovery, where only one of the three networks or dimensions is considered.

• Partially integrated recovery, where some two of the dimensions (aircraft, crew, and passen-

gers) are considered.

• Holistic recovery, where the three dimensions (aircraft, crew, and passengers) are considered

simultaneously.

Integrated recovery has been an active research topic in recent years [16, 9]. A summary of impor-

tant work related to partially integrated recovery and holistic recovery is presented in Figure 2.4

from Vink et al. [68].

In our work, we focus on solving only one of the three scheduling problems- the passenger

recovery problem. We sequentially optimize, by using the solution to flight recovery as an input.
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Thus, our work falls under the partially integrated recovery domain. In the next few subsections,

we discuss prior works on partially integrated recovery, especially those that include passenger

recovery.

Figure 2.4: Timeline of developments in modeling the aircraft recovery problem, from Vink et al. [68]

2.2.1 Passenger Recovery

In airline disruption management, high passenger delay costs and continuous flight disruptions

lead to a potential loss of goodwill and long-term reputation damage and hence passenger recovery

solutions are sought after by airlines currently (see discussions in [9, 12, 16]. Recall Figure 2.1

where passenger welfare costs were the leading cost ($13.6 billion in 2018) among all airline

disruption costs.

Passenger recovery can be formulated as follows: given recovered flight schedules, and a set of

pre-planned passenger itineraries, the set of itineraries where at least one of its flights is disrupted

in some way (delays, cancellations, reduced cabin capacity, etc) is called disrupted itineraries. We

wish to replan all disrupted itineraries, by making decisions on whether passengers can be moved

to different flights, cabin classes, or outright cancel their itinerary. For each disrupted itinerary,

we use the recovered flights (given seat availability) necessary to reaccommodate passengers from

their starting position at the time of disruption to their destination while minimizing cost [15, 9].

The passenger recovery costs can include both operating costs and disutility costs. Operating

or regulatory costs, often referred to as hard costs in literature [15] are directly incurred (and paid
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in real money) when a passenger cannot complete their scheduled itinerary (e.g., compensation for

delay and cancellation, providing refreshments or hotels, as stipulated by government regulations).

Disutility costs (or soft costs) are the potential losses of future revenue as a result of passenger

inconvenience, possibly causing the passenger to switch to a different airline in the future. The

costs are approximations made by the airline, can differ per passenger class or frequent flyer status

[15, 11], and are meant to be used for reactive decision-making to disincentivize certain outcomes.

For example, the disutility for cancelling a passenger’s itinerary is set to be higher than delaying

their itinerary by the maximum allowed delay. The model would thus rather delay than cancel

itineraries, whenever possible.

We summarize in detail the prior works on partially integrated recovery that incorporate passen-

ger recovery. In Kohl et al. [61], the authors present a sequential modeling with a distinct approach

for each of the problem dimensions, aiming to minimize operating costs and passenger costs. In

particular, for the passenger dimension, multi-commodity network programming was used. The

model considers the cost of delay at the final destination for the relocated passenger, direct costs

for rescheduled passengers (hotel, food, etc.), impact on customer perception, and costs related to

class upgrade and downgrade (in this case strongly impacting the customers’ experience and their

willingness to fly again with the company).

Maher [69, 70] present a sequential approach using mathematical programs, and resolution

with a column generation method. Passenger recovery occurs after the resolution of aircraft and

crew dimensions. The passenger cost depends on the number of passengers relocated due to flight

cancellation and also on the delay costs for passengers relocated to other flights.

Jafari and Zegordi [71] use mixed mathematical programming modeling, applying Benders’

decomposition method. Passenger costs depend on the number of passengers impacted by can-

cellations and on delays to passengers related to their final destination. Jozefowiez et al. [72]

present a large search in the vicinity heuristic, considering, for passengers, the costs of delay, flight

cancellation, and cabin downgrades.

Some authors propose exact optimization methods for flight and passenger recovery. For ex-
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ample, the authors in Hu et al. [73] presented an integrated integer programming model where the

objective is to minimize the total cost associated with the reassignment of aircraft and passengers

to flights. One assumption the authors make is that all passenger itineraries are comprised of a

single flight leg, which is not reflective of real-world data. There are also mixed-integer non-linear

programming models [74, 75] and integer linear programming models [76] with different settings

and constraints considered. The authors in Cook et al. [77] studied the inconvenience experienced

by passengers as a sigmoid function of delay duration. Most works generally use a piece-wise

linear relation for delay costs, if they seek to avoid a nonlinear recovery model [15].

A key set of papers involving passenger recovery emerged due to an OR challenge organized by

The French Operational Research (OR) and Decision Support Society (ROADEF) in 2009 jointly

with Amadeus S.A.S., called “Disruption Management for Commercial Aviation" [15]. Multiple

teams of researchers participated with the top finalists publishing their work. The winning paper

by Bisaillon et al. [11] proposed a large neighborhood search heuristic combining fleet assignment,

aircraft routing, and passenger assignment. Sinclair et al. [78] improved the above heuristic, and a

post-optimization approach was further proposed in Sinclair et al. [79]. Jozefowiez et al. [72] was

another finalist, and in their approach, the passengers are grouped by itinerary and prioritized based

on the size of the group. Later work by Zhang et al. [60] provided a mixed-integer programming

based approach that beat all the finalists. Recently, a multi-objective genetic algorithm approach

by Yang and Hu [80] allowed passengers to either accept an itinerary change or demand a refund of

the tickets. Jafari and Zegordi [71] and Jafari and Hessameddin Zegordi [81] used aircraft rotations

and passenger itineraries instead of flights, but do not reflect operations of a large airline [9]. A

MIP formulation made up of multi-commodity flow problems is constructed in [82]. The authors

of Eggermont et al. [83] decompose the recovery into smaller subproblems, with the output of each

becoming the input of the next, and use shortest path algorithms partly.

Since 2009, there has been only one work on the passenger recovery problem stand-alone

(see discussion in Hassan et al. [9]). In this work, the authors McCarty and Cohn [84] present a

two-stage approach to handle rerouting passengers, by re-accommodating passengers as soon as a
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delay is known and before the length of the delay is realized. In the first stage, once information

about a flight being delayed is known, passengers are preemptively assigned to new itineraries in

anticipation of the delay’s impact. The second stage further modifies itineraries for passengers who

miss connections after the delay has been realized [9]. Their experimental case study considered

a recovered flight solution that delays only one flight. Thus, the context of our work is to present

new algorithms for the passenger recovery problem, taking flight recovery as an input.

2.3 Our contributions

In this chapter, we focus on developing fast and near-optimal algorithms for passenger recovery.

Section 2.4 details the concepts of the recovery problem space, and our contributions are explained

in brief below.

1. In Section 2.5.1, we construct, for each itinerary, directed acyclic graphs containing data

on feasible airports and flights between them, using depth-first search and pruning. The

preprocessing step is crucial in reducing the problem sizes of our proposed algorithms.

2. We propose an integer program (IP) based Algorithm 4 in Section 2.5.2. We experimentally

test the IP algorithm on realistic data sets from the ROADEF challenge [15]. The run time

of a recovery algorithm also includes the time to construct the model, and requires a solution

in the order of minutes [68, 9, 15]. We illustrate the impact of the preprocessing step- the

problem size of the IP was < 1% using preprocessed graphs than without the preprocessing

step.

In our experiments, we use a commercial IP solver (Gurobi). The IP solutions contain only

a small number of nonzero variables, and the run times are in the order of seconds for the

largest data sets we use. Publicly available data on passenger itineraries is limited [9, 15].

Thus, it is a challenge to pin down tractability in real-world airline networks, since the num-

ber of variables and constraints of the IP has a linear dependence on (i) the number of flights

in the network, and (ii) the number of passenger itineraries served.

69



3. Therefore, in Section 2.5.3, we are interested in developing new algorithms without mathe-

matical programs. Inspired by some existing ideas in literature for solving resource-constrained

elementary shortest path problems [17], we develop a multiple label shortest path (MLSP)

Algorithm 5 with labels only on the nodes, with frequent pruning, and a breadth-first search

to compute new labels. The MLSP algorithm iterates on each disrupted passenger itinerary,

solving for high-value itineraries first. Another advantage of a network-based approach is

that they can handle itinerary-specific constraints easily. For example, in practice, there is

often a restriction on the maximum number of legs a recovered itinerary can have, compared

to the original itinerary [15]. For instance, if a given itinerary has j legs, the new itinerary

could have at most j+2 flight legs. We would need a non-linear constraint in the IP approach

to handle such a constraint.

4. Because we solve for one itinerary at a time, we could exhaust the precious remaining flight

capacities on an earlier itinerary, and have to potentially make suboptimal choices for subse-

quent itineraries. Hence, we also investigate the idea of considering “batches" of itineraries

together [85, 86] to potentially improve the solution quality of the MLSP algorithm.

5. We perform experiments and compare the performance of our algorithms on a data set cal-

ibrated from an OR challenge [15] on integrated operations and passenger recovery. We

generate two types of disruption scenarios: (i) one where no flights are cancelled, and a

small percentage of flights are delayed. Thus, only a small fraction of the original itineraries

are disrupted and require replanning. (ii) one where there are plenty of cancellations and

flight delays. Thus, most original itineraries are disrupted and require replanning.

2.4 Problem setup and concepts

There is a lack of publicly available data sets with enough detail for the passenger recovery

problem [9] apart from Palpant et al. [15], and therefore, our experimental data sets are calibrated

from the ROADEF challenge. We use the setup from Palpant et al. [15] to describe the basic
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concepts of the passenger recovery problem.

2.4.1 Time-space network

An airline network is a set of flight legs (defined as a nonstop flight from an origin to a destina-

tion) offered by an airline [15]. The airline operates an aircraft fleet Q, where each aircraft q ∈ Q

(e.g., a Boeing 747 with a particular tail number) has a cabin configuration fixed for the aircraft

type. A cabin configuration is the number of seats available for each cabin class, comprising of

Economy (E), First Class (F), and Business (B). The set of cabin classesM := {F,B,E} have a

natural ordering, with F > B > E when modeling downgrading costs, to be defined later.

A flight schedule s is a set of all flights operated by an airline in a given time period. We

represent the flight network as a graph Gs = (Vs, As) at a given time period, where Vs are the set

of nodes/airports, and each arc in As represents a flight leg. The same aircraft could be used for

multiple flights, and disruptions can make aircraft unavailable and thus, removing all flights using

that aircraft from the network. Each flight in the schedule is defined by:

• a flight number f along with the duration, e.g., Flight 261 of duration 3 hours and 30 minutes.

• origin airport forig and destination airport fdest, e.g. JFK to LAX.

• flight type (domestic, continental or intercontinental) which is abbreviated D/C/I.

• departure time and date fdep, arrival time and date farr, e.g., 1/1/2018 8 AM.

• aircraft qf ∈ Q used by the flight that also determines the capacity of the flight in each cabin

class m ∈M.

As per the ROADEF data set [15], we also allow flights that are just surface public transportation

between airports in the same region (e.g., shuttles between airports like JFK and LGA). The surface

transport “flights" are assumed to have infinite capacity and no operating cost.
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2.4.2 Passengers

Passengers have prior reservations on flights. We group passengers into a set K of itineraries,

where each itinerary has the following features:

• a unique itinerary number k.

• number of passengers nk in the itinerary.

• average cost paid by a passenger in this itinerary cpricek .

• nature of itinerary- inbound or outbound (A/R in French)- outbound is a one-way trip or

outbound portion of a round trip whereas Inbound is the return portion of a roundtrip whose

outbound portion was finished before the planning horizon. Inbound is prioritized over out-

bound when replanning, as passengers should not be left stranded in an intermediate airport

(which might require hotel costs to be paid by the airline).

• description of the itinerary- one or several flight legs, with one cabin class m for each leg.

An example of an itinerary is

2 Out $1752.5 27 F243 20/01/08 B F245 21/01/08 B

This is itinerary k = 2 with n2 = 27 passengers booked from Singapore to London (on flight 43

on 20/01/08) and London to Paris-Charles de Gaulle (Flight 245 on 21/01/08), on the outbound

portion of their trip, travelling in cabin class m = B on both flights, and having paid cprice2 =

1, 752.50 units of money on average.

2.4.3 Disruption and recovery period

The goal of any recovery problem is to resume normal operations as quickly as possible, after

disruptions occur, affecting the planned schedule. We model the problem as a specific time at

which a disruption occurs, followed by the recovery period for which we must determine new
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schedules, and at the end of the recovery period, the original schedules must resume. The recovery

period depends on the needs and philosophy of each airline (e.g., 24 hours or up to 96 hours) [60].

Airline disruptions can reflect in practice in many ways: (i) Air Traffic Control restrictions

(e.g., they are told to reduce their in and out flight volume by say 50% between 3 − 8 PM at JFK

airport due to inclement weather), (ii) an aircraft being unavailable due to maintenance/repair, (iii)

a flight being delayed or cancelled.

In any case, the disruption occurs at a start time, say 3 PM and the airline can take say 24 hours

to recover until the normal schedule resumes at 3 PM the next day. Recall in Figure 3.1, that half

of all delays (43%) are reactionary in nature and caused by the primary delay.

2.4.4 Decision-making during disruptions

The first decision to be made is operations or flight recovery, where the airline must come up

with a new flight schedule using the available aircraft and operational constraints. We denote the

solution to operations recovery as Frecov, computed by solving a cost minimization problem while

making decisions such as intentional flight cancellations and delay of an existing flight f , adding

new flights or aircraft changes qf for flight f . In our work, we assume Frecov is available as an

input to the problem.

The next decision is making passenger recovery schedules given the set of recovered flights.

The costs in passenger recovery are modeled as a combination of (i) operating or regulatory costs,

i.e., delaying or canceling a flight forces the airline to compensate for food or hotels for the passen-

gers, or refund fares partially or fully; (ii) passenger inconvenience, i.e., model costs that penalize

changes to aspects of the passenger itinerary that worsen their experience [15]. There may be some

itineraries k ∈ K where all its flight legs are unimpacted, with no change in flight characteristics.

The passenger recovery solution Krecov to be computed keeps the unimpacted itineraries the same

and only replans for passengers who are disrupted in some way, denoted by the set Kdis ⊆ K.

Three key decisions can be made for each itinerary k ∈ Kdis:

1. re-accommodate some or all passengers to a new itinerary, using flights and cabin classes
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from Frecov.

2. downgrade cabin classes (e.g., F → E) on some or all of the flights in the original itinerary.

3. cancel the itinerary for some or all of its passengers. We model cancellations in the recovery

solution by assigning the passengers to a dummy flight g from the origin to the destination

of the itinerary.

In the passenger recovery literature, we typically let the airlines determine the replanned passenger

schedules [15]. In practice, the new itinerary is presented as an option to the passengers, and there

could be a probability of the passenger accepting or declining the proposed change. We recognize

such a scenario is not part of our model, and future works could incorporate passengers having a

choice in the itinerary change.

2.4.5 Operating costs

The model for mandatory delay and cancellation costs for the passengers Palpant et al. [15]

is inspired by the European Union regulations. For a proposed new itinerary k ∈ Krecov, the

operating costs are modeled as a function of the delay krecov
delay hours (i.e., the difference between the

arrival time of the original itinerary and the new itinerary) and the duration kduration hours of the

original itinerary.

• The airline must provide drinks and a meal in case of a delay longer than: two hours on a

trip with an initially planned duration strictly less than two hours; three hours on a trip with

a duration greater than or equal to two hours and strictly less than four and a half hours; four

hours on a trip with a duration greater than or equal to four and a half hours. We denote cmeal

for the above cost (e.g., 15 euros per passenger),

cmeal
k = 15

[
I{krecov

delay ≥ 2 & kduration < 2}+ I{krecov
delay ≥ 3 & 2 ≤ kduration < 4.5}

+ I{krecov
delay ≥ 4 & kduration ≥ 4.5}

]
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• In addition, the airline must provide lodging (if necessary) in the case of a delay longer than

five hours. The cost of a hotel night is assumed to be chotel, e.g., 60 euros per passenger,

chotelk = 60 I{krecov
delay ≥ 5}

• In the case of a cancellation, the airline must reimburse the ticket price regardless of the

length of the trip, as well as provide financial compensation. The financial compensation

creimburse per passenger is: 250 euros for a trip with an initially planned duration strictly less

than two hours; 400 euros for a trip with a duration greater than or equal to two hours and

strictly less than four and a half hours; 600 euros for a trip with a duration greater than or

equal to four and a half hours.

creimburse
k = cpricek + 250I{kduration < 2}+ 400I{2 ≤ kduration < 4.5}+ 600I{kduration ≥ 4.5}.

2.4.6 Passenger disutility costs

Apart from operating costs, disutility or an inconvenience perceived by a passenger when there

is a delay, downgrade or cancellation of their flights are also part of the model [87]. We penalize

the objective of the recovery schedule if any of the following are not fulfilled as much as possible,

as explained in Jozefowiez et al. [72]:

• Passengers should not be delayed or their whole itinerary cancelled. Cancellations are only

a last resort when the maximum possible delay is already considered.

