
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

November 2022

ADDING NEW RACKS AND RECABLING WITHOUT NETWORK ADDING NEW RACKS AND RECABLING WITHOUT NETWORK

DISRUPTION AND FACILITATING MIS-CABLING DETECTION DISRUPTION AND FACILITATING MIS-CABLING DETECTION

Chakradhar Kar

Avinash Reddy Yeddula

Vikas Balakrishna Dharwadkar

Sri Goli

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Kar, Chakradhar; Yeddula, Avinash Reddy; Dharwadkar, Vikas Balakrishna; and Goli, Sri, "ADDING NEW
RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FACILITATING MIS-CABLING
DETECTION", Technical Disclosure Commons, (November 25, 2022)
https://www.tdcommons.org/dpubs_series/5534

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5534?utm_source=www.tdcommons.org%2Fdpubs_series%2F5534&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6824

ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION
AND FACILITATING MIS-CABLING DETECTION

AUTHORS:
Chakradhar Kar

Avinash Reddy Yeddula
Vikas Balakrishna Dharwadkar

Sri Goli

ABSTRACT

As network fabric deployments continue to grow larger and more immense, there

are challenges involving the management cabling arrangements and debugging mis-

cabling issues for large-scale full mesh leaf-spine networks. Additionally, the need for the

automatic discovery of every component of a large fabric, which can be expanded

dynamically, becomes a challenging task. Accordingly, techniques are presented herein

that aid in the automatic detection of mis-cabling issues, the automatic discovery of a rack’s

location within a large-scale data center, and the automatic detection of the addition of a

new rack to a data center, all without disrupting network traffic within a dynamically

expanding fabric. Aspects of the presented techniques provide an algorithm that can

automatically detect such mis-cabling issues. Further aspects of the presented techniques

support a tool that may be used to detect mis-cabling (e.g., in the case of inter-

communication failures among the nodes).

DETAILED DESCRIPTION

As network fabrics grow larger and more immense each day, a challenge with a

large-scale full mesh leaf-spine network concerns managing a plethora of cabling

arrangements and debugging mis-cabling issues. Additionally, the need for the automatic

discovery of every component of a large fabric, which can be expanded dynamically,

becomes a challenging task.

Accordingly, techniques are presented herein that aid in the automatic detection of

mis-cabling issues, the discovery of a rack’s location within a large-scale data center, and

the addition of a new rack to a data center without disrupting network traffic within a

dynamically expanding fabric.

2

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 2 6824

As an initial matter, it will be helpful to note that a (e.g., data center) rack can be

of two types – i.e., a leaf rack and a spine rack. Every rack will have two leaves and a spine

rack will additionally have two spines. Every leaf in a deployment is connected to every

spine – i.e., they are connected in a full mesh topology.

Within such an arrangement, the spine switches are separated into two groups and

are connected to leaf switches using separate physical backbones. The backbones are not

directly interconnected, and each one carries half of the fabric’s throughput. Each leaf

switch is connected to both backbones, and thus to every spine switch, enabling a fully

non-blocking fabric. A backbone represents a physical segment of the spine and simplifies

cabling. Such a backbone may be created by grooming the fiber cable connections with a

passive device that is commonly known as a fiber-shuffler box (and which is often referred

to as a shuffler).

Traditionally, in a network equipment vendor’s application centric infrastructure

data center solution, the leaves and spines are directly connected, and fabric discovery takes

place though an exchange of protocol messages between the leaf switches, the spine

switches, and a policy infrastructure controller.

In contrast, according to the techniques presented herein the leaves and spines are

not directly connected; rather, they are connected though a fiber-shuffler.

In the narrative that follows, the techniques presented herein will be described in

detail with reference to Figure 1, below. That figure depicts elements of an exemplary

arrangement that is possible according to aspects of the presented techniques and which is

reflective of the above discussion.

3

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 3 6824

Figure 1: Exemplary Arrangement

4

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 4 6824

As depicted in Figure 1, above, a fiber-shuffler is present in each and every spine

rack. As a result, full mesh connectivity is achieved between the leaves and spines.

Aspects of the techniques presented herein support, among other things, the

generation of a static connections database (DB) – i.e., a ‘source of truth.’ The generation

of such a DB comprises a number of steps.

A first step encompasses the creation of a static list of port information (with

reference to Figure 1, above, for Leafa, Leafb, Spinea, and Spineb) for a given row or rows.

