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ABSTRACT 

Title of Thesis : Two Dimensional Diffusional Model 
for Leakage of Macromolecules in 
The Interstitial Space 

Suthiluk Dumrongsiri, Master of Science, 1985 

Thesis directed by : Dr. David S. Kristol 
Dr. Arthur B. Ritter 

Two dimensional diffusion of macromolecules through the 

interstitial in the hamster cheek pouch was studied with 

intravital fluorescence microscopy. After topical 

application of Bradykinin, the movement of Fluorescein 

isothiocyanate (FITC)-labeled dextrans of average molecular 

weight 150,000 daltons (Dextran 150) was recorded on 

videotape which latter was played back frame-by-frame for 

analysis by digital image processing. Leakage of 

macromolecules in response to topical application of 

Bradykinin occurs at discrete leakage site in post 

caplillary venules of 15-25 um diameter, rather than in the 

capillary themselves. A mathematical model of two 

dimensional convection plus diffusion was used to simulate 

the macromolecule transport. The model simulations were 

compared with the experimental data to estimate interstitial 

diffusion coefficients and velocities. The model which best 

fit the experimental data consisted of four discrete leakage 

points at the origin. The additional of a small 

interstitial convective component in both the x and y 

directions gave a better fit of data than did a pure 



diffusion model. The apparent diffusion coefficient of 

FITC-dextran 150 was estimated to be 1.0x10
-7 

cm
2
/sec. The 

interstitial velocities on the X- and Y- axes were both the 

same and estimetal as 1.0x10
-4 

cm/sec for the best fit in 

the interstitial diffusion space of the hamster cheek pouch. 
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INTRODUCTION 

Transmural exchange of solutes between the blood and 

tissue as well as interstitial transport of these solutes 

are important factors in determining the availability of 

nutrients for ultilization by cells. The most important 

physical parameters contributing to solute movement are the 

transmural hydrostatic pressure gradient and the 

concentration gradients across the vessel wall and within 

the tissue. In a biological system, this process is further 

complicated both by the structural and functional 

characteristics of the blood-tissue barrier, and by the 

physicochemical properties of the material concerned. 

Intravital microscopy employing tracer techniques and 

topical applications of vasoactive agents such as bradykinin 

and histamine have been used to investigate macromolecular 

transport in the microcirculations of the hamster cheek 

pouch and rat mesentery. The major conclusions which are 

important to this study are (ref.5) : 

(1). leakage of macromolecules occurs primarily at discrete 

leakage sites on post capillary venules of 15-25 um 

diameter, rather than at true capillaries 

(2). leakage is transient and stops within 15 minutes 

(3). the same leakage sites respond to repeat doses 

(4). there is an increase in the number of sites with 

increasing dose. 

1 
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In this thesis experimental macromolecular leakage data 

obtained in the hamster cheek pouch microcirculation is 

compared with the solution of a two-dimensional diffusional 

model using digital video image analysis techniques. The 

model allows estimation of the interstitial diffusion 

coefficient of FITC-dextran 150 and the values of 

interstitial velocities along the x- and y-axes also. 

Estimates of these parameters in response to challenges by 

vasoactive substances such as Bradykinin and Platelet 

Activating Factor (PAF), contribute to better understanding 

of the mechanisms responsible for macromolecular transport 

and microvascular wall repair during inflammatory 

conditions. 



EXPERIMENTAL PROCEDURES 

Tracer and Animal Preparation : 

Male, Syrian hamsters weighing between 80 and 120 g 

were anesthetized with sodium pentobarbital (60 mg/kg ). 

A heating pad controlled by a thermistor maintained body 

temperature at 37°C. A tracheal cannula was inserted. The 

femoral vein was cannulated for the administration of 

fluorochrome and supplementary doses of anaesthesia 

(30 mg/kg ). 

The hamster cheek pouch was prepared for direct 

intravital microscopic observation in a manner similar to 

that previously described by Duling (1973), and Svensjo et 

al. (1978) (ref.5). The hamster was positioned on a Lucite 

board provided with a circular viewing pedestal (1 cm 

diameter) surrounded by a well filled with silicone rubber. 

The pouch was everted, fashioned into a single layer, and 

cleared of loose connective tissue. Five or six pins 

secured the pouch to the silicone rubber. The preparation 

was subsequently placed on a microscope stage. 

During and following eversion of the cheek pouch, a 

bicarbonate buffer solution continually suffused the tissue. 

Suffusion was only interrupted for topical application of 

bradykinin. The millimolar composition of the buffer 

solution was 131.9 NaCl, 4.7 KCl, 2.0 CaCl2, 1.2 MoSo4'  and c'  

18.0 NaHCO3. The suffusion solution was maintained at 35°C. 

3 
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Fluorescein isothiocyanate (FITC)-dextran 150 (150,000 

MW, Pharmacia Fine Chemicals, Uppsala, Sweden) was used to 

assay microvascular permeability to macromolecules. The 

FITC-dextran was prepared as a 5% solution in bicarbonate 

buffer and administered at a dose of 100 mg/kg. 

In the first experiment Bradykinin triacetate (Sigma 

Chemical Co.) was dissolved in bicarbonate buffer and 

applied topically to the microcirculation of the cheek pouch 

for a period of 5 min. A concentration of 1.6 x 10
-7 

M was 

used. 

In the second experiment, Platelet Activating Factor 

(PAF) (Sigma Company) was dissolved in bicarbonate buffer 

and applied topically to the microcirculation of the cheek 

pouch for a period of 3 min. A concentration of 1x10
-6 

M 

was used. 

After the application time (5 min, or 3 min), the 

Bradykinin and PAF solutions were removed with a syringe and 

the pouch was again suffused with bicarbonate buffer. The 

zero time in these experiments corresponds to the time in 

which the active agents were removed, since no microscopic 

observations are possible during application and removal. 



Optics and Instrumentation 

Observations were made with an Olympus BH microscope 

equipped with both bright-field transillumination and epi-

illumination using 6.3x, 10x, 20x, and 32x long-working 

distance objectives with 10x occulars. A Ploem vertical 

illumination system was employed for fluorescent microscopy. 

Epi-illumination was provided by a 100-W mercury DC lamp 

source in conjunction with an Olympus FITC exciter filter 

(488 nm), an Olympus dichroic mirror (DM-500 and 0-515), and 

an Olympus )-515 barrier filter. The recording system was 

comprised of a Cohu 4410 SIT-TV camera coupled to an RCA TV 

monitor and a V02800 Sony video recorder. 
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PICTURE SELECTION AND IMAGE PROCESSING: 

A real time playback of the video record of each 

experiment permitted the selection of frames for detailed 

analysis. Three frames were selected from the first video 

tape, then played back on the videotape recorder in single 

frame mode to get the smaller subregions of 150 by 150 

pixels that were later transcribed into digital form from 

each frame. Because those three subregions were subtracted 

from each other, they had to be positioned exactly since the 

software performed a pixel—by—pixel subtraction. The 

position of a common point which appeared in each subregion 

was determined exactly. This is shown in Fig.1.0(1). The 

spot in the middle of the vessel above the area of interest 

was used as a common focal point; the 150 by 150 areas were 

all expanded from that spot. The first 150 by 150 subregion 

shown in Fig.1.0(1a) represents the control—time (before 

application of Bradykinin or PAF) picture of the area of 

interest. And in Fig.1.0(1b,c) are the pictures of that 

area of interest at time 53 and 105 second after removal of 

the bradykinin solution. The computer mapping showed in 

Fig.1.1 is the result of the subtraction between (a) and (b) 

and represents the graycolor intensity of the FITC as a 

result of diffusion which occurred during 53 second. 

Similarly, Fig.1.2 is the result of subtraction between (a) 

and (c) ; the intensity profile due to macromolecular 

diffusion for 105 seconds. 
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The same procedure was applied to the second videotape 

get two subregions of 100 by 100 pixels ,Fig.1.0(2a,b), both 

subregions were digitized and then subtracted each other 

giving the intensity profile shown in Fig.1.3. This 

represents the distribution of graycolor intensity in the 

interstitial space after 31 second of the diffusion of FITC—

dextran 150. 



Fig.1.0.1. Point (a) was selected to be the common 
point of the subregion selected from the first 
videotape. After the address of (a) was determined, 
the 150x150 area was expanded from point (a) as 
shown by the small arrows. 

10 
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Fig.1.0.1(a). The area of 

interest at control time 
(before application of PAF). 

Fig.1.0.1(b). The area of 
interest at time 53 seconds 
after removal of PAF. 

Fig.1.0.1(c). The area of 
interest at time 105 seconds 
after removal of PAF. 



Fig.1.0.2 The subregion which was selected and 

its common spot is shown. 

12 
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Fig.1.0.2(a). The area of 

interest at control time. 

Fig.1.0.2(b). The area of 
interest at time 31 

seconds after removal of 
Bradykinin. 
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The digitization of each video frame is accomplished in 

real time by a video image digitizer (Quantex Corp.). The 

reading and writing of the graycolor arrays to and from the 

digitizer memory as well as the subtraction processing were 

done by the software incorporated into a computer program 

called "IMAGE". 

PROGRAM IMAGE : 

Fig.1.4 shows the blockdiagram of program IMAGE. The 

subregion selected from the frame of videotape was digitized 

into arrays of picture elements (called "pixels") and stored 

in a file in digital form on a hard disk. This digital 

datafile could be converted to analog form and displayed on 

a TV monitor through the digitizer memory. The software in 

program IMAGE directed the digital processing software and 

I/O operations. Once the data for each subregion was stored 

in digital form the subtraction processing could be 

performed by the software in IMAGE. 
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PROGRAM SAGID : 

To display the digital data as a hard copy; digital 

plotting software in a computer program called "SAGID". The 

software in SAGID also permitted expansion of the graylevel 

values for each picture element to cover the full available 

grayscale range from 0 to 255 to allow better contrast for 

display. 

Since the digital plotter only had four pens (hence only 

four distinct colors) rather than 256 grayscale ranges, the 

software in SAGID provided a datafile for the digital 

plotter. The results of subtraction processing were 

separated into 4 groups of arrays of picture element 

depending on gray level. The graycolor range corresponding 

to each of the four colors was selected by the user. 

Results shown in Fig.1.1,1.2,1.3. In those three mappings 

background and vessel features have been subtracted out and 

appear as black (graycolor = 0), and leakage pattern of 

labeled molecules outside the vessel are represented by red 

green and blue colors. Corresponding to increasing 

grayscale intensity. 