• Maximum delay in the recovered itinerary should not exceed a threshold (e.g., 18 hours for

domestic flights or 36 hours for international flights, depending on the airline’s philosophy).

• Passengers should not be downgraded from their reference class (e.g., a business class pas-

senger being assigned an economy seat).
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• At the end of the recovery period, the passenger schedules should return to the originally

planned schedules.

Given an itinerary k, if an itinerary is composed of several legs, the itinerary’s reference cabin

class mk is assumed to be the highest of the booking cabin classes on those legs. For example, a

passenger who travels in both economy and business class on different flights is assigned mk to be

business, i.e., they are a “business class" passenger. Costs can be calculated based on the reference

cabin class. The itinerary type ktype is defined as the type of its longest flight leg (with ordering I

= intercontinental > C = continental > D = domestic).

Disutility costs could be of three types- downgrading, delay, and cancellation costs. For an

itinerary k ∈ Krecov, we detail all the costs below.

• Downgrading cost: Costs associated with downgrading are applied only in the case of re-

accommodation of a passenger, calculated on an individual leg basis, for all legs of the

recovered itinerary. For each leg, these costs depend upon the type of the leg and the level

of downgrading (the difference between the itinerary’s reference cabin class and the cabin in

which the passenger actually travels on that leg). For an itinerary k containing a flight f in

cabin class m, the passenger downgrading cost is modeled as,

cdown
fmk = αfmk,

where αfmk is a constant depending on f,m and k. Typical values are provided in the

ROADEF data sets [15] in Table 2.1.

D C I
F→ B 150 400 750
F→ E 200 500 1500
B→ E 150 400 750

Table 2.1: Typical downgrading disutility costs αfmk (in Euros) from the ROADEF challenge [15]. Row headings
are cabin class downgrades from the original to the proposed new itinerary, and column headings are reference flight
type of the original itinerary.
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• Delay cost: Delay costs for passenger inconvenience are only applied if there is a net delay

at the destination between the original and recovered schedule, irrespective of changes in

intermediate airports. We model the total delay costs cdelay as the sum of two components:

(i) inconvenience delay costs, which are linear in the delay length krecov
delay , with the slope βfmkk

(typical values in Table 2.2) determined by flight type (I/C/D) and reference cabin class mk

of the passenger; (ii) operating delay costs cmeal
k and chotelk providing the intercept,

cdelayfk = βfmkkk
recov
delay + cmeal

k + chotelk .

D C I
F 1.25 1.25 1.25
B 0.8 0.85 0.9
E 0.05 0.15 0.25

Table 2.2: Typical delay disutility costs βfk per minute of delay (in Euros) from the ROADEF challenge [15]. Row
headings are cabin classes, and column headings are reference flight types of the original itinerary.

• Cancellation cost: Cancellation costs are intuitively set to be much larger than the maxi-

mum delay cost for the trip to disincentivize cancellations. In practice, we assign a dummy

flight g from origin to destination in the recovery solution, so that any passenger assigned

to this dummy flight is meant to have their trip cancelled and refunded. We model the total

cancellation costs ccan as the sum of two components: (i) inconvenience cancellation costs,

which are much larger in case of a return (inbound) portion of a trip, hence we would prefer

to cancel an outbound over an inbound portion of a trip; (ii) operating cancellation costs

creimburse
k ,

ccangk = γk + creimburse
k ,

where γk a constant that depends on whether the itinerary k is inbound or outbound. Tables

2.4 and 2.3 show typical values from the ROADEF challenge [15].
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D C I
F 2500 2750 3000
B 1500 1750 2000
E 250 600 1000

Table 2.3: Typical cancellation disutility costs γk for outbound itineraries (in Euros) from the ROADEF challenge
[15]. Row headings are cabin classes, and column headings are reference flight types of the original itinerary.

D C I
F 7500 8250 9000
B 4500 5250 6000
E 750 1500 3000

Table 2.4: Typical cancellation disutility costs βfk for inbound itineraries (in Euros) from the ROADEF challenge
[15]. Row headings are cabin classes, and column headings are reference flight types of the original itinerary.

Thus, the passenger disutilities in the objective of the recovery are modeled as a linear combi-

nation of downgrading, delay, and cancellation costs. Typically, the weights between the three are

set equally, as is the case of the ROADEF challenge [15].

2.4.7 Inputs

We summarize the inputs to the passenger recovery problem below.

1. Configurations: Start and end of recovery window, cost parameters for the delay, down-

grading, and cancellation.

2. Original and Recovered Flights: List of original flights and solution to operations recovery

Frecov, i.e. recovered flights after disruption. We can find mathematical programs (typically

mixed-integer programs) in literature [66] to compute Frecov.

3. Aircraft information: For each aircraft type, e.g. A320, we have their info

Aircraft Model Seat Capacities

4. Itineraries: Original planned itineraries K, set of disrupted itineraries Kdis given the oper-

ations recovery solution.

5. Turnaround time between flights of the same aircraft, e.g., 30 minutes.
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2.4.8 Objective

The objective in the passenger recovery problem is to minimize the sum of the three costs,

cdelay, cdown and ccancel, by creating a recovered set of itineraries Krecov for the disrupted itineraries

Kdis. Note that undisrupted itineraries from the original set K are by default part of the recovery

solution.

2.4.9 Result

We want the recovered itineraries Krecov i.e. a solution to the passenger recovery problem

given original itineraries, original flight schedules, recovered flight schedules, and other inputs in

Section 2.4.7.

2.5 Algorithms for Passenger Recovery

In this section, we present our main contributions- a preprocessing step that can efficiently

compute and store graphs for each itinerary, and two approaches for passenger recovery: (i) an

Integer Program (IP) to solve for recovered passenger itineraries from scratch, and (ii) a network-

based approach based on solving shortest path problems with multiple labels.

2.5.1 Preprocessing

From the original schedules (flight and passenger) and knowledge of disruptions, a preprocess-

ing step is performed to obtain pruned graphs relevant to each itinerary. In practice, preprocessing

can be performed at the beginning of the recovery window using the recovered flight solution,

and airlines could solve passenger recovery multiple times as new disruptions emerge for passen-

gers. We later show experimentally that upon preprocessing, the integer program model can be

constructed and solved with fewer variables and constraints, and hence the passenger recovery

schedules can be computed much faster than without preprocessing. Our network-based approach

also takes advantage of the preprocessed graphs to store only a subset of the airports (nodes) and
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flights (arcs) instead of the entire flight network. We summarize the preprocessing below after

introducing the concept of feasible flights and reachable airports for an itinerary.

Given an itinerary k, we say a flight f ∈ Frecov is a feasible flight for the itinerary if and only

if: (i) the departure time fdep is after the start time of the itinerary; (ii) the arrival time farr is within

the end of the recovery window; (iii) there is a path from the source of the itinerary to the origin

airport forig of the flight; (iv)there is a path from the destination airport fdest of the flight to the

sink of the itinerary. Thus, if we construct all feasible paths for the itinerary k, the flight f is a part

of at least one of the paths. Similarly, we say an airport a is reachable for itinerary k if a is either

the origin or destination for at least one feasible flight of the itinerary. Note that the source and

sink of the itinerary are by default reachable.

The aim of preprocessing is to construct itinerary-specific graphs of the time-space flight net-

work that can be used by passenger recovery algorithms. Given an itinerary k ∈ Kdis and the

entire flight network Gs (defined in Section 2.4.1), we create the graph Gk = (Vk, Ak) with source

sk and sink tk, that represents all the feasible flights in Frecov for itinerary k. Let Fk be the set of

all feasible flights in the itinerary including dummy flight g from sk to tk, to be used for canceling

the itinerary. No flight in Fk starts before the start time of k, and all possible flight legs a passenger

can take from sk to tk are computed. The set Vk only contains airports reachable feasibly for k,

including the source and sink. We prune Gk so that there are no flights that reach beyond the end

of the recovery window, as well as upper bound the number of legs a passenger can take to reach

their destination. Furthermore, in preprocessing, let for each f ∈ Frecov not originating from the

source, extract

Prevf = {f ′ ∈ Frecov : forig = f ′
dest, fdep ≥ f ′

arr + TT}.

The set Prevf represents the list of all flights f ′ which arrive at the same airport that f departs

from, and such that f ′ arrives at least TT minutes before f departs, where TT is the turnaround

time needed between flights for passengers in a layover (usually 30 − 50 minutes, depending on

the airline). We do not define Prevf for those flights with forig = sk, the source of the itinerary

since passengers start from the source airport, and are available at the departure time of f .
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More explicitly, we compute two directed acyclic graphs (DAG) for each itinerary k: (i) the

airportDAG stores a list of all reachable airports j given a starting airport i (a reachable airport

is defined as an airport j such that there is at least one feasible flight in the arc set Fk from i to j);

and (ii) the flightDAG stores a list of all feasible flights between the arc (i→ j) for two airports i

and j in Vk. In our implementation, we compute the above DAGs using a depth-first search (DFS)

approach.

A summary of the preprocessing approach to obtain the DAGs is presented below. For each

itinerary k,

1. Consider the entire flight network graph Gs with node set comprising all the airports, and

arc set comprising all the flights in the network in the recovery window.

2. Initialize the set of visited nodes Ψk to the empty set.

3. Start a depth-first procedure at the root node n as the source airport sk.

4. Compute the set of next-reachable airports NR(n) from the node n, as all airports j which

have a flight f from n to j that is within the disruption window, and after the start time of

the itinerary k.

5. In airportDAG, for the key n, append each j ∈ NR(n) to the list of values, and in

flightDAG to the key (n, j), append each feasible flight f to the list of key values.

6. For each of the next reachable airports j from n, add j to the set of visited nodes Ψk.

7. If j /∈ Ψk, recursively perform the DFS steps 3− 6 by setting n = j, the current node of the

DFS. Else, set n to another airport j in NR(n).

8. Prune the graph to remove:

(a) those nodes through which there are no paths from source sk to sink tk of length at

most the maximum number of legs allowed for itinerary k.

(b) flights in Frecov that reach after a maximum delay allowed for itinerary k.
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(c) connecting flights that do not obey a turnaround time between flights.

9. Repeat the procedure until all airports of Gs are visited and Ψk can no longer be updated.

10. Prune the airportDAG to remove all airports which are not in a path from the source sk to

sink tk of the itinerary. Remove corresponding flights from flightDAG.

Preprocessing is an important step we develop that helps the running time of our algorithms.

The overall airline graph Gs consists of all the airports and flights between them in the disruption

period. The overall graph is huge and not relevant. Our contribution here is preprocessing the

overall graph to construct the graphs Gk for each itinerary k, which reduces the complexity of the

problem by only considering smaller graphs in our IP and network-based algorithms.

A preprocessed graph example of an itinerary starting at 8AM on a given day, and originally

ending at 2PM is shown in Figure 2.5. In this itinerary k moving nk passengers, the original

schedule consists of Flight 1 from JFK to BOS and Flight 10 from BOS to LAX. In this graph

Gk, airportDAG = { JFK : [ BOS, ORD, LAX], BOS:[ ORD, LAX], ORD:[ BOS, LAX] }

and flightDAG = {(JFK,BOS) : [1, 2], (JFK,ORD) : [3, 4], (BOS,ORD) : [6], (ORD,BOS) :

[5], (JFK,LAX) : [11], (BOS,LAX) : [9, 10], (ORD,LAX) : [7, 8]}.

For the integer program, we show in the experiments that preprocessing reduces the size of the

problem- Building the IP using preprocessing has < 1% of the variables of the IP built without

preprocessing. Moreover, the overall run times of the IP with preprocessing are less than 1 sec-

ond, compared to 90 seconds and even up to 300 seconds when the IP without preprocessing is

constructed and solved.

For the network-based multiple labels shortest path approach, the number of labels stored, as

well as the time taken to compute labels is dependent on the size of the graph. Preprocessing

helps in considering for each itinerary, the graph containing only the airports and flights that can

be reached for the parameters of that itinerary. We illustrate the impact with a toy example below,

simplified from our experimental data.

Consider an originally planned itinerary k in Figure 2.5 where nk = 10 passengers depart from
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Figure 2.5: An example of a preprocessed graph Gk for an itinerary from origin JFK to destination LAX. The original
schedule consists of Flight 1 from JFK to BOS and Flight 10 from BOS to LAX. Thus the original start time of the
itinerary was 8AM and the original end time was 2PM.

an airport JFK at 8 AM on 01/01/2022, take two flights 1 and 10 with a layover at an intermediate

airport BOS, and arrive at the airport LAX on the same day at 2 PM. Thus, the itinerary contains

2 legs and is of duration kdur = 6 hours. If at least one of the flights 1 or 10 was affected by the

disruption (i.e., in the recovered flight solution Frecov, they are delayed or cancelled), we consider

the itinerary k to be disrupted and wish to replan from scratch. To run a multiple-label shortest

path approach, we need the graph of all flights from JFK (source) to LAX (sink) and the airports

which could function as layovers. Without preprocessing, we must consider all airports and flights

in the network that start after 8 AM and lie within the recovery window. With preprocessing, the

directed acyclic graphs airportDAG and flightDAG specific to itinerary k are already pruned-

for example, they do not contain (i) any intermediate airports which are not reachable from the
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source, and from which there are no paths to the sink using flights in Frecov, (ii) paths from source

to sink that has too many (e.g., if itinerary k had q = 2 legs, no path considered in the preprocessed

graph has more than q + 2 = 4 legs), (iii) flights in Frecov that reach after a maximum delay

allowed for itinerary k (e.g, flights that reach 12 hours after the original itinerary end time 2 PM),

(iv) connecting flights that do not obey a turnaround time of 30 minutes between flights, etc.

Even in one of the smallest data sets from the ROADEF challenge used for our experiments,

the graph Gk for an itinerary that could potentially have 35 nodes and ∼ 600 arcs is reduced to a

graph with 4 nodes and 11 arcs specific to one itinerary. As explained in detail, the graph-based

algorithm needs many labels to be placed on each node in a BFS manner, scaling with the number

of flights, and hence, the preprocessing is a crucial step to help the run time of the multiple-label

shortest path approach.

2.5.2 Integer Program formulation

We propose the following IP formulation to solve passenger recovery using the integer variables

yfmk, the number of passengers in the recovery solution who are assigned flight f ∈ Frecov in

itinerary k ∈ Kdis and cabin class m ∈ M. For each itinerary k ∈ Kdis, we also add a variable

ygk that denotes the number of passengers taking a dummy flight g from source to sink, which

represents cancellations for those passengers. The flight g is also added to the arc set Ak of the

itinerary and the set of recovered flights Frecov.

Furthermore, let yijmk be the number of passengers moved between airports i→ j in itinerary

k and class m, and cap(f,m) be the remaining capacity (in the flight recovery solution Frecov) of

flight f ∈ Frecov in cabin class m.
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min
y

∑
k∈Kdis

[
ccan
gk ygk +

∑
m∈M

∑
(i,j)∈Ak

∑
f∈Fk(i,j)

cdown
fmk yfmk +

∑
(i,tk)∈Ak

∑
f∈Fk(i,tk)

cdelay
fk

∑
m∈M

yfmk

]

(2.1)

s.t.
∑

i:(i,j)∈Ak

∑
m∈M

yijmk −
∑

i:(j,i)∈Ak

∑
m∈M

yjimk = 0, [∀j ∈ Vk \ {sk, tk}, ∀ k ∈ Kdis] (2.2)

∑
j:(sk,j)∈Ak

∑
m∈M

yskjmk = nk, [∀ k ∈ Kdis] (2.3)

yijmk =
∑

f∈Fk(i,j)

yfmk, [∀ k ∈ Kdis, (i, j) ∈ Ak] (2.4)

∑
k∈Kdis

I{(i, j) ∈ Ak, f ∈ Fij}yfmk ≤ cap(f,m), [∀ f : (i→ j) ∈ Frecov ∀m ∈M] (2.5)

yfmk ≤ cap(f,m), [∀ f ∈ Frecov,m ∈M, k ∈ Kdis] (2.6)∑
m∈M

yfmk ≤
∑

f ′∈Prev(f)

∑
m∈M

yf ′mk, [∀ f : (i→ j) ∈ Frecov, i ̸= sk, k ∈ Kdis] (2.7)

yfmk ∈ Z≥0, [∀ f ∈ Frecov,m ∈M, k ∈ Kdis] (2.8)

In the objective function (2.1),
∑

(i,j)∈Ak

∑
f∈Fk(i,j)

cdown
fmkyfmk is the downgrading cost for all pas-

sengers assigned to flight f in cabin class m in the itinerary k. Similarly∑
(i,tk)∈Ak

∑
f∈Fk(i,tk)

cdelay
fk

∑
m∈M yfmk are the delay costs, and the cancellation cost ccan

gk ygk is

for those passengers assigned on a dummy flight g which represents a cancelled itinerary k.