This is effectively configuration information that may be gathered from the connections

that are depicted in a deployment figure. For example, from Figure 1, above:

Blue shuffler p0 connects -> spine ports 0,1,2,3

Blue shuffler pX connects -> spine ports *, *, *, *

Blue shuffler r0a connects -> leaf ports 0, 1, 2, 3

Blue shuffler leafa ports -> leafa.0, leafa.1...leafa.3

Gold shuffler leafa ports -> leafa.4, leafa.5...leafa.7 shuffler leaf slot

indexes: r0a:0 r0b:1 r1a:2 r1b:3 r2a:4 r2b:5 r3a:6 r3b:7 r4a:8 r4b:9 r5a:10 r5b:11

r6a:12 r6b:13 r7a:14 r7b:15

Similarly, static lists may be created for both the blue and the gold shuffler and the

corresponding switch connections.

During a second step, the leaf shuffler ports may be divided into groups. The reason

for forming a group stems from the fact that a 100 Gigabit Ethernet (G) breakout link from

each of the switches in the group goes to one 400G link on the spine side. Thus, every leaf

connects to every spine in that row. Additionally, when new rows are dynamically added

only cable swapping on the spine-side shuffler will be necessary (as will be described

below) to create a full mesh connectivity.

As depicted in Figure 1, above, the group information on the shuffler (i.e., leaf) side

comprises:

r0a:0 r0b:0 r1a:0 r1b:0 // Group 0

r2a:1 r2b:1 r3a:1 r3b:1 // Group 1

r4a:2 r4b:2 r5a:2 r5b:2 // Group 2

r6a:3 r6b:3 r7a:3 r7b:3 // Group 3

A third step encompasses the generation of connection information for each row

independently. The following pseudo code presents one way in which such information

may be developed:

5

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 5 6824

// All of the leaves in the deployment

for every leafL in range {lr0c0a, lr0c0b, lr7c7b}

 // 4 ports are connected to blue shuffler

 for every leafPort in range { 0, 1, ... 3}

 // 400G link breaks out into 4x100G

 for every breakOutIndex in range { 0, 1, 2, 3}

 // Blue shuffle connections only

 spineKey = pX where X runs from {0 - f}

 // E.g., sr0c3a.0, sr0c3a.1,sr0c3a.2, sr0c3a.3 for p0

 spineConn = blue shuffler connections for a given spineKey

 // leafShuffler side connections r0a=a, r0b=b, r1a=c, r1b =d,

 // r2a = a so on...

 spineBreakoutPort = a or b or c or d

 //LeafShuffleGroup from Step 2 (as described above)

 spineBreakoutInterface = spineConn[leafShuffleGroup]

 + spineBreakoutPort

 // breakoutIndex=0,1,2,3 -> a,b,c,d

 leafBreakOutPort = a or b or c or d

 leafBreakoutInterface = leafPort + leafBreakOutPort

 // Here we have the DB entry (2 type of DBs, leaf to spine,

 // spine to leaf)

 leafBreakoutInterface ----maps to---> spineBreakoutInterface

 spineBreakoutInterface ----maps to---> leafBreakoutInterface

 // Repeat the same steps for gold shuffler (indexing changes as shown

 // in Figure 1, above)

 // 4 ports are connected to gold shuffler

 for every leafPort in range { 4, 5, ... 7}

 // 400G link breaks out into 4x100G

 for every breakOutIndex in range { 0, 1, 2, 3}

 // Here we have the DB entry (2 type of DBs, leaf to spine,

 // spine to leaf)

 leafBreakoutInterface ----maps to---> spineBreakoutInterface

 spineBreakoutInterface ----maps to---> leafBreakoutInterface

 // connections <- append the individual entry

// All of the connections for a given leaf

connectionsDB [leaf] = connections

6

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 6 6824

During a fourth step, once all of the individual row DBs have been generated,

scripts may be written to simulate the exact actions (e.g., a cable swap steps section) that

are to be performed during the addition of a new row. This results in one static connections

DB containing the information for all of the connections for all of the types of deployments

(e.g., one row, two rows, four rows, and eight rows). Such a static DB may be the source

of truth for detecting mis-cabling and rack discovery.

A fifth step encompasses the cable swap actions that are to be performed during the

addition of new rows. Two exemplary sets of actions (continuing with the arrangement that

was depicted in Figure 1, above) are presented below.