Since the color mapping will not be able to produce a good 
result by a general standard black-and-white photocopy, 
those four colors; black,red,green,blue; have to be 
represented by four distinct graylevel from light to dark, 
respectively. 
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From experiment number one, the output after running 

program SAGID gave four groups of graycolors which were 

plotted as : 

. 
range of gray level color 

1 0-30 black 

2 31-49 red 

3 50-65 green 

4 66-130 blue 

And from the second experiment, the output of program 

SAGID was four graycolor ranges corresponding to the 

following plotter pen colors : 

---___ 

range of gray level color 

1 0-45 black 

2 46-90 red 

3 91-135 green 

4 136-181 blue 
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Other software was developed for converting the gray 

level datafile into concentration of FITC-dextran at each 

location. A program called "SCONV" performed this task; its 

blockdiagram and Fortran listing are shown in Fig.3e and in 

Appendix A, respectively. Use of this program will be 

discussed in the section on results. 
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I=1 C:3 :AL EMI represent black, red, green and blue colors. 

Fig.1.1. Grayscale distribution around leaking 30 urn 
venule after 53 second of leakage. Leakage of 
macromolecules caused by topical application of 10

5 
 M 

5radykinin for 5 minutes. 
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= RE8E4 EMIR 
0-30 31-49 50-65 66-130 

Fig.1.2. Grayscale distribution around leaking 30 um 
venule after 105 second of leakage. Control grayscale 
subtracted leakage of macromolecules caused by topical 
application of 10.5 11 Bradykinin for 5 minutes. 
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Igigi represent black,red,green and blue colors. 

Fig.1.3. Grayscale distribution around leaking 30 urn 
venule after topical application of 10 5  M Bradykinin for 
5 minutes. Leakage pattern with control subtrscted 
31 second after removal of Bradykinin. 
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MATHEMATICAL MODEL 

Extravasation of FITC-dextran from the leakage site 

into the interstitial space can be mathematically described 

by the change of mass concentration of FITC-dextran with 

respect to time at a fixed point in the X-Y plane, the 

change resulting from transport of FITC-dextran by 

convection and diffusion. With the assumption of constant 

mass density, constant diffusion coefficient,D, and no 

chemical reaction occurring, this system can be represented 

by the two-dimensional diffusion equation 

ac/at (vx  ac/ex v 9C/9y) = D(a
2
C/gx

2 
+ a

2
C/037

2) + R 

(2.1) 

where x,y are the coordinates perpendicular and 

parallel to the blood vessel, respectively, t is time, D is 

the diffusion coefficient in the interstitial space, C is 

the concentration of FITC-dextran, and R is the reaction 

rate which equals zero for this system. 

To replace the second order spatial derivatives by 

their finite difference representation, we first expand 

C(1+1,j) and C(i-1,j) 
in a Taylor's series around the point 

C
(i+1,i) 

C
(1,D 

+ Sx(aC/9x)i~J  + 1/2(ax)
2(.92C/ax2) 

— — 

(2.2) 



1,j + 1/2(Sx)2(a2C/Ox 
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4*-  — 

(2.3) 

Combining eq.(2.2) and (2.3) and solving for (02C/Ox 

(a2c/ax2)i,j =( 

(a2 C/ay2
1  ). • ,3  ,J  

. 
0- +1) ,J 

-2C 
(i, 

+ C (i_1
,
j) )/(&x)2 +0($x)2 

(2.4) 

(1 
- 2C, .) + C(i, 

 j_1))/(by)2 
+0(Sy)2 

i+ 

(C . 

(2.5) 

For a very small time step , t, we can represent the 

time derivative, using Eulers method, as : 

iaC /Bt ( C(i,j,t+1) i,j,t) )
/at (2.6) 

substituting eq.(2.4),(2.5),(2.6) in eq.(2.1) gives : 

(Ci,j,t+l-Ci i-1,j,t2 -2 )/4sx) ) 

+(Ci,j+1,t 
- 2C

1
. +C. 
,j,t 1,j-1,t)/Y)

2
) 

- Ni
x
( -1,j,t

)/ax) ) - 

(Ci
,
j4.1,t 

)+R 

(2.7) 

Then 

(C. 1,j,t+1 
- C. )/at = a11 

(C.+1,j 
Ci_i

,
j
,t
) + a5Ci

,
j
,t 

 
1,j,t ,t 

+a3(C. 
1,j+1,t bl(Ci,j,t 

-Ci+1,j,t) + b2(Ci,
j
,t 
 - Ci

,
j+1

,t
) 

(2.8) 
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where C. . = concentration of FITC-dextran at 
1,J, 

point (x,y) at time t. 

al = (D/(ax)
2
) 

a2 = 2a1 

a3 = (D/(6y)2) 

a4 = 2a3 

a5 = -(a2 + a3  

b 1 = v x
/dx 

b
2 
= vyAdy (2.9) 

The values in eq.(2.9) are called the "coefficients of 

the model"; since the solution of model depends on the 

particular values of these coefficients. 

The boundary and initial conditions are': 

C(i,j,0) = 0 for i and j / 0 

C(0,0,0) = Co(t) 

C(00,0O, 0) = 0 

aC(i,b,t)/ay = 0 

aC(a,j,t)/ax = 0 

8C(0,j,t)/8x = 0 

aC(i3O,t)/ay = 0 

both a and b are distances that are far enough away so that 

there are no effects from the solution in the region of 

interest. 
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COMPUTER MODEL 

The mathematical model estimates the change in each 

grid point with time from the concentration of the 

surrounding points as : 

C(i,j,t+1) = C(i,j,t) + At(al(C(i-1,j,t)+C(i+1,j,t))+ 

a5C(i,j,t) + a3(C(i,j-1,t)+C(i,j+1,t))+ 

b
1
(C(i,j,t)-C(i+1,j,t)) + b

2
(C(i,j,t)- 

C(i,j+1,t)) + b3 (3.1) 

The application of the forth-order Runge Kutta method 

changes eq.(3.1) to : 

C(i,j,t+1) = C(i,j,t) + h/6(ki + 2Ak2 + 2Bk3 +k4) (3.2) 

where h = 4t = time step change 

k
1 
= f(dt,C(i,j,t) ) 

= al(C(i-1,j,t)+C(i+1,j,t)) + a5C(i,j,t) + 

a3(C(i,j-1,t)+C(i,j+1,t)) + bi(C(1-1,j,t)-

C(i+1,j,t)) +b2(C(i,j-1,t)-C(i,j+1,t))+ b3 

k2 = f(6t+h/2, C(i,j,t) + hk1/2 ) 

k
3 
= f(4t+h/2, C(i,j,t) + (-1/2 + 1/42)hk +Ahk) 

k
4 

= f(4t+h/2, C(i,j,t) - 1/-flhk2 + Bhk3) 

A = (1-1//2) , B = (1-07.n) 
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The error of the forth-order Runge Kutta method is 

approximately : et 
= Kh

5 
;where, e

t 
is the local 

truncation error and K usually depends upon the function and 

its higher-order partial derivative in a complicated way 

(ref.2). 

Now the solution can be programed for calculation by 

the computer with stability insured by picking the time 

step, h, such that : 

h < ( Ax
2 
+ 4y 2 )/ 2D 

(stability requires that D(1/ x2+1/ y2 )At 1/2). 

From eq.(3.2) the flow diagram can be separated into three 

parts (Fig.3a,3b,3c,3d). Each part was executed by a 

computer program as shown in Appendix A. The functions of 

each of the programs were as follows : The program "MAIN" 

calculates C(i,j,t+1), the final results; the program called 

"COEFF" calculats the model coefficients, a.,b.3; the program 

called "BOU" defines the initial and boundary conditions. 

The program called "SCONV" (Fig.3e) converts gray level data 

to concentration of FITC-dextran by assigning the measured 

concentration of FITC-dextran in the plasma phase equal to 

the maximum gray level (255). 



ICP=(MPON+2)/2 

/inter  output filename 
Isf 

N=N+1 
TN=DT*K 

Want to do another 
simulation ? 

(STOP) 

K=1 L=1 TN=0,N=0 

Write TN,C(I,J); 
2<I<MPON,2<J<MPON 

Fig.38. Flow-diagram of the"MAIN" program. 
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(START)  

/
Input the values of 
DT,NEND,LPT.  

Open "COEFF" read 
A(1)-A(5),B(1)-B(3) 
Open "BOU" read 
CB,MPON,IP,ICO 
C(I,J);1<I<MPON+1 

l<J<MPON+1  

For 2<I<MPON, 
2<J<MPON 

C(I J)=Y(I J) 



Set I=01 
J=0 L=0  

I=I 

C(1.IC)=CB 
C(2,IC)=CB L=L+1 

3 C(1,ICP)=CB IC=ICP+L 
IL=ICP-L 

C(1,IL)=CB 
C(2,IL)=CB C(2,ICP)=CB 

0111/11111/111111•1011114 

J=J+1 

ICO= 

N 

Is 
ICO=2  L=L+1 Is 

L=IP 

C(1,L)=CB 
C(2,L)=CB 

N 

Set boundary condition 
from eq.3.2  

28 

Fig.56. Flow-diagram of subroutine"RUNGE" of the main 
program. 