The first constraint (2.2) is a flow constraint- for every itinerary and every intermediate airport

j which is not the origin sk or destination tk of the itinerary k, i.e., the number of passengers of k

coming into the airport i is the same as the number of passengers of k going out of i over all cabin

classes.

The second constraint (2.3) ensures that for a given itinerary k, the number of passengers

leaving the source airport sk is nk, the passenger count of the itinerary. Note that the flights

considered also include the dummy flight g, representing cancellations.

The third constraint (2.4) splits the decision variables yfmk into new variables yijmk represent-
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ing the number of passengers moved between airports i → j in cabin class m and itinerary k.

For the source airport i = sk of the itinerary k, the RHS includes the variable ygk representing

cancellations.

The fourth constraint (2.5) is about remaining flight capacities. Across all itineraries k, the

number of passengers utilizing a flight f in cabin class m should be at most the remaining capacity

cap(f,m) available in f ∈ Frecov in cabin class m. This constraint is tricky since there is a sum

over all itineraries k in the LHS and thus, hinders parallelization of the IP among itineraries. If

not, we could have split the IP (objective and all the constraints) over each itinerary separately.

The fifth constraint (2.6) upper bounds the decision variables with the remaining capacity of

the flight and cabin class. The capacity of the dummy flight g is implicitly set to nk, the passenger

count of the itinerary from (2.2), and hence is not included in both (2.5) and (2.6).

The sixth constraint (2.7) ensures for each flight f with origin Origf , the number of passengers

who can board f in all cabin classes does not exceed the number of passengers who arrive at Origf

before the departure time of f plus a turnaround time. The set Prevf stores the list of feasible

previous flights for any flight f . Therefore, we can only send into a flight f , at most the number

of people who are available at the airport Origf having come from a previous flight. We do not

consider flights from the itinerary source for this constraint.

The seventh constraint (2.8) ensures the variables of the mathematical program are nonnegative

integers.

Problem Size: The IP (2.1) has |Frecov| × |M|× |Kdis|+ |Kdis| = O(|Frecov| × |M|× |Kdis|)

integer variables (the second term |Kdis| counts the dummy flights ygk). The number of constraints

depends on the exact structure of the graphs Gk for each itinerary. A weak upper bound on the size

of the constraints can be written by summing up the number of constraints in (2.2) to (2.6) as

O(N |Kdis|+ |Kdis|+ |Kdis|.|Frecov|+ |Frecov|.|M|+ |Frecov| × |M| × |Kdis|+ |Frecov|.|Kdis|)

=O(|Frecov| × |M| × |Kdis|+N |Kdis|)
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constraints, where N is the total number of airports in the network.

We summarize Algorithm 4 below to solve for Krecov, the set of recovered itineraries. For each

k ∈ Kdis, we cancel the whole itinerary and replan. For example, even if only a passenger’s second

leg is disrupted, we cancel the whole itinerary and re-plan for a better solution. The recovery

solution Krecov starts with all itineraries in K \Kdis. For each k ∈ Kdis, we solve the IP (2.1) to

get the recovered passenger itinerary.

A post-processing step constructs the recovered passenger itineraries from the output variables

y∗fmk. In literature, finding passenger itineraries is similar to decomposing a flow into a number

of paths [88] which does not always have a unique solution. We only need paths not to exceed

the maximum number of legs of an itinerary and do not worry about the typical objectives of the

flow decomposition problem [88]. We construct recovered itineraries as follows- For an itinerary k

where nk passengers need to be re-accommodated, first check if y∗gk > 0, and cancel the itinerary

for ygk passengers. So we must replan only for nk − y∗gk passengers. Then obtain all the non-

zero y∗fmk variables in the solution to make the solution graph G∗
k whose arc set contains only the

nonzero flight arcs with flow y∗fmk. Find a path p = {(f1,m1) → (f2,m2) . . .} from source sk

to sink tk of the itinerary in G∗
k, and make a new recovered itinerary following the path, with the

number of passengers τp = min{y∗fmk : (f,m) ∈ p} among the arcs in that path. Update G∗
k

by reducing the flows on the arcs in the path p by τp, and deleting the updated arcs if the new

flows on that arc are zero. We now have one new recovered itinerary for τp passengers. Repeat

the procedure of finding paths, and updating G∗
k until all arcs of G∗

k have zero flow. Now all the

nk−y∗gk passengers would have been re-accommodated into some number of recovered itineraries.

We place the relevance of Algorithm 4 in the passenger recovery literature. There are existing

approaches to solving passenger recovery utilize mathematical programs, especially mixed integer

programs where the integer variables typically denote the number of passengers (see details and

discussions in Bisaillon et al. [11], Jozefowiez et al. [72], Acuna-Agost et al. [82], and McCarty

and Cohn [84]). While our mathematical program (2.1) contains O(|Frecov|×|M|×|Kdis|) integer

variables, the structure of the problem in practice as well as using preprocessed graphs to construct
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Algorithm 4: Compute recovered passenger itineraries using IP (2.1)
1 Input: Configurations, original and recovered flights, airline information, and itineraries. // as

given in Section 2.4.7
2 Output: Krecov // set of recovered itineraries
3

4 Initialize Krecov = K \Kdis.
5 Solve the IP (2.1) and obtain the outputs y∗fmk.
// for each recovered itinerary, post process.

6 for k ∈ Kdis do
7 If y∗gk > 0, cancel the trip for ygk passengers of itinerary k, add this as a new itinerary to

Krecov.
8 Construct the graph G∗

k using only the arcs {(f,m) : y∗fmk > 0} with flows on the arcs y∗fmk.
9 Initialize remaining passengers to be handled, remPax = nk − y∗gk.

10 while remPax > 0 do
// alternatively, until G∗

k is not an empty graph
11 Find a path p from source sk to sink tk for the itinerary k, where each arc of the path

contains a nonzero flow, and whose length is at most maximum number of legs for
itinerary k.

12 Obtain τp = min{y∗fmk : (f,m) ∈ p}, number of passengers that can be served by the
path.

13 Create a new itinerary in Krecov, where τp passengers take the path.
// contains both flights and cabin classes to be taken by

the passengers.
14 Update G∗

k by reducing the flow on each arc of p by τp, deleting arcs which now have zero
flow.

15 Update remPax← remPax− τp.
16 end
17 end
18 Output Krecov, the set of all recovered itineraries.

the IP variables and constraints leads to a reasonably fast solution, with an attractively low number

of non-zero variables in the optimizer, as we show in the experiments. Nevertheless, the number

of disrupted itineraries |Kdis| itself depends on the original flight schedule, the disruption, and the

recovered solution Frecov, and thus in theory could be as large as the number of original itineraries

|K|. Similarly, the recovered flights could be as large as the set of original flights when there are no

flight cancellations or aircraft unavailability, and hence there could be as much as |F |× |K|× |M|

integer variables in the formulation. A similar argument applies to the size of the constraints as

well. For example, in one of the smallest data sets in the ROADEF challenge [15], there are

roughly 600 flights and 1900 itineraries, with 3 cabin classes, and the IP could have almost 3.4
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million variables. Using our preprocessed graphs, one example IP we constructed has ∼ 1, 65, 000

variables.

Exact formulations to solve passenger recovery could have tractability issues in commercial

solvers when scaling to real-world airline network sizes, and many formulations make simpler

assumptions than our problem setup (Hu et al. [73], Cook et al. [77], Santos et al. [76], and

Palpant et al. [15]). Publicly available data for passenger itineraries are limited [9] and hence it is

a challenge to present a full analysis for different sizes of airline networks. In our experiments, we

show the performance of our IP approach Algorithm 4 on the ROADEF data sets.

Furthermore, the IP (2.1) cannot handle additional constraints that arise in practice- for exam-

ple, in the ROADEF scenario [15], for any itinerary k, the maximum number of legs of a recovered

itinerary cannot be two more than the original number of legs in k. One way to model such a

constraint is, ∑
f∈Frecov ,m∈M

I{yfmk} ≤ number of legs(k) + 2, ∀k ∈ Kdis,

which is not linear. We would like an approach that can handle itinerary-specific constraints that

can be present in real-world data as well.

2.5.3 Multiple Labels Shortest Path formulation

Since airlines expect recovery solutions to be fast, consistent and near-optimal rather than exact

[83, 11], we develop an (iterative) heuristic approach that shows promising tractability on larger

problem sizes. In this section, we present a graph-based algorithm for passenger recovery, using a

multiple-label shortest paths (MLSP) approach. We take advantage of the graphs Gk constructed

in our preprocessing steps in Section 2.5.1. In the following subsection, we summarize prior work

on graph-based approaches to motivate our formulation.

2.5.4 Motivation

In the literature, network-based approaches have been studied that take advantage of the graph

structures, and rely less on mathematical programs. In Righini and Salani [17], the authors solve
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a resource-constrained elementary shortest path problem (RCESPP), which arises in branch-and-

price algorithms for vehicle routing problems with additional constraints. The Decremental State

Space Relaxation (DSSR) algorithm proposed by Righini and Salani [17] creates labels (with mul-

tiple components) associated with nodes. The labels hold information on feasible partial paths

to reach the node. If several labels are active at the same node, one can remove labels that are

dominated, since we know that they cannot lead to the optimal path. A label l at node i is dom-

inated by another at the same node l′, if each component of l is no better than the corresponding

component of l′, and if at least one of the components of l′ is strictly better. For labels at node i

not eliminated by domination rules, we can create new labels at node j for every feasible arc from

i to j. The lowest cost label(s) at the sink provides the optimal solution. In Bierlaire et al. [8],

the authors combine the above algorithm from Righini and Salani [17] in each recovery network

with a column generation approach to solve the flight recovery problem. In Bisaillon et al. [11],

the authors use a step where they solve a series of shortest path problems with arc labels. On flight

networks, each arc corresponds to a flight and is orders of magnitude higher than the number of

nodes (airports).

We present an algorithm based on computing multiple labels for each node, and solving a

shortest path problem based on these labels that take into account, (a) pruning labels by domination

at each node dynamically similar to what happens in DSSR in Righini and Salani [17], and (b)

efficiently storing just enough labels at each node that can handle the total number of passengers

in the itinerary required to be moved.

The key constraint in the passenger recovery problem is the remaining capacities of the flights

(recall we are only solving for disrupted itineraries, and leave the undisrupted itineraries as is).

Among the three major costs in the passenger recovery problem, cancellation costs are the highest

in practice (an example is provided in Section 2.4.5). When solving in a mathematical program-

based approach as in Algorithm 4, we solve for all the disrupted itineraries together, whereas an

iterative graph-based approach requires prioritizing the commodity in low supply, i.e., remaining

flight capacities for high-value flights. We, therefore, sort all disrupted itineraries in decreasing
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order of cancellation costs and aim to compute recovered flight schedules for each itinerary in

order. During a real-world disruption, there is typically an end of recovery window shorter than

what is needed to replan all itineraries, and a certain fraction of itineraries end up getting cancelled.

Hence solving first for highest cancellation cost itineraries is justified.

2.5.5 MLSP Algorithm

The key idea of the multiple-label shortest path algorithm is computing and storing multiple

labels for each node. Each label Lv = (L1
v, L

2
v, L

3
v, L

4
v) for any node v in any Vk for a given itinerary

k can be described as,

1. first component L1
v that stores the length of the path traversed so far, i.e., the number of nodes

visited not including the source. In our problem setup, L1
v is upper bounded by the length

of the original itinerary k plus a parameter that sets a limit on the number of legs a new

itinerary can increase by (e.g., if the original itinerary had p legs, any recovered itinerary

could be limited to no more than p + 2 legs). Labels exceeding the upper bound in the first

component are immediately pruned (removed) at the node.

2. second component L2
v stores information about the flights and cabin classes used so far to

get to the node v. We use the second component of the labels in the sink node to construct

the full recovered itinerary for each passenger.

3. third component L3
v stores the total downgrading cost cdown for every pair (f,m) of flight

and cabin class traversed (recall each arc is a feasible flight f and traversing f on cabin class

m yields a potential downgrading cost). Thus,

L3
v =

∑
(f,m)∈L2

v

cdown
fmk .

If v is the sink node tk of the itinerary, the third component is also appended with the de-

lay costs cdelayfk of the itinerary k, based on the last flight f taken to enter tk in the second

component of the label.
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4. fourth component L4
v stores the maximum number of passengers that can be moved to node

v by the path denoted by L2
v. Formally,

L4
v = min

(f,m)∈L2
v

{remcap(f,m)},

where remcap(f,m) is the remaining capacity available in flight f and cabin class m on the

graph Gk for itinerary k.

We define domination of labels similar to Righini and Salani [17]. A label Lv at node v is domi-

nated by L̂v at the same node, only if:

• L1
v ≥ L̂1

v

• L3
v ≥ L̂3

v

• L4
v ≥ L̂4

v

and at least one of the equalities is strict. In other words, L̂v has no more legs, no higher down-

grading (plus potentially delay) costs, and can carry no fewer passengers in the path describing it

than Lv. Moreover, L̂v is strictly better in at least one of the three aspects.

Using the labels defined above, we now summarize the multiple labels shortest path (MLSP)

approach to compute recovered passenger itineraries. A pseudocode is provided in Algorithm 5.

The set of disrupted itineraries are sorted according to decreasing order of their cancellation

costs ccangk , reflecting the value of the itineraries according to the rationale explained as follows.

The remaining flight capacities cap(f,m) are a precious resource since we would expect to cancel

some itineraries when recovering from a disruption. The cancellation costs are typically the largest

in order to disincentivize cancelling itineraries (see Tables 2.1-2.4), and therefore we prioritize

using remaining flight capacities first for passengers who have the highest cancellation costs. For

the remainder of the section, we assume Kdis is sorted from highest to lowest cancellation costs.

For each itinerary k ∈ Kdis, we parse the graph Gk in a BFS order starting from the source

sk. Initialize all nodes of Vk to the labels (0, ∅, 0, 0), and mark them unvisited. We traverse the
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graph recursively in a BFS manner to compute a set of labels Lk for each node while pruning labels

that are dominated. Assume we are currently at a node u ∈ Vk which has a set of labels Lu. We

consider each reachable airport v from u and each feasible flight f between the arc u → v. For

every label Lu ∈ Lu, we create new labels at node v using f as follows. First, duplicate Lu at node

v as Lv. For each m ∈M,

1. If the flight f was in the original itinerary k, update L3
v ← L3

u + cdown
fmk .

2. If the flight f was not in the original itinerary k, use the reference cabin class mk and update

L3
v ← L3

u + cdown
fmkk

.

3. Update L1
v ← L1

u + 1 to capture the length of the path traversed so far by the passenger (or,

the number of legs so far for the passenger in the recovered itinerary).

4. Update L2
v from L2

u by adding the tuple (f,m), thus storing the flight and cabin classes used

by the path so far.

5. Update L4
v ← min(L4

u, remcap(f,m)), the number of passengers that can be carried by the

path until v is the smaller among the number of passengers that can be carried by the path

until u, and the remaining flight capacity of f ∈ Frecov at cabin class m.

Since we are trying to move a maximum of nk passengers in the itinerary k, we next prune the

set of labels at each node to remove dominated labels and also prune so that the fourth components

sum up to no more than λ × nk, where λ is a parameter we choose for pruning. That is, we only

store sufficient labels to carry at most a multiple of nk passengers through the graph. In the BFS

order, labels for the node v are computed only from the labels from predecessor nodes (i.e., nodes

u from which v is reachable in the graph Gk).

Finally, we consider Ltk , the set of labels at the sink. For each L ∈ Ltk , we also add the delay

costs cdelayfk to the components L2. Apply the pruning step and obtain the top λ × nk labels sorted

by increasing order of the third components L3, i.e., the sum of delay and downgrading costs. The
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challenge in the shortest path graph approach is that delay costs cannot be computed until we reach

the sink labels.

Once the sorted labels are computed, we allocate the passengers going label by label as follows.

We want to replan for nk passengers in total, and let the variable remPax store the remaining

passengers among the nk passengers who have not been replanned yet for a recovered schedule.

1. For each L, we use the second components L2 that contain the paths denoted by the label.

Say L2 = {(f1,m1)→ (f2,m2) . . .→ (fz,mz)}.

2. Extract L4 the maximum number of passengers the label can serve. Let δ = min(L4, remPax).

3. Create the new recovered itinerary for δ passengers in the original itinerary k as: they take

flight f1 in cabin class m1, flight f2 in cabin class m2 and so on, till flight fz in cabin class

mz. Update remPax← remPax− δ for the itinerary.

4. Decrease all the remaining flight capacities remcap(f,m) for each tuple in L2 by δ, since

these seats have been used.

5. The cost of the new recovered itinerary is δL3.

Perform the allocation procedure until remPax becomes zero or the labels are exhausted. If

there are still any remaining passengers, they cannot be rescheduled in the recovery solution, and

therefore cancel the itinerary for remPax > 0 passengers incurring the cancellation cost ccancelgk ×

remPax.