For a two-row deployment, the only cable connections that must be changed upon

the addition of a new suite are:

#1. swap row0-shuffler-blue-p2 --- row1-shuffler-blue-p0

#2. swap row0-shuffler-blue-p6 --- row1-shuffler-blue-p4

#3. swap row0-shuffler-blue-pa --- row1-shuffler-blue-p8

#4. swap row0-shuffler-blue-pe --- row1-shuffler-blue-pc

#5. swap row0-shuffler-gold-p3 --- row1-shuffler-gold-p1

#6. swap row0-shuffler-gold-p7 --- row1-shuffler-gold-p5

#7. swap row0-shuffler-gold-pb --- row1-shuffler-gold-p9

#8. swap row0-shuffler-gold-pf --- row1-shuffler-gold-pd

For a four-row deployment, the only cable connections that must be changed upon

the addition of a new suite are:

#0. swap row0-shuffler-blue-p0 --- no change

#0. swap row0-shuffler-blue-p2 --- row1-shuffler-blue-p0

#0. swap row0-shuffler-blue-p4 --- row2-shuffler-blue-p0

#0. swap row0-shuffler-blue-p6 --- row3-shuffler-blue-p0

#0. swap row0-shuffler-blue-p8 --- no change

#0. swap row0-shuffler-blue-pa --- row1-shuffler-blue-p8

#0. swap row0-shuffler-blue-pc --- row2-shuffler-blue-p8

#0. swap row0-shuffler-blue-pe --- row3-shuffler-blue-p8

#1. swap row1-shuffler-blue-p0 --- row0-shuffler-blue-p2

#1. swap row1-shuffler-blue-p2 --- no change

#1. swap row1-shuffler-blue-p4 --- row2-shuffler-blue-p2

#1. swap row1-shuffler-blue-p6 --- row3-shuffler-blue-p2

#1. swap row1-shuffler-blue-p8 --- row0-shuffler-blue-pa

7

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 7 6824

#1. swap row1-shuffler-blue-pa --- no change

#1. swap row1-shuffler-blue-pc --- row2-shuffler-blue-pa

#1. swap row1-shuffler-blue-pe --- row3-shuffler-blue-pa

#2. swap row2-shuffler-blue-p0 --- row0-shuffler-blue-p4

#2. swap row2-shuffler-blue-p2 --- row1-shuffler-blue-p4

#2. swap row2-shuffler-blue-p4 --- no change

#2. swap row2-shuffler-blue-p6 --- row3-shuffler-blue-p4

#2. swap row2-shuffler-blue-p8 --- row0-shuffler-blue- pc

#2. swap row2-shuffler-blue-pa --- row1-shuffler-blue-pc

#2. swap row2-shuffler-blue-pc --- no change

#2. swap row2-shuffler-blue-pe --- row3-shuffler-blue-pc

#3. swap row3-shuffler-blue-p0 --- row0-shuffler-blue-p6

#3. swap row3-shuffler-blue-p2 --- row1-shuffler-blue-p6

#3. swap row3-shuffler-blue-p4 --- row2-shuffler-blue-p6

#3. swap row3-shuffler-blue-p6 --- no change

#3. swap row3-shuffler-blue-p8 --- row0-shuffler-blue-pe

#3. swap row3-shuffler-blue-pa --- row1-shuffler-blue-pe

#3. swap row3-shuffler-blue-pc --- row2-shuffler-blue-pe

#3. swap row3-shuffler-blue-pe --- no change

Following the completion of the above-described actions, sample connection

information from the fiber-shuffler connection DB may look like:

LEAF: lr0c0a

lr0c0a.0a sr0c3a.0a

lr0c0a.0b sr0c3b.0a

lr0c0a.0c sr0c3a.4a

lr0c0a.0d sr0c3b.4a

LEAF: lr0c5b

lr0c5b.0a sr0c3a.2d

lr0c5b.0b sr0c3b.2d

lr0c5b.0c sr0c3a.6d

lr0c5b.0d sr0c3b.6d

In the above sample connection information, the entry lr0c0a.0a sr0c3a.0a may

be interpreted as indicating that leaf-row0-col0-leafInstance:a.port0-breakoutPort:a

connects through a fiber-shuffler to the spine interface spine-row0-col0-port3-

spineInstance:a.port0-breakoutPort:a.

Thus, based on Link Layer Discovery Protocol (LLDP) information on a leaf and

spine, and the local node (spine or leaf) information, there will be one, and only one, entry

8

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 8 6824

in the fiber-shuffler connection database that matches the lookup. The key for a lookup is

a three-tuple, comprising the LLDP endpoints and the local node. For example, in the key

“0a, 2d, lr0c0a” the value “0a, 2d” is extracted from the LLDP neighbors and the value

“lr0c0a” is the local node relative to the LLDP neighbor. Such a lookup in the fiber-

shuffler DB that was depicted above would result in “sr0c3a.”

The result “sr0c3a” then provides the switch’s information (a spine in this case),

the switch’s location (i.e., r0c3), which turns out to be the rack location as well, and the

node instance (instance a in this case).