(START) 

1  
Calculate coefficients of 
Runge-Kutta ;AR,BR,CR,DR 

from eq.3.1  



Calculate K1,DK1, 
Z(1),Z(2),Z(3),Z(4) 
Z(5) from eq.3.3 

Calculate K2,DK2, 
Z(1),Z(2),Z(3),Z(4) 
Z(5) from eq.3.4 

Calculate K3,DK3, 
Z(1),Z(2),Z(3),Z(4) 
Z(5) from eq.3.5 
Calculate K4 
from eq.3.6 

Calculate Y(I,J) 
from eq.3.7 

Fig:51% Continue flow-diagram of the subroutine "RUNGE". 
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L=L+1 
IC=ICP+L 
IL=ICP-L 

   

C(1,IC)=CB 
C(2,IC)=CB 
C(1,IL)=CB 
C(2,IL)=CB 

IIC(1 ICP)=CB1_, 

   

MI/IIMI111111111118411 

   

                   

                   

   

L=L+1 

             

                

                   

                   

                    

N 

  

C(1,L)=CB 
C(2,L)=CB 

            

    

I-
L=IP 

               

                   

   

RETURN 
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The Equations Used in Subroutine "RUNGE" 

AR = 1 - 1/(SQRT(2)) 

BR = 1 + 1/(SQRT(2)) 

CR = -0.5 + 1/(SQRT(2)) 

DR = -1/(SQRT(2)) (3.1) 

C(MPON+1,J) = C(MPON,J) 

C(I,MPON+1) = C(I,MPON) (3.2) 

K1 = A(1)*(C(I-1,J)+C(I+1,J))+A(5)*C(I,J)+A(3) 

*(C(I,J-1)+C(I,J+1))+B(1)*(C(I,J)-C(I+1,J))+B(2) 

*(C(I,J-1)-C(I,J+1))+B 

DK1 = (DT*K1)/2 

Z(1) = C(I-1,J) + DK1 

Z(2) = C(I+1,J) + DK1 

Z(3) = C(I,J) + DK1 

Z(4) = C(I,J-1) + DK1 

Z(5) = C(I,J+1) + DK1 

(3) 

(3.3) 

K2 = A(1)*(Z(1)+Z(2))+A(5)*Z(3)+A(3)*(Z(4)+Z(5))+ 

B(1)*(Z(3)-Z(2))+B(2)*(Z(3)-Z(5))+B(3) 

DK2 = DT*(CR*Kl+AR*K2) 

Z(1)  = C(I-1,J) + DK2 

Z(2)  = C(I+1,J) + DK2 

Z(3)  = C(I,J) + DK2 

Z(4)  = C(I,J-1) + DK2 

Z(5)  = C(I,J+1) + DK2 (3.4) 
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K3 = A(1)*(Z(1)+Z(2))+A(5)*Z(3)+A(5)*(Z(4)+Z(5))+ 

B(1)*(Z(3)-Z(2))+B(2)*(Z(3)-Z(5))+B(3) 

DK3 = DT*(DR*K2+BR*K3) 

Z(1) = C(I-1,J) + DK3 

Z(2) = C(I+1,J) + DK3 

Z(3) = C(I,J) + DK3 

Z(4) = C(I,J-1) + DK3 

Z(5) = C(I,J+1) + DK3 (3.5) 

K4 = A(1)*(Z(1)+Z(2))+A(5)*Z(3)+A(3)*(Z(4)+Z(5))+ 

B(1)*(Z(3)-Z(2))+B(2)*(Z(3)-Z(5))+B(3) (3.6) 

Y(I,J) = C(I,J)+(DT/6)*(K1+(2*AR*K2)+(2*BR*K3)+K4) (3.7) 
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Table of Variables Meaning 

      

      

Variables 

 

Meaning 

  

    

A(1) to A(5) 

AR,BR,CR,DR 

B(1) to B(3) 

C(I,J) 

CB 

CINI 

CONC 

 

The model coefficients calculated from 
eq.(2.9). 

The coefficients of Runge-Kutta eq.(3.1) 

The model coefficients calculated from 
eq.(2.9). 

The concentration of FITC-dextran at each 
grid point. 

The initial concentration at a leakage 
point. 

The measured concentration of FITC-Dextran 
in the plasma phase; input in SCONV . 

The calculated concentration;output of 
SCONV. 

 

D 

 

The diffusion coefficient. 

  

DT 

DX, DY 

DK1,DK2,DK3, 
DK4,Z(1) to 
Z(5) 

ICO 

IP 

 

The time step ( h in Runge-Kutta eq. ) 

The distance between two points on i-,j-
axis. 

The parameters used in Runge-Kutta eq.(3.3), 
(3.4), and (3.5). 

Represent type of theoritical model. 

The number of leakage points. 
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Variables Meaning 

LPT The time step point for printing output. 

LX,LY The last values of I and J read from gray-
level datafile ( used in SCONV program ). 

MPON The total number of points on I-,J-axis. 

NEND The number of iterations in MAIN . 

R The reaction rate. 

VX,VY Interstitial velocities on I-,J-axis. 

Y Transfer parameters for calculated 
concentration from subroutine RUNGE. 



Flow-diagram of the "COEFF" program. 

(START) 

/1 

Input the values 
of D,Dx,Dy, 

Vx,Vy,R  

• 
A(1)=D/(Dx**2) 
A(2)=2*A(1) 
A(3)=D/(Dy**2) 
A(4)=2*A(3) 
A(5)=-(A(2)+A(4)) 
B(1)=Vx/Dx 
B(2)=Vy/Dy 
B(3)=R 

/

Input the 
output 

filename  

Write A(1) to A(5) 
B(1) to B(3) 

into outputfile. 

( STOP ) 
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ICP=(MPON+2)/2 
For 1=1,2 .4IP=(IP-1)/2 L=1 
C(I J)=CB 

IC=ICP+L 
IL=ICP-L 

For 1=1,2 
C(I,IC)=CB 
C(I,IL)=CB 

L=L+1 

IC0=')  IP=IP+1 

Every point on 
line I=1, 
C(1,J)=CB 
for 1<J<MPON+1. 

r 
For 1=1,2 
C(I,J)=CB 
and 1<J<MPON+1 

A  

Write CB,MPON,IP 
C(I,J);1<I<MPON 
and 1<J<MPON 

i( 

Read output  
filename. 

119 

Fig.. Flow-diagram of the "BOU" program 

(START) 

For 1<I<MPON+1 
/Input CB,IP,MPON 1<J<MPON+1 

C(I,J)=0.0 

V Choose 1,2,or 3 
/Read ICO for middle,corner, 4E--k 

or line-leakage model. 

35 

( STOP) 



4 

=L+1 

1 
J=J+1 

J=0 

/
Read J,I,GRAY pICONC(J)=(GRAY*CINI)/255 
from datafile. 

 

Write J,I,CONC(J) in 
outputfile. 

N 

36 

Fig.3e. Flow-diagram of the "SCONV" program, that is used to 
convert gray level to concentration of FITC-dextran. 

(START)  

L=0,3=61 

4 Input the last (I,J) 

/

in  gray-level datafile, 
initial concentration,the 

atafile,and output filename. 

Read LX,LY,CINI,NDATA(10),NENT(10) 

(STOP) 
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The Model Solutions : 

There are two major cases which were studied : first, 

the variation of C(i,j,t) as the position of the leakage 

points changed; second, the same initial and boundary 

conditions but the parameters D,Vx, and Vy were varied over 

a range of values. 

1. After the computer model had been set up, three 

different boundary conditions were evaluated. The three 

models were : 

1.1. MODEL I: A leakage point in the middle of the 

spatial domain boundary conditions as shown in Fig.3.1. The 

parameter values used in this simulation were as follows : 

h = 0.05 sec D = 0.01 um
2
/sec 

= ay = 0.1 um Vx = Vy = 0 

This is the case of pure diffusion from a point source 

with no convection in the interstitial space. 

The solution and the theoretical curves are shown in 

Table 3.1 and in Fig.3.2 . 

1.2. MODEL II: A leakage point in the corner of the 

spatial domain with initial and boundary conditions shown in 

Fig.3.3 using the same parameters as in model I. The 

Solution and the theoretical curves are shown in Table 3.2 

and in Fig.3.4 . 



1.3. MODEL III: The boundary condition for this model 

consisted of the diffusion from leakage points lining the 

entire y-axis as shown in Fig.3.5. The same parameters as 

were used in the first and second models, generated the 

solution in Table 3.3 and the corresponding theoretical 

curves in Fig.3.6. 
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Model I 
Middle Leakage Point 

4 

20 

4  

0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 

19 

18 
17 

18 

15 

14 

13 

12 
11 

10 

9 

8 
7 

a 
5 

4. 

3 

2 
1 

0 

ad 4 0 .......  
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X—axis 1-* 

Fig.3.1. The middle-leakage-point model with' 

initial conditiona: C(1,11,0) = C(2,11,0) = C. (0.86mg/mi) 

C(i,j,0) = 0 ; for 34i420 , 3‘i420 

boundary conditions : C(1,j,0) = 0 , C(2,j,0) = 0 , 
for 14j426; except j=11 

at anytime t : SC(i,j,t)tsx = 0 , for i>20 
6C(i,j,t)/ay = 0, for j>20. 



TABLE 3.1 

A summary of the simulation results for the middle 

leakage point model which were used to plot the graph in 

Fig.3.2 . 

Distance 

(um) 

Concentration o'n9hril) 

1.0sec 2.0sec 3.0sec 4.0sec 

0.0 0.86 0.86 0.86 0.86 

10.0 0.42 0.53 0.59 0.63 

20.0 0.15 0.28 0.36 0.42 

30.0 0.04 0.05 0.09 0.25 

40.0 0.01 0.05 0.09 0.14 

50.0 0.00 0.01 0.04 0.07 
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Theoriticcl curves 

The middle leakage point model 

Time step=0.05 sec 

Diffusion coefficient=0.01 zarHsea 

Vx=Vy=0,11><=4=0.1um 

Four lines represented 

at time 1.0-4.0 sec 

• • 
• . • • • . • • • • 

• . 
• 

• ••• 

• .... - . • 
• ••• • ----- ti 

0 

E 

cl
E 
)

0 

0 10 20 30 40 50 60 

DISTANCE(um) 
Fio. 5.2. • 
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Model II 
Comer Leakage Point 

19 

18 
17 

18 
15 

14 
13 
12 

• 11 

• 10 
• 9 

8 
7 

B 
5 

4 
3 

2 
A  

0 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 18 17 18 19 20 

X—axis 

Fig.3.3. The corner-leakage-point model with 

initial conditions : C(1,1,0) = C(2,2,0) = C. (0.86mg/mi) 

C(i0,0) = 0 , for 10420, 14j420 

(except i=j=1,2) 

boundary conditions : aC(i,j,t)/ax = 0 , for i>20 

at any time t c3C(i,j,t)/ ay = 0 , for j>20. 
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TABLE 3.2 

A summary of the simulation results for the corner 

leakage point model which were used to plot the graph in 

Fig.3.4. 