Thus we can create a recovered passenger itinerary for itinerary k. Before the next iteration for

computing the recovered itinerary for a new k′, we update the remaining capacities of the flights

and prune Gk′ to remove infeasible flights and airports. Algorithm 5 shows the pseudocode for our

multiple labels shortest path approach.
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Algorithm 5: Multiple Label Shortest Paths (MLSP) for solving passenger
recovery
1 Input: Configurations, original and recovered flights, airline information and itineraries // as

given in Section 2.4.7
2 Result: Krecov // set of recovered itineraries
3 Initialize Krecov = K \Kdis

4 Initialize the total cost of the solution costMLSP = 0.
5 for k ∈ Kdis do
6 Initialize source sk and all nodes of Gk with the label (0, ∅, 0, 0)
7 Let labels(v) denote the set of labels for each node v.
8 Initialize the set of visited nodes Ω to False for all nodes in Vk.
9 Update labels in a BFS manner as follows,

10 Start with u← sk
// bfs starts at source

11 while Ω contains False do
// There are nodes not visited in Gk

12 Set node u as True in Ω // u is visited
13 for each airport v reachable from u, and each feasible flight f and cabin class m, between

u and v, do
14 Add all labels labels(u) to labels(v)
15 for each label Lv in the newly added labels, do
16 Update L3

v ← L3
u + cdown

fmk , using m = mk if f was not in k originally.
17 Update L1

v ← L1
u + 1, the number of flight legs used so far.

18 Add the tuple (f,m) to L2
v.

19 Update L4
v ← min(L4

u, remcap(f,m))
20 Prune all dominated labels at v, maintaining only enough labels to carry a total of

λnk passengers.
21 end
22 end
23 For each label of the sink tk, add delay costs cdelayfk to the second component L2.
24 Prune dominated labels at the sink, and sort by increasing order of costs (second

components) to make the set Ltk
25 Allocate passengers according to the subroutine Algorithm 6.
26 Thus we can create a recovered passenger itinerary for itinerary k.
27 end
28 end
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Algorithm 6: Subroutine that creates recovered itinerary using sink labels
of the given itinerary.
1 Input: Sink labels Ltk for one itinerary k.
2 Result: Recovered itinerary for the nk passengers in k (including cancellations) along with costs.
3 Initialize remPax← nk. // remaining passengers to be allocated.
4 while remPax > 0 do
5 for each L ∈ Ltk do
6 Set δ = 0. // number of passengers this label will serve
7 . Let L2 = {(f1,m1)→ (f2,m2) . . .→ (fz,mz)}.
8 Update δ = min(L4, remPax).
9 Create a new itinerary in Krecov for δ passengers- they take the flights in L2.

10 Increase costMLSP by δL3.
11 Update remaining flight capacities remcap(f,m)← remcap(f,m)− δ
12 Update remPax← remPax− δ.
13 end
14 If all labels at the sink are exhausted, cancel the itinerary for the remaining remPax

passengers.
15 Increase costMLSP by remPax× ccancelgk .
16 end
17 Obtain Krecov and the cost costMLSP .
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2.5.6 MLSP with Batching

Because of the iterative solving for itineraries based on cancellation costs in Algorithm 5, the

solution is possibly suboptimal due to exhausting flight capacities in earlier iterations. Unlike the

IP approach, we do not consider all the itineraries together.

In the literature of shortest path algorithms, batching has been studied as a way to speed up the

iterative process, or to improve the solution (see Hotz et al. [85] and Zhang et al. [86]). The main

idea is to partition the sorted Kdis into batches of size γ. For each batch B of itineraries, instead

of creating new itineraries according to Algorithm 5, we combine all the top sink labels to create a

bigger set of labels,

LB = {∪k∈BLtk}.

We sort LB in increasing order of third components (costs), and allocate passengers similar to

Algorithm 6. In the experiments, we also discuss the results of batched MSLP for various batch

sizes.

2.6 Experiments

In this section, we give a comprehensive experimental treatment to show the performance of

our proposed algorithms. Results are presented for (i) The IP based Algorithm 4, (ii) network

based MLSP Algorithm 5, (iii) batched MLSP of various batch sizes.

The data used for our experiments is calibrated from the publicly available data set of the

ROADEF challenge [15]. There are three classes of data from the challenge, labeled “A"", “B" and

“X" instances, in order of complexity. All the papers emanating from the ROADEF challenge, e.g.,

Bisaillon et al. [11], Sinclair et al. [89, 78], Jozefowiez et al. [72], Jafari and Zegordi [71], and

Jafari and Hessameddin Zegordi [81], solve for integrated flight and passenger recovery whereas

our focus is on developing new algorithms for passenger recovery, of which there has only been

one work McCarty and Cohn [84] since 2009. In McCarty and Cohn [84], the data presented

considers a disruption that only delays one flight in the flight recovery solution.
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We would like to test our algorithms for a wide variety of disruptions, ranging from light

disruptions where a certain subset of flights are delayed and nothing else to heavy disruptions

where many flights are outright cancelled, and many are delayed. We are not able to get the variety

from ROADEF data, and thus we perform our experiments with modified data i.e., calibrating our

data set from Palpant et al. [15], and impose our own disruptions. Such an approach to experiments

is also common in recovery literature, e.g., McCarty and Cohn [84] manually delaying one flight,

and in papers like Kohl et al. [61] on airline recovery, the tests were run on data where small

irregularities in a database of 4000 events were generated randomly, at most 10% of the flights

were delayed from 15 minutes to 2 hours.

2.6.1 Computational Goal

Most airline operations controllers demand operational disruption models to provide good so-

lutions at the fleet level in order of minutes Vink et al. [68] and Hassan et al. [9]. THE ROADEF

challenge had a strict time limit of ten minutes Palpant et al. [15] on an AMD Turion64x2 processor

with 2GB RAM.

In our work, the recovery algorithms were implemented in Python using Gurobi 9 to solve

Integer Programs and Mixed Integer Programs (default internal parameters), on a Macintosh with

2.4 GHz 64 bit Quad-Core intel Core i5− 3470 processor with 8GB RAM. Run times are reported

in seconds. We aim to use our preprocessing approach and solve for passenger recovery in the

order of minutes. Note that for the IP-based Algorithm 4, the runtimes include the time to build

the variables and constraints in the IP model, as well as the runtime of the IP solving itself.

2.6.2 Data set characteristics

We use the calibrated data from the “B” and “X” instances from the ROADEF challenge [15].

We create disruptions of two types by cancelling and delaying (and leaving unchanged) different

percentages of the original flights F . let R be the length of the recovery window in hours.

1. Heavy disruption: Cancel 50% of all flights and delay 25% of all flights by a number of
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A1 A2 A3 A4 A5
No. of airports 35 35 35 35 35
No. of flights 608 608 608 608 608
Size of K 1659 1659 1659 1659 3395
Size of Kdis (heavy) 1382 1350 1416 1323 2832

Table 2.5: Characteristics of A instances used in our experiments under heavy disruptions. Disruptions started on
January 7th 2006 at 12 PM, and the recovery window was till January 8th 2006 4 AM, with length R = 16 hours.

B1 B2 B3 B4 B5
No. of airports 45 45 45 45 45
No. of flights 1422 1422 1422 1422 1422
Size of K 11214 11214 11214 11214 11214
Size of Kdis (heavy) 9072 9391 9418 9321 9336
Size of Kdis (light) 2981 2760 2878 2931 3154

Table 2.6: Characteristics of B instances used in our experiments under heavy and light disruptions. Disruptions
started on March 1st 2008 at 4 PM, and the recovery window was till March 3rd 2008 04 AM, with length R = 36
hours.

hours uniformly random between 0 and R/2 hours, and the number of minutes uniformly

random between 0 and 60 minutes.

2. Light disruption: Delay 20% of all flights by number of hours uniformly random between

0 and R/2 hours, and number of minutes uniformly random between 0 and 60 minutes.

A description of the data sets used, (A1-A5), (B1-B5), (XA1-XA4) and (XB1-XB4) are pre-

sented in Tables 2.5, 2.6, 2.7 and 2.8 respectively. The XA and XB were the larger data sets

and were the main data used in testing the algorithms of the ROADEF challenge. In both heavy

and light disruptions, we first modify the flights by cancelling or delaying some percentage of the

flights, and the resulting schedules form the flight recovery Frecov. Next, we check each itinerary

to see if any of its flights are disrupted in Frecov to form the disrupted itineraries Kdis.

2.6.3 Impact of Preprocessing

In Section 2.5.1, we discussed how to obtain graphs specific to each itinerary by preprocessing.

The IP (2.1) can be implemented without using the preprocessed graphs, in which case the variable

set is {yfmk : k ∈ Kdis,m ∈ M, f ∈ Frecov}. If we use preprocessing, the variable set is much

99



XA1 XA2 XA3 XA4
No. of airports 35 35 35 35
No. of flights 608 608 608 608
Size of K 1659 3395 1608 3288
Size of Kdis (heavy) 1355 2856 1332 2732
Size of Kdis (light) 424 921 428 858

Table 2.7: Characteristics of XA instances used in our experiments under heavy and light disruptions. Disruptions
started on March 1st 2008 at midnight, and the recovery window was till March 4th 2008 6 AM, with length R = 77
hours.

XB1 XB2 XB3 XB4
No. of airports 45 44 45 44
No. of flights 1423 1423 1423 1423
Size of K 11214 11214 11214 11214
Size of Kdis (heavy) 9226 9282 9499 9488
Size of Kdis (light) 1421 2951 3233 3280

Table 2.8: Characteristics of XB instances used in our experiments under heavy and light disruptions. Disruptions
started on March 1st 2008 at midnight, and the recovery window was till March 4th 2008 6 AM, with length R = 77
hours.

smaller, since we build the IP to only those feasible flights and cabin classes with non-empty

remaining capacity for each itinerary. In Table 2.9, we present a comparison of implementing

Algorithm 4 without and with preprocessing on the A instances, in the heavy disruption scenario

where the problem sizes are bigger than the light disruption scenario. For the data sets A1-A5,

without preprocessing, the IP built a large problem of between 49− 101 million variables and took

between 92 − 303 seconds overall. Preprocessing itself took a maximum of 7.73 seconds in the

instances, and using the resulting graphs shrunk the IP problem size to a maximum of ∼ 25, 000

variables (< 1% of the previous size) and the runtime went down to less than two minutes (again,

∼ 1% of the previous runtime without preprocessing). Therefore, preprocessing is a crucial step

in solving the IP, and we are also able to use it for the MLSP algorithm. The runtime of Algorithm

4 without preprocessing was too large (timed out at 1000 s) on the B and X instances to report

(whereas the runtime with preprocessing was still in the order of seconds in these instances).
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A1 A2 A3 A4 A5
Preprocessing Time (s) 5.51 4.82 6.58 5.86 7.73
No. of IP vars with preprocessing 25013 23531 23640 20251 23369
No. of IP vars without preprocessing 49,39,268 48,24,900 50,60,784 47,28,402 1,01,21,568
No. of nonzero vars in IP solution 1650 1618 1707 1527 2921
IP Runtime with preprocessing (s) 0.88 0.75 0.83 0.87 0.98
Runtime without preprocessing (s) 92.57 92.82 155.30 163.19 303.14

Table 2.9: Comparing the performance of building the IP and running Algorithm 4 in Gurobi with and without
preprocessing. We consider a heavy disruption scenario on all A instances.

2.6.4 Comparison of IP and MLSP

We present a comparison of Algorithms 4 and 5 with two metrics: (i) running time (in seconds),

(ii) solution quality, measured as the percentage difference in the objective value of the MLSP

compared to the objective value of the IP. Define the solution gap,

ϵ :=
[opt-value(MLSP )− opt-value(IP )]

opt-value(IP )
× 100.

As explained before, the IP may not account for some network-specific constraints (e.g. maximum

number of legs of an itinerary), hence the IP is still not the exact solution to the passenger recovery

problem. Therefore, the solution gap ϵ is an upper bound on the optimality gap between the MLSP

(heuristic) solution and the exact solution to the passenger recovery problem.

In Table 2.10, we consider the heavy disruption scenario on both XA and XB instances, which

were the final data sets in the ROADEF challenge used to rank participants. On the XA data sets,

the preprocessing steps are a maximum of 11.66 seconds, and the IPs constructed for Algorithm 4

only have up to 41, 539 variables (among a potential size of > 5 million, the product of ∼ 3000

itineraries, 600 flights and 3 cabin types), and the IP algorithm takes roughly one second to run on

a commercial solver. The MLSP approach Algorithm 5 takes slightly only slightly longer (< 2.4

seconds), and ϵ a maximum of ∼ 7%, suggesting a near-optimal performance of the network-

based approach. Recall the IP approach Algorithm 4 we consider is not quite the exact solution-

the network-based approaches can handle the practical constraint of the maximum number of legs
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in a recovered itinerary.

On the XB data sets in Table 2.10, preprocessing is an order of magnitude longer than the

XA data sets, taking up to 78.31 seconds, and the IPs take up to almost 3.5 seconds. The MLSP

approach takes almost twice as long as the IP, though the solution gaps ϵ are again reasonable at

< 6%. In the ROADEF challenge, many of the finalists could not compute the solution to the

integrated flight and recovery problem in less than ten minutes (see discussion in Bisaillon et al.

[11] and Sinclair et al. [78]) on the XB1-XB4 data sets. We are able to compute passenger recovery

solutions efficiently and near optimally, suggesting the flight recovery problem is significantly

more complex to solve and to integrate with passenger recovery for large data sets.

XA1 XA2 XA3 XA4 XB1 XB2 XB3 XB4
Preprocessing Time (s) 7.45 11.66 6.23 11.23 78.31 77.84 77.38 75.72
Number of IP variables 30757 23909 35382 41539 90461 84407 52246 42373
Runtime of IP (s) 1.07 1.09 1.08 1.11 3.32 3.51 2.61 2.19
Runtime of MLSP (s) 1.46 1.43 1.66 2.40 5.95 5.16 4.81 4.72
solution gap ϵ in % 2.52 3.21 6.71 1.27 4.42 4.27 3.11 3.91

Table 2.10: Performance of proposed algorithms, (i) IP Algorithm 4 (ii) MLSP Algorithm 5 with heavy disruptions
on the XA and XB data sets. Runtimes are reported in seconds.

We now investigate what happens during a light disruption- like many of the ROADEF data

set disruptions. The recovered flight solution differs from the original flight schedules by a small

number- 20% in our setting. As a consequence, the number of undisrupted itineraries is high,

and the size of Kdis is small. Intuitively, compared to heavy disruptions, Algorithm 4, which has

a lesser size of variables and constraints (specifically, O(|Kdis|)), and Algorithm 5, which has

number of iterations O(|Kdis|) should both be faster. Let us check ϵ experimentally in Table 2.11,

on the B instances in the light disruption scenario. The solution gap is < 1% in most instances-

when most flights and cabin classes remain the same, the total costs due to downgrading and delay

are low and cancellations make up most of the cost. Cancellations occur when there is no remaining

capacity in the paths available for passengers, and both algorithms would make the same decisions.

Thus the gap is quite low between both approaches when disruptions are light. We would next like

to compare the performance of batching, which we do so in the heavy disruption setting, in order
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to allow for bigger gaps.

B1 B2 B3 B4 B5
Preprocessing Time (s) 36.22 47.38 45.97 40.62 36.07
Number of IP variables 10430 30341 9323 28231 12066
Runtime of IP (s) 0.76 1.74 0.61 0.88 0.93
Runtime of MLSP (s) 1.53 2.36 1.92 1.60 1.21
solution gap ϵ in % 0.07 1.35 0.49 0.41 0.34

Table 2.11: Performance of proposed algorithms, (i) IP Algorithm 4 (ii) MLSP Algorithm 5 with light disruptions on
the B data sets. Runtimes are reported in seconds.

2.6.5 Performance of MLSP with batching

We consider various batch sizes γ ∈ {5, 25, 100, 250, 500} and show the performance of MLSP

Algorithm 5 with batching. We present the comparison to batching on the B instances, since they

are one of the largest in the size of itineraries, and the number of flights.

In Table 2.12, we consider the heavy disruption scenario on the B instances, to understand

the performance of the proposed passenger recovery algorithms. First, our preprocessing methods

work well, with a maximum of 98 seconds in the B instances to build graphs for a total of 11, 000

itineraries. Building and running the IP is faster than our heuristic methods in all the data sets we

consider. The IP is built and run in an optimized commercial solver (Gurobi 9.1), with a few tens of

thousands of integer variables. Using more efficient data structures and programming optimization

techniques, we might get a faster MLSP running time.