The next portion of the instant narrative provides a detailed flow for a rack

discovery process.

As illustrated in Figure 1, above, the racks are interconnected using multiple fiber-

shufflers. In order to achieve full mesh connectivity, the deployment is divided into blue

and gold backbones. As shown in the figure, each rack is connected to both blue and gold

backbones thru their respective fiber-shufflers. During rack discovery, the techniques

presented herein leverage the fact that, when a leaf switch or a spine switch is discovered,

based on the physical port on which that switch is discovered its physical location would

be known and hence the rack (leaves and spines are physically hosted inside of a rack) may

be discovered.

Adding a new rack in the same row (i.e., suite) is straightforward. The leaves of a

rack in the same suite must be connected to the fibers-shufflers as shown in Table 1, below

(which, once again, uses the arrangement that was depicted in Figure 1, above).

9

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 9 6824

Table 1: Illustrative Connections

Fiber-Shuffler Leaf

r0a

r0b
Rack 0, Leaf A

Rack 0, Leaf B

r1a

r1b
Rack 1, Leaf A

Rack 1, Leaf B

.

.
.

.

r7a

r7b
Rack 7, Leaf A

Rack 7, Leaf B

With the understanding that racks or new suites may be added on the fly, the

addition of a new row or suite starts with the addition of “Spine Racks” and then the leaf

racks are expanded on the either side of spine racks. The addition of new suites and racks

must still follow the full mesh topology, where all of the leaves in the entire deployment

are connected to all of the spines.

The cable swap logic that is needed here is the same that was used for the static DB

generation (as described above). This is because the row0-shuffler would relate to all “p0’s”

(in an 8x8 deployment), the row1-shuffler would relate to all “p1’s” (in an 8x8

deployment), and so on.

As noted previously, aspects of the techniques presented herein support the

detection of mis-cabling between a leaf and spines and a fiber-shuffler.

As depicted in Figure 1, above, the leaves and spines in a rack must be connected

to the slots as marked on a fiber-shuffler. For example, an r0a label on a fiber-shuffler

implies that row 0, leaf a, r6b – row 6, leaf b, p0, p2, p4, p6, p8, pa, pc, pe are

connected to “spine a” and p1, p3, p5, p7, p9, pb, pd, pe are connected to “spine b.”

Despite clear labeling on the fiber-shuffler, there is a possibility of human error. In the case

of such a situation, it is desirable to detect the error as soon as possible.

Aspects of the techniques presented herein support an algorithm that may be

employed to detect and handle a mis-cabling issue. Such an algorithm encompasses two

assumptions.

10

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 10 6824

First, the two leaves of one rack stay together due to a cabling constraint.

Second, a ShufflerRackDB is updated at every rack creation or deletion event. This

DB is the source of truth for all of the racks that are discovered within a deployment and

includes every bit of information that is related to a rack. Before admitting a rack to the

discovered list, it may be run through a mis-cabling detection algorithm (as will be

described below).

The following pseudo code presents one way in which the above-described

algorithm may be expressed:

detectMiscabling(discoveredNode) {

// leaf or spine is discovered

// Serial number is the unique identifier for a leaf or spine

1. lookup(ShufflerRackDB) for serialNumber -> serialKeyEntry

2. lookup(ShufflerRackDB) for rackName -> rackKeyEntry

3. lookup(ShufflerRackDB) for nodeName -> nodeNameLookup

if serialNumber exists {

 if rackName exists {

 // RackName, SerialNumber and also the node name is same

 if discoveredNode == serialKeyEntry.NodeInfo.NodeName {

 // same leaf/spine discovered again, nothing to do

 } else {

 // nodea and nodeb in the same rack got interchanged

 // mis-cabling of 2 leaves with in the same rack

 // Example ...

 // 1.nodea with seriala in rack r0c3

 // 2.nodeb with serialb in rack r0c3

 // 1 and 2 steps are already discovered

 // 3. nodea is discovered as serialb in the same rack r0c3

 // Delete both the entries and add the new entry

 // in the “ShufflerRackDB”

 // (Expectation is we will get an update for the other leaf too)

 }

 } else {

 // This condition means same leaf/spine which was discovered in

 // rack "x" has been re discovered as rack “y” now.

 // UID remains the same, just the name gets updated. UUID is the

 // unique identifier for the rack, based on which

11

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 11 6824

 // the system has been programmed. Name is more of a logical entity,

 // used for logging/data purposes only.

 // At the point, the expectation is that "we expect the other leaf will

 // also show up with the same updated rack name", eventually

 }

} else {

 if rackName exists {

 if nodeNameLookup {

 // Leaf has been replaced in the existing rack.