Distance 

(um) 

Concentration cms/m1) 

1.0sec 2.0sec 3.Osec* 4.Osec 

0.0 0.29 0.30 0.30 0.30 

10.0 0.20 0.21 0.21 0.21 

20.0 0.11 0.12 0.12 0.12 

30.0 0.05 0.07 0.07 0.07 

40.0 0.02 0.04 0.04 0.04 

50.0 0.01 0.02 0.02 0.03 

* This column was not used in plotting the graph, since 
at 4 sec the concentration at each point was almost the same 
as the concentration at 3 sec. 
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Model III 
Line-Leange Model 

so  

I  

)  

II  
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Fig.3.5. The line—leakage model with 

initial conditions: C(10,0) = Co  (0.136mg/m1) ,for 14j420 

C(i,j,0) = 0 , for 2,1<i‘20 , 4j420 

boundary conditions : aC(i,j,t)/ ex = 0 , for i>20 

aC(i,j,t)/Ely = 0 , for j>20. 



TABLE 3.3 

A summary of the simulation results for the line 

leakage points model which were used to plot the graph in 

Fig.3.6 • 

Distance 

(um) 

Concentration cimghni3 

1.Osec 2.Osec 3.Osec 4.Osec 

0.0 0.86 0.86 0.86 0.86 

10.0 0.28 0.34 0.36 0.38 

20.0 0.08 0.13 0.16 0.18 

30.0 0.02 0.05 0.07 0.09 

40.0 0.00 0.02 0.03 0.05 

50.0 0.00 0.01 0.01 0.02 
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Theoretical Curves o$ Line Leakage Model 
Line leafage is ihe Y-axis. 

Time step= 0,05 sec 

Diffusion coefficient-0.01 Jety124 
4x= a y-0.1 um (Vx=Vy--7-7-0) 

•..,, • , , ti  = 1.0sec •  .. , •• , . , • 
•.. „ t,. - 2.Osec 

• , 
.. , . ... , ... , , 
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%, .. ... •,,. ., ... 

........ 

t., = 3.Osec 
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Fig. 3.6  
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2. The other simulations used nonzero values of Vx and 

Vy. The differences in the model solutions as indicated by 

their theoretical curves were as follows : 

2.1. Fig.3.7(a,b) ; this shows two solutions for the 

middle leakage model (the same as in Fig.3.l except the 

value of C
o 
=2.39 mg/W. The results show that with Vx = 

Vy = 1.0x10
-4 

cm/sec, the computed C(i,j,t) is increased at 

any point at any time by increasing the diffusion 

coefficient (D). 

2.2. The solution is more complex when the model 

coefficients Vx, Vy are nonzero. When Vx = Vy = o, 

increasing D increases C(i,j,t). This was not always true 

when the values of Vx and Vy were not zero. Fig.3.9 shows 

that increasing Vy decreases C(i,j,t) near the origin. 

Increasing both Vx, and Vy when D is kept constant is 

shown in Fig.3.10(a,b) for the three-leakage point model. 

Concentration changes along the x-axis is shown for two 

simulations with different Vx and Vy. In graph (a) the 

solutions showed concentration differences from the origin 

point (2,8) to point (14,8). In graph (b) concentration 

differences were shown from point (2,11) which was not the 

origin point to point (10,11), so the concentration 

profiles were different. That means that diffusion along 

the y-axis had occurred in (b). 

It can be concluded that for the same conditions the values 

of Vx,Vy increased the effective diffusion rate and 



increased the diffusion area at the same value of time (if 

there are no boundary limitations). 
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DA  
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t=1.24 sic O t=0.82 + t=1.24 
Distance (um) 

• t=0.82 

2.8 

14 
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2- 

• t8- 

• - 
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1.2 

C 
0 

1 - 

0.8 - 

0.8 - 

0.4 

0.2 - 

0 
18 

Diffusion on X-axis 

Fig.3.7a. Simulation results for the middle leakage 

point model (Fig.3.1) with C.=2.39 mg/ml. Two simulations 

were performed. Both of them used the same values of : 

Vx=Vy=1.0x10-4.  cm/sec  , Dx=Dy=5 um ,and 

h = 0.062 sec. The values of D are different as one used 

pl=1.5x10-7  cm/sec and the other used Dm = 5.0x10-e' 

cm2/sec. The concentration profiles along the x-axis at 

time 0.62 and 1.24 sec are shown for both values o4 D. 
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Diffusion on Y-axis 

Fig.3.7b. This graph shows the concentration profiles 

along the y-axis for the simulation shown in Fig.3.7a. With 

Vx=Vy=1.0x10-4  cm/sec and no diffusion heterogeneity, the 

profiles are identical. 
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t 3—Middle Leakage Points Model 
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X—axis 100  

Fig.3.8. Three leakage points model with 

initial conditions : C(0,7,0)=C(1,7,0)=1.168 mg/ml 
C(0,8,0)=C(1,8,0)=1.2428 mg/ml, 
C(0,9,0)=C(1,9,0)=1.232 mg/ml 
C(i0,0) = 0 ; for 2‘i415 , 2415 

boundary conditions : C(0,j,t) = 0 , for 14415 
except C(0,7,t)=1.168, C(0,8,t)=1.2428, 

C(0,9,t)=1.232 mg/ml 

and 20C(i,j,t)/ax = 0 for i>15 
OC(i,j,t)/ey = 0 for j>15 . 
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Different D Coefficient 

Fig.3.9. Two theoritical curves that calculated using 

three leakage point model (Fig.3.8) and Dx=Dy=5 um, h=0.36 

sec. One simulation used D=1.0x10-"' cm°/sec,Vx=Vy=1.0x10-4  

cm/sec, and the other used D=2.0x10-7' cm2'sec,Vx=1.0x10Th 

Vy=1.5x10-4  cm/sec. Concentration profiles on the x-axis at 

time 53 sec are shown. 
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Different Vx,Vy 

10 

0 Vx=1x10 ,Vy=1.5x10 

1.3 

0 20 30 40 

-4 Distance (urn) y '4 + Vx=3x10 ,Vy=3.5x10 Crn,5 

Fig.3.10a. Using the three point leakage model as 

shown in Fig.3.8, one simulation used Vx=1x10-4., Vy=1.5x10-4  

cm/sec, and the other used Vx=3x10-4,Vy=3.5x10—* cm/sec. 

Both used the same D=2.0x10-7  cmz/sec, Dx=Dy=5 um , and 

h=0.36. The concentration profile along the x-axis at time 

53 sec is shown. 



-4 Distance (um) 
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Different Vx,Vy 
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Fig.3.10b. The same simulation as in Fig.3.10(a) is 

shown but this figure shows the concentration profile from 

point (2,11) to point (10,11) at time 53 sec. 
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In these simulations we have to be concerned about the 

stability of the numerical method so that the solution is 

valid. As mentioned before; the time step, h, should be 

selected so that : 

h(2D/(Dx
2
+ Dy

2
) < 1/2 . 

This relationship has been determined by step-by-step 

methods for initial value problems (ref.7). The value "1/2" 

is called the "modulus" of the equation, and was chosen so 

that all coefficients in eq.(3.1) were positive for a stable 

solution. 

To illustrate the dependence of the stability of the 

solution on the step size chosen, Table 3.4 shows the 

results of a simulation in which the parameters were kept 

constant and h (the time step size)was changed from 0.062 

sec to 0.62 sec. Clearly, the results of the second 

simulation were erratic and not stable. A further 

simulation with h reduced to 0.01 sec gave results which 

were barely distinguishable from the first simulation. Thus 

the time step size required for stability in the step-by-

step method appeared to be suitable for the Runge-Kutta 

method but attempts to use a larger step size in the Runge-

Kutta method results in instability. 



TABLE 3.4 

Distance 

(um) 

The first simulation 

Concentration(mg/ml) 

The second simulation 

Concentration(mg/m1) 

6.2sec 1.24sec 6.2sec 1.24sec 

0 2.39 2.39 2.39 2.39 

5 0.996 1.088 -0.96x1011  -0.144x10
24 

10 0.447 0.572 0.95x10
11 

0.19x10
24 

15 0.182 0.312 -0.53x1011 -0.166x10
24 

20 0.073 0.17 0.19x10
11 

0.109x10
24 

Parameter values 

C
o 

= 2.39 mg/ml 

D
1 

= D
2 

= 1.0x10
-6 

cm
2
/sec 

Vx1 = Vyi = Vx2 = Vy2 = 1x10
-4 

cm/sec 

= Dyi = Dx2 = Dy2 = 5 um Dx
1 

hi_ = 0.062 sec: 

D1(1/Dx1
2
+1/Dy1

2
) h1 = (100x2/25)x0.062 = 0.496 <1/2  

h
2 
= 0.62 sec : 

D2(1/Dx2
2
+1/Dy2

2
) h

2 
= (100x2/25)x0.62 = 4.96 > 1/2 
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RESULTS 

A Comparison between Experimental Data and Solutions 

of The Mathematical Models : 

Data From The First Experiment 

After plotting the experimental concentration profiles 

as shown in Fig.1.1 and 1.2, two subregions were chosen from 

Fig.1.1 to compare with the model simulations. 

From the plot of the experimental leakage data and from 

knowing the gray level of each pixel during the control (no 

leakage) period, the leaking subregion can be determined as 

shown in Fig.4.1. From the point (45,53) to point (60,53), 

the concentration profile along the x-axis should be better 

for comparing than the profile along the y-axis since the 

tranvascular movement of fluorescently labeled dextran 

occurred in that area (indicated by small arrows in Fig.4.1. 

The second subregion was chosen to study the diffusion along 

the y-axis. Again, by knowing the gray level during the 

control (no leakage) period, with the data of Fig.1.1, the 

other subregion from point (42,45) to point (42,31) was 

chosen (Fig.4.2). 

These two subregions were used for comparison with the 

model as shown in Fig.4.1 and 4.2, since their initial and 

boundary conditions are approximately the same as those of 

at a model with four-leakage points and 15x15 arrays of 

picture elements (Fig.4.3). 
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Table 4.1 and 4.2 show the corrected gray level 

differences* and the calculated concentration distribution 

of FITC-Dextran in subregions studied. 

The distance between two pixels in Fig.1.1 is 

approximately 3 um. This was determined by calibration 

using a micrometer scale on the microscope stage at the same 

magnification which was used in the experiment. 

In Fig.4.4 the square dots and the circular dots 

represent the concentration data in Table 4.1 and 4.2 

plotted against the distance between two pixels ( 3um and 

the solid lines are the solutions of the best fit 

theoretical model (Table 4.3) calculated by eq.(3.2) with 

apparent diffusion coefficient D' = 1.0x10
-7 

cm
2
/sec and 

equal interstitial velocities Vx, Vy = 1.0x10
-4 

cm/sec. 