Comparing the solution gap ϵ in Table 2.12, our proposed network-based heuristic method

performs quite well compared to the IP solution. The value optgapMLSP is between 1.6−4.1% for

the iterative Algorithm 5. With the batching approach, we do not always notice an improvement in

the solution gaps for all batch sizes over the default MLSP (which by definition has batch size γ =

1). Batching can solve issues with respect to edge cases- for example, the top label for the itinerary

j in Kdis could have lower downgrading and delay cost (given by the third component) than the last

label for itinerary j − 1, i.e., we could end up using precious remaining flight capacity on a higher

cost label, and be forced to cancel the best label of itinerary j. Because we group all (pruned) labels
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of a batch together and sort them, batching can eliminate the edge cases within itineraries in the

batch. However, there is a tradeoff- the cancellation costs are not considered between all itineraries

of the same batch. For example, say γ = 50, and there is a flight f with remaining capacity 1 on a

cabin class ′F ′ in the recovered flight solution. There could be an itinerary k1 with one passenger,

and a cancellation cost of 9000 (Values used in the experiments are provided in Tables 2.1-2.4)

and sink label with downgrading/delay cost 100 in its third component, and an itinerary k2 with a

cancellation cost of 2500, with a sink label with downgrading/delay cost 99 units. Suppose both

k1 and k2 need the precious first class seat in flight f . If the itineraries end up in the same batch,

the label for k2 is used to allocate passengers first, instead of k1. The contribution to the objective

cost is now 99 + 7500 = 7599, instead of a potential 100 + 2500 = 2600.

In Table 2.12, we do nevertheless see large batch sizes helping with the solution gap compared

to γ = 1. We cannot discern a clear pattern, which suggests batch sizes are dependent on the

exact structure of the itineraries and the costs involved. The general takeaway is that without much

difference in solving time, we can obtain better solutions by attempting higher batch sizes than

γ = 1 of the default MLSP Algorithm 5.

For the sake of completion, we also report the performance of batching on the ROADEF final

data sets, the XA and XB instances. In Table 2.13, we consider the light disruption scenario

on the XA data sets. Recall from Table 2.7, the number of disrupted itineraries is low in the

light disruption scenario. One key takeaway from Table 2.13 is that the running times of MLSP

are sometimes even lower than the IP (e.g., 0.26s for MLSP vs 0.31s for XA1 instance), while

batching typically takes more time, possibly due to storing and running a large number of labels in

each batch. For the solution quality, in the XA1 and XA4 instances, batching has worse solution

quality, whereas, in the XA2 instance, both MLSP without batching as well as with batching has no

solution gap. Overall, changing batch sizes do not seem to have much effect in Table 2.13, possibly

because of the low number of disrupted itineraries in XA instances under the light scenario (check

Table 2.7.

In Table 2.14, we consider the heavy disruption scenario on the XB data sets. Recall from
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Table 2.8, the number of disrupted itineraries is high in the heavy disruption scenario. In Table

2.14, MLSP is mostly slow compared to the IP run on a commercial solver, though the differences

are smaller (the largest difference is for XB4 where IP takes 2.37s and the MLSP takes 3.84 s).

Batching slows down the MLSP in every instance. For the solution quality, solution gaps are

between 3− 5% in the XB instances. There seem to be noticeable improvements in ϵ for different

batch sizes. In the XB1 instance, increasing batch sizes to γ = 250 or 500 brings down the solution

gap to just 0.17%, down from 3.29% without batching. A similar effect is observed for the other

instances as well, though a higher γ does not always reduce the solution gap. As explained before,

this is because the cancellation costs are not considered between all itineraries of the same batch.

Recall among the ROADEF finalists, some algorithms could not solve the XB instances within

the required time [78, 11] for the integrated recovery problem. We are able to compute passenger

recovery solutions efficiently and near optimally with the batched MLSP, suggesting the flight

recovery problem is significantly more complex to solve and to integrate with passenger recovery

for large data sets.

B1 B2 B3 B4 B5
Preprocessing Time (s) 71.28 97.74 93.17 96.30 81.01
Number of IP variables 45322 49071 32273 9483 41985
Runtime of IP (s) 4.77 3.75 4.22 3.15 3.03
Runtime of MLSP (s) 4.99 4.72 5.08 4.33 3.84
Runtime of MLSP -Batching (s)
γ = 5 5.73 8.29 4.01 4.32 4.28
γ = 25 6.05 6.51 3.92 4.01 3.84
γ = 100 5.72 5.64 4.16 3.53 3.19
γ = 250 6.34 7.09 5.20 3.35 3.08
γ = 500 7.97 6.38 4.82 3.22 3.27
solution gap ϵ in % 2.74 2.80 4.07 1.61 1.92
solution gap ϵ of MLSP -Batching in %
γ = 5 4.91 5.88 2.48 4.42 4.32
γ = 25 2.69 4.87 1.56 3.02 1.66
γ = 100 0.81 4.28 1.33 1.76 0.56
γ = 250 0.47 3.49 2.39 0.16 0.03
γ = 500 0.38 2.22 1.41 0.43 0.76

Table 2.12: Performance of proposed algorithms, (i) IP Algorithm 4 (ii) MLSP Algorithm 5 (iii) MLSP Algorithm 5
with batching on B instances with heavy disruptions. Runtimes are reported in seconds.
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XA1 XA2 XA3 XA4
Preprocessing Time (s) 3.76 4.52 2.55 7.58
Number of IP variables 10210 10344 8015 19630
Runtime of IP (s) 0.31 0.34 0.35 0.66
Runtime of MLSP (s) 0.26 0.42 0.25 1.38
Runtime of MLSP -Batching (s)
γ = 5 0.55 0.97 0.73 3.24
γ = 25 0.54 1.04 0.75 2.79
γ = 100 0.56 0.96 0.77 2.37
γ = 250 0.57 0.98 0.74 2.43
γ = 500 0.56 0.98 0.72 2.37
solution gap ϵ in % 2.25 0.00 0.02 0.14
solution gap ϵ of MLSP -Batching in %
γ = 5 2.38 0.00 0.68 0.46
γ = 25 2.37 0.00 0.68 0.48
γ = 100 2.37 0.00 0.68 0.48
γ = 250 2.37 0.00 0.68 0.48
γ = 500 2.37 0.00 0.68 0.48

Table 2.13: Performance of proposed algorithms, (i) IP Algorithm 4 (ii) MLSP Algorithm 5 (iii) MLSP Algorithm 5
with batching on XA instances with light disruptions. Runtimes are reported in seconds.
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XB1 XB2 XB3 XB4
Preprocessing Time (s) 70.35 77.41 76.49 70.43
Number of IP variables 55605 60931 54755 41442
Runtime of IP (s) 3.05 3.80 2.99 2.37
Runtime of MLSP (s) 3.59 3.80 4.73 3.84
Runtime of MLSP -Batching (s)
γ = 5 4.15 5.65 5.48 4.17
γ = 25 4.16 5.05 6.02 4.34
γ = 100 4.29 5.13 6.21 4.06
γ = 250 4.65 5.07 6.23 3.98
γ = 500 5.09 5.38 6.14 4.22
solution gap ϵ in % 3.29 4.33 3.17 2.92
solution gap ϵ of MLSP -Batching in %
γ = 5 4.38 6.29 2.50 2.09
γ = 25 0.68 3.91 2.75 2.30
γ = 100 0.20 1.90 0.52 1.79
γ = 250 0.17 0.25 0.67 0.84
γ = 500 0.17 0.17 1.22 0.92

Table 2.14: Performance of proposed algorithms, (i) IP Algorithm 4 (ii) MLSP Algorithm 5 (iii) MLSP Algorithm 5
with batching on XB instances with heavy disruptions. Runtimes are reported in seconds.
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2.7 Conclusions and Future Work

In this chapter, we provide two major solution approaches to solve the passenger recovery

problem given the flight recovery solution as an input, thus placing our work in the context of

partially integrated recovery. Our first contribution is a preprocessing step, that computes the

graphs of reachable airports and feasible flights for each itinerary. Experiments show preprocessing

is in the order of minutes on large airline problem sizes. Next, we provide an integer program,

which when constructed and solved using the preprocessed graphs, provides an upper bound on

the exact solution within a few seconds on a commercial solver. The variables of the IP denote

the number of passengers that can be moved through a given flight, on a given cabin class for a

given itinerary. The objective is separable by itineraries, and so are almost every set of constraints,

except for one which aggregates the variables over all itineraries to be upper bounded by flight

capacities. Thus, parallelizing may not be an option for the IP. The IP could also scale linearly in

each of the various parameters of the airline network (e.g., number of disrupted itineraries, number

of flights, etc.). Moreover, the IP approach may not be able to include practical constraints like a

maximum increase in the number of legs of an itinerary, while keeping linear constraints.

Hence, we foresee the need for a network-based approach, that solves a number of multiple-

label shortest path (MLSP) problems, with the number of iterations linear in the size of disrupted

itineraries. The key idea is to store a pruned list of labels at every node, with each label containing

four components- information on downgrading costs, the number of legs used so far, the maximum

number of passengers that could be allocated to the path, as well as the path itself. Delay costs for

an itinerary can only be added at the sink of the itinerary, hence the sink labels are sorted and an

allocation procedure is performed that constructs the recovered passenger itineraries.

Experiments suggest the MLSP approach yields good solution quality, with a solution gap no

more than 5% on large airline networks, and the heuristic also runs in a time that is comparable to

the IP algorithm. To potentially improve the solution, we also propose a batching extension to the

MLSP algorithm that can solve edge cases inherent in the iterative process, at the risk of ignoring
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the cancellation costs of itineraries within the batch. Experiments suggest batching to be effective

at yielding better quality solutions, though there does no way to pick an ideal batch size without

knowing more about the problem structure.

There are also post-optimization ideas that help in lowering the itinerary costs even further- e.g.

using non-disrupted itineraries (notice our formulation uses only re-planned disrupted itineraries)

to intentionally delay non-disrupted passengers to make way for cleverly chosen disrupted pas-

sengers, similar to the proposal in Sinclair et al. [78]. We can also preprocess by rounding flight

departure and arrival times in the flight network with rounding. If we wish to construct faster al-

gorithms at the expense of optimality, we can increase the complexity of preprocessing the flight

network. One direction for future work could be a rounding idea- split the entire recovery window

into buckets of Ψk (e.g. 15 minutes), and round all flight takeoff times down and landing times up,

to the boundaries of the bucket. Instead of creating one node for each airport, we do the same steps

as preprocessing, but instead create a new node for each pair (airport, bucket interval).

In the real world, airlines utilize powerful processors to obtain recovery solutions, and expect

to re-plan within a few minutes, and send the information out to their customers. If real-world data

on passenger itineraries can be obtained with enough detail, we could put our algorithms to test on

computing clusters to obtain practical performance guarantees.
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Chapter 3: Computing the optimal distributionally-robust strategy in

Stackelberg Games

In this chapter, we present our work on computing distributionally-robust Stackelberg strate-

gies. This chapter is based on the article Ananthanarayanan and Kroer [90] under review, written

in collaboration with Christian Kroer. A preprint is available at https://arxiv.org/abs/

2209.07647.

3.1 Introduction

Stackelberg games are a popular game model for settings where one player is able to commit to

a strategy, before the other player (or players) get to choose their strategy. The model was originally

introduced by von Stackelberg [91] in order to analyze competition among firms and first-mover

advantage. Conitzer and Sandholm [24] showed that an optimal strategy for the leader to commit

to can be computed in polynomial time for Stackelberg games. Since then, Stackelberg games

have received considerable attention in computational game theory, largely because of applications

to various security problems such as airport security [25], federal air marshal scheduling [31],

preventing poaching and illegal fishing [26, 92], and several others.

In many applications, the opponent payoffs are not known with certainty. Uncertainty in param-

eters could occur due to limited scope in observable data, noise or prediction errors. For example,

in the case of protecting wildlife from poaching, the goal of the park rangers (leader) is to defend

a set of targets from being attacked by the poachers (follower) [92]. The rangers are trying to pro-

tect wildlife by patrolling locations where they frequently appear, while the poachers can conduct

surveillance to learn about the patrol strategy and try to poach the animals by picking a target area

[92]. we would not know the exact utility function of the follower (i.e., the poacher), but only have
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some model thereof. We would not know the exact utility function of the poacher (follower) but

only some model thereof [26, 31, 92].

One approach for handling uncertainty about payoffs is to assume that each player has a

publicly-known distribution over utility functions. The class of games called Bayesian Stackelberg

games make the above assumption. Computing an optimal strategy for the leader in a Bayesian

game setting with a finite set of follower types is NP-hard [24]. Nonetheless, there exist algo-

rithms such as DOBBS [93] which can solve practical game instances. However, Bayesian games

still require an exact specification of the distribution over possible follower types, putting strong

assumptions on the modeling capacity of the leader who is committing to a strategy based on the

supposed distribution.

Another approach to handling uncertainty is through robust optimization, where the goal is to

compute a solution that maximizes utility given the worst-case parameter instantiation [32, 94].

In the Stackelberg game context, we typically interpret the above goal as computing an optimal

strategy for the leader to commit to, given that a worst-case follower utility will be selected from

an uncertainty set, and then the follower best responds based on this utility function. Robust

Stackelberg models and regret-based methods for handling uncertainty about follower payoffs have

been studied for security games [95, 96, 97] as well as green security games [98] and extensive-

form games [33].

One issue with robust optimization models is that they can often lead to overly conservative

solutions, due to the worst-case nature over a potentially large uncertainty set. In optimization, this

can be ameliorated by considering distributionally-robust optimization (DRO).

We briefly describe DRO in a more generic optimization sense, then discuss how to apply

DRO models to Stackelberg equilibria. In a standard stochastic optimization problem, the decision

maker wishes to choose a strategy from a feasible region X , but the objective f depends on an

unknown (at the time of decision making) quantity from a set θ of uncertain parameters. Thus, we
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wish to solve an optimization problem of the form

min
x∈X

E
θ∼µ

f(x, θ) (3.1)

where µ is a distribution over the uncertain parameters. If the support on θ is finite then (3.1)

is comparable to the Bayesian Stackelberg setting, where an exact distribution over parameters is

required. In many settings, one may not know the true underlying distribution even with multiple

realizations of the unknown parameter, and using a distribution different from µ could yield bad

decisions [99].

A robust variation of the stochastic optimization problem would replace the expectation with

a minimum over θ, where θ would come from some set that attempts to capture the uncertainty in

θ. In DRO, a middle-ground between stochastic and robust optimization is struck. In DRO, we

assume that there is a distribution over θ, but we do not know it exactly. Instead, that distribution is

a worst-case instantiation from some ambiguity set of possible distributions. Thus, a generic DRO

problem has the form

min
x∈X

max
µ∈D

E
θ∼µ

f(x, θ),

where D is the set of possible distributions over θ. A recent review of DRO can be found in

Rahimian and Mehrotra [100]. Shapiro [94] also gives an overview of all these approaches to

uncertainty.

Translating the DRO problem into the context of Stackelberg games, θ is the utility function of

the follower, and D is the set of possible distributions over follower utilities.

Let us now see how DRO relaxes both the settings of robust Stackelberg games and Bayesian

Stackelberg games. First, if the ambiguity set D is a singleton that contains only the true distri-

bution of follower utility function, then DRO applied to Stackelberg games reduces to a Bayesian

Stackelberg game. On the other hand, if D contains all the Dirac masses on the set of possible

follower utilities, then DRO on Stackelberg games reduces to a robust Stackelberg model. Thus, a

judicial choice of D can put DRO between Bayesian games and robust Stackelberg games. To the
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best of our knowledge, there has been no prior work on computing optimal distributionally-robust

strategies to commit to.1 Moreover, for the first time, when the set of utility functions could be

infinite, we use the Wasserstein metric to construct the ambiguity set for which we have a MIP

based algorithm.

3.1.1 Our contributions

We introduce the notion of a distributionally-robust Strong Stackelberg Equilibrium (DRSSE)

for a normal-form game [90], allowing us to capture settings where there is some partial knowledge

of the follower utility function. We focus on the simplest case of normal-form Stackelberg games.

We prove that a DRSSE is guaranteed to exist for a broad class of ambiguity sets. Our result

implies new existence results for some existing robust strong Stackelberg models as well.

We present two direct algorithms to compute DRSSE in the general case, when the set of fol-

lower utilities is finite, and with no assumptions on the ambiguity set. First, we show that in this

case, it is possible to extend the classical algorithm that enumerates the set of possible best re-

sponses for each utility function, and solves a mathematical program for each choice, to the case

of DRSSE. In the Bayesian games setting, each mathematical program is an LP, whereas in our

setting it is a bilinear saddle-point problem (which can potentially be converted to an LP, depend-

ing on the structure of the ambiguity sets). As in the case of Bayesian games, this algorithms

requires enumerating an exponentially-large set of mathematical programs, as there are mk possi-

ble choices, where m is the number of follower actions and k is the number of follower utilities.

To avoid this exponential search, we introduce binary variables that encode the choice of follower

action for each utility function. Then, we show that it is possible to encode the constraints for

inducing a given best response for the follower using linear constraints and these binary variables.

Putting these things together, we get a mixed-integer program with a bilinear objective.