 // We discover the same leaf with same name, but a different

 // serial number.

 // Delete the old entry.

 }

 // Update the new entry with the serial number.

} else {

 // Node(leaf/spine) discovered for the first time

 // Generate a UUID for new rack

 }

 // Finally for all the cases, the updated entry is recorded into the DB.

 // add new entry to the ShufflerRackDB

 }

 return nil

}

For purposes of exposition, several sample entries from an exemplary

ShufflerRackDB (based on the dynamic rack discovery) are shown below:

[

{NodeInfo:{NodeName:sr1c3a Instance:a SerialNumber:spineSerial2 NodeType:spine}

RackInfo:{RackUUID:f0454fd1-a448-4ef7-93f2-10cc6fefd314 RackName:r1c3}}

{NodeInfo:{NodeName:sr0c3a Instance:a SerialNumber:spineSerial1 NodeType:spine}

RackInfo:{RackUUID:d481674d-d72d-406a-b33d-739b9d1150ac RackName:r0c3}}

{NodeInfo:{NodeName:lr0c3a Instance:a SerialNumber:leafSerial4 NodeType:leaf}

RackInfo:{RackUUID:d481674d-d72d-406a-b33d-739b9d1150ac RackName:r0c3}}

{NodeInfo:{NodeName:lr0c3b Instance:b SerialNumber:leafSerial2 NodeType:leaf}

RackInfo:{RackUUID:d481674d-d72d-406a-b33d-739b9d1150ac RackName:r0c3}}

]

According to the techniques presented herein, a simple tool that may be employed

to detect mis-cabling may encompass a number of requirements. First, in an application

centric infrastructure the leaves and spines operate within a management Internet Protocol

(IP) setup and all of the ports on an individual switch (i.e., there are no partial connections

12

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

 12 6824

within a rack) are fully connected to the shuffler ports (as shown in Figure 1, above).

Second, the tool is not even aware of any shuffler device that may be used. Third, the

shuffler connections DB (i.e., a static DB) contains all of the possible connection

information across all of the kinds of deployments and such a DB may be embedded into

the tool. Fourth, an input to the tool may be a configuration file, several sample entries

from which are presented below:

- name: sr0c3a
type: spine
IP: 10.1.1.1
- name: lr0c3a
type: leaf
IP: 10.1.1.2
- name: lr0c3b
type: leaf
IP: 10.1.1.3

Based on the above-described requirements, the tool may, for every node that is

defined in the configuration file, perform a series of steps. Under a first step, the tool may

obtain the LLDP neighbors' information on the node, with the help from the (above-

described) management setup. During a second step, a local switch DB may be formed,

containing the neighbors' information, for every interface and its sub-interface. During a

third step, the local switch DB (which was described in connection with Step 2) may be

compared against the shuffler connections DB (i.e., the source of truth) that was described

above. Under a fourth step, if a mismatch is detected (during Step 3) then it may be flagged.

Finally, at a fifth step if the local switch DB matches the shuffler connections DB, then the

focus may be moved to the next switch.

As described and illustrated above, the innovative use of known elements

(including fabric shufflers and the discovery of racks) enable the techniques presented

herein to support, among other things, the automatic discovery of a newly added rack

within a data center. Specifically, the way in which the addition of a rack may be detected

(through use of aspects of the presented techniques) is not currently supported within an

application centric infrastructure and no solution is known that uses the presented method.

Additionally, while any re-cabling or cable swapping may happen manually (or by the

machines) on the addition of a new rack, aspects of the presented techniques support the

automatic detection of mis-cabling on a newly added rack.

13

Defensive Publications Series, Art. 5534 [2022]

https://www.tdcommons.org/dpubs_series/5534

 13 6824

In summary, techniques have been presented herein that aid in the automatic

detection of mis-cabling issues, the automatic discovery of a rack’s location within a large-

scale data center, and the automatic detection of the addition of a new rack to a data center,

all without disrupting network traffic within a dynamically expanding fabric. Aspects of

the presented techniques provide an algorithm that can automatically detect such mis-

cabling issues. Further aspects of the presented techniques support a tool that may be used

to detect mis-cabling (e.g., in the case of inter-communication failures among the nodes).

14

Kar et al.: ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FAC

Published by Technical Disclosure Commons, 2022

	ADDING NEW RACKS AND RECABLING WITHOUT NETWORK DISRUPTION AND FACILITATING MIS-CABLING DETECTION
	Recommended Citation

	Microsoft Word - Publication Document for CPOL 1038826-US.01 (Draft V2) 4876-5454-5727 v.1.docx