The initial condition for the theoretical model is that 
C(x,y,0)=0 . Therefore, the mean values gray level at each 
x,y point for the control period had to be found before 
subtraction processing. 
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Fig.4.2. The second subregion selected from Fig.1.1. 
The graylevels converted to concentration from points 
(42,45) to (42,31) are plotted vs. distance on the y-axis 
in Fig.4. 4. 
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Fig.4.3. The four-leakage-point model. This model gave 

the best fit of the first set of experimental data, with 

initial conditions: C(1,1,0)=C(1,2,0)=C(1,3,0)=C(1,4,0) 

= Co  = 1.36 mg/ml , and C(i,j,0) = 0 , for 2.0415,24j415 

and boundary conditions : C(0,j,t) = C. , for 14j‘4 , 
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TABLE 4.1. 

The position, gray level, and calculated concentration 

at each pixel (selected from Fig.1.1) which was used for 

the graph in Fig.4.4. 

Y X Corrected 

gray level 

Concentration* 

(mg/ml) 

Distance 

along x-axis 

(um) 

53 45 64 0.60 0.0 

53 46 55 0.52 3.0 

53 47 51 0.48 6.0 

53 48 48 0.45 9.0 

53 49 43 0.40 12.0 

53 50 41 0.38 15.0 

53 51 40 0.37 18.0 

53 52 38 0.36 21.0 

53 53 30 0.28 24.0 

53 54 30 0.28 27.0 

53 55' 25 0.23 30.0 

53 56 21 0.20 33.0 

53 57 17 0.16 36.0 

I 
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* Concentration = (gray levelx2.39)/ 255 mg/ml. 



TABLE 4.2. 

The position, gray level, calculated concentration at 

each pixel (selected from Fig.1.1) used in Fig.4.4. 

X Y Corrected 

gray level 

Concentration* 

(mg/m1) 

Distance 

along y-axis 

(um) 

42 41 53 0.50 0.0 

42 40 53 0.50 3.0 

42 39 44 0.41 6.0 

42 38 44 0.41 9.0 

42 37 37 0.35 12.0 

42 36 39 0.36 15.0 

42 35 38 0.36 18.0 

42 34 32 0.30 21.0 

42 33 28 0.26 24.0 

42 32 28 0.26 27.0 

42 31 30 0.28 30.0 

64 

* Concentration = ( gray levelx2.39 )/ 255 mg/ml. 



TABLE 4.3. 

The solution of the theoretical model for 53-sec 

diffusing time; used in Fig.4.4. 

Distance 
(um) 

X-AXIS 
Concentration* 

(mg/ml) 

Y-AXIS 
Concentration* 
(mg/ml) 

0.0 0.58 0.48 

4.0 0.54 0.48 

8.0 0.48 0.46 

12.0 0.42 0.42 

16.0 0.36 0.37 

20.0 0.31 0.33 

24.0 0.26 0.28 

28.0 0.22 0.24 

32.0 0.18 0.20 

36.0 0.15 0.18 

40.0 0.13 0.16 

44.0 0.11 

* Calculated using the following parameters : 
time step = 0.20, at 265 iterations = 0.2x265 = 53sec. 
initial concentration = (145x2.9)/255 = 1.36 mg/ml 
diffusion coefficient = 10.0 um /sec 
interstitial velocity = 1.0 um/sec,ax = ay = 4.0um 
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Data From The Second Experiment 

The graph in Fig.1.3 shows the FITC-dextran leakage 

pattern around a postcapillary venule leakage site in the 

hamster cheek pouch 31 sec after leakage began. Leakage was 

induced by topical application of 10
-5 

M Bradykinin for 5 

min. The Bradykinin was removed and a continuous stream of 

buffer bathed the preparation during the leakage time. The 

control period graylevels were first subtracted leaving only 

the graylevel differences in grayscale (concentration) 

between Bradykinin application and control period. 

Figure.4.5a shows the position of the leaking vessel. 

Since the vessel was positioned along a diagonal, the x and 

y axes were chosen as parallel to and perpendicular to the 

vessel. The lengths along the axes had to be calculated 

from the pixel dimensions and the graphscale values along 

the x and y axes were taken as the values of gray level in 

those pixels on the opposite corner of each little square 

(Fig.4.5a,4.5b). The length calculation is illustrated in 

Fig.4.5b. 

Fig.(4.6a,4.6b) shows the concentration profiles along 

the x and y axes (Table 4.4) in this subregion. The dotted 

lines represent the solution of the three-leakage point 

model for the parameter values given in Table 4.5. 
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The other subregion was chosen around a second leakage 

site (Fig.4.7) and the concentration at each x,y point after 

31-sec diffusion (Table 4.6, Fig.4.8) was also fit by the 

same model(Fig.4.3, except Co=2.39 mg/ml)) using the same 

parameter values as were used to fit the data at the first 

subregion. This serves as a check on the parameter 

estimated from the model. 

The result of the simulation of the second experiment 

gave the estimated interstitial diffusion coefficient and 

interstitial velocities for FITC-dextran (Mw = 150,000) as 

D I  = 1.0x10
-7 

cm
2
/sec 

Vx = Vy = 1.0x10-4 cm/sec. 
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Fig.4.5a. The first subregion selected from Fig.1.3, 
calculated concentrations at points (32,62) to (22,52) 
and at points (32,62) to (42,52) were used in the plot 
against distance on the y-axis and the x-axis, 
respectively, in Fig.4.6(a,b). 

Fig.4.5b. The distance 
between each pixel used in 
Fig.4.6a, was calculated from 
the length of a diagonal 
line through the pixel. 
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Fig.4.7 The second subregion selected from Fig.1.3, 
the calculated concentrations at points (16,73) to 
(6,83) were used to plot the graph in Fig.4.8. 
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TABLE 4.4. 

The position, gray level, calculated concentration at 

each pixel (selected from Fig.1.3) used in Fig.(4.6a,4.6b). 

Y* X Y-AXIS 
Concentration 

(mg/ml) 

X* Y X-AXIS 
Concentration 

(mg/m1) 
Distance 
(um) 

62 32 0.84 32 62 0.84 0.0 

61 31 0.81 33 61 0.81 4.0 

60 30 0.57 34 60 0.65 8.0 

59 29 0.54 35 59 0.53 12.0 

58 28 0.53 36 58 0.48 16.0 

57 27 0.35 37 57 0.19 20.0 

56 26 0.26 38 56 0.29 24.0 

55 25 0.24 39 55 0.30 28.0 

54 24 0.23 40 54 0.32 32.0 

53 23 0.19 41 53 0.21 36.0 

52 22 0.13 42 52 0.15 40.0 

* Diffusion along the lines perpendicular and 
parallel to the leaking vessel. 
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TABLE 4.5. 

The solution of theoretical model used for comparison 

with the 31-sec diffusing time data(Fig.1.3). 

Distance 
(um) 

X-AXIS 
Concentration* 

(mg/ml) 

Y-AXIS 
Concentration* 

(mg/ml) 

0.0 0.93 0.93 

4.0 0.82 0.82 

8.0 0.70 0.70 

12.0 0.58 0.58 

16.0 0.48 0.47 

20.0 0.38 0.37 

24.0 0.30 0.29 

28.0 0.24 0.23 

32.0 0.18 0.18 

36.0 0.14 0.15 

40.0 0.12 

* Calculated from the theoretical model with the 
following parameters : 
time step = 0.10 sec, at 310 iteratio44 =0.1x310=31sec 
initial concentration = 2.39 m§/m1 
diffusion coefficient = 10.0 um /sec 
solvent velocity(Vx,Vy) = 1.0 um/sec, Ax =4y = 4.0 um. 

** The control gray level distribution for the control 
period was not available, so it was assumed that the leaking 
points had the same concentration as was experimentally 
measured in the plasma phase of the animal. 
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TABLE 4.6. 

The position,gray level,and calculated concentration at 

each pixel ( the second subregion from Fig.1.3 ) used in the 

graph of concentration vs distance in Fig.4.8. 

Y* X* X-AXIS 
Concentration 
(mg/ml) 

Distance 
(um) 

73 16 0.92 0.0 

74 15 0.78 4.0 

75 14 0.76 8.0 

76 13 0.70 12.0 

77 12 0.41 16.0 

78 11 0.31 20.0 

79 10 0.12 24.0 

80 9 0.17 28.0 

81 8 0.16 32.0 

82 7 0.11 36.0 

83 6 0.07 40.0 

* Diffusion along the lines perpendicular and parallel 
line to the leaking vessel. 
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TABLE 4.7. 

The solution of the theoretical model used in the graph 

of concentration vs distance in Fig.4.8. 

Distance 
(um) 

X-AXIS 
Concentration* 

(mg/ml) 

0.0 1.19 

4.0 0.94 

8.0 0.74 

12.0 0.57 

16.0 0.45 

20.0 0.34 

24.0 0.26 

28.0 0.20 

32.0 0.15 

36.0 0.12 

40.0 0.09 

* Calculated from the model using the following parameters : 
time step = 0.1 , at 310 iterations = 0.1x310 = 31 sec 
initial concentration = 2.39 m§/m1 
diffusion coefficient = 10.0 um /sec 
solvent velocity (Vx,Vy) = 0.1 um/sec, Ax = Ay = 4.0 um 
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DISCUSSION 

The Best Fit Model 

The model which best fit the data of the second 

experiment was a four corner leakage model shown 

schematically in Fig.4.3. At time zero every point in the 

15x15 arrays are zero except the four leakage points; 

(1,1),(1,2),(1,3),(1,4). Those four points simulated the 

leakage site in which the FITC-dextran concentration was 

constant at the concentration of tracer measured in the 

plasma phase. This assumed that concentration of tracer 

inside the leaking microvessel was constant during the 

observation time and the same as that measured in samples 

taken from large vessels. In the first experiment the gray 

level distribution during the control time helped to better 

approximate the initial condition of the leakage area. 

Figure 5.1 is a plot of concentration vs. distance at 53-sec 

and 105-sec diffusion times ( Fig.l.l,l.2). Figure 5.1 shows 

that the grayscale (concentration) at point adjacent to the 

leaking vessel wall were still increasing during 105 second. 