1Liu et al. [101] study distributionally-robust Nash and Stackelberg equilibria, but that setting is not about comput-
ing the optimal strategy to commit to under distributional uncertainty about the follower utility. Instead, they study a
setting where each individual agent employs a DRO approach to their equilibrium behavior. This would not lead to a
suitable solution concept when the goal is to compute an optimal leader strategy given uncertainty about the follower
utility model, and thus is not suitable for e.g. security games or inspection games with uncertainty about the follower.
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Next, we allow for an infinitely-large set of possible utility functions Ef , and we focus on a

representation of the ambiguity sets as a Wasserstein ball around some finitely-supported nominal

estimate of the probability distribution. Using recent characterizations of such ambiguity sets, we

show that in this case we can still use duality theory to arrive at a mixed-integer program, albeit one

with a robust optimization flavor which requires repeated MIP solving. Experiments substantiate

the tractability of this MIP based algorithm on a classical Stackelberg game, showing that our

approach scales to medium-sized games. We also discuss in detail the special case of finite utility

functions in the Wasserstein setting along with three experiments showing tractability on classical

Stackelberg games as well as synthetic data. Implementations of our algorithms and experiments

may be found at https://github.com/saimali/DRStackelberg.

3.1.2 Organization of the chapter

The rest of this chapter is organized as follows. In Section 3.2, we introduce and prove the

existence of distributionally-robust Strong Stackelberg equilibrium (DRSSE). Section 3.3, we pro-

pose two algorithms to compute DRSSE when there are a finite set of of follower utilities. We

generalize to infinite sets of utility functions in Section 3.4 with a distance based ambiguity set and

provide a repeated MIP solving based algorithm, with experiments on a classic Stackelberg game

in Section 3.5. A special case of finite utility functions in the Wasserstein setting is discussed

along with baselines and experiments in Section 3.6. We finally outline conclusions in 3.7.

3.2 Distributionally-robust Stackelberg Games

We consider a two player (leader and follower) general-sum game where the leader has a finite

set of n actions Al and the follower has a finite set of m actions Af . Let ∆l,∆f denote the set of

probability distributions over the leader and follower actions. Let the utilities be ul : Al × Af →

[0, 1] for the leader and follower utilities uf : Al × Af → [0, 1] which come from a compact set

Ef ⊆ [0, 1]n×m. The arguments inside the utility functions can be mixed strategies in which case,

we consider the appropriate weighted sum of utilities, for example, ul(x, af ) :=
∑

a∈Al
xaul(a, af )
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when x ∈ ∆l. Stackelberg equilibrium is a solution concept for this type of game where we want

the leader’s strategy to be optimal, assuming the follower will ‘best respond’ knowing the leader’s

strategy. Given a leader mixed strategy x ∈ ∆l, the best response for the follower given a particular

utility function uf is

BR(x, uf ) = argmax
y∈∆f

uf (x, y). (3.2)

One can see that BR(x, uf ) need not be a singleton set. How ties are broken leads to different

notions of Stackelberg equilibrium. A few commonly used tie breaking rules are:

• Strong Stackelberg Equilibrium (SSE), whenever the follower has multiple best responses,

they break ties in favor of the leader. They play y∗ = argmaxy∈BR(x,uf )
ul(x, y).

• Weak Stackelberg Equilibrium (WSE), whenever the follower has multiple best responses,

they break ties adversarially with respect to the leader. They play y∗ = argminy∈BR(x,uf )
ul(x, y).

Strong Stackelberg equilibrium has been studied by far the most. The SSE assumption is con-

venient because it usually leads to more tractable solution concepts, and existence is guaranteed,

unlike for e.g. WSE [102]. From a practical standpoint, the assumption that the follower break ties

in favor of the leader is accepted because in most cases the leader can induce the favorable strong

equilibrium by selecting a strategy arbitrarily close to equilibrium that makes the follower strictly

prefer the desired strategy [102] (though see Guo et al. [103] for a discussion on how this assump-

tion can fail). More generally, tie-breaking rules rely on precise maximization by the follower, and

expecting the follower to break ties in a certain way with respect to the leader may be counter-

intuitive in adversarial games [96]. Therefore robust solutions (like the setting we consider) are

useful so as not to depend too much on these rules.

An immediate consequence of the structure of the best response problem is that a pure-strategy

best response always exists [93]. To that end, we will only consider pure-strategy best responses

of the follower throughout the paper.

Now let us consider our robust game model. As mentioned, we assume that there is some set Ef

of possible follower utility functions, and the leader does not know which utility function uf ∈ Ef
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the follower will have. Since uf (·, ·) ∈ [0, 1], the set Ef is bounded under most common distance

metrics. Strictly speaking we only need Ef to be a Polish space, i.e., a separable complete metric

space. However, for ease of readability the reader can think of Ef as endowed with the standard

Frobenius norm as a metric. We furthermore assume that there is some (unknown) probability

distribution µ over the set Ef . While µ is unknown, it is assumed to come from some ambiguity

set Df , and the goal of the leader is to maximize their worst-case utility over Df . Given a leader

strategy x ∈ ∆l, the worst-case distribution µ ∈ Df is selected, and overall the leader utility is

then

g(x) := inf
µ∈Df

E
uf∼µ

[
max

y∈BR(x,uf )
ul(x, y)

]
. (3.3)

The innermost maximization represents the fact that the follower breaks ties in favor of the

leader: given x and uf , the follower chooses a best response that is optimal for the leader. The

infµ Euf
part represents the fact that the follower utilities are distributed according to the worst-

case distribution µ chosen from Df .

An important analytical object will be the inner maximization as a function of x and the fol-

lower utility uf :

h(x, uf ) := max
y∈BR(x,uf )

ul(x, y). (3.4)

Denote h(x, ·) as notation for h to be considered a function of only the parameter x, for a fixed uf .

Lemma 6. The function h(x, ·) is upper semicontinuous.

Proof. First, for any x ∈ ∆l and uf ∈ Ef , the set BR(x, uf ) is non-empty (recall the discussion

above where we concluded a pure strategy best response always exists). Let

y(x, uf ) ∈ argmax
y∈BR(x,uf )

ul(x, y)

be a mapping from any given pair (x, uf ) to a best response y(x, uf ) that breaks ties in favor of the

leader (if there are multiple best responses that break ties in favor of the leader, then we assume

that there is a fixed ordering over the finitely-many follower actions, which is used to further break
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ties). Thus, we wish to show that

h(x, uf ) = max
y∈BR(x,uf )

ul(x, y) = ul(x, y(x, uf ))

is upper semicontinuous (u.s.c.) in x for any fixed uf . We use the following definition of upper

semicontinuity: for every x0 and ϵ > 0, there exists a neighborhood N(x0) around x0, such that

h(x, uf ) ≤ h(x0, uf ) + ϵ for all x ∈ N(x0).

Now note that for any y /∈ BR(x0, uf ), there exists a neighborhood around x0 such that y is

not a best response anywhere in that ball (this follows by the fact that uf is continuous in x). Let

N̂(x0) be a neighborhood such that this holds for every y /∈ BR(x0, uf ). Also by continuity, we

may select a neighborhood N ′(x0) such that |ul(x0, y)− ul(x, y)| < ϵ for all x ∈ N ′(x0) and each

pure strategy y. Now we may select N(x0) = N̂(x0) ∩ N ′(x0), which shows that h(x, ·) is u.s.c.

in x.

Lemma 6 helps in proving a crucial property satisfied by g: it is upper semicontinuous. This

fact will later allow us to easily conclude that equilibria exist in our setting.

Lemma 7. The leader utility function g(x) is upper semicontinuous.

Proof. Define f(x, µ) := Euf∼µh(x, uf ), and note that g(x) = infµ∈Df
f(x, µ).

Upper semicontinuity (u.s.c.) is preserved under pointwise infimum (see e.g. Lemma 2.41 of

Aliprantis and Border [104]). Therefore, g(x) = infµ f(x, µ) is u.s.c. as long as f(x, µ) is u.s.c.

in x, for each µ.

Thus it remains to prove that f(x, µ) is u.s.c. in x for each µ. By the definition of u.s.c.,

we want to show that for any sequence {xi} which converges to x, f(x, µ) ≥ lim supi f(xi, µ).

Expanding the definition, we have

lim sup
i

f(xi, µ) = lim sup
i

Euf∼µh(x, uf ). (3.5)

We now apply the Reverse Fatou lemma [105], stated below:
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[Reverse Fatou Lemma] Let {fi} be a sequence of extended real-valued measurable functions

defined on a measure space (S,Σ, η). If there exists a non-negative measurable function g on S

such that (i)
∫
S
gdη <∞ (ii) fi ≤ g for all i, then

lim sup
i

∫
S

fidη ≤
∫
S

lim sup
i

fiη.

To apply the Reverse Fatou Lemma on the sequence {h(xi, uf )}, we need to check two things.

First, that there exists a dominating measurable and integrable function. This is clearly true: we

take a function which is equal to 1 on [0, 1]n×m and zero everywhere else. Second, that each

h(xi, uf ) is measurable as a function of uf when xi is fixed. To check measurability, first consider

that h(xi, uf ) takes on a finite set of values: ul(xi, af ) for each of the finitely-many af ∈ Af . It

suffices to show that for each af such that af = y(xi, uf ) for some uf , the nonempty set

U(af , xi) = {uf ∈ [0, 1]n×m : y(xi, uf ) = af}

is measurable. Since U(af , xi) is the set of all uf such that uf (xi, af ) ≥ uf (xi, a
′
f ) for all other a′f ,

and furthermore uf (xi, af ) > uf (xi, a
′
f ) for all a′f such that a′f would be chosen over af in case

of tied follower utilities, we conclude U is measurable. Thus we fulfil the conditions to apply the

reverse Fatou Lemma on (3.5),

lim sup
i

f(xi, µ) = lim sup
i

Euf∼µh(xi, uf )

≤ Euf∼µ lim sup
i

h(xi, uf ) (by Reverse Fatou)

≤ Euf∼µh(x, uf ) (∵ h(x, uf ) is u.s.c from Lemma 6)

= f(x, µ).

A distributionally-robust Stackelberg solution is a strategy for the leader that maximizes the
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leader utility g(x):

Definition 1. (DRSSS) A distributionally-robust strong Stackelberg solution (DRSSS) is a mixed

strategy xl ∈ ∆l such that:

xl ∈ argmax
x∈∆l

inf
µ∈Df

E
uf∼µ

[
max

y∈BR(x,uf )
ul(x, y)

]
(3.6)

Similar to the definition DRSSS of an optimal leader solution, we can define the corresponding

equilibrium concept as well, where we also specify a best response for each utility function of the

leader.

Definition 2. (DRSSE) A strategy tuple (x, yuf
) is said to form a distributionally-robust strong

Stackelberg equilibrium (DRSSE) if x is a DRSSS and yuf
: Ef → Af is a best response mapping

which breaks ties in favor of the leader.

A crucial question is whether DRSSE is guaranteed to exist. One of our main theoretical results

is that this is indeed the case. The heavy lifting is performed by Lemma 7, and with Lemma 7

in hand the existence result follows from the extreme value theorem for upper semicontinuous

functions.

Theorem 1. A DRSSE is guaranteed to exist.

Proof. A pair (x∗, y(x∗, ·)) is a DRSSE, if x∗ ∈ argmaxx∈∆l g(x). The best response set for the

follower is always non-empty for a fixed x∗ and uf . Thus it suffices to show that argmaxx∈∆l g(x)

is non-empty, or in other words, g attains a maximum over ∆l. Using the fact that g is u.s.c. by

Lemma 7, and the extreme value theorem for semicontinuous functions, we conclude g does attain

a maximum.

DRSSE generalizes several existing solution concepts, as the next proposition shows:

Proposition 5. DRSSE generalizes SSE and robust strong Stackelberg equilibrium. DRSSE gener-

alizes Bayesian strong Stackelberg equilibrium when there is only uncertainty about the follower

payoff.
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Proof. To see why DRSSE generalizes robust Stackelberg, note that we can set the ambiguity set

to be the set of point masses on each of the possible utility functions from the robust uncertainty

set (as already mentioned in Section 1).

SSE is the special case of robust SSE where the uncertainty set consists of a single point.

DRSSE generalizes Bayesian strong Stackelberg equilibrium, since a special case of distribu-

tional uncertainty is where the ambiguity set consists of a single distribution.

Combining Theorem 1 and Proposition 5 yields a fairly general existence result: since we

can construct robust SSE and Bayesian Stackelberg SSE as special cases, our Theorem 1 shows

existence for both. This is particularly useful for robust SSE. For example, the authors of Kroer et

al. [33] left existence of robust SSE in extensive-form games an open problem. An extensive-form

game has an equivalent normal-form representation that preserves utilities and the best-response

relationship, and hence our Theorem 1 shows the first existence result for robust SSE in extensive

form games.

3.3 Algorithms for Finite Sets of Follower Utilities

We present two algorithms to compute strategies that form a distributionally-robust SSE, in the

setting where Ef is a finite set of k possible follower utilities.

Define Z to be the (finite) set of mappings from follower utility functions to actions. For a

particular mapping z, we will use zuf
to denote the action specified for utility function uf under z.

Given a leader strategy x, there is a at least one z ∈ Z that specifies a follower action which is a

best response for each possible follower utility. Conversely, given a choice of z, we can consider

the set Xz consisting of all strategies for the leader that make z a correct mapping from utility

function to best response.

We first show a naive way of computing a DRSSE: we can enumerate all possible z, and for

each z compute the best possible leader strategy that induces z. This constraint on the leader strat-

egy can be captured by a set of linear inequalities, which gives us the following bilinear problem
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for a fixed z:

OPTl(z) = max
x∈∆l

inf
µ∈Df

E
uf∼µ

[
ul(x, zuf

)

]
, (3.7)

s.t. uf (x, zuf
) ≥ uf (x, a

′
f ),∀ a′f ∈ Af , ∀ uf ∈ Ef

The set of constraints ensures that for any uf and a′f , zuf
is among the set of best responses for a

leader strategy x. The inner minimization term in the objective represents the fact that even after

choosing a best response for each follower utility, the leader still faces the worst-case distribution

over those utilities. Since there is a finite set of follower utilities, we can rewrite this as

inf
µ∈Df

E
uf∼µ

[
ul(x, zuf

)

]
= inf

µ∈Df

[
k∑

i=1

µfiul(x, zui
)

]
,

where zui
is the follower best response for the i-th follower utility function.

Now, in order to find the optimal strategy to commit to, we may iterate over all z ∈ Z , solve

the mathematical program for each, and pick the optimal solution x∗ associated to the program

with the highest value. Note that if there are multiple best responses to x∗, then this approach

corresponds to assuming that ties are broken in favor of the leader. Once we have the optimal

strategy x∗, we may find the associated follower strategy simply by picking the best-response

mapping z for which x∗ was the solution. Then once an instantiation of the follower utilities is

known, the follower plays the corresponding best action taken from this best z∗. This enumeration

algorithm shows that DRSSE can be computed in exponential time in terms of m and k (we solve

mk math programs with linear constraints, each in n variables).

In practice, we do not want to enumerate all the exponentially-many possible best response

mappings. Instead, we use binary variables to design a mixed-integer non-linear program for

branching on the choice of z. Introduce binary variables δaf ,uf
for each pair (af , uf ) and these
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variables activate constraints whenever af is the BR to uf . For a sufficiently large real M ,

OPTl =max
x,q

inf
µ∈Df

E
uf∼µ

[
quf

]
(3.8)

s.t. uf (x, af ) ≥ uf (x, a
′
f ) +M(δaf ,uf

− 1) ∀ af , a′f ∈ Af , ∀uf ∈ Ef (3.9)

quf
≤ ul(x, af )−M(δaf ,uf

− 1) ∀ af ∈ Af , ∀ uf ∈ Ef (3.10)∑
af∈Af

δaf ,uf
= 1, ∀ uf ∈ Ef (3.11)

δaf ,uf
∈ {0, 1} ∀ af ∈ Af , ∀ uf ∈ Ef (3.12)

x ∈ ∆l, q ∈ Rk. (3.13)

The first set of constraints (3.9) relate to picking the best response follower action for each utility

function (given a leader strategy x). The second set of constraints (3.10) ensure the leader utility

corresponding to the best response follower action above shows up in the innermost term in the

objective as quf
. The third set of constraints (3.11) guarantees that the first constraint is only

activated once for each uf , i.e., for a given uf , exactly one follower action is assigned as best

response. The other constraints (3.12) and (3.13) specify the domain of δ (binary variables), x

(simplex) and q (real). We prove the math program (3.8) generates a DRSSE.

Theorem 2. A solution (x∗, q∗) to the mathematical program (3.8) forms a DRSSE.

Proof. Since q is being maximized and looking at the constraints, it is clear for any uf , the optimal

q∗uf
= ul(x, af ) for some af ∈ Af . It suffices to show that for every uf and any x,

q∗uf
= ul(x, af ) = max

y∈BR(x,uf )
ul(x, y).

If not, there is another a′f such that for some uf , we have a′f ∈ BR(x, uf ) and

ul(x, a
′
f ) = max

y∈BR(x,uf )
ul(x, y) > ul(x, af ) = q∗uf

,
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which is a contradiction to maximality since

inf
µ∈Df

E
uf∼µ

[
ul(x

∗, a′f )

]
> inf

µ∈Df

E
uf∼µ

[
q∗uf

]
︸ ︷︷ ︸

OPTl

.

Thus the math program breaks ties in favor of the leader in the strong sense of Stackelberg equi-

librium.

The above mathematical program (3.8) gives an algorithm to compute a DRSSE. However, the

objective having an inf in it, may not be easily computed for all type of ambiguity sets. Whether

this bilinear objective is easy to handle depends on the form of Df . Note that here we are heavily

exploiting the fact that the set of follower utility functions is finite, in order to encode z using

integer variables. Thus we cannot surmise how the algorithm can be applied in practice without

knowing more information about the ambiguity sets.

In the next section, we handle infinite sets of follower utility functions, as well as consider

some structure on ambiguity sets so that we can obtain tractable algorithms.

3.4 Algorithms for Wasserstein Ambiguity Sets

We now move on to considering a specific type of ambiguity set Df in the case where there is

an infinitely-large set of possible utility functions Ef , and show that in this case we can still use

duality theory to arrive at a mixed-integer program, albeit one with a robust optimization flavor

which requires repeated MIP solving.

There are various different ways to deal with ambiguity sets (see discussion on ten common

ambiguity sets in Keith and Ahner [23]). We would prefer the ambiguity sets to be as small as

possible, and contain the true distribution with a good level of certainty [94, 100]. Two major ways

of defining the ambiguity sets are:

• Define the set using moment constraints. For example, one can assume moment uncer-

tainty conditions with additional assumptions [106] to handle robust optimization problems.
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As discussed in Gao and Kleywegt [99], it has been shown that in many cases these mo-

ment based assumptions lets us formulate the problem as a conic quadratic or semi-definite

program. However, the moment-based approach is based on the curious assumption that

certain conditions on the moments are known exactly but that nothing else about the relevant

distribution is known.

• Distance from a nominal distribution. A nominal probability distribution ν inDf is given,

andDf is specified as a set of probability measures which are in some sense close to ν. Pop-

ular choices of the statistical distance are ϕ-divergences (which include Kullback-Leibler

divergence and Total Variation distance as special cases), the Prokhorov metric, and Wasser-

stein distances [99, 107].

Here we will focus on the second setting, based on distance from a nominal distribution. We leave

the question of whether similar results can be obtained for moment-based constraints for future

work.

Recognizing the fact that the ambiguity set should be chosen judicially for the application at

hand, Gao and Kleywegt [99] argue that by using the Wasserstein metric the resulting distributions

hedged against are more reasonable than those resulting from other popular choices of sets, such as

ϕ-divergence-based sets. Distributionally-robust stochastic optimization with Wasserstein distance

has been empirically shown to resolve issues with ϕ-divergences, which do not address how close

two points in the support are to each other. The integration involved in the definition of the Wasser-

stein metric is in a linear form of the joint distribution, whereas typical ϕ-divergences are nonlinear

[108]. Moreover, Del Barrio et al. [109] show that as the number of samples increase, the empirical

distribution under the Wasserstein metric almost surely converges to the true distribution. Fournier

and Guillin [110] provide concentration results on the number of samples needed to guarantee a

level of convergence. Likelihood-based divergence measures like Kullback-Leibler divergence do

not satisfy the axioms of distance, unlike the Wasserstein metric. Blanchet and Murthy [111] also

argue that Wasserstein distances do not restrict all the probability measures in the neighborhoods

to share the same support as the nominal distribution.
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For the above reasons, we focus on using the Wasserstein metric in our work (see Chapter 6 of

Villani [112] for properties of Wasserstein distances). Our results will build on recent advances in

duality theory for dealing with the infinite-dimensional optimization problem over Df in the case

of Wasserstein distances [99].

3.4.1 Wasserstein Distance

Let the set of potential follower utilities Ef be the set of all matrices in [0, 1]n×m specifying

a mapping from a strategy pair al, af to a payoff. Let d be any distance metric between utility

functions such that Ef is a Polish (separable complete metric) space. An example metric d would

be the Frobenius norm of the difference between the follower payoff matrices:

dF (ufi , ufj) =

 ∑
a∈Al,a′∈Af

(ufi(a, a
′)− ufj(a, a

′))2

1/2

Let P(Ef ) be the set of Borel probability measures on Ef , and Pt(E
f ) its subset with finite t-

th moment (t ≥ 1). If µ, ν ∈ Pt(E
f ) (with any metric d on Ef ), the Wasserstein distance between

them is

Wt(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Ef×Ef

d(x, y)tdγ(x, y)

)1/t

,

where Γ(u, v) is the collection of all measures with marginals µ and ν on the first and second

factors respectively. The Wasserstein distance between µ, ν is the minimum cost (in terms of d) of

redistributing mass from ν to µ. For this reason, it is also called the “earth mover’s distance” in the

computer science literature. Wasserstein distance is a natural way of comparing two distributions

when one is obtained from the other by perturbations. One sufficient condition for the infimum to

be attained is d being lower semicontinuous (see Theorem 4.1 of Villani [112]).

Using the Wasserstein distance, we define our ambiguity set Df as all distributions within a

small radius (θ) of a nominal distribution ν:

Df := {µ ∈ P(Ef ) |Wt(µ, ν) ≤ θ}. (3.14)
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The radius θ controls how far away from the nominal distribution ν the worst-case distribution

can go. The parameter θ is also referred to as the level of robustness. By adjusting the radius

of the ambiguity set, the modeler can thus control the degree of conservatism of the underlying

optimization problem. If the radius drops to zero, then the ambiguity set shrinks to a singleton that

contains only the nominal distribution, in which case the distributionally-robust problem reduces

to an ambiguity-free stochastic problem.

Consider the restriction of the inner maximization function h(x, ·) : Ef → [0, 1] for a fixed x

(see (3.4)). We can characterize h(x, ·) as a simple function, i.e., a measurable function that takes

finitely many values {ul(x, y)|y ∈ Af}. Thus it is also L1-measurable.

Next we wish to transform the leader utility defined in (3.3), into a finite dimensional problem

(there could be infinitely many distributions in Df and we cannot test them all) in the case of a

general nominal distribution ν ∈ P(Ef ) and Wasserstein ambiguity set Df . Fix an arbitrary x and

let h(uf ) = h(x, uf ). We write this as the primal inner problem (akin to the primal problem in

Gao and Kleywegt [99]), and it is equal to:

νP := inf
µ∈Df

{∫
Ef

h(uf )µ(duf ) : Wt(µ, ν) ≤ θ

}
, (3.15)

Following Gao and Kleywegt [99] the dual is an optimization problem on the dual variable λ,

νD = sup
λ≥0

{
− λθt +

∫
Ef

inf
uf∈Ef

[
λdt(uf , u

′
f ) + h(uf )

]
ν(du′

f )

}

It is easily verified that we satisfy all the conditions needed for the strong duality theorem of Gao

and Kleywegt [99], and thus we get νP = νD < ∞. The dual is a one dimensional convex

minimization problem in λ, and always admits a minimizer (though in general the infima for each

u′
f may or may not have a simple representation).

126



3.4.2 Nominal distribution with finite support

We now focus on the setting where the nominal distribution on Ef has finite support. Let the

nominal distribution be written as ν =
∑k

j=1 νjδûfj
for some {ûfj ∈ Ef | j ∈ [k]}. The finite-

support setting is practically important because it occurs when we have received a finite set of

observations of follower utilities, and we treat those as an empirical distribution; the Wasserstein

ball around this empirical distribution then gives robustness guarantees.

Specializing the primal and dual problems from the general nominal case, for t ≥ 1 and θ > 0

we get

νP := inf
µ∈∆k

{
k∑

i=1

µih(ufi) : Wt(µ, ν) ≤ θ

}
(3.16)

νD = sup
λ≥0

{
− λθt +

k∑
j=1

νj inf
uf∈Ef

[
λdt(uf , ûfj) + h(uf )

]}
. (3.17)

The overall problem of computing a DRSSS is then

OPTl(θ) = sup
x∈∆l,λ≥0

{
− λθt +

k∑
j=1

νjwj : (3.18)

wj ≤ λdt(uf , ûfj) + h(x, uf ) ,∀j ∈ [k], uf ∈ Ef

}
.

Computing OPTl is not easy since there is an infinite number of constraints due to Ef generally

being uncountably large.

We next propose an incremental MIP-generation approach that addresses this issue. The key

idea behind the MIP is to leverage the structure of the function h in order to represent the constraint

for a fixed uf via several constraints and Boolean variables. Since there are infinitely-many uf , we

start with a small finite set of candidates, and iteratively expand this set. We proceed in iterations

τ = 1, . . . until convergence. For each nominal point j ∈ [k], let Ef
τ,j be the set of utility functions

that are considered for point j at iteration τ of the MIP. Define Ef
τ := ∪jEf

τ,j , whose cardinality is

the number of utility functions generated so far. We introduce binary variables δaf ,uf
for each pair
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(af , uf ) which denote whether af is the chosen best response to uf . We solve the following MIP

at iteration τ ,

OPTτ
l = min

x,δ,λ,w

{
λθt −

k∑
j=1

νjwj

}
(3.19)

s.t. uf (x, af ) ≥ uf (x, a
′
f ) +M(δaf ,uf

− 1) ∀ af , a′f ∈ Af , ∀ uf ∈ Ef
τ (3.20)

wj ≤ (1− δaf ,uf
)M + λdt(uf , ûfj) + ul(x, af ) ∀ af ∈ Af , ∀ uf ∈ Ef

τ,j, ∀j ∈ [k]

(3.21)∑
af∈Af

δaf ,uf
= 1, ∀ uf ∈ Ef

τ (3.22)

x ∈ ∆l, λ ≥ 0, w ∈ Rk (3.23)

δaf ,uf
∈ {0, 1} ∀ af ∈ Af , ∀ uf ∈ Ef

τ (3.24)

The first set of constraints (3.20) relate to picking the best response follower action for each

utility function (given a leader strategy x). The second set of constraints (3.21) is the wj constraint

in OPTl(θ). The third set of constraints (3.22) guarantees that the first constraint is only activated

once for each uf , i.e., for a given uf , exactly one follower action is assigned as best response. The

other constraints (3.23) and (3.24) specify the domain of δ (binary variables), x (simplex), λ and

w (real).

Using the optimal variables (xτ , δτ , λτ , wτ ) from solving OPTτ
l at iteration τ , we construct a

sub-problem that finds new utility functions. For each j ∈ [k], we define the following subproblem

which computes, over the infinitely-large set Ef , the utility function that most violates the second

constraint (3.21):

Γ(τ, j) = min
af∈Af

inf
uf∈BR−1(xτ ,af )

λτd
t(uf , ûfj) + ul(xτ , af ), (3.25)
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Let u(τ,j)
f be the utility function in Ef that gives us Γ(τ, j). Formally, let

âf := argmin
af∈Af

inf
uf∈BR−1(xτ ,af )

λτd
t(uf , ûfj) + ul(xτ , af ),

u
(τ,j)
f := arg inf

uf∈BR−1(xτ ,âf )

λτd
t(uf , ûfj) + ul(xτ , âf ).

Next, we then compute the most-violated of the k nominal points

Γ(τ) := min
j∈[k]
{Γ(τ, j)− wτj} (3.26)

Since we can enumerate over af , the only hard part of solving these subproblems is to resolve the

inner inf term, calculated over BR−1(x, af ), which may be difficult depending on the structure of

Ef . If we have an oracle that gives us the inner inf term for a fixed af , we can solve the subproblem

in m oracle calls.

Next we show that when Ef is described by linear constraints, the inner inf problem of (3.25)

can be solved via convex minimization as long as the distance metric d is nice (e.g. for the ℓ1 or ℓ2

distance). For a fixed af ∈ Af , the inner problem can be written as,

inf
uf

λτd
t(uf , ûfj) + ul(xτ , af ) (3.27)

s.t.
n∑

i=1

xτ,i

[
uf (ai, af )− uf (ai, a

′
f )

]
> 0 ∀a′f ∈ Bxτ (af ), (3.28)

n∑
i=1

xτ,i

[
uf (ai, af )− uf (ai, a

′
f )

]
≥ 0 ∀ a′f ∈ Af \Bxτ (af ), (3.29)

uf ∈ Ef ,

where Bx(a) := {a′f ∈ Af : ul(x, a
′
f ) > ul(x, a)}. Each element a′f of Bx(a) ⊂ Af (known

deterministically for a given x and a) has leader utility bigger than a. Because we wish to enforce

strong Stackelberg tie-breaking within the best response set, we need to ensure that any a′f ∈

Bxτ (af ) is not picked instead of af , and hence, the first constraint (3.28) picks an uf such that af
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is strictly a best response to a given leader strategy xτ compared to a′f ∈ Bxτ (af ). In practice,

strict inequalities are handled by industry-grade optimization solvers, typically by enforcing a very

small epsilon gap. The second constraint (3.29) allows for a′f /∈ Bxτ (af ) to also be best responses

along with af .

Thus for a nice distance metric d (such as ℓ1 or ℓ2 distance), the subproblem (3.27) is a convex

minimization problem with linear constraints.

We can now summarize the algorithm to solve (3.18). We start with each Ef
1,j to be just the

nominal functions ûfj , and at each iteration τ , solve the program (3.19) for OPTτ
l . Use the optimal

solution to solve the subproblem (3.25) for each af ∈ Af to add more utility functions to Ef
τ+1,j ,

until there is an iteration where none can be added (thus Γ(τ) ≥ 0). Thus Algorithm 7 can be used

Algorithm 7: Iterative MIP-solving algorithm to compute DRSSS
Input: Leader actions Al of size n, follower actions Af of size m, leader utility function ul,

Wasserstein radius θ, finitely supported nominal distribution ν on k points, distanc metric d
between follower utility functions.

Result: Optimal values (x∗, δ∗, λ∗, w∗) of DRSSS (3.18). In particular, x∗ is the optimal
distributionally-robust strategy for the leader to commit to.

1 τ ← 1 // iteration counter

2 Ef
τ,j ← {ûfj} ∀j ∈ [k] // initialize to contain only nominal utility

functions
3 Γ← −1 // initialize to start the loop
// As long as there is a new uf violating (3.21)

4 while Γ < 0 do
5 Solve the MIP (3.19) for OPTτ

l and obtain the solution (xτ , δτ , λτ , wτ )
6 for j = 1, . . . , k do
7 Compute solution Γ(τ, j) to the subproblem in (3.25) // Solve the subproblem

for each j
8 if Γ(τ, j) < wτj then

// if (3.21) can be violated

9 Ef
τ+1,j ← Ef

τ,j ∪ {u
(τ,j)
f } // add new uf to the set of utility

functions for the next iteration’s MIP

10 end
11 end
12 Update Γ← Γ(τ) as defined in (3.26) // most violated among all j
13 Update τ ← τ + 1

14 end
15 Output (x∗, δ∗, λ∗, w∗) = (xτ−1, δτ−1, λτ−1, wτ−1)
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to compute the optimal leader strategy x∗ and DRSSS.

3.5 Experiments

We now test the scalability of the MIP Algorithm 7 (henceforth referred to as DR MIP). We

do not consider any baselines in our general setting with an infinite set of utility functions. A

discussion of Wasserstein ambiguity sets with finite Ef , along with suitable baselines is provided

in Section 3.6.

We present the experimental performance based on a classic Stackelberg game from GAMUT

[113]. We vary different game parameters to investigate the scalability. All experiments are timed

out at 1000 seconds, and run times reported as a function of the parameter being varied. All ex-

periments were conducted using Gurobi 9 to solve MIPs and LPs (default internal parameters), on

a Macintosh with 2.4 GHz Quad-Core intel Core i5 processor. Run times are reported in seconds.

We consider a typical data-driven setting, where the nominal distribution ν is simply the discrete

uniform distribution with weight 1
k

on each of the k empirical observations. We set the Wasserstein

radius θ = 0.1, exponent t = 2 and a tight choice of M = 2 for the MIP (3.19).

Results on Inspection Game The Inspection Game [114] is a classic Stackelberg setting where

an inspector tries to deter an inspectee from cheating. In the Simple Inspection Game setting in

GAMUT, there is a set S of size 0 < s ≤ 8. The inspector (the leader) chooses a subset of S of

size at most p (0 < p ≤ s). Hence the size of their action space is n =
(
s
1

)
+ . . . +

(
s
p

)
. Similarly

the inspectee (the follower) chooses a subset of size at most q. Hence the size of their action space

is m =
(
s
1

)
+ . . .+

(
s
q

)
. If there is no intersection in the chosen sets, the leader receives a payoff−α

and the follower receives a payoff α for some α > 0. Otherwise both players get zero payoff. The

structure of Ef is helpful in tractably computing the subproblem (3.25) for the Inspection game.