Therefore, the mean concentration inside the leaking vessel 

(about 1.36 mg/ml) was used for the steady initial condition 

in the simulation of the 53-sec data. This observation 

supported the approximation of constant initial conditions 

for the simulation of the smaller period of diffusion in the 

second experiment (31 sec). 
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The number of leakage points in the model which best 

fit the data were obtained from an analysis of the 

concentration profiles in Fig.l.l,l.2 for the first 

experiment. Figure 4.1 shows that five pixels on the vessel 

wall at the leakage site had almost constant grey levels 

during the entire diffusion period. It was assumed that 

they were constant at initial concentration. The five 

leakage pixels along with the 3 um between pixels indicated 

that the length of the leakage area was about 3x5 um. 

border. In the theoretical model this length correspond to 

four points as the distance used between points was 4 um. 

However since the second experiment only had one 

concentration profile at 31 sec(Fig.1.3). Details of the 

leakage pattern could not be explored as much as in the 

first experiment. In 31-sec diffusion data it was observed 

that there were also five pixels near the edge of the 

leaking vessel that had no gray level difference (the result 

of the subtraction of the control greylevel values produced 

greylevels near zero in these pixels). Therefore the number 

of leakage points in the theoretical model could also be 

four. By trial and error, the results showed that the best 

fit model was one in which the leakage points were at the 

corner not at the middle. 

Fig.4.4 and 4.8 show that the experimental data always 

gave a lower values for the concentration at points near the 

vessel wall on the x-axis than did the solution of 
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theoretical model. The reason for this can be explained in 

two different ways. First, some damage of the cells at the 

vessel wall could have caused the leakage to occur during 

the control period so that the gray level difference from 

subtraction of the control values is less than it should be. 

Second, the diffusion of macromolecules such as FITC-dextran 

150 through the vessel wall is effected by the complicated 

structure of the microvessel wall. The data of Fox and 

Wayland (ref.6) show that gaps occur when two or more 

endothelial cells come together to form a position of the 

vessel wall. Computer reconstruction of the cell junctions 

showed very complex geometry. 

The solution of model with the same model coefficient 

values could be varied to accommodate a different number of 

points on the x- and the y- axes. This feature allowed the 

model to better approximate the heterogenous nature of the 

actual system. The diffusion of molecules throughout the 

tissue is confined to limited regions, rather than being 

uniformly spread throughout the available area. The 

ultrastructure (ref.5,10) of the interstitial space shows 

considerable spatial heterogeneity so that one would expect 

regions of high permeability to macromolecules adjacent to 

regions of low permeability. From the concentration 

profiles (Fig.1.1,1.2 and 1.3), the sizes of subregions 

could be identified and it was assumed that within each 

subregion the structure was similar from point to point, 
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so that the concentration gradients only depended on the 

distance from the leakage site within each subregion. This 

boundary criteria is described in more detail by Nugent and 

Jain (ref.12,16) and will be discussed in the following 

section. 



RELATED WORK DONE BY OTHERS 

The value of the diffusion coefficient that gave the 

best fit to the data is an apparent diffusion coefficient 

for FITC-dextran 150 in the hamster cheek pouch, to 

distinguish it from the free diffusion coefficient in 

distilled water extrapolated to infinite dilution, Do
. The 

permeability of FITC-dextran ( molecular weight of 

approximately 150,000 ) in control vessel is negligible. 

Gerlowski reported that dextran 150 would not appreciably 

leak into the extravascular space for up to three hours of 

control in the rabbits ear chamber microcirculation. 

However, the intravenous injection of histamine increased 

extravasation of dextran 150 not only in normal tissues but 

also in tumor tissues. 

The value of this calculated apparent diffusion 

coefficient (1.0x10-7 cm2/sec) was less than the one 

reported by Nakamura (ref.16). Nakamura results, reported 

in Table 5.1. show an apparent diffusion coefficient of 

about 2.4x10
-7 

cm
2
/sec for FITC-dextran 152,700. This was 

estimated from the integration of the one-dimensional 

diffusion equation : 

ac(x,o/at = kiD0c(x,t1 
ax ax 

where C(x,t) is the concentration at any distance 

,x,and time,t, and D is the diffusion coefficient. 
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Nakamura's model did not include an interstitial 

velocity (convection contribution). In Fig.5.2 we see that 

at the same D' ( 1.0x10-7 cm
2
/sec) the concentration at the 

same distance, at the same time is increased by interstitial 

velocity (Vx,Vy). A more important reason is that in 

Nakamura's experiments, it was likely that the tracers 

passed through the mesothelium and diffused into the water 

film above and below the tissue itself. Since these aqueous 

layers were considerably greater in thickness than the 

tissue, the fluorescent emission from tracers in the aqueous 

layer would dominate and values of apparent diffusion 

coefficients would approach the values for free diffusion 

coefficients. 

Nakamura's experiments were done in cat mesentery, and 

permeability to macromolecules differs from organ to organ. 

Such differences are consistent with electron microscopic 

findings of differences in the structure of microvascular 

walls from organ to organ (ref.16). 
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TABLE 5.1. 

Calculated Diffusion Coefficients For Dextrans And BSA 

In Mesenteric Reported by Nakamura And Wayland (ref.16). 

Species Mw Mn Dn107 

(cm`/sec) 

FITC-Dextran 3400 2500 27.0 ±2.5 

FITC-Dextran 19,100 17,300 9.3 ±0.3 

FITC-Dextran 41,200 28,200 6.7 10.4 

FITC-Dextran 152,700 101,100 2.4 ±0.3 

FITC-Dextran 393,900 166,800 1.7 10.1 

FITC-BSA (69,00) 6.4 ±0.5 

Mw = weight average molecular weight 

Mn = number average molecular weight 
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In 1977 the D' of FITC-dextran in rat mesentery (Table 

5.2) reported by Fox and Wayland (ref.6) were less than the 

one calculated from the model in this paper. One reason for 

the differences in estimated diffusion coefficient is tissue 

structure ( the interstitial matrix of the rat mesentery is 

extremely dense )• Another reason for the difference is the 

100-times greater concentration of FITC-dextran 150 used in 

their experiments. Their dextran 150 had a degree of 

substitution of 0.01-0.001 FITC molecules / glucose subunit. 

This range of substitutions would bias their data toward 

tracer molecules with the greatest deviation in molecular 

size, shape, charge and other properties from the unlabeled 

molecule (ref.14,16). 
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TABLE 5.2. 

Apparent Diffusion Coefficients Of Fluorescent Tracers 

In Mesentery. 

Tracer 
a5iw  - b Mn D, *107 

(cm'a/sec) 
D'n107 

(cm /sec) 

FITC-Dextran 3,400 2,500 22.9 5.6 

19,100 17,300 10.6 5.9 

19,000 17,500 10.6 2.6 

26,350 36.4 9.1 

35,200 26,000 42.1 7.9 

41,200 28,200 44.9 7.3 

BSA-FITC 68,000 34.5 9.5 

a Mw = weight average molecular weight 

b Mn = number average molecular weight 

Do 
= Free diffusion coefficient at infinite dilution 

D' = Apparent diffusion coefficient in mesentery 
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Nugent and Jain (ref.12) modeled their rabbit ear 

chamber data using a model of one-dimensional diffusion in a 

semi-infinite medium : 

aC/at = D (a2C/ ta x2 ) (5.1) 

CX,0 = 0 

CO3t 
= f(t) 

Coo, t  = 0 

where Cx,t 
is the test molecule concentration at 

distance x from a specified origin at time t, and D is the 

apparent interstitial diffusion coefficient, assumed to be 

constant. Since the tracer was not present in the 

extravascular space prior to injection, Cx0 
 = 0. The 

origin was defined at a position just outside the capillary 

wall (x=0) where intensity measurement specifies a time-

dependent concentration function, Co,t 
= f(t). A solution 

to the system of equations which was applicable for short 

penetration distances was sought since capillary 

interactions in long-term data were manifested as deviations 

in model predictions due to violation of the boundary 

condition Cco,t 
= 0. The solution to this system for 

constant D is readily obtained (ref.12,16) 

C x , t = 2 
/ 2 f f (t-x2/( 4D4<-

2
)) e (5.5) 

where A= x/(4Dt) and AG is a dummy variable for 

integration. To develop analytical criteria with which to 

evaluate the effects of capillary interactions on the data 

1/2 
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at a specified position of measurement, a one-dimensional 

analogue to the Krogh cylinder model was considered. 

Capillary transport interactions were assumed to bo 

adequately represented by a surface of no-flux at a distance 

L from the origin. Accordingly, eq.(5.4) is replaced by 

SCL,t /ex = 0 
(5.6) 

For a step change in concentration at the origin 

(f(t)=C0), the deviation between concentration predicted 

when allowing for capillary interaction (Krogh analog) and 

that predicted with the assumption of noninteraction 

approaches 2% at a time 

tD = TL
2
/D 

where T is a function of x/L which has been 

approximated by 

T 0.57 - 1.30(x/L) + 1.14(x/L)**2 

for 0.1 < x/L < 0.6. 

Since regions for diffusion measurements had 

(5.7) 

(5.8) 

intercapillary distances greater than 100 um, L was chosen 

to be 50 um as a conservative estimate. The iteration time 

t
D 

was used as an absolute upper time limit for the 

application of Eq.5.6. Model predictions (Table 5.3) show 

excellent agreement with the data obtained over times less 

than tD 
yielding best-fit values of D for the test molecules 

studied. 



TABLE 5.3 

Tissue diffusion coefficients in rabbit ear chamber. 

Test Molecule aE nm 
D n107 

crii"lsec 
D*107 

cm /sec 

Na-F 0.48 70 20 

24 

FITC-D20 3.2 10.2 1.7 

3.11 10.55 2.3 

FITC-D40 4.62 7.11 0.22 

4.35 7.54 0.18 

FITC-70 5.79 5.67 0.048 

5.39 6.09 0.061 

FITC-BSA 3.55 9.3 0.16 

0.11 
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Possible Errors : 

1. We do not have a true measure of the concentration 

at any point, only a measure of the total amount of 

fluorochrome in each region of the tissue. If the diffusion 

substance is confined to limited regions, rather than being 

uniformly spread throughout the tissue, this means that the 

actual concentration in the aqueous spaces is higher, but if 

the structure is similar from point to point, the 

concentration gradients, normalized to value at the 

arbitrary origin, will be correctly measured. 

2. There would be greater interference of tissue 

elements with the diffusion of the larger macromolecules ( 

lower diffusion coefficients). 