In fact, we can express the objective of the inner subproblem (3.27) as a quadratic function of two
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Figure 3.1: Performance of the DR MIP based Algorithm 1 on the Simple Inspection Game, averaged over 10 simu-
lations with standard deviations displayed. (a) Runtime vs number of leader actions (n) with s = 7, q = 2 and k = 4.
(b) Runtime vs number of follower actions (m) with s = 7, p = 5 and k = 2. (c) Runtime vs number of nominal
follower functions (k) with s = 7, p = 2 and q = 2. (d) Runtime vs Wasserstein radius (θ) with s = 7, p = 2, q = 2
and k = 4.

variables for a ℓ2 distance metric such as Frobenius norm dF . Recall the definition,

dF (ufi , ufj) =

 ∑
a∈Al,a′∈Af

(ufi(a, a
′)− ufj(a, a

′))2

1/2

The utility function of the inspection game has only two variables, the payoff α when the sets

intersect and the payoff β when the sets do not intersect. For a given inspection game size, the

positions of α in any follower utility matrix uf is the same (resp. for β). And in the nm entries of

the matrix, a fixed number (say c) of the entries have value α, and the rest have value β. Therefore
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the distance function in the objective of (3.27) can be written as,

dF (uf , ûfj) =

 ∑
a∈Al,a′∈Af

(uf (a, a
′)− ûfj(a, a

′))2

1/2

=
(
c(αuf

− αûf
)2 + (nm− c)(βuf

− βûf
)2
)1/2

In our experiments on Inspection game, we choose t = 2, and hence the the inner subproblem

(3.27) is a quadratic program in two variables α and β denoting the payoffs of the Inspection

follower utility uf . The objective is simply

inf
α,β

{
λτc(α− αûf

)2 + λτ (nm− c)(β − βûf
)2
}
,

and we can write the linear constraints similarly as well.

In the following experiment we normalize the payoffs to lie in [0, 1] and set leader payoffs

to lie in {0, 0.5} instead of {−α, 0}. For k different nominal follower utility functions, we set

follower payoffs to be random variables that are uniformly distributed in [0.3, 0.6) instead of 0 and

uniformly distributed in [0.7, 1) instead of α.

In Figure 3.1a, for s = 7, q = 2, and k = 4, we vary the number of leader actions (by varying

the maximum size p of the leader set). Since the leader wishes for an intersection to happen,

picking a larger set is good. As p increases, the size of the leader action space increases and the

runtime of the DR MIP goes up. However for p = 5 and p = 6, larger sets are readily available

and the DR MIP converges faster though the leader action space is large.

In Figure 3.1b, for s = 7, p = 5, and k = 2, we vary the number of follower actions (by

varying the maximum size q of the follower set). Recall that the number of binary variables δ in

the iterative MIP scales with the size of follower set, and hence the number of follower actions

again has a moderate impact on scalability of the DR MIP.

In Figure 3.1c, for s = 7, p = q = 2, we vary the number of nominal utility functions which

has an exponential impact on the scalability of the DR MIP, thus having access to a a higher of
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empirical distributions slows down the algorithm. Recall again that the number of binary variables

is also dependent on k at each iteration of the algorithm.

In Figure 3.1d, for s = 7, p = 2, q = 2, and k = 4, we vary the Wasserstein radius θ from 0 to

2. There is little impact on the running time by considering an increase in this parameter.

3.6 Special case: Wasserstein ambiguity sets with a finite set of utility functions

So far in the chapter, we considered general Wasserstein ambiguity sets with infinitely many

follower utility functions. The iterative MIP-solving Algorithm 7 involves solving MIPs at every

iteration, with convergence dependent on the structure of the ambiguity set.

Let us analyze the case where the set of follower utility functions Ef = {uf1 , . . . , ufk} is finite,

and we show DRSSS can be computed with just a single MIP. We show the performance of the

MIP on another classical Stackelberg game called Cournot Duopoly, as well as on a synthetic data

set. Moreover, unlike the general case in Section 3.5, the finiteness of Ef allows us to construct

two baselines that we can compare the DRSSS MIP to- one baseline is an enumeration approach

and the other, a Bayesian Stackelberg MIP.

Since the support Ef of the distributions is finite, let the nominal distribution be written as

ν =
∑k

j=1 νjδufj
and any other distribution as µ =

∑k
i=1 µiδufi

, where δuf
denotes the unit

mass on uf . Since Ef is finite, the integral in the definition of Wasserstein metric simplifies to a

summation and can be written as,

W t
t (µ, ν) := min

γij≥0

{
k∑

i=1

k∑
j=1

dt(ufi , ufj)γij :
k∑

j=1

γij = µi ∀ i,
k∑

i=1

γij = νj ∀j

}
(3.30)

We also write the dual of the Wasserstein metric as,

W t
t (µ, ν) := max

(r,s)∈Rk×Rk

{
rTµ+ sTν : ri + sj ≤ dt(ufi , ufj) ∀ i, j

}
(3.31)

Applying Theorem 1 from Gao and Kleywegt [99], we get strong duality and the overall prob-

134



lem of computing a DRSSS is

OPTl = min
z∈Ak

f

x∈Xz

inf
λ≥0

{
λθt −

k∑
j=1

νjwj : wj ≤ λdt(ufi , ufj) + ul(x, zufi
) ∀i, j

}
, (3.32)

where the set Xz is defined as follows: if we fix any z ∈ Z , the set of feasible leader actions is

restricted to the set

Xz = {x ∈ ∆l : ufj(x, zj) ≥ ufj(x, af ) ∀ 1 ≤ j ≤ k, ∀ af ∈ Af}.

Notice in the program for OPTl that while z is from a more general space, once a z is fixed, we

have to pick x from the set Xz, therefore the objective is not easy to compute. To deal with the

constraints in Xz, we define boolean variables δaf ,uf
for each pair (af , uf ) and use these variables

to activate the constraints in the definition of Xz, as well as the constraints involving wj’s. For a

sufficiently large M ,

OPTl = min
x,y,λ,w

{
λθt −

k∑
j=1

νjwj

}
(3.33)

s.t. uf (x, af ) ≥ uf (x, a
′
f ) +M(δaf ,uf

− 1) ∀ af , a′f ∈ Af , ∀ uf ∈ Ef

wj ≤ (1− δaf ,uf
)M + λdt(uf , ufj) + ul(x, af ) ∀ af ∈ Af , ∀ uf ∈ Ef , ∀j ∈ [k]∑

af∈Af

δaf ,uf
= 1, ∀ uf ∈ Ef

x ∈ ∆l, λ ≥ 0, w ∈ Rk

δaf ,uf
∈ {0, 1} ∀ af ∈ Af , ∀ uf ∈ Ef

We obtain a MIP similar to iterative MIP (3.19) derived earlier, but due to the finiteness of Ef , we

can solve (3.33) directly to get the leader strategy and compute DRSSS. The MIP has n + k + 1

continuous variables, mk binary variables, and m2k + mk2 + k + 2 = O(mk(m + k)) linear

constraints.
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3.6.1 Baselines

We illustrate experiments on the case where Ef is finite on two different games- complement-

ing the Inspection Game considered in Section 3.5, we perform experiments on another classical

Stackelberg game in GAMUT called Cournot Duopoly, as well as the synthetic dataset of all pos-

sible random matrices in [0, 1], the most general ground set of the utility functions.

We compare the DR MIP (3.33) in both games on two baselines, explained below.

(a) the first baseline is an an enumeration approach where we enumerate all possible instances

of z in (3.32) and for each z, we solve the LP and take the best result; Define the LP given a z

(written as boolean variables δ),

OPT-LP(δ) = min
x,λ,w

{
λθt −

k∑
j=1

νjwj

}
(3.34)

s.t. uf (x, af ) ≥ uf (x, a
′
f ) +M(δaf ,uf

− 1) ∀ af , a′f ∈ Af , ∀ uf ∈ Ef

wj ≤ (1− δaf ,uf
)M + λdt(uf , ufj) + ul(x, af ) ∀ af ∈ Af , ∀ uf ∈ Ef , ∀j

x ∈ ∆l, λ ≥ 0, w ∈ Rk

If the set of all possible instances of δ is given by

Q =

{
δ ∈ {0, 1}m×k :

∑
i

δij = 1, ∀ j
}
,

then the enumeration approach is computing the best result among mk LPs,

OPTl = max
δ∈Q

OPT-LP(δ).

(b) the second baseline is the Bayesian Stackelberg MIP which is non-robust, where the ambi-
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guity set is a singleton set with only a nominal distribution.

OPT-Bayesian(ν) = max
x,δ,w

k∑
j=1

νjwj (3.35)

s.t. uf (x, af ) ≥ uf (x, a
′
f ) +M(δaf ,uf

− 1) ∀ af , a′f ∈ Af , ∀ uf ∈ Ef

wj ≤ (1− δaf ,uf
)M + ul(x, af ) ∀ af ∈ Af , ∀ uf ∈ Ef , ∀j∑

af∈Af

δaf ,uf
= 1, ∀ uf ∈ Ef

x ∈ ∆l, w ∈ Rk

δaf ,uf
∈ {0, 1} ∀ af ∈ Af , ∀ uf ∈ Ef .

We now test the scalability of the distributionally-robust MIP (3.33) and use the two baselines

(3.34) and (3.35). The nominal distribution ν is generated as a random probability vector, and the

rest of the experimental setup is the same as previous experiments.

3.6.2 Results on Cournot Duopoly Game

The Cournot duopoly [115] is a game that models two rival firms choosing the quantity of

competing goods to produce at the same time. We consider the Stackelberg equlibrium setting of

this game in GAMUT. Given an inverse demand function P (·) and increasing cost functions Ci for

player i, the utility for player i given player actions (y1, y2) is ui(y1, y2) = P (y1+y2)×yi−Ci(yi).

With the notation randint(a, b) to denote a random integer between a and b, in the following

experiment we set P (x) = 75 − randint(1, 10)x,C1(y) = randint(10, 40) + randint(10, 20)y

and C2(y) = randint(2, 20) + randint(1, 5)y to compute the utilities and normalize them to lie

in [0, 1]. The number of actions is equal for both players in the game (n = m).

In Figure 3.2a, for 4 possible follower utility functions, we can compute DRSSE within the

threshold for more than 50 leader and follower actions. The number of follower actions m is

crucial to the scalability, affecting the number of integer variables and size of the constraints of

the DR MIP (3.33). The enumeration approach hits the threshold very quickly (n < 20) and the
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Figure 3.2: Performance of the DR MIP (3.33) and baselines on the Cournot Duopoly game, averaged over 10
simulations with standard deviations displayed. (a) Runtime vs number of leader actions (n) and follower actions (m)
with k = 4. (b) Runtime vs number of follower utility functions (k) with n = m = 4. (c) Runtime vs Wasserstein
radius (θ) with n = m = 10 and k = 12.

Bayesian Stackelberg (3.35) runs very fast compared to DRSSE, showing the computational cost

of including robustness.

In Figure 3.2b, for 4 leader and follower actions, we can compute DRSSE within the threshold

for more than 60 follower utility functions. The enumeration approach hits the threshold very

quickly (n < 10) since we solve an exponential mk LPs (one for each z). The Bayesian Stackelberg

(3.35) runs very fast compared to DRSSE here as well. The number of follower utilities has a

moderate impact on scalability of the DR MIP (3.33).

In Figure 3.2c, for 10 leader and follower actions, and 10 follower utilities, we vary the Wasser-

stein radius θ from 0 to 2. The DRSSE problem gets easier to solve with an increase in this param-

eter, as some small set of utility functions dominate eventually.
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3.6.3 Results on Synthetic Data

We present the experimental performance based on a synthetic data set for the utilities: the

leader utility and all follower utilities are iid random matrices in [0, 1].

In Figure 3.3a, for m = 12 and k = 4, we can compute DRSSE within a minute for more than

900 leader actions. Unsurprisingly, the number of leader actions n is not crucial to the scalability,

since these are reflected in continuous variables and not impacting the size of the constraints.

The enumeration approach hits the threshold almost immediately due to the size of action spaces

and hence is not plotted. The Bayesian Stackelberg MIP (3.35) runs fast (less than 10 seconds)

compared to DRSSE illustrating the computational cost of including robustness.

In Figure 3.3b, for n = 50, and k = 4, we can compute DRSSE within the threshold for more

than 50 follower actions. The enumeration approach hits the threshold very quickly (m < 10) since

we solve an exponential mk LPs (one for each z). The Bayesian Stackelberg MIP runs very fast

compared to DRSSE here as well. The number of follower actions again has a moderate impact on

scalability of the DR MIP (3.33).

In Figure 3.3c, for n = 8 and k = 4, we can compute DRSSE within the threshold for more than

30 follower utility functions. The enumeration approach hits the threshold very quickly (k < 8)

and the Bayesian Stackelberg MIP runs very fast compared to DRSSE here as well. The number of

follower utility functions has an exponential impact on the scalability of the DR MIP (3.33), with

k impacting the size of integer variables and integer constraints.

In Figure 3.3d, for n = m = 10, and k = 12, we vary the Wasserstein radius θ from 0 to 2.

The DRSSE problem gets easier to solve with an increase in this parameter, similar to the Cournot

game, as some small set of utility functions dominate eventually.

3.7 Conclusion

In this work, we initiated the study of computing optimally distributionally-robust strategies

to commit to. We formalized the notion of a distributionally-robust strong Stackelberg solution
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Figure 3.3: Performance of the DR MIP (3.33) and baselines on the synthetic data set, averaged over 10 simulations
with standard deviations displayed. (a) Runtime vs number of leader actions (n) with m = 12 and k = 4. (b) Runtime
vs number of follower actions (m) with n = 50 and k = 4. (c) Runtime vs number of follower functions (k) with
n = 8 and k = 4. (d) Runtime vs Wasserstein radius (θ) with n = m = 10 and k = 12.

for the leader, and showed that these are guaranteed to exist in a wide number of settings. We

presented two algorithms for computing a DRSSE using mathematical programs for any ambiguity

set. One algorithm has only continuous variables and the other has mixed integer variables, and the

constraints are linear. When the uncertainty is represented by Wasserstein uncertainty, we showed

that the above programs can be solved with an incremental mixed-integer linear program. We

performed computational experiments on the MIP in terms of different parameters on a classical

Stackelberg game where the structure of the set of utility functions can be exploited to compute

subproblem tractably. In the Inspection game, the MIP based algorithm scaled well for medium-

sized games. We found that the runtime impact of the size of the leader action set is low, the

number of nominal utility functions has high (exponential) impact, and the size of the follower
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action space has moderate impact.

One avenue for future work is to study ambiguity sets that are described by moment uncertainty

conditions. These type of assumptions lead to conic quadratic or semi-definite programs in many

settings [99]. For DRSSE, it would be interesting to see if it is possible to derive a mixed-integer

conic program based on these results. Another promising avenue would be to take our general

results on distributionally-robust Stackelberg equilibria and interpret them for popular applications

of Stackelberg games like security games, where one could potentially exploit problem structure

in order to get more scalable algorithms.
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Conclusion

This dissertation focuses on two results in passenger scheduling for transportation systems,

albeit with distinct flavors, and introduces a new equilibrium concept to handle uncertainty in a

type of game called Stackelberg game. At a high level, our contributions are threefold across the

chapters: (i) building a mathematical model to address an optimization problem with real-world

applications, when there is uncertainty or unforeseen disruptions, (ii) developing novel algorithms

new to the field, either mathematical programs or heuristics, substantiating with theory wherever

applicable, and, (iii) Experimentally test our proposed algorithms either by constructing a simula-

tion model or on medium to large sized data sets reflecting the real-world applications.

In Chapter 1, we consider a passenger scheduling problem in vertical transportation- elevator

systems in high-rise buildings where passenger demand far exceeds the capacity of the system. We

propose new interventions that group passengers together implicitly or explicitly according to their

destinations and provide a model that can be applied to generic buildings, and provide theoretical

support from queuing theory.

In Chapter 2, we consider a passenger scheduling problem in airline networks- recovering

schedules affected by unforeseen or uncertain disruptions. We propose two approaches to recon-

struct new schedules, that are high-quality solutions (in terms of minimizing costs) and fast (in

order of minutes), and experimentally illustrate their performance on realistic airline network data.

In Chapter 3, we consider a type of game with applications in airport security, wildlife poach-

ing, etc. called Stackelberg games, where players do not play simultaneously. One player (leader)

has to commit to a strategy first, without knowing the payoff functions of the other player (follower)

142



who can observe and best respond to the leader’s strategy. We initiate the study of distributionally-

robust models, providing existence results in general settings, as well as develop tractable algo-

rithms in the case where there could be an infinite number of possible follower utilities, and the

uncertainty comes from a type of set defined using Wasserstein distances. Experiments on classical

Stackelberg games show tractability on medium-sized games.
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