3. The theoretical equation was derived for an 

infinitely dilute, homogeneous, isotropic binary solute-

solvent system. Although steric and possibly electrostatic 

interaction between tracer molecules and other solutes and 

with the interstitial matrix undoubtedly occur, and although 

local variation in tracer distribution was observed (similar 

to patterns reported by McMaster and Parsons (ref.8) and by 

Wiederhielm (ref.15), eq.(2.8) was applied to a sufficiently 

large area (about 40 um along each axis) that any random 

spatial variation of tissue properties tended to average 

out, and systematic deviations from ideality were manifested 

in the value obtained for the diffusion coefficient. 
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4. Since the initial condition used for the solution of 

eq.(2.8) was empirically determined. For example in the 

first experiment control gray-level data was available. 

Therefore, the initial concentration was approximated as 

being equal to the mean of the gray level inside the leaking 

vessel (about 145) and the concentration was calculated as : 

145x2.39/255=1.36 mg/ml ). However in the second experiment 

the initial concentration was approximated as 2.39 mg/ml, in 

the absence of control gray level information. This means 

that no meaningful statistical test could be applied to the 

calculated values of D',Vx,and Vy. 

In future experiments control values of graylevel 

should be recorded before each experiment. 



CONCLUSION 

The low apparent diffusion coefficient for 

macromolecules such as FITC-dextran 150 which was estimated 

in this paper suggest that, the interstitial space has a 

structure which acts as a barrier to free diffusion of large 

molecules such as proteins. In transient phenomena such as 

the increase in microvascular permeability observed upon 

topical applications of vasoactive agents, interstitial 

concentration gradients would be expected and transport of 

macromolecules would be effected by the physical-chemical 

properties of the interstitial matrix. 

The apparent diffusion coefficient reported in this 

thesis should be considered simply as a descriptive 

parameter that results from the particular model which was 

formulated using the assumptions listing in the mathematical 

model section. Further experimentation and improvement of 

the transport models would be necessary to meaningfully 

apply these results to draw more detailed conclusions about 

the physical-chemical properties of the interstitial space 

which can be related to actual molecular phenomena. 
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APPENDIX A. 

List Of Computer Software : 

MAIN PROGRAM 

BOU PROGRAM 

COEFF PROGRAM 

SCONV PROGRAM 
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&MAIN T=00004 IS ON CR000 8 USING 00018 BLKS R=0000 

0001 FTN66 
0002 $FILES(2,1) 
0003 PROGRAM MAIN 
0004 C  
0005 C 
0006 C THIS PROGRAM IS MAIN PROGRAM THAT IS USED TO FIND THEORETICAL 
0007 C CONCENTRATION OF DIFUSSING MACROMOLECULES AT EACH TIME STEP, 
0008 C AT EACH GRID POINTS. 
0009 C 
0010 C  
0011 C 
0012 C 
0013 DIMENSION C(21,21),Y(21,21),Z(10),A(10),B(5) 
0014 DIMENSION NOEF(10),NONI(10),NOUT(10) 
0015 COMMON C,Y,MPON,DT,NEND,K,CB,A,B,N,TN,LPT 
0016 COMMON ICO,ICP,IP 
0017 LU = LOGLU(LU) 
0018 C 
0019 C-)READ NUMBER OF TIME STEP,TOTAL LOOP COUNTERS,AND TIME STEP 
0020 C FOR PRINTING OUTPUT. 
0021 C 
0022 111 WRITE(LU,1) 
0023 1 FORMAT (/"Enter tine step size,no.of iterations,K value that "/ 
0024 2"will print after K time points") 
0025 READ(LU,*) DT,NEND,LPT 
0026 C 
0027 C-)READ DIFFUSION COEFFICIENTS,VELOCITIES ON X,Y-AXIS, 
0028 C AND REACTION RATES (always zero in this model). 
0029 C 
0030 7 WRITE(1,10) 
0031 10 FORMAT(/"Enter filename that contains coeff. values") 
0032 READ (1,30) (NOEF(I),I=1,10) 
0033 30 FORMAT (40A2) 
0034 OPEN(88,FILE=NOEF,IOSTAT=IOS,ERR=100,STATUS='OLD') 
0035 READ(88,x) (A(I),I=1,5) 
0036 READ(88,*) (B(I),I=1,3) 
0037 CLOSE(88,IOSTAT=IOS,ERR=101,STATUS='KEEP') 
0038 C 
0039 C->READ INITIAL AND BOUNDARY CONDITIONS 
0040 C 
0041 WRITE(1,40) 
0042 40 FORMAT(/"Enter filename that contains initial&boundary condition") 
0043 READ(1,30) (NONI(I),I=1,10) 
0044 OPEN(88,FILE=NONI,IOSTAT=I0S,ERR=102,STATUS='OLD') 
0045 READ(88,*) CB,MPON,IP,ICO 
0046 IF(ICO.EQ.2) ICP=MPON/2 
0047 DO 11 I = 1,MPON+1 
0048 DO 15 J = 1,MPON+1 
0049 READ(88,*) C(I,J) 
0050 15 CONTINUE 
0051 11 CONTINUE 
0052 CLOSE(88,IOSTAT=IOS,ERR=103,STATUS='KEEP') 
0053 TN=0.0 
0054 L=1 
0055 K=1 
0056 C 
0057 C-)ENTER OUTPUT FILENAME 
0058 C 

96 
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0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 C 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 C 
0118 C 

107 
201 
202 
203 
204 
205 
206 
207 
208 
300 
311 
401 
402 
1000 
321 

105 

106 

WRITE(1,80) 
80 FORMAT(/"Enter filename for output") 

READ(1,30) (NOUT(I),I=1,10) 
OPEN(88,FILE=NOUT,IOSTAT=IOS,ERR=106,STATUS='NEW') 
DO 70 N=1,NEND 
TN=DT*FLOAT(K) 
CALL RUNGE 
DO 25 I=2,MPON 
DO 20 J=2,MPON 
C(I,J)=Y(I,J) 

20 CONTINUE 
25 CONTINUE 

IF(N .NE. K) GOTO 70 
WRITE(88,300) TN 
DO 27 I=1,MPON 
WRITE(88,401) (C(I,J),J=1,7) 
WRITE(88,402) (C(I,J),J=8,13) 
WRITE(88,402) (C(I,J),J=14,MPON) 

27 CONTINUE 
K=LPT*L 
L=L+1 

70 CONTINUE 
CLOSE(88,IOSTAT=I0S,ERR=107,STATUS='KEEP') 

103 

104 

102 

101 

100 

READ(1,311) IANS 
IF(IANS.EQ.IHY) GOTO 111 
STOP 
END 

on open file coef') 
on close file coef') 
on open file coni') 
on close file coni') 
on open file boud') 
on close file boud') 
on open file output') 
on close file output') 

FORMAT(/,33X,'TIME=',E14.8/) 
FORMAT(A1) 
FORMAT(/,1X,7(F8.4,2X)) 
FORMAT(1X,6(F8,4,1X)) 
WRITE(1,321) 
FORMAT(/'Do you want to do another simulation? Y/N') 

GOTO 1000 
WRITE(1,201) 
GOTO 1000 
WRITE(1,202) 
GOTO 1000 
WRITE(1,203) 
GOTO 1000 
WRITE(1,204) 
GOTO 1000 
WRITE(1,205) 
GOTO 1000 
WRITE(1,206) 
GOTO 1000 
WRITE(1,207) 
GOTO 1000 
WRITE(1,208) 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
FORMAT('Error 
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• 
• 

• 

0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 

C 
C 

SUBROUTINE RUNGE 

DIMENSION C(21,21),Y(21,21),Z(10),A(10),B(5) 
DIMENSION NOEF(10),NONI(10),NOUT(10> 
COMMON C,Y,MPON,DT,NEND,K,CB,A,B,N,TN,LPT 
COMMON ICO,ICP,IP 
REAL K1,K2,K3,K4 
AR=1.-1./(SQRT(2.)) 

0128 BR=1.+1./(SORT(2.)) 

• 0129 
0130 

CR=-0.5+1./(SORT(2.)> 
DR=-1./(SQRT(2.)) 

0131 DO 2 J=1,MPON 

• 
0132 
0133 

C(MPON+1,J)=C(MPON,J) 
CONTINUE 

0134 DO 3 I=1,MPON 
0135 C(I,MPON+1)=C(I,MPON) 

• 0136 3 CONTINUE 
0137 DO 15 I=2,MPON 
0138 DO 5 J=2,MPON 

• 0139 IF(ICO.EQ.3) COTO 11 
0140 IF(ICO.EQ.2) GOTO 10 
0141 DO 6 M=1,2 

• 0142 C(M,ICP)=CB 
0143 DO 7 L =1,IP 
0144 IC=MPON/2+L 

• 0145 IL=MPON/2-L 
0146 C(M,IC)=CB 
0147 C(M,IL)=CB 

• 0148 7 CONTINUE 
0149 6 CONTINUE 
0150 GOTO 11 

• 0151 10 DO 8 L=1,IP 
0152 C(1,1_>=CB 

tt 
0153 
0154 8 

C(2,L).= CB 
CONTINUE 

0155 11 K1=A(1)*(C(I-1,J)+C(I+1,J))+A(5)*C(I,J)+A(3)*(C(I,J-1)+C(I,J+1))+ 
0156 28(1)*(C(I,J)-C(I+1,J))+B(2)*(C(I,J>-C(I,J+1))+B(3) 

• 0157 DK1=(DT*Kl>/2. 
0158 Z(1)=C(I-1,J)+DK1 
0159 Z(2)=C(I+1,J)+DK1 
0160 Z(3)=C(I,J)+DK1 
0161 Z(4)=C(I,J-1)+DK1 
0162 Z(5)=C(I,J+1)+DK1 
0163 K2=A(1)*(Ztl>+Z(2))+A(5)*Z(3)+A(3)xtZ(4)+Z(5))+B(1)*(Z(3)-Z(2))+ 
0164 28(2)*(Z(3)-Z(5>)+B(3) 
0165 DK2=DT*(CR*K1+AR*K2> 
0166 Z(1)=C(I-1,J)+DK2 
0167 Z(2)=C(I+1,J>+DK2 
0168 Z(3)=C(I,J>+DK2 
0169 Z(4>=C(I,J-1)+DK2 
0170 Z(5)=C(I,J+1)+DK2 
0171 K3=At1)*(Z(1)+Z(2))+A(5)*Z(3)+A(3)*(Z(4)+Z(5))+B(1)*(2(3)-Z(2))+ 
0172 28(2)*(Z(3)-Z(5))+B(3) 
0173 DK3=DT*(DR*K2+BR*K3) 
0174 Z(1)=CtI-1,J>+DK3 
0175 Z(2)=C(I+1,J)+DK3 
0176 Z(3)=C(I,J)+DK3 

• 
0177 
0178 

Z(4)=C(I,J-1)+DK3 
Z(5)=C(I,J+1>+DK3 

• 



• 
0179 
0180 
0181 

K4=A(1)*(Z(1)+Z(2))+A(5)*Z(3)+A(3)*(Z(4)+Z(5))+B(1)*(Z(3)-Z(2))+ 
2B(2)*(Z(3)-Z(5)>+B(3) 
Y(I,J)=C(I,J)+(DT/6,)*(K1+2.*AR*K2+2.*BR*K3+K4) 

0182 IF(ICO.EQ.3) GOTO 5 
0183 IF(ICO.EQ.2) GOTO 12 

• 0184 DO 13 M = 1,2 
0185 Y(M,ICP)=CB 
0186 DO 14 L =1,IP 

• 0187 IC=MPON/2+L 
0188 IL=MPON/2-L 
0189 Y(M,IC)=CB 
0190 Y(M,IL)=CB 
0191 14 CONTINUE 
0192 13 CONTINUE 

I•  0193 GOTO 5 
0194 12 DO 16 L=1,IP 
0195 Y(1,L)=CB 

tf 0196 Y(2,L)=CB 
0197 16 CONTINUE 
0198 CONTINUE 

Alt 0199 15 CONTINUE 
0200 RETURN 
0201 END 

0 

• 

99 

ti. 
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SBOU T=00004 IS ON CR00058 USING 00005 BLKS R=0000 

Olt 0001 FTN66 
0002 $FILES(2,1) 
0003 PROGRAM BOU 
0004 C 
0005 C  

• 0006 C THIS PROGRAM DEFINED BOUNDARY AND INITIAL CONDITION 
0007 C  
0008 C 
0009 COMMON LU 
0010 DIMENSION C(21,21),NAME(10),IL(21),IC(21) 
0011 LU=LOGLU(LU) 

• 0012 WRITE(LU,1) 
0013 1 FORMAT(/"Enter initial concentration,euen number of points"/ 
0014 1"on each axis and odd number of leakage points.") 
0015 READ(LU,x) CB,MPON,IP • 
0016 DO 5 I=1,MPON+1 
0017 DO 6 J=1,MPON+1 
0018 C(I,J)=0.0 • 
0019 6 CONTINUE 
0020 CONTINUE 
0021 WRITE(LU,20) • 
0022 20 FORMAT(/,"Choose one choice for model,please (1,2,3)"/ 
0023 1" 1.Middle leakage points "/ 
0024 2.Corner leakage points "/ • 
0025 3" 3.Every points on line") 
0026 READ(LU,*) ICO 
0027 IF(ICO.NE.3) GOTO 25 4IP 
0028 DO 22 J=1,MPON+1 
0029 C(1,J)=CB 
0030 CONTINUE • 
0031 GOTO 39 
0032 IF(ICO.EQ,2) GOTO 30 
0033 IP=(IP-1)/2 • 
0034 ICP=MPON/2 
0035 DO 33 I =1,2 
0036 C(I,ICP)=CB • 
0037 DO 35 L=1,IP 
0038 IC=MPON/2+L 
0039 IL=MPON/2-L • 
0040 C(I,IC)=CB 
0041 C(I,IL)=CB 
0042 35 CONTINUE • 
0043 33 CONTINUE 
0044 GOTO 39 
0045 30 IP=IP+1 so 
0046 DO 37 L =1,IP 
0047 C(1,L)=CB 
0048 C(2,L)=CB • 
0049 37 CONTINUE 
0050 39 WRITE(1,105) 
0051 105 FORMAT(/"Enter filename for output file") 
0052 READ(1,80) (NAME(I),I=1,10) 
0053 80 FORMAT(40A2) 
0054 OPEN(88,FILE=NAME,IOSTAT=I0S,ERR=202,STATUS='NEW) • 
0055 WRITE(88,*) CB,MPON,IP,ICO 
0056 DO 50 I=1,MPON+1 
0057 DO 45 J=1,MPON+1 • 
0058 WRITE(88,*) C(I,J) 

11. 

100 



• 

0059 
0060 
0061 

45 
50 

CONTINUE 
CONTINUE 
CLOSE(88,IOSTAT=I0S,ERR=203,STATUS='KEEP') 

0062 GOTO 500 
0063 202 WRITE(1,300) 
0064 GOTO 500 
0065 203 WRITE(1,301) 
0066 300 FORMAT('Error on open file') 
0067 301 FORMAT('Error on close file') 
0068 500 STOP 

• 0069 END 

• 
• 
• 
• 

• 
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• 

&COEFF T=00004 IS ON CR00058 USING 00004 BLKS R=0000 

0001 FTN66 
0002 $FILES (2,1) 
0003 PROGRAM COEFF 
0004 C 
0005 C  

• 0006 C THIS PROGRAM CALCULATES COEFFICIENTS FOR MODEL EQUATIONS 
0007 C  
0008 C 

• 0009 DIMENSION A(10),NCOEF(10),B(5) 
0010 LU=LOGLU(LU) 
0011 5 WRITE(LU,10) 

• 0012 10 FORMAT(/"Enter difussion coef,Dx,Dy,Vx,Vy and Reaction rate") 
0013 READ(LU,*) D,DX,DY,VX,VY,RA 
0014 A(1)=D/(DX**2.) 

• 0015 A(2)=2.*A(1) 
0016 A(3)=D/(DY**2.) 
0017 A(4)=2.*A(3) 

• 0018 A(5)=—(A(2)+A(4)) 
0019 B(1)=VX/DX 
0020 B(2)=VY/DY 
0021 B(3)=RA 
0022 WRITE(1,20) 
0023 20 FORMAT(/"Enter filename for coef. values") 
0024 READ(1,30) (NCOEF(I),I=1,10) 
0025 30 FORMAT(40A2) 
0026 OPEN(88,FILE=NCOEF,IOSTAT=IOS,ERR=50,STATUS='NEW') 

• 0027 WRITE(88,*) (A(I),I=1,5) 
0028 WRITE(88,*) (B(I),I=1,3) 
0029 CLOSE(88,IOSTAT=I0S,ERR=55,STATUS='KEEP') 
0030 GOTO 60 
0031 50 WRITE(1,51) 
0032 GOTO 65 

• 0033 55 WRITE(1,56) 
0034 51 FORMAT('Error on open file coef') 
0035 56 FORMAT('Error on close file coef') 

• 0036 GOTO 65 
0037 60 WRITE(1,61) 
0038 61 FORMAT(/,'Do you want to do another calculation? Y/N') 
0039 READ(1,62) IANS 
0040 62 FORMAT(40A2) 

• 

0041 IF(IANS,EQ.1HY) GOTO 5 
0042 65 STOP 
0043 END 
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&SCONV T=00004 IS ON CR00058 USING 00012 BLKS R=0000 

0001 FTN66 
0002 SFILES(0,4,24) 
0003 PROGRAM SCONV 
0004 C 
0005 C  
0006 C THIS PROGRAM WILL CHANGE GREY LEVEL TO CONCENTRATION. 
0007 C  
0008 C 
0009 COMMON LU 
0010 DIMENSION JARRY(170),CEAK(170),IDATA(10),IANS(10) 
0011 LU=LOGLU(LU) 
0012 WRITE(LU,10) 
0013 10 FORMAT(/"Enter LX,LY: _") 
0014 READ(LU,*) ILXX,ILYY 
0015 WRITE(LU,30) 
0016 30 FORMAT(/"Enter data filename: ") 
0017 READ(LU,35) (IDATA(I),I=1,3) 
0018 35 FORMAT(3A2) 
0019 OPEN(70,FILE=IDATA,IOSTAT=I0S,ERR=101,STATUS='OLD') 
0020 WRITE(LU,57) 
0021 READ(LU,*) CONI 
0022 WRITE(LU,60) • 
0023 57 FORMAT(/"Enter initial concentration: _") 
0024 60 FORMAT(/"Enter output filename: _") 
0025 READ(LU,35) (IANS(I),I=1,3) 
0026 OPEN(71,FILE=IANS,IOSTAT=I0S,ERR=103,STATUS='NEW) 
0027 REWIND 70 
0028 DO 85 L=1,ILYY 
0029 DO 80 J=1,ILXX,5 
0030 
0031 

J1=J+1 
J2=J+2 

0032 J3=J+3 
0033 J4=J+4 
0034 READ(70,*) J,I,JARRY(J),J1,I,JARRY(J1),J2,I,JARRY(J2),J3,I, 
0035 1JARRY(J3),J4,I,JARRY(J4) 
0036 CEAK(J)=(JARRY(J)*CONI)/255 
0037 CEAK(J1)=(JARRY(J1)xCONI)/255 
0038 CEAK(J2)=(JARRY(J2)*CONI)/255 
0039 CEAK(J3)=(JARRY(J3)*CONI)/255 
0040 CEAK(J4)=(JARRY(J4)*CONI)/255 
0041 WRITE(71,207) J,I,CEAK(J),J1,I,CEAK(J1),J2,I,CEAK(J2),J3,I, 
0042 10EAK(J3),J4,I,CEAK(J4) 
0043 80 CONTINUE 
0044 85 CONTINUE 
0045 CLOSE(70,IOSTAT=I0S,ERR=102,STATUS='KEEP') 
0046 CLOSE(71,IOSTAT=I0S,ERR=104,STATUS='KEEP') 
0047 STOP 0001 
0048 101 WRITE(LU,201) 
0049 201 FORMAT('Error on open file') 
0050 STOP 0002 
0051 102 WRITE(LU,202) 
0052 202 FORMAT('Error on close file') 
0053 STOP 0003 
0054 103 WRITE(LU,203) 
0055 203 FORMAT('Error on open file') 
0056 STOP 0004 
0057 104 WRITE(LU,204) 
0058 204 FORMAT('Error on close file') 
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0059 207 FORMAT(5(I3,1X,I3,1X,F5,3,1X)) 
0060 END 
